xref: /linux-6.15/include/linux/mmzone.h (revision dbcfe5ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/local_lock.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 enum migratetype {
43 	MIGRATE_UNMOVABLE,
44 	MIGRATE_MOVABLE,
45 	MIGRATE_RECLAIMABLE,
46 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
47 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48 #ifdef CONFIG_CMA
49 	/*
50 	 * MIGRATE_CMA migration type is designed to mimic the way
51 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
52 	 * from MIGRATE_CMA pageblocks and page allocator never
53 	 * implicitly change migration type of MIGRATE_CMA pageblock.
54 	 *
55 	 * The way to use it is to change migratetype of a range of
56 	 * pageblocks to MIGRATE_CMA which can be done by
57 	 * __free_pageblock_cma() function.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern const char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 /*
84  * Check whether a migratetype can be merged with another migratetype.
85  *
86  * It is only mergeable when it can fall back to other migratetypes for
87  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
88  */
89 static inline bool migratetype_is_mergeable(int mt)
90 {
91 	return mt < MIGRATE_PCPTYPES;
92 }
93 
94 #define for_each_migratetype_order(order, type) \
95 	for (order = 0; order < MAX_ORDER; order++) \
96 		for (type = 0; type < MIGRATE_TYPES; type++)
97 
98 extern int page_group_by_mobility_disabled;
99 
100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
101 
102 #define get_pageblock_migratetype(page)					\
103 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
104 
105 struct free_area {
106 	struct list_head	free_list[MIGRATE_TYPES];
107 	unsigned long		nr_free;
108 };
109 
110 static inline struct page *get_page_from_free_area(struct free_area *area,
111 					    int migratetype)
112 {
113 	return list_first_entry_or_null(&area->free_list[migratetype],
114 					struct page, lru);
115 }
116 
117 static inline bool free_area_empty(struct free_area *area, int migratetype)
118 {
119 	return list_empty(&area->free_list[migratetype]);
120 }
121 
122 struct pglist_data;
123 
124 /*
125  * Add a wild amount of padding here to ensure data fall into separate
126  * cachelines.  There are very few zone structures in the machine, so space
127  * consumption is not a concern here.
128  */
129 #if defined(CONFIG_SMP)
130 struct zone_padding {
131 	char x[0];
132 } ____cacheline_internodealigned_in_smp;
133 #define ZONE_PADDING(name)	struct zone_padding name;
134 #else
135 #define ZONE_PADDING(name)
136 #endif
137 
138 #ifdef CONFIG_NUMA
139 enum numa_stat_item {
140 	NUMA_HIT,		/* allocated in intended node */
141 	NUMA_MISS,		/* allocated in non intended node */
142 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
143 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
144 	NUMA_LOCAL,		/* allocation from local node */
145 	NUMA_OTHER,		/* allocation from other node */
146 	NR_VM_NUMA_EVENT_ITEMS
147 };
148 #else
149 #define NR_VM_NUMA_EVENT_ITEMS 0
150 #endif
151 
152 enum zone_stat_item {
153 	/* First 128 byte cacheline (assuming 64 bit words) */
154 	NR_FREE_PAGES,
155 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
156 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
157 	NR_ZONE_ACTIVE_ANON,
158 	NR_ZONE_INACTIVE_FILE,
159 	NR_ZONE_ACTIVE_FILE,
160 	NR_ZONE_UNEVICTABLE,
161 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
162 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
163 	/* Second 128 byte cacheline */
164 	NR_BOUNCE,
165 #if IS_ENABLED(CONFIG_ZSMALLOC)
166 	NR_ZSPAGES,		/* allocated in zsmalloc */
167 #endif
168 	NR_FREE_CMA_PAGES,
169 	NR_VM_ZONE_STAT_ITEMS };
170 
171 enum node_stat_item {
172 	NR_LRU_BASE,
173 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
174 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
175 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
176 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
177 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
178 	NR_SLAB_RECLAIMABLE_B,
179 	NR_SLAB_UNRECLAIMABLE_B,
180 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
181 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
182 	WORKINGSET_NODES,
183 	WORKINGSET_REFAULT_BASE,
184 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
185 	WORKINGSET_REFAULT_FILE,
186 	WORKINGSET_ACTIVATE_BASE,
187 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
188 	WORKINGSET_ACTIVATE_FILE,
189 	WORKINGSET_RESTORE_BASE,
190 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
191 	WORKINGSET_RESTORE_FILE,
192 	WORKINGSET_NODERECLAIM,
193 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
194 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
195 			   only modified from process context */
196 	NR_FILE_PAGES,
197 	NR_FILE_DIRTY,
198 	NR_WRITEBACK,
199 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
200 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
201 	NR_SHMEM_THPS,
202 	NR_SHMEM_PMDMAPPED,
203 	NR_FILE_THPS,
204 	NR_FILE_PMDMAPPED,
205 	NR_ANON_THPS,
206 	NR_VMSCAN_WRITE,
207 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
208 	NR_DIRTIED,		/* page dirtyings since bootup */
209 	NR_WRITTEN,		/* page writings since bootup */
210 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
211 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
212 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
213 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
214 	NR_KERNEL_STACK_KB,	/* measured in KiB */
215 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
216 	NR_KERNEL_SCS_KB,	/* measured in KiB */
217 #endif
218 	NR_PAGETABLE,		/* used for pagetables */
219 #ifdef CONFIG_SWAP
220 	NR_SWAPCACHE,
221 #endif
222 #ifdef CONFIG_NUMA_BALANCING
223 	PGPROMOTE_SUCCESS,	/* promote successfully */
224 #endif
225 	NR_VM_NODE_STAT_ITEMS
226 };
227 
228 /*
229  * Returns true if the item should be printed in THPs (/proc/vmstat
230  * currently prints number of anon, file and shmem THPs. But the item
231  * is charged in pages).
232  */
233 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
234 {
235 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
236 		return false;
237 
238 	return item == NR_ANON_THPS ||
239 	       item == NR_FILE_THPS ||
240 	       item == NR_SHMEM_THPS ||
241 	       item == NR_SHMEM_PMDMAPPED ||
242 	       item == NR_FILE_PMDMAPPED;
243 }
244 
245 /*
246  * Returns true if the value is measured in bytes (most vmstat values are
247  * measured in pages). This defines the API part, the internal representation
248  * might be different.
249  */
250 static __always_inline bool vmstat_item_in_bytes(int idx)
251 {
252 	/*
253 	 * Global and per-node slab counters track slab pages.
254 	 * It's expected that changes are multiples of PAGE_SIZE.
255 	 * Internally values are stored in pages.
256 	 *
257 	 * Per-memcg and per-lruvec counters track memory, consumed
258 	 * by individual slab objects. These counters are actually
259 	 * byte-precise.
260 	 */
261 	return (idx == NR_SLAB_RECLAIMABLE_B ||
262 		idx == NR_SLAB_UNRECLAIMABLE_B);
263 }
264 
265 /*
266  * We do arithmetic on the LRU lists in various places in the code,
267  * so it is important to keep the active lists LRU_ACTIVE higher in
268  * the array than the corresponding inactive lists, and to keep
269  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
270  *
271  * This has to be kept in sync with the statistics in zone_stat_item
272  * above and the descriptions in vmstat_text in mm/vmstat.c
273  */
274 #define LRU_BASE 0
275 #define LRU_ACTIVE 1
276 #define LRU_FILE 2
277 
278 enum lru_list {
279 	LRU_INACTIVE_ANON = LRU_BASE,
280 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
281 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
282 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
283 	LRU_UNEVICTABLE,
284 	NR_LRU_LISTS
285 };
286 
287 enum vmscan_throttle_state {
288 	VMSCAN_THROTTLE_WRITEBACK,
289 	VMSCAN_THROTTLE_ISOLATED,
290 	VMSCAN_THROTTLE_NOPROGRESS,
291 	VMSCAN_THROTTLE_CONGESTED,
292 	NR_VMSCAN_THROTTLE,
293 };
294 
295 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
296 
297 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
298 
299 static inline bool is_file_lru(enum lru_list lru)
300 {
301 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
302 }
303 
304 static inline bool is_active_lru(enum lru_list lru)
305 {
306 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
307 }
308 
309 #define ANON_AND_FILE 2
310 
311 enum lruvec_flags {
312 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
313 					 * backed by a congested BDI
314 					 */
315 };
316 
317 struct lruvec {
318 	struct list_head		lists[NR_LRU_LISTS];
319 	/* per lruvec lru_lock for memcg */
320 	spinlock_t			lru_lock;
321 	/*
322 	 * These track the cost of reclaiming one LRU - file or anon -
323 	 * over the other. As the observed cost of reclaiming one LRU
324 	 * increases, the reclaim scan balance tips toward the other.
325 	 */
326 	unsigned long			anon_cost;
327 	unsigned long			file_cost;
328 	/* Non-resident age, driven by LRU movement */
329 	atomic_long_t			nonresident_age;
330 	/* Refaults at the time of last reclaim cycle */
331 	unsigned long			refaults[ANON_AND_FILE];
332 	/* Various lruvec state flags (enum lruvec_flags) */
333 	unsigned long			flags;
334 #ifdef CONFIG_MEMCG
335 	struct pglist_data *pgdat;
336 #endif
337 };
338 
339 /* Isolate unmapped pages */
340 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
341 /* Isolate for asynchronous migration */
342 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
343 /* Isolate unevictable pages */
344 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
345 
346 /* LRU Isolation modes. */
347 typedef unsigned __bitwise isolate_mode_t;
348 
349 enum zone_watermarks {
350 	WMARK_MIN,
351 	WMARK_LOW,
352 	WMARK_HIGH,
353 	WMARK_PROMO,
354 	NR_WMARK
355 };
356 
357 /*
358  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
359  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
360  * it should not contribute to serious fragmentation causing THP allocation
361  * failures.
362  */
363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
364 #define NR_PCP_THP 1
365 #else
366 #define NR_PCP_THP 0
367 #endif
368 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
369 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
370 
371 /*
372  * Shift to encode migratetype and order in the same integer, with order
373  * in the least significant bits.
374  */
375 #define NR_PCP_ORDER_WIDTH 8
376 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
377 
378 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
379 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
380 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
381 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
382 
383 /* Fields and list protected by pagesets local_lock in page_alloc.c */
384 struct per_cpu_pages {
385 	spinlock_t lock;	/* Protects lists field */
386 	int count;		/* number of pages in the list */
387 	int high;		/* high watermark, emptying needed */
388 	int batch;		/* chunk size for buddy add/remove */
389 	short free_factor;	/* batch scaling factor during free */
390 #ifdef CONFIG_NUMA
391 	short expire;		/* When 0, remote pagesets are drained */
392 #endif
393 
394 	/* Lists of pages, one per migrate type stored on the pcp-lists */
395 	struct list_head lists[NR_PCP_LISTS];
396 } ____cacheline_aligned_in_smp;
397 
398 struct per_cpu_zonestat {
399 #ifdef CONFIG_SMP
400 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
401 	s8 stat_threshold;
402 #endif
403 #ifdef CONFIG_NUMA
404 	/*
405 	 * Low priority inaccurate counters that are only folded
406 	 * on demand. Use a large type to avoid the overhead of
407 	 * folding during refresh_cpu_vm_stats.
408 	 */
409 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
410 #endif
411 };
412 
413 struct per_cpu_nodestat {
414 	s8 stat_threshold;
415 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
416 };
417 
418 #endif /* !__GENERATING_BOUNDS.H */
419 
420 enum zone_type {
421 	/*
422 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
423 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
424 	 * On architectures where this area covers the whole 32 bit address
425 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
426 	 * DMA addressing constraints. This distinction is important as a 32bit
427 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
428 	 * platforms may need both zones as they support peripherals with
429 	 * different DMA addressing limitations.
430 	 */
431 #ifdef CONFIG_ZONE_DMA
432 	ZONE_DMA,
433 #endif
434 #ifdef CONFIG_ZONE_DMA32
435 	ZONE_DMA32,
436 #endif
437 	/*
438 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
439 	 * performed on pages in ZONE_NORMAL if the DMA devices support
440 	 * transfers to all addressable memory.
441 	 */
442 	ZONE_NORMAL,
443 #ifdef CONFIG_HIGHMEM
444 	/*
445 	 * A memory area that is only addressable by the kernel through
446 	 * mapping portions into its own address space. This is for example
447 	 * used by i386 to allow the kernel to address the memory beyond
448 	 * 900MB. The kernel will set up special mappings (page
449 	 * table entries on i386) for each page that the kernel needs to
450 	 * access.
451 	 */
452 	ZONE_HIGHMEM,
453 #endif
454 	/*
455 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
456 	 * movable pages with few exceptional cases described below. Main use
457 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
458 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
459 	 * to increase the number of THP/huge pages. Notable special cases are:
460 	 *
461 	 * 1. Pinned pages: (long-term) pinning of movable pages might
462 	 *    essentially turn such pages unmovable. Therefore, we do not allow
463 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
464 	 *    faulted, they come from the right zone right away. However, it is
465 	 *    still possible that address space already has pages in
466 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
467 	 *    touches that memory before pinning). In such case we migrate them
468 	 *    to a different zone. When migration fails - pinning fails.
469 	 * 2. memblock allocations: kernelcore/movablecore setups might create
470 	 *    situations where ZONE_MOVABLE contains unmovable allocations
471 	 *    after boot. Memory offlining and allocations fail early.
472 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
473 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
474 	 *    for example, if we have sections that are only partially
475 	 *    populated. Memory offlining and allocations fail early.
476 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
477 	 *    memory offlining, such pages cannot be allocated.
478 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
479 	 *    hotplugged memory blocks might only partially be managed by the
480 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
481 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
482 	 *    some cases (virtio-mem), such pages can be skipped during
483 	 *    memory offlining, however, cannot be moved/allocated. These
484 	 *    techniques might use alloc_contig_range() to hide previously
485 	 *    exposed pages from the buddy again (e.g., to implement some sort
486 	 *    of memory unplug in virtio-mem).
487 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
488 	 *    situations where ZERO_PAGE(0) which is allocated differently
489 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
490 	 *    cannot be migrated.
491 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
492 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
493 	 *    such zone. Such pages cannot be really moved around as they are
494 	 *    self-stored in the range, but they are treated as movable when
495 	 *    the range they describe is about to be offlined.
496 	 *
497 	 * In general, no unmovable allocations that degrade memory offlining
498 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
499 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
500 	 * if has_unmovable_pages() states that there are no unmovable pages,
501 	 * there can be false negatives).
502 	 */
503 	ZONE_MOVABLE,
504 #ifdef CONFIG_ZONE_DEVICE
505 	ZONE_DEVICE,
506 #endif
507 	__MAX_NR_ZONES
508 
509 };
510 
511 #ifndef __GENERATING_BOUNDS_H
512 
513 #define ASYNC_AND_SYNC 2
514 
515 struct zone {
516 	/* Read-mostly fields */
517 
518 	/* zone watermarks, access with *_wmark_pages(zone) macros */
519 	unsigned long _watermark[NR_WMARK];
520 	unsigned long watermark_boost;
521 
522 	unsigned long nr_reserved_highatomic;
523 
524 	/*
525 	 * We don't know if the memory that we're going to allocate will be
526 	 * freeable or/and it will be released eventually, so to avoid totally
527 	 * wasting several GB of ram we must reserve some of the lower zone
528 	 * memory (otherwise we risk to run OOM on the lower zones despite
529 	 * there being tons of freeable ram on the higher zones).  This array is
530 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
531 	 * changes.
532 	 */
533 	long lowmem_reserve[MAX_NR_ZONES];
534 
535 #ifdef CONFIG_NUMA
536 	int node;
537 #endif
538 	struct pglist_data	*zone_pgdat;
539 	struct per_cpu_pages	__percpu *per_cpu_pageset;
540 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
541 	/*
542 	 * the high and batch values are copied to individual pagesets for
543 	 * faster access
544 	 */
545 	int pageset_high;
546 	int pageset_batch;
547 
548 #ifndef CONFIG_SPARSEMEM
549 	/*
550 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
551 	 * In SPARSEMEM, this map is stored in struct mem_section
552 	 */
553 	unsigned long		*pageblock_flags;
554 #endif /* CONFIG_SPARSEMEM */
555 
556 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
557 	unsigned long		zone_start_pfn;
558 
559 	/*
560 	 * spanned_pages is the total pages spanned by the zone, including
561 	 * holes, which is calculated as:
562 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
563 	 *
564 	 * present_pages is physical pages existing within the zone, which
565 	 * is calculated as:
566 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
567 	 *
568 	 * present_early_pages is present pages existing within the zone
569 	 * located on memory available since early boot, excluding hotplugged
570 	 * memory.
571 	 *
572 	 * managed_pages is present pages managed by the buddy system, which
573 	 * is calculated as (reserved_pages includes pages allocated by the
574 	 * bootmem allocator):
575 	 *	managed_pages = present_pages - reserved_pages;
576 	 *
577 	 * cma pages is present pages that are assigned for CMA use
578 	 * (MIGRATE_CMA).
579 	 *
580 	 * So present_pages may be used by memory hotplug or memory power
581 	 * management logic to figure out unmanaged pages by checking
582 	 * (present_pages - managed_pages). And managed_pages should be used
583 	 * by page allocator and vm scanner to calculate all kinds of watermarks
584 	 * and thresholds.
585 	 *
586 	 * Locking rules:
587 	 *
588 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
589 	 * It is a seqlock because it has to be read outside of zone->lock,
590 	 * and it is done in the main allocator path.  But, it is written
591 	 * quite infrequently.
592 	 *
593 	 * The span_seq lock is declared along with zone->lock because it is
594 	 * frequently read in proximity to zone->lock.  It's good to
595 	 * give them a chance of being in the same cacheline.
596 	 *
597 	 * Write access to present_pages at runtime should be protected by
598 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
599 	 * present_pages should use get_online_mems() to get a stable value.
600 	 */
601 	atomic_long_t		managed_pages;
602 	unsigned long		spanned_pages;
603 	unsigned long		present_pages;
604 #if defined(CONFIG_MEMORY_HOTPLUG)
605 	unsigned long		present_early_pages;
606 #endif
607 #ifdef CONFIG_CMA
608 	unsigned long		cma_pages;
609 #endif
610 
611 	const char		*name;
612 
613 #ifdef CONFIG_MEMORY_ISOLATION
614 	/*
615 	 * Number of isolated pageblock. It is used to solve incorrect
616 	 * freepage counting problem due to racy retrieving migratetype
617 	 * of pageblock. Protected by zone->lock.
618 	 */
619 	unsigned long		nr_isolate_pageblock;
620 #endif
621 
622 #ifdef CONFIG_MEMORY_HOTPLUG
623 	/* see spanned/present_pages for more description */
624 	seqlock_t		span_seqlock;
625 #endif
626 
627 	int initialized;
628 
629 	/* Write-intensive fields used from the page allocator */
630 	ZONE_PADDING(_pad1_)
631 
632 	/* free areas of different sizes */
633 	struct free_area	free_area[MAX_ORDER];
634 
635 	/* zone flags, see below */
636 	unsigned long		flags;
637 
638 	/* Primarily protects free_area */
639 	spinlock_t		lock;
640 
641 	/* Write-intensive fields used by compaction and vmstats. */
642 	ZONE_PADDING(_pad2_)
643 
644 	/*
645 	 * When free pages are below this point, additional steps are taken
646 	 * when reading the number of free pages to avoid per-cpu counter
647 	 * drift allowing watermarks to be breached
648 	 */
649 	unsigned long percpu_drift_mark;
650 
651 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
652 	/* pfn where compaction free scanner should start */
653 	unsigned long		compact_cached_free_pfn;
654 	/* pfn where compaction migration scanner should start */
655 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
656 	unsigned long		compact_init_migrate_pfn;
657 	unsigned long		compact_init_free_pfn;
658 #endif
659 
660 #ifdef CONFIG_COMPACTION
661 	/*
662 	 * On compaction failure, 1<<compact_defer_shift compactions
663 	 * are skipped before trying again. The number attempted since
664 	 * last failure is tracked with compact_considered.
665 	 * compact_order_failed is the minimum compaction failed order.
666 	 */
667 	unsigned int		compact_considered;
668 	unsigned int		compact_defer_shift;
669 	int			compact_order_failed;
670 #endif
671 
672 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
673 	/* Set to true when the PG_migrate_skip bits should be cleared */
674 	bool			compact_blockskip_flush;
675 #endif
676 
677 	bool			contiguous;
678 
679 	ZONE_PADDING(_pad3_)
680 	/* Zone statistics */
681 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
682 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
683 } ____cacheline_internodealigned_in_smp;
684 
685 enum pgdat_flags {
686 	PGDAT_DIRTY,			/* reclaim scanning has recently found
687 					 * many dirty file pages at the tail
688 					 * of the LRU.
689 					 */
690 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
691 					 * many pages under writeback
692 					 */
693 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
694 };
695 
696 enum zone_flags {
697 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
698 					 * Cleared when kswapd is woken.
699 					 */
700 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
701 };
702 
703 static inline unsigned long zone_managed_pages(struct zone *zone)
704 {
705 	return (unsigned long)atomic_long_read(&zone->managed_pages);
706 }
707 
708 static inline unsigned long zone_cma_pages(struct zone *zone)
709 {
710 #ifdef CONFIG_CMA
711 	return zone->cma_pages;
712 #else
713 	return 0;
714 #endif
715 }
716 
717 static inline unsigned long zone_end_pfn(const struct zone *zone)
718 {
719 	return zone->zone_start_pfn + zone->spanned_pages;
720 }
721 
722 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
723 {
724 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
725 }
726 
727 static inline bool zone_is_initialized(struct zone *zone)
728 {
729 	return zone->initialized;
730 }
731 
732 static inline bool zone_is_empty(struct zone *zone)
733 {
734 	return zone->spanned_pages == 0;
735 }
736 
737 #ifndef BUILD_VDSO32_64
738 /*
739  * The zone field is never updated after free_area_init_core()
740  * sets it, so none of the operations on it need to be atomic.
741  */
742 
743 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
744 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
745 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
746 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
747 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
748 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
749 
750 /*
751  * Define the bit shifts to access each section.  For non-existent
752  * sections we define the shift as 0; that plus a 0 mask ensures
753  * the compiler will optimise away reference to them.
754  */
755 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
756 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
757 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
758 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
759 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
760 
761 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
762 #ifdef NODE_NOT_IN_PAGE_FLAGS
763 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
764 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
765 						SECTIONS_PGOFF : ZONES_PGOFF)
766 #else
767 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
768 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
769 						NODES_PGOFF : ZONES_PGOFF)
770 #endif
771 
772 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
773 
774 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
775 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
776 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
777 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
778 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
779 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
780 
781 static inline enum zone_type page_zonenum(const struct page *page)
782 {
783 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
784 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
785 }
786 
787 static inline enum zone_type folio_zonenum(const struct folio *folio)
788 {
789 	return page_zonenum(&folio->page);
790 }
791 
792 #ifdef CONFIG_ZONE_DEVICE
793 static inline bool is_zone_device_page(const struct page *page)
794 {
795 	return page_zonenum(page) == ZONE_DEVICE;
796 }
797 extern void memmap_init_zone_device(struct zone *, unsigned long,
798 				    unsigned long, struct dev_pagemap *);
799 #else
800 static inline bool is_zone_device_page(const struct page *page)
801 {
802 	return false;
803 }
804 #endif
805 
806 static inline bool folio_is_zone_device(const struct folio *folio)
807 {
808 	return is_zone_device_page(&folio->page);
809 }
810 
811 static inline bool is_zone_movable_page(const struct page *page)
812 {
813 	return page_zonenum(page) == ZONE_MOVABLE;
814 }
815 #endif
816 
817 /*
818  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
819  * intersection with the given zone
820  */
821 static inline bool zone_intersects(struct zone *zone,
822 		unsigned long start_pfn, unsigned long nr_pages)
823 {
824 	if (zone_is_empty(zone))
825 		return false;
826 	if (start_pfn >= zone_end_pfn(zone) ||
827 	    start_pfn + nr_pages <= zone->zone_start_pfn)
828 		return false;
829 
830 	return true;
831 }
832 
833 /*
834  * The "priority" of VM scanning is how much of the queues we will scan in one
835  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
836  * queues ("queue_length >> 12") during an aging round.
837  */
838 #define DEF_PRIORITY 12
839 
840 /* Maximum number of zones on a zonelist */
841 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
842 
843 enum {
844 	ZONELIST_FALLBACK,	/* zonelist with fallback */
845 #ifdef CONFIG_NUMA
846 	/*
847 	 * The NUMA zonelists are doubled because we need zonelists that
848 	 * restrict the allocations to a single node for __GFP_THISNODE.
849 	 */
850 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
851 #endif
852 	MAX_ZONELISTS
853 };
854 
855 /*
856  * This struct contains information about a zone in a zonelist. It is stored
857  * here to avoid dereferences into large structures and lookups of tables
858  */
859 struct zoneref {
860 	struct zone *zone;	/* Pointer to actual zone */
861 	int zone_idx;		/* zone_idx(zoneref->zone) */
862 };
863 
864 /*
865  * One allocation request operates on a zonelist. A zonelist
866  * is a list of zones, the first one is the 'goal' of the
867  * allocation, the other zones are fallback zones, in decreasing
868  * priority.
869  *
870  * To speed the reading of the zonelist, the zonerefs contain the zone index
871  * of the entry being read. Helper functions to access information given
872  * a struct zoneref are
873  *
874  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
875  * zonelist_zone_idx()	- Return the index of the zone for an entry
876  * zonelist_node_idx()	- Return the index of the node for an entry
877  */
878 struct zonelist {
879 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
880 };
881 
882 /*
883  * The array of struct pages for flatmem.
884  * It must be declared for SPARSEMEM as well because there are configurations
885  * that rely on that.
886  */
887 extern struct page *mem_map;
888 
889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
890 struct deferred_split {
891 	spinlock_t split_queue_lock;
892 	struct list_head split_queue;
893 	unsigned long split_queue_len;
894 };
895 #endif
896 
897 /*
898  * On NUMA machines, each NUMA node would have a pg_data_t to describe
899  * it's memory layout. On UMA machines there is a single pglist_data which
900  * describes the whole memory.
901  *
902  * Memory statistics and page replacement data structures are maintained on a
903  * per-zone basis.
904  */
905 typedef struct pglist_data {
906 	/*
907 	 * node_zones contains just the zones for THIS node. Not all of the
908 	 * zones may be populated, but it is the full list. It is referenced by
909 	 * this node's node_zonelists as well as other node's node_zonelists.
910 	 */
911 	struct zone node_zones[MAX_NR_ZONES];
912 
913 	/*
914 	 * node_zonelists contains references to all zones in all nodes.
915 	 * Generally the first zones will be references to this node's
916 	 * node_zones.
917 	 */
918 	struct zonelist node_zonelists[MAX_ZONELISTS];
919 
920 	int nr_zones; /* number of populated zones in this node */
921 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
922 	struct page *node_mem_map;
923 #ifdef CONFIG_PAGE_EXTENSION
924 	struct page_ext *node_page_ext;
925 #endif
926 #endif
927 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
928 	/*
929 	 * Must be held any time you expect node_start_pfn,
930 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
931 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
932 	 * init.
933 	 *
934 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
935 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
936 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
937 	 *
938 	 * Nests above zone->lock and zone->span_seqlock
939 	 */
940 	spinlock_t node_size_lock;
941 #endif
942 	unsigned long node_start_pfn;
943 	unsigned long node_present_pages; /* total number of physical pages */
944 	unsigned long node_spanned_pages; /* total size of physical page
945 					     range, including holes */
946 	int node_id;
947 	wait_queue_head_t kswapd_wait;
948 	wait_queue_head_t pfmemalloc_wait;
949 
950 	/* workqueues for throttling reclaim for different reasons. */
951 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
952 
953 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
954 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
955 					 * when throttling started. */
956 	struct task_struct *kswapd;	/* Protected by
957 					   mem_hotplug_begin/done() */
958 	int kswapd_order;
959 	enum zone_type kswapd_highest_zoneidx;
960 
961 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
962 
963 #ifdef CONFIG_COMPACTION
964 	int kcompactd_max_order;
965 	enum zone_type kcompactd_highest_zoneidx;
966 	wait_queue_head_t kcompactd_wait;
967 	struct task_struct *kcompactd;
968 	bool proactive_compact_trigger;
969 #endif
970 	/*
971 	 * This is a per-node reserve of pages that are not available
972 	 * to userspace allocations.
973 	 */
974 	unsigned long		totalreserve_pages;
975 
976 #ifdef CONFIG_NUMA
977 	/*
978 	 * node reclaim becomes active if more unmapped pages exist.
979 	 */
980 	unsigned long		min_unmapped_pages;
981 	unsigned long		min_slab_pages;
982 #endif /* CONFIG_NUMA */
983 
984 	/* Write-intensive fields used by page reclaim */
985 	ZONE_PADDING(_pad1_)
986 
987 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
988 	/*
989 	 * If memory initialisation on large machines is deferred then this
990 	 * is the first PFN that needs to be initialised.
991 	 */
992 	unsigned long first_deferred_pfn;
993 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
994 
995 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
996 	struct deferred_split deferred_split_queue;
997 #endif
998 
999 	/* Fields commonly accessed by the page reclaim scanner */
1000 
1001 	/*
1002 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1003 	 *
1004 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1005 	 */
1006 	struct lruvec		__lruvec;
1007 
1008 	unsigned long		flags;
1009 
1010 	ZONE_PADDING(_pad2_)
1011 
1012 	/* Per-node vmstats */
1013 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1014 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1015 } pg_data_t;
1016 
1017 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1018 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1019 
1020 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1021 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1022 
1023 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1024 {
1025 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1026 }
1027 
1028 static inline bool pgdat_is_empty(pg_data_t *pgdat)
1029 {
1030 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
1031 }
1032 
1033 #include <linux/memory_hotplug.h>
1034 
1035 void build_all_zonelists(pg_data_t *pgdat);
1036 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1037 		   enum zone_type highest_zoneidx);
1038 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1039 			 int highest_zoneidx, unsigned int alloc_flags,
1040 			 long free_pages);
1041 bool zone_watermark_ok(struct zone *z, unsigned int order,
1042 		unsigned long mark, int highest_zoneidx,
1043 		unsigned int alloc_flags);
1044 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1045 		unsigned long mark, int highest_zoneidx);
1046 /*
1047  * Memory initialization context, use to differentiate memory added by
1048  * the platform statically or via memory hotplug interface.
1049  */
1050 enum meminit_context {
1051 	MEMINIT_EARLY,
1052 	MEMINIT_HOTPLUG,
1053 };
1054 
1055 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1056 				     unsigned long size);
1057 
1058 extern void lruvec_init(struct lruvec *lruvec);
1059 
1060 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1061 {
1062 #ifdef CONFIG_MEMCG
1063 	return lruvec->pgdat;
1064 #else
1065 	return container_of(lruvec, struct pglist_data, __lruvec);
1066 #endif
1067 }
1068 
1069 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1070 int local_memory_node(int node_id);
1071 #else
1072 static inline int local_memory_node(int node_id) { return node_id; };
1073 #endif
1074 
1075 /*
1076  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1077  */
1078 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1079 
1080 #ifdef CONFIG_ZONE_DEVICE
1081 static inline bool zone_is_zone_device(struct zone *zone)
1082 {
1083 	return zone_idx(zone) == ZONE_DEVICE;
1084 }
1085 #else
1086 static inline bool zone_is_zone_device(struct zone *zone)
1087 {
1088 	return false;
1089 }
1090 #endif
1091 
1092 /*
1093  * Returns true if a zone has pages managed by the buddy allocator.
1094  * All the reclaim decisions have to use this function rather than
1095  * populated_zone(). If the whole zone is reserved then we can easily
1096  * end up with populated_zone() && !managed_zone().
1097  */
1098 static inline bool managed_zone(struct zone *zone)
1099 {
1100 	return zone_managed_pages(zone);
1101 }
1102 
1103 /* Returns true if a zone has memory */
1104 static inline bool populated_zone(struct zone *zone)
1105 {
1106 	return zone->present_pages;
1107 }
1108 
1109 #ifdef CONFIG_NUMA
1110 static inline int zone_to_nid(struct zone *zone)
1111 {
1112 	return zone->node;
1113 }
1114 
1115 static inline void zone_set_nid(struct zone *zone, int nid)
1116 {
1117 	zone->node = nid;
1118 }
1119 #else
1120 static inline int zone_to_nid(struct zone *zone)
1121 {
1122 	return 0;
1123 }
1124 
1125 static inline void zone_set_nid(struct zone *zone, int nid) {}
1126 #endif
1127 
1128 extern int movable_zone;
1129 
1130 static inline int is_highmem_idx(enum zone_type idx)
1131 {
1132 #ifdef CONFIG_HIGHMEM
1133 	return (idx == ZONE_HIGHMEM ||
1134 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1135 #else
1136 	return 0;
1137 #endif
1138 }
1139 
1140 /**
1141  * is_highmem - helper function to quickly check if a struct zone is a
1142  *              highmem zone or not.  This is an attempt to keep references
1143  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1144  * @zone: pointer to struct zone variable
1145  * Return: 1 for a highmem zone, 0 otherwise
1146  */
1147 static inline int is_highmem(struct zone *zone)
1148 {
1149 	return is_highmem_idx(zone_idx(zone));
1150 }
1151 
1152 #ifdef CONFIG_ZONE_DMA
1153 bool has_managed_dma(void);
1154 #else
1155 static inline bool has_managed_dma(void)
1156 {
1157 	return false;
1158 }
1159 #endif
1160 
1161 /* These two functions are used to setup the per zone pages min values */
1162 struct ctl_table;
1163 
1164 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1165 		loff_t *);
1166 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1167 		size_t *, loff_t *);
1168 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1169 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1170 		size_t *, loff_t *);
1171 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1172 		void *, size_t *, loff_t *);
1173 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1174 		void *, size_t *, loff_t *);
1175 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1176 		void *, size_t *, loff_t *);
1177 int numa_zonelist_order_handler(struct ctl_table *, int,
1178 		void *, size_t *, loff_t *);
1179 extern int percpu_pagelist_high_fraction;
1180 extern char numa_zonelist_order[];
1181 #define NUMA_ZONELIST_ORDER_LEN	16
1182 
1183 #ifndef CONFIG_NUMA
1184 
1185 extern struct pglist_data contig_page_data;
1186 static inline struct pglist_data *NODE_DATA(int nid)
1187 {
1188 	return &contig_page_data;
1189 }
1190 
1191 #else /* CONFIG_NUMA */
1192 
1193 #include <asm/mmzone.h>
1194 
1195 #endif /* !CONFIG_NUMA */
1196 
1197 extern struct pglist_data *first_online_pgdat(void);
1198 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1199 extern struct zone *next_zone(struct zone *zone);
1200 
1201 /**
1202  * for_each_online_pgdat - helper macro to iterate over all online nodes
1203  * @pgdat: pointer to a pg_data_t variable
1204  */
1205 #define for_each_online_pgdat(pgdat)			\
1206 	for (pgdat = first_online_pgdat();		\
1207 	     pgdat;					\
1208 	     pgdat = next_online_pgdat(pgdat))
1209 /**
1210  * for_each_zone - helper macro to iterate over all memory zones
1211  * @zone: pointer to struct zone variable
1212  *
1213  * The user only needs to declare the zone variable, for_each_zone
1214  * fills it in.
1215  */
1216 #define for_each_zone(zone)			        \
1217 	for (zone = (first_online_pgdat())->node_zones; \
1218 	     zone;					\
1219 	     zone = next_zone(zone))
1220 
1221 #define for_each_populated_zone(zone)		        \
1222 	for (zone = (first_online_pgdat())->node_zones; \
1223 	     zone;					\
1224 	     zone = next_zone(zone))			\
1225 		if (!populated_zone(zone))		\
1226 			; /* do nothing */		\
1227 		else
1228 
1229 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1230 {
1231 	return zoneref->zone;
1232 }
1233 
1234 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1235 {
1236 	return zoneref->zone_idx;
1237 }
1238 
1239 static inline int zonelist_node_idx(struct zoneref *zoneref)
1240 {
1241 	return zone_to_nid(zoneref->zone);
1242 }
1243 
1244 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1245 					enum zone_type highest_zoneidx,
1246 					nodemask_t *nodes);
1247 
1248 /**
1249  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1250  * @z: The cursor used as a starting point for the search
1251  * @highest_zoneidx: The zone index of the highest zone to return
1252  * @nodes: An optional nodemask to filter the zonelist with
1253  *
1254  * This function returns the next zone at or below a given zone index that is
1255  * within the allowed nodemask using a cursor as the starting point for the
1256  * search. The zoneref returned is a cursor that represents the current zone
1257  * being examined. It should be advanced by one before calling
1258  * next_zones_zonelist again.
1259  *
1260  * Return: the next zone at or below highest_zoneidx within the allowed
1261  * nodemask using a cursor within a zonelist as a starting point
1262  */
1263 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1264 					enum zone_type highest_zoneidx,
1265 					nodemask_t *nodes)
1266 {
1267 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1268 		return z;
1269 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1270 }
1271 
1272 /**
1273  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1274  * @zonelist: The zonelist to search for a suitable zone
1275  * @highest_zoneidx: The zone index of the highest zone to return
1276  * @nodes: An optional nodemask to filter the zonelist with
1277  *
1278  * This function returns the first zone at or below a given zone index that is
1279  * within the allowed nodemask. The zoneref returned is a cursor that can be
1280  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1281  * one before calling.
1282  *
1283  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1284  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1285  * update due to cpuset modification.
1286  *
1287  * Return: Zoneref pointer for the first suitable zone found
1288  */
1289 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1290 					enum zone_type highest_zoneidx,
1291 					nodemask_t *nodes)
1292 {
1293 	return next_zones_zonelist(zonelist->_zonerefs,
1294 							highest_zoneidx, nodes);
1295 }
1296 
1297 /**
1298  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1299  * @zone: The current zone in the iterator
1300  * @z: The current pointer within zonelist->_zonerefs being iterated
1301  * @zlist: The zonelist being iterated
1302  * @highidx: The zone index of the highest zone to return
1303  * @nodemask: Nodemask allowed by the allocator
1304  *
1305  * This iterator iterates though all zones at or below a given zone index and
1306  * within a given nodemask
1307  */
1308 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1309 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1310 		zone;							\
1311 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1312 			zone = zonelist_zone(z))
1313 
1314 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1315 	for (zone = z->zone;	\
1316 		zone;							\
1317 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1318 			zone = zonelist_zone(z))
1319 
1320 
1321 /**
1322  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1323  * @zone: The current zone in the iterator
1324  * @z: The current pointer within zonelist->zones being iterated
1325  * @zlist: The zonelist being iterated
1326  * @highidx: The zone index of the highest zone to return
1327  *
1328  * This iterator iterates though all zones at or below a given zone index.
1329  */
1330 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1331 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1332 
1333 /* Whether the 'nodes' are all movable nodes */
1334 static inline bool movable_only_nodes(nodemask_t *nodes)
1335 {
1336 	struct zonelist *zonelist;
1337 	struct zoneref *z;
1338 	int nid;
1339 
1340 	if (nodes_empty(*nodes))
1341 		return false;
1342 
1343 	/*
1344 	 * We can chose arbitrary node from the nodemask to get a
1345 	 * zonelist as they are interlinked. We just need to find
1346 	 * at least one zone that can satisfy kernel allocations.
1347 	 */
1348 	nid = first_node(*nodes);
1349 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1350 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1351 	return (!z->zone) ? true : false;
1352 }
1353 
1354 
1355 #ifdef CONFIG_SPARSEMEM
1356 #include <asm/sparsemem.h>
1357 #endif
1358 
1359 #ifdef CONFIG_FLATMEM
1360 #define pfn_to_nid(pfn)		(0)
1361 #endif
1362 
1363 #ifdef CONFIG_SPARSEMEM
1364 
1365 /*
1366  * PA_SECTION_SHIFT		physical address to/from section number
1367  * PFN_SECTION_SHIFT		pfn to/from section number
1368  */
1369 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1370 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1371 
1372 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1373 
1374 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1375 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1376 
1377 #define SECTION_BLOCKFLAGS_BITS \
1378 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1379 
1380 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1381 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1382 #endif
1383 
1384 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1385 {
1386 	return pfn >> PFN_SECTION_SHIFT;
1387 }
1388 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1389 {
1390 	return sec << PFN_SECTION_SHIFT;
1391 }
1392 
1393 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1394 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1395 
1396 #define SUBSECTION_SHIFT 21
1397 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1398 
1399 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1400 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1401 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1402 
1403 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1404 #error Subsection size exceeds section size
1405 #else
1406 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1407 #endif
1408 
1409 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1410 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1411 
1412 struct mem_section_usage {
1413 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1414 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1415 #endif
1416 	/* See declaration of similar field in struct zone */
1417 	unsigned long pageblock_flags[0];
1418 };
1419 
1420 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1421 
1422 struct page;
1423 struct page_ext;
1424 struct mem_section {
1425 	/*
1426 	 * This is, logically, a pointer to an array of struct
1427 	 * pages.  However, it is stored with some other magic.
1428 	 * (see sparse.c::sparse_init_one_section())
1429 	 *
1430 	 * Additionally during early boot we encode node id of
1431 	 * the location of the section here to guide allocation.
1432 	 * (see sparse.c::memory_present())
1433 	 *
1434 	 * Making it a UL at least makes someone do a cast
1435 	 * before using it wrong.
1436 	 */
1437 	unsigned long section_mem_map;
1438 
1439 	struct mem_section_usage *usage;
1440 #ifdef CONFIG_PAGE_EXTENSION
1441 	/*
1442 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1443 	 * section. (see page_ext.h about this.)
1444 	 */
1445 	struct page_ext *page_ext;
1446 	unsigned long pad;
1447 #endif
1448 	/*
1449 	 * WARNING: mem_section must be a power-of-2 in size for the
1450 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1451 	 */
1452 };
1453 
1454 #ifdef CONFIG_SPARSEMEM_EXTREME
1455 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1456 #else
1457 #define SECTIONS_PER_ROOT	1
1458 #endif
1459 
1460 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1461 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1462 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1463 
1464 #ifdef CONFIG_SPARSEMEM_EXTREME
1465 extern struct mem_section **mem_section;
1466 #else
1467 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1468 #endif
1469 
1470 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1471 {
1472 	return ms->usage->pageblock_flags;
1473 }
1474 
1475 static inline struct mem_section *__nr_to_section(unsigned long nr)
1476 {
1477 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1478 
1479 	if (unlikely(root >= NR_SECTION_ROOTS))
1480 		return NULL;
1481 
1482 #ifdef CONFIG_SPARSEMEM_EXTREME
1483 	if (!mem_section || !mem_section[root])
1484 		return NULL;
1485 #endif
1486 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1487 }
1488 extern size_t mem_section_usage_size(void);
1489 
1490 /*
1491  * We use the lower bits of the mem_map pointer to store
1492  * a little bit of information.  The pointer is calculated
1493  * as mem_map - section_nr_to_pfn(pnum).  The result is
1494  * aligned to the minimum alignment of the two values:
1495  *   1. All mem_map arrays are page-aligned.
1496  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1497  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1498  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1499  *      worst combination is powerpc with 256k pages,
1500  *      which results in PFN_SECTION_SHIFT equal 6.
1501  * To sum it up, at least 6 bits are available on all architectures.
1502  * However, we can exceed 6 bits on some other architectures except
1503  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1504  * with the worst case of 64K pages on arm64) if we make sure the
1505  * exceeded bit is not applicable to powerpc.
1506  */
1507 enum {
1508 	SECTION_MARKED_PRESENT_BIT,
1509 	SECTION_HAS_MEM_MAP_BIT,
1510 	SECTION_IS_ONLINE_BIT,
1511 	SECTION_IS_EARLY_BIT,
1512 #ifdef CONFIG_ZONE_DEVICE
1513 	SECTION_TAINT_ZONE_DEVICE_BIT,
1514 #endif
1515 	SECTION_MAP_LAST_BIT,
1516 };
1517 
1518 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1519 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1520 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1521 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1522 #ifdef CONFIG_ZONE_DEVICE
1523 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1524 #endif
1525 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1526 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1527 
1528 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1529 {
1530 	unsigned long map = section->section_mem_map;
1531 	map &= SECTION_MAP_MASK;
1532 	return (struct page *)map;
1533 }
1534 
1535 static inline int present_section(struct mem_section *section)
1536 {
1537 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1538 }
1539 
1540 static inline int present_section_nr(unsigned long nr)
1541 {
1542 	return present_section(__nr_to_section(nr));
1543 }
1544 
1545 static inline int valid_section(struct mem_section *section)
1546 {
1547 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1548 }
1549 
1550 static inline int early_section(struct mem_section *section)
1551 {
1552 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1553 }
1554 
1555 static inline int valid_section_nr(unsigned long nr)
1556 {
1557 	return valid_section(__nr_to_section(nr));
1558 }
1559 
1560 static inline int online_section(struct mem_section *section)
1561 {
1562 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1563 }
1564 
1565 #ifdef CONFIG_ZONE_DEVICE
1566 static inline int online_device_section(struct mem_section *section)
1567 {
1568 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1569 
1570 	return section && ((section->section_mem_map & flags) == flags);
1571 }
1572 #else
1573 static inline int online_device_section(struct mem_section *section)
1574 {
1575 	return 0;
1576 }
1577 #endif
1578 
1579 static inline int online_section_nr(unsigned long nr)
1580 {
1581 	return online_section(__nr_to_section(nr));
1582 }
1583 
1584 #ifdef CONFIG_MEMORY_HOTPLUG
1585 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1586 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1587 #endif
1588 
1589 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1590 {
1591 	return __nr_to_section(pfn_to_section_nr(pfn));
1592 }
1593 
1594 extern unsigned long __highest_present_section_nr;
1595 
1596 static inline int subsection_map_index(unsigned long pfn)
1597 {
1598 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1599 }
1600 
1601 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1602 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1603 {
1604 	int idx = subsection_map_index(pfn);
1605 
1606 	return test_bit(idx, ms->usage->subsection_map);
1607 }
1608 #else
1609 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1610 {
1611 	return 1;
1612 }
1613 #endif
1614 
1615 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1616 /**
1617  * pfn_valid - check if there is a valid memory map entry for a PFN
1618  * @pfn: the page frame number to check
1619  *
1620  * Check if there is a valid memory map entry aka struct page for the @pfn.
1621  * Note, that availability of the memory map entry does not imply that
1622  * there is actual usable memory at that @pfn. The struct page may
1623  * represent a hole or an unusable page frame.
1624  *
1625  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1626  */
1627 static inline int pfn_valid(unsigned long pfn)
1628 {
1629 	struct mem_section *ms;
1630 
1631 	/*
1632 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1633 	 * pfn. Else it might lead to false positives when
1634 	 * some of the upper bits are set, but the lower bits
1635 	 * match a valid pfn.
1636 	 */
1637 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1638 		return 0;
1639 
1640 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1641 		return 0;
1642 	ms = __pfn_to_section(pfn);
1643 	if (!valid_section(ms))
1644 		return 0;
1645 	/*
1646 	 * Traditionally early sections always returned pfn_valid() for
1647 	 * the entire section-sized span.
1648 	 */
1649 	return early_section(ms) || pfn_section_valid(ms, pfn);
1650 }
1651 #endif
1652 
1653 static inline int pfn_in_present_section(unsigned long pfn)
1654 {
1655 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1656 		return 0;
1657 	return present_section(__pfn_to_section(pfn));
1658 }
1659 
1660 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1661 {
1662 	while (++section_nr <= __highest_present_section_nr) {
1663 		if (present_section_nr(section_nr))
1664 			return section_nr;
1665 	}
1666 
1667 	return -1;
1668 }
1669 
1670 /*
1671  * These are _only_ used during initialisation, therefore they
1672  * can use __initdata ...  They could have names to indicate
1673  * this restriction.
1674  */
1675 #ifdef CONFIG_NUMA
1676 #define pfn_to_nid(pfn)							\
1677 ({									\
1678 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1679 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1680 })
1681 #else
1682 #define pfn_to_nid(pfn)		(0)
1683 #endif
1684 
1685 void sparse_init(void);
1686 #else
1687 #define sparse_init()	do {} while (0)
1688 #define sparse_index_init(_sec, _nid)  do {} while (0)
1689 #define pfn_in_present_section pfn_valid
1690 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1691 #endif /* CONFIG_SPARSEMEM */
1692 
1693 #endif /* !__GENERATING_BOUNDS.H */
1694 #endif /* !__ASSEMBLY__ */
1695 #endif /* _LINUX_MMZONE_H */
1696