1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_FREE_PAGES_BLOCKS, 142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 144 NR_ZONE_ACTIVE_ANON, 145 NR_ZONE_INACTIVE_FILE, 146 NR_ZONE_ACTIVE_FILE, 147 NR_ZONE_UNEVICTABLE, 148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 150 /* Second 128 byte cacheline */ 151 NR_BOUNCE, 152 #if IS_ENABLED(CONFIG_ZSMALLOC) 153 NR_ZSPAGES, /* allocated in zsmalloc */ 154 #endif 155 NR_FREE_CMA_PAGES, 156 #ifdef CONFIG_UNACCEPTED_MEMORY 157 NR_UNACCEPTED, 158 #endif 159 NR_VM_ZONE_STAT_ITEMS }; 160 161 enum node_stat_item { 162 NR_LRU_BASE, 163 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 164 NR_ACTIVE_ANON, /* " " " " " */ 165 NR_INACTIVE_FILE, /* " " " " " */ 166 NR_ACTIVE_FILE, /* " " " " " */ 167 NR_UNEVICTABLE, /* " " " " " */ 168 NR_SLAB_RECLAIMABLE_B, 169 NR_SLAB_UNRECLAIMABLE_B, 170 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 171 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 172 WORKINGSET_NODES, 173 WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 175 WORKINGSET_REFAULT_FILE, 176 WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 178 WORKINGSET_ACTIVATE_FILE, 179 WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 181 WORKINGSET_RESTORE_FILE, 182 WORKINGSET_NODERECLAIM, 183 NR_ANON_MAPPED, /* Mapped anonymous pages */ 184 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 185 only modified from process context */ 186 NR_FILE_PAGES, 187 NR_FILE_DIRTY, 188 NR_WRITEBACK, 189 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 190 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 191 NR_SHMEM_THPS, 192 NR_SHMEM_PMDMAPPED, 193 NR_FILE_THPS, 194 NR_FILE_PMDMAPPED, 195 NR_ANON_THPS, 196 NR_VMSCAN_WRITE, 197 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 198 NR_DIRTIED, /* page dirtyings since bootup */ 199 NR_WRITTEN, /* page writings since bootup */ 200 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 204 NR_KERNEL_STACK_KB, /* measured in KiB */ 205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 206 NR_KERNEL_SCS_KB, /* measured in KiB */ 207 #endif 208 NR_PAGETABLE, /* used for pagetables */ 209 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 210 #ifdef CONFIG_IOMMU_SUPPORT 211 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 212 #endif 213 #ifdef CONFIG_SWAP 214 NR_SWAPCACHE, 215 #endif 216 #ifdef CONFIG_NUMA_BALANCING 217 PGPROMOTE_SUCCESS, /* promote successfully */ 218 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 219 #endif 220 /* PGDEMOTE_*: pages demoted */ 221 PGDEMOTE_KSWAPD, 222 PGDEMOTE_DIRECT, 223 PGDEMOTE_KHUGEPAGED, 224 #ifdef CONFIG_HUGETLB_PAGE 225 NR_HUGETLB, 226 #endif 227 NR_BALLOON_PAGES, 228 NR_VM_NODE_STAT_ITEMS 229 }; 230 231 /* 232 * Returns true if the item should be printed in THPs (/proc/vmstat 233 * currently prints number of anon, file and shmem THPs. But the item 234 * is charged in pages). 235 */ 236 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 237 { 238 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 239 return false; 240 241 return item == NR_ANON_THPS || 242 item == NR_FILE_THPS || 243 item == NR_SHMEM_THPS || 244 item == NR_SHMEM_PMDMAPPED || 245 item == NR_FILE_PMDMAPPED; 246 } 247 248 /* 249 * Returns true if the value is measured in bytes (most vmstat values are 250 * measured in pages). This defines the API part, the internal representation 251 * might be different. 252 */ 253 static __always_inline bool vmstat_item_in_bytes(int idx) 254 { 255 /* 256 * Global and per-node slab counters track slab pages. 257 * It's expected that changes are multiples of PAGE_SIZE. 258 * Internally values are stored in pages. 259 * 260 * Per-memcg and per-lruvec counters track memory, consumed 261 * by individual slab objects. These counters are actually 262 * byte-precise. 263 */ 264 return (idx == NR_SLAB_RECLAIMABLE_B || 265 idx == NR_SLAB_UNRECLAIMABLE_B); 266 } 267 268 /* 269 * We do arithmetic on the LRU lists in various places in the code, 270 * so it is important to keep the active lists LRU_ACTIVE higher in 271 * the array than the corresponding inactive lists, and to keep 272 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 273 * 274 * This has to be kept in sync with the statistics in zone_stat_item 275 * above and the descriptions in vmstat_text in mm/vmstat.c 276 */ 277 #define LRU_BASE 0 278 #define LRU_ACTIVE 1 279 #define LRU_FILE 2 280 281 enum lru_list { 282 LRU_INACTIVE_ANON = LRU_BASE, 283 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 284 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 285 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 286 LRU_UNEVICTABLE, 287 NR_LRU_LISTS 288 }; 289 290 enum vmscan_throttle_state { 291 VMSCAN_THROTTLE_WRITEBACK, 292 VMSCAN_THROTTLE_ISOLATED, 293 VMSCAN_THROTTLE_NOPROGRESS, 294 VMSCAN_THROTTLE_CONGESTED, 295 NR_VMSCAN_THROTTLE, 296 }; 297 298 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 299 300 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 301 302 static inline bool is_file_lru(enum lru_list lru) 303 { 304 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 305 } 306 307 static inline bool is_active_lru(enum lru_list lru) 308 { 309 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 310 } 311 312 #define WORKINGSET_ANON 0 313 #define WORKINGSET_FILE 1 314 #define ANON_AND_FILE 2 315 316 enum lruvec_flags { 317 /* 318 * An lruvec has many dirty pages backed by a congested BDI: 319 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 320 * It can be cleared by cgroup reclaim or kswapd. 321 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 322 * It can only be cleared by kswapd. 323 * 324 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 325 * reclaim, but not vice versa. This only applies to the root cgroup. 326 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 327 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 328 * by kswapd). 329 */ 330 LRUVEC_CGROUP_CONGESTED, 331 LRUVEC_NODE_CONGESTED, 332 }; 333 334 #endif /* !__GENERATING_BOUNDS_H */ 335 336 /* 337 * Evictable folios are divided into multiple generations. The youngest and the 338 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 339 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 340 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 341 * corresponding generation. The gen counter in folio->flags stores gen+1 while 342 * a folio is on one of lrugen->folios[]. Otherwise it stores 0. 343 * 344 * After a folio is faulted in, the aging needs to check the accessed bit at 345 * least twice before handing this folio over to the eviction. The first check 346 * clears the accessed bit from the initial fault; the second check makes sure 347 * this folio hasn't been used since then. This process, AKA second chance, 348 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI 349 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two 350 * generations are considered active; the rest of generations, if they exist, 351 * are considered inactive. See lru_gen_is_active(). 352 * 353 * PG_active is always cleared while a folio is on one of lrugen->folios[] so 354 * that the sliding window needs not to worry about it. And it's set again when 355 * a folio considered active is isolated for non-reclaiming purposes, e.g., 356 * migration. See lru_gen_add_folio() and lru_gen_del_folio(). 357 * 358 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 359 * number of categories of the active/inactive LRU when keeping track of 360 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 361 * in folio->flags, masked by LRU_GEN_MASK. 362 */ 363 #define MIN_NR_GENS 2U 364 #define MAX_NR_GENS 4U 365 366 /* 367 * Each generation is divided into multiple tiers. A folio accessed N times 368 * through file descriptors is in tier order_base_2(N). A folio in the first 369 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page 370 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by 371 * PG_workingset. A folio in any other tier (1<N<5) between the first and last 372 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. 373 * 374 * In contrast to moving across generations which requires the LRU lock, moving 375 * across tiers only involves atomic operations on folio->flags and therefore 376 * has a negligible cost in the buffered access path. In the eviction path, 377 * comparisons of refaulted/(evicted+protected) from the first tier and the rest 378 * infer whether folios accessed multiple times through file descriptors are 379 * statistically hot and thus worth protecting. 380 * 381 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 382 * number of categories of the active/inactive LRU when keeping track of 383 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 384 * folio->flags, masked by LRU_REFS_MASK. 385 */ 386 #define MAX_NR_TIERS 4U 387 388 #ifndef __GENERATING_BOUNDS_H 389 390 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 391 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 392 393 /* 394 * For folios accessed multiple times through file descriptors, 395 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags 396 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its 397 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily 398 * promoted into the second oldest generation in the eviction path. And when 399 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that 400 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is 401 * only valid when PG_referenced is set. 402 * 403 * For folios accessed multiple times through page tables, folio_update_gen() 404 * from a page table walk or lru_gen_set_refs() from a rmap walk sets 405 * PG_referenced after the accessed bit is cleared for the first time. 406 * Thereafter, those two paths set PG_workingset and promote folios to the 407 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears 408 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. 409 * 410 * For both cases above, after PG_workingset is set on a folio, it remains until 411 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It 412 * can be set again if lru_gen_test_recent() returns true upon a refault. 413 */ 414 #define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) 415 416 struct lruvec; 417 struct page_vma_mapped_walk; 418 419 #ifdef CONFIG_LRU_GEN 420 421 enum { 422 LRU_GEN_ANON, 423 LRU_GEN_FILE, 424 }; 425 426 enum { 427 LRU_GEN_CORE, 428 LRU_GEN_MM_WALK, 429 LRU_GEN_NONLEAF_YOUNG, 430 NR_LRU_GEN_CAPS 431 }; 432 433 #define MIN_LRU_BATCH BITS_PER_LONG 434 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 435 436 /* whether to keep historical stats from evicted generations */ 437 #ifdef CONFIG_LRU_GEN_STATS 438 #define NR_HIST_GENS MAX_NR_GENS 439 #else 440 #define NR_HIST_GENS 1U 441 #endif 442 443 /* 444 * The youngest generation number is stored in max_seq for both anon and file 445 * types as they are aged on an equal footing. The oldest generation numbers are 446 * stored in min_seq[] separately for anon and file types so that they can be 447 * incremented independently. Ideally min_seq[] are kept in sync when both anon 448 * and file types are evictable. However, to adapt to situations like extreme 449 * swappiness, they are allowed to be out of sync by at most 450 * MAX_NR_GENS-MIN_NR_GENS-1. 451 * 452 * The number of pages in each generation is eventually consistent and therefore 453 * can be transiently negative when reset_batch_size() is pending. 454 */ 455 struct lru_gen_folio { 456 /* the aging increments the youngest generation number */ 457 unsigned long max_seq; 458 /* the eviction increments the oldest generation numbers */ 459 unsigned long min_seq[ANON_AND_FILE]; 460 /* the birth time of each generation in jiffies */ 461 unsigned long timestamps[MAX_NR_GENS]; 462 /* the multi-gen LRU lists, lazily sorted on eviction */ 463 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 464 /* the multi-gen LRU sizes, eventually consistent */ 465 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 466 /* the exponential moving average of refaulted */ 467 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 468 /* the exponential moving average of evicted+protected */ 469 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 470 /* can only be modified under the LRU lock */ 471 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 472 /* can be modified without holding the LRU lock */ 473 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 474 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 475 /* whether the multi-gen LRU is enabled */ 476 bool enabled; 477 /* the memcg generation this lru_gen_folio belongs to */ 478 u8 gen; 479 /* the list segment this lru_gen_folio belongs to */ 480 u8 seg; 481 /* per-node lru_gen_folio list for global reclaim */ 482 struct hlist_nulls_node list; 483 }; 484 485 enum { 486 MM_LEAF_TOTAL, /* total leaf entries */ 487 MM_LEAF_YOUNG, /* young leaf entries */ 488 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 489 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 490 NR_MM_STATS 491 }; 492 493 /* double-buffering Bloom filters */ 494 #define NR_BLOOM_FILTERS 2 495 496 struct lru_gen_mm_state { 497 /* synced with max_seq after each iteration */ 498 unsigned long seq; 499 /* where the current iteration continues after */ 500 struct list_head *head; 501 /* where the last iteration ended before */ 502 struct list_head *tail; 503 /* Bloom filters flip after each iteration */ 504 unsigned long *filters[NR_BLOOM_FILTERS]; 505 /* the mm stats for debugging */ 506 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 507 }; 508 509 struct lru_gen_mm_walk { 510 /* the lruvec under reclaim */ 511 struct lruvec *lruvec; 512 /* max_seq from lru_gen_folio: can be out of date */ 513 unsigned long seq; 514 /* the next address within an mm to scan */ 515 unsigned long next_addr; 516 /* to batch promoted pages */ 517 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 518 /* to batch the mm stats */ 519 int mm_stats[NR_MM_STATS]; 520 /* total batched items */ 521 int batched; 522 int swappiness; 523 bool force_scan; 524 }; 525 526 /* 527 * For each node, memcgs are divided into two generations: the old and the 528 * young. For each generation, memcgs are randomly sharded into multiple bins 529 * to improve scalability. For each bin, the hlist_nulls is virtually divided 530 * into three segments: the head, the tail and the default. 531 * 532 * An onlining memcg is added to the tail of a random bin in the old generation. 533 * The eviction starts at the head of a random bin in the old generation. The 534 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 535 * the old generation, is incremented when all its bins become empty. 536 * 537 * There are four operations: 538 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 539 * current generation (old or young) and updates its "seg" to "head"; 540 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 541 * current generation (old or young) and updates its "seg" to "tail"; 542 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 543 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 544 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 545 * young generation, updates its "gen" to "young" and resets its "seg" to 546 * "default". 547 * 548 * The events that trigger the above operations are: 549 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 550 * 2. The first attempt to reclaim a memcg below low, which triggers 551 * MEMCG_LRU_TAIL; 552 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 553 * threshold, which triggers MEMCG_LRU_TAIL; 554 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 555 * threshold, which triggers MEMCG_LRU_YOUNG; 556 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 557 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 558 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 559 * 560 * Notes: 561 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 562 * of their max_seq counters ensures the eventual fairness to all eligible 563 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 564 * 2. There are only two valid generations: old (seq) and young (seq+1). 565 * MEMCG_NR_GENS is set to three so that when reading the generation counter 566 * locklessly, a stale value (seq-1) does not wraparound to young. 567 */ 568 #define MEMCG_NR_GENS 3 569 #define MEMCG_NR_BINS 8 570 571 struct lru_gen_memcg { 572 /* the per-node memcg generation counter */ 573 unsigned long seq; 574 /* each memcg has one lru_gen_folio per node */ 575 unsigned long nr_memcgs[MEMCG_NR_GENS]; 576 /* per-node lru_gen_folio list for global reclaim */ 577 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 578 /* protects the above */ 579 spinlock_t lock; 580 }; 581 582 void lru_gen_init_pgdat(struct pglist_data *pgdat); 583 void lru_gen_init_lruvec(struct lruvec *lruvec); 584 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 585 586 void lru_gen_init_memcg(struct mem_cgroup *memcg); 587 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 588 void lru_gen_online_memcg(struct mem_cgroup *memcg); 589 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 590 void lru_gen_release_memcg(struct mem_cgroup *memcg); 591 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 592 593 #else /* !CONFIG_LRU_GEN */ 594 595 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 596 { 597 } 598 599 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 600 { 601 } 602 603 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 604 { 605 return false; 606 } 607 608 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 609 { 610 } 611 612 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 613 { 614 } 615 616 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 617 { 618 } 619 620 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 621 { 622 } 623 624 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 625 { 626 } 627 628 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 629 { 630 } 631 632 #endif /* CONFIG_LRU_GEN */ 633 634 struct lruvec { 635 struct list_head lists[NR_LRU_LISTS]; 636 /* per lruvec lru_lock for memcg */ 637 spinlock_t lru_lock; 638 /* 639 * These track the cost of reclaiming one LRU - file or anon - 640 * over the other. As the observed cost of reclaiming one LRU 641 * increases, the reclaim scan balance tips toward the other. 642 */ 643 unsigned long anon_cost; 644 unsigned long file_cost; 645 /* Non-resident age, driven by LRU movement */ 646 atomic_long_t nonresident_age; 647 /* Refaults at the time of last reclaim cycle */ 648 unsigned long refaults[ANON_AND_FILE]; 649 /* Various lruvec state flags (enum lruvec_flags) */ 650 unsigned long flags; 651 #ifdef CONFIG_LRU_GEN 652 /* evictable pages divided into generations */ 653 struct lru_gen_folio lrugen; 654 #ifdef CONFIG_LRU_GEN_WALKS_MMU 655 /* to concurrently iterate lru_gen_mm_list */ 656 struct lru_gen_mm_state mm_state; 657 #endif 658 #endif /* CONFIG_LRU_GEN */ 659 #ifdef CONFIG_MEMCG 660 struct pglist_data *pgdat; 661 #endif 662 struct zswap_lruvec_state zswap_lruvec_state; 663 }; 664 665 /* Isolate for asynchronous migration */ 666 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 667 /* Isolate unevictable pages */ 668 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 669 670 /* LRU Isolation modes. */ 671 typedef unsigned __bitwise isolate_mode_t; 672 673 enum zone_watermarks { 674 WMARK_MIN, 675 WMARK_LOW, 676 WMARK_HIGH, 677 WMARK_PROMO, 678 NR_WMARK 679 }; 680 681 /* 682 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 683 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 684 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 685 */ 686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 687 #define NR_PCP_THP 2 688 #else 689 #define NR_PCP_THP 0 690 #endif 691 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 692 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 693 694 /* 695 * Flags used in pcp->flags field. 696 * 697 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 698 * previous page freeing. To avoid to drain PCP for an accident 699 * high-order page freeing. 700 * 701 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 702 * draining PCP for consecutive high-order pages freeing without 703 * allocation if data cache slice of CPU is large enough. To reduce 704 * zone lock contention and keep cache-hot pages reusing. 705 */ 706 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 707 #define PCPF_FREE_HIGH_BATCH BIT(1) 708 709 struct per_cpu_pages { 710 spinlock_t lock; /* Protects lists field */ 711 int count; /* number of pages in the list */ 712 int high; /* high watermark, emptying needed */ 713 int high_min; /* min high watermark */ 714 int high_max; /* max high watermark */ 715 int batch; /* chunk size for buddy add/remove */ 716 u8 flags; /* protected by pcp->lock */ 717 u8 alloc_factor; /* batch scaling factor during allocate */ 718 #ifdef CONFIG_NUMA 719 u8 expire; /* When 0, remote pagesets are drained */ 720 #endif 721 short free_count; /* consecutive free count */ 722 723 /* Lists of pages, one per migrate type stored on the pcp-lists */ 724 struct list_head lists[NR_PCP_LISTS]; 725 } ____cacheline_aligned_in_smp; 726 727 struct per_cpu_zonestat { 728 #ifdef CONFIG_SMP 729 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 730 s8 stat_threshold; 731 #endif 732 #ifdef CONFIG_NUMA 733 /* 734 * Low priority inaccurate counters that are only folded 735 * on demand. Use a large type to avoid the overhead of 736 * folding during refresh_cpu_vm_stats. 737 */ 738 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 739 #endif 740 }; 741 742 struct per_cpu_nodestat { 743 s8 stat_threshold; 744 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 745 }; 746 747 #endif /* !__GENERATING_BOUNDS.H */ 748 749 enum zone_type { 750 /* 751 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 752 * to DMA to all of the addressable memory (ZONE_NORMAL). 753 * On architectures where this area covers the whole 32 bit address 754 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 755 * DMA addressing constraints. This distinction is important as a 32bit 756 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 757 * platforms may need both zones as they support peripherals with 758 * different DMA addressing limitations. 759 */ 760 #ifdef CONFIG_ZONE_DMA 761 ZONE_DMA, 762 #endif 763 #ifdef CONFIG_ZONE_DMA32 764 ZONE_DMA32, 765 #endif 766 /* 767 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 768 * performed on pages in ZONE_NORMAL if the DMA devices support 769 * transfers to all addressable memory. 770 */ 771 ZONE_NORMAL, 772 #ifdef CONFIG_HIGHMEM 773 /* 774 * A memory area that is only addressable by the kernel through 775 * mapping portions into its own address space. This is for example 776 * used by i386 to allow the kernel to address the memory beyond 777 * 900MB. The kernel will set up special mappings (page 778 * table entries on i386) for each page that the kernel needs to 779 * access. 780 */ 781 ZONE_HIGHMEM, 782 #endif 783 /* 784 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 785 * movable pages with few exceptional cases described below. Main use 786 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 787 * likely to succeed, and to locally limit unmovable allocations - e.g., 788 * to increase the number of THP/huge pages. Notable special cases are: 789 * 790 * 1. Pinned pages: (long-term) pinning of movable pages might 791 * essentially turn such pages unmovable. Therefore, we do not allow 792 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 793 * faulted, they come from the right zone right away. However, it is 794 * still possible that address space already has pages in 795 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 796 * touches that memory before pinning). In such case we migrate them 797 * to a different zone. When migration fails - pinning fails. 798 * 2. memblock allocations: kernelcore/movablecore setups might create 799 * situations where ZONE_MOVABLE contains unmovable allocations 800 * after boot. Memory offlining and allocations fail early. 801 * 3. Memory holes: kernelcore/movablecore setups might create very rare 802 * situations where ZONE_MOVABLE contains memory holes after boot, 803 * for example, if we have sections that are only partially 804 * populated. Memory offlining and allocations fail early. 805 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 806 * memory offlining, such pages cannot be allocated. 807 * 5. Unmovable PG_offline pages: in paravirtualized environments, 808 * hotplugged memory blocks might only partially be managed by the 809 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 810 * parts not manged by the buddy are unmovable PG_offline pages. In 811 * some cases (virtio-mem), such pages can be skipped during 812 * memory offlining, however, cannot be moved/allocated. These 813 * techniques might use alloc_contig_range() to hide previously 814 * exposed pages from the buddy again (e.g., to implement some sort 815 * of memory unplug in virtio-mem). 816 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 817 * situations where ZERO_PAGE(0) which is allocated differently 818 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 819 * cannot be migrated. 820 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 821 * memory to the MOVABLE zone, the vmemmap pages are also placed in 822 * such zone. Such pages cannot be really moved around as they are 823 * self-stored in the range, but they are treated as movable when 824 * the range they describe is about to be offlined. 825 * 826 * In general, no unmovable allocations that degrade memory offlining 827 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 828 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 829 * if has_unmovable_pages() states that there are no unmovable pages, 830 * there can be false negatives). 831 */ 832 ZONE_MOVABLE, 833 #ifdef CONFIG_ZONE_DEVICE 834 ZONE_DEVICE, 835 #endif 836 __MAX_NR_ZONES 837 838 }; 839 840 #ifndef __GENERATING_BOUNDS_H 841 842 #define ASYNC_AND_SYNC 2 843 844 struct zone { 845 /* Read-mostly fields */ 846 847 /* zone watermarks, access with *_wmark_pages(zone) macros */ 848 unsigned long _watermark[NR_WMARK]; 849 unsigned long watermark_boost; 850 851 unsigned long nr_reserved_highatomic; 852 unsigned long nr_free_highatomic; 853 854 /* 855 * We don't know if the memory that we're going to allocate will be 856 * freeable or/and it will be released eventually, so to avoid totally 857 * wasting several GB of ram we must reserve some of the lower zone 858 * memory (otherwise we risk to run OOM on the lower zones despite 859 * there being tons of freeable ram on the higher zones). This array is 860 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 861 * changes. 862 */ 863 long lowmem_reserve[MAX_NR_ZONES]; 864 865 #ifdef CONFIG_NUMA 866 int node; 867 #endif 868 struct pglist_data *zone_pgdat; 869 struct per_cpu_pages __percpu *per_cpu_pageset; 870 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 871 /* 872 * the high and batch values are copied to individual pagesets for 873 * faster access 874 */ 875 int pageset_high_min; 876 int pageset_high_max; 877 int pageset_batch; 878 879 #ifndef CONFIG_SPARSEMEM 880 /* 881 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 882 * In SPARSEMEM, this map is stored in struct mem_section 883 */ 884 unsigned long *pageblock_flags; 885 #endif /* CONFIG_SPARSEMEM */ 886 887 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 888 unsigned long zone_start_pfn; 889 890 /* 891 * spanned_pages is the total pages spanned by the zone, including 892 * holes, which is calculated as: 893 * spanned_pages = zone_end_pfn - zone_start_pfn; 894 * 895 * present_pages is physical pages existing within the zone, which 896 * is calculated as: 897 * present_pages = spanned_pages - absent_pages(pages in holes); 898 * 899 * present_early_pages is present pages existing within the zone 900 * located on memory available since early boot, excluding hotplugged 901 * memory. 902 * 903 * managed_pages is present pages managed by the buddy system, which 904 * is calculated as (reserved_pages includes pages allocated by the 905 * bootmem allocator): 906 * managed_pages = present_pages - reserved_pages; 907 * 908 * cma pages is present pages that are assigned for CMA use 909 * (MIGRATE_CMA). 910 * 911 * So present_pages may be used by memory hotplug or memory power 912 * management logic to figure out unmanaged pages by checking 913 * (present_pages - managed_pages). And managed_pages should be used 914 * by page allocator and vm scanner to calculate all kinds of watermarks 915 * and thresholds. 916 * 917 * Locking rules: 918 * 919 * zone_start_pfn and spanned_pages are protected by span_seqlock. 920 * It is a seqlock because it has to be read outside of zone->lock, 921 * and it is done in the main allocator path. But, it is written 922 * quite infrequently. 923 * 924 * The span_seq lock is declared along with zone->lock because it is 925 * frequently read in proximity to zone->lock. It's good to 926 * give them a chance of being in the same cacheline. 927 * 928 * Write access to present_pages at runtime should be protected by 929 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 930 * present_pages should use get_online_mems() to get a stable value. 931 */ 932 atomic_long_t managed_pages; 933 unsigned long spanned_pages; 934 unsigned long present_pages; 935 #if defined(CONFIG_MEMORY_HOTPLUG) 936 unsigned long present_early_pages; 937 #endif 938 #ifdef CONFIG_CMA 939 unsigned long cma_pages; 940 #endif 941 942 const char *name; 943 944 #ifdef CONFIG_MEMORY_ISOLATION 945 /* 946 * Number of isolated pageblock. It is used to solve incorrect 947 * freepage counting problem due to racy retrieving migratetype 948 * of pageblock. Protected by zone->lock. 949 */ 950 unsigned long nr_isolate_pageblock; 951 #endif 952 953 #ifdef CONFIG_MEMORY_HOTPLUG 954 /* see spanned/present_pages for more description */ 955 seqlock_t span_seqlock; 956 #endif 957 958 int initialized; 959 960 /* Write-intensive fields used from the page allocator */ 961 CACHELINE_PADDING(_pad1_); 962 963 /* free areas of different sizes */ 964 struct free_area free_area[NR_PAGE_ORDERS]; 965 966 #ifdef CONFIG_UNACCEPTED_MEMORY 967 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 968 struct list_head unaccepted_pages; 969 #endif 970 971 /* zone flags, see below */ 972 unsigned long flags; 973 974 /* Primarily protects free_area */ 975 spinlock_t lock; 976 977 /* Write-intensive fields used by compaction and vmstats. */ 978 CACHELINE_PADDING(_pad2_); 979 980 /* 981 * When free pages are below this point, additional steps are taken 982 * when reading the number of free pages to avoid per-cpu counter 983 * drift allowing watermarks to be breached 984 */ 985 unsigned long percpu_drift_mark; 986 987 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 988 /* pfn where compaction free scanner should start */ 989 unsigned long compact_cached_free_pfn; 990 /* pfn where compaction migration scanner should start */ 991 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 992 unsigned long compact_init_migrate_pfn; 993 unsigned long compact_init_free_pfn; 994 #endif 995 996 #ifdef CONFIG_COMPACTION 997 /* 998 * On compaction failure, 1<<compact_defer_shift compactions 999 * are skipped before trying again. The number attempted since 1000 * last failure is tracked with compact_considered. 1001 * compact_order_failed is the minimum compaction failed order. 1002 */ 1003 unsigned int compact_considered; 1004 unsigned int compact_defer_shift; 1005 int compact_order_failed; 1006 #endif 1007 1008 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 1009 /* Set to true when the PG_migrate_skip bits should be cleared */ 1010 bool compact_blockskip_flush; 1011 #endif 1012 1013 bool contiguous; 1014 1015 CACHELINE_PADDING(_pad3_); 1016 /* Zone statistics */ 1017 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1018 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1019 } ____cacheline_internodealigned_in_smp; 1020 1021 enum pgdat_flags { 1022 PGDAT_DIRTY, /* reclaim scanning has recently found 1023 * many dirty file pages at the tail 1024 * of the LRU. 1025 */ 1026 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1027 * many pages under writeback 1028 */ 1029 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1030 }; 1031 1032 enum zone_flags { 1033 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1034 * Cleared when kswapd is woken. 1035 */ 1036 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1037 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1038 }; 1039 1040 static inline unsigned long wmark_pages(const struct zone *z, 1041 enum zone_watermarks w) 1042 { 1043 return z->_watermark[w] + z->watermark_boost; 1044 } 1045 1046 static inline unsigned long min_wmark_pages(const struct zone *z) 1047 { 1048 return wmark_pages(z, WMARK_MIN); 1049 } 1050 1051 static inline unsigned long low_wmark_pages(const struct zone *z) 1052 { 1053 return wmark_pages(z, WMARK_LOW); 1054 } 1055 1056 static inline unsigned long high_wmark_pages(const struct zone *z) 1057 { 1058 return wmark_pages(z, WMARK_HIGH); 1059 } 1060 1061 static inline unsigned long promo_wmark_pages(const struct zone *z) 1062 { 1063 return wmark_pages(z, WMARK_PROMO); 1064 } 1065 1066 static inline unsigned long zone_managed_pages(struct zone *zone) 1067 { 1068 return (unsigned long)atomic_long_read(&zone->managed_pages); 1069 } 1070 1071 static inline unsigned long zone_cma_pages(struct zone *zone) 1072 { 1073 #ifdef CONFIG_CMA 1074 return zone->cma_pages; 1075 #else 1076 return 0; 1077 #endif 1078 } 1079 1080 static inline unsigned long zone_end_pfn(const struct zone *zone) 1081 { 1082 return zone->zone_start_pfn + zone->spanned_pages; 1083 } 1084 1085 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1086 { 1087 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1088 } 1089 1090 static inline bool zone_is_initialized(struct zone *zone) 1091 { 1092 return zone->initialized; 1093 } 1094 1095 static inline bool zone_is_empty(struct zone *zone) 1096 { 1097 return zone->spanned_pages == 0; 1098 } 1099 1100 #ifndef BUILD_VDSO32_64 1101 /* 1102 * The zone field is never updated after free_area_init_core() 1103 * sets it, so none of the operations on it need to be atomic. 1104 */ 1105 1106 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1107 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1108 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1109 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1110 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1111 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1112 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1113 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1114 1115 /* 1116 * Define the bit shifts to access each section. For non-existent 1117 * sections we define the shift as 0; that plus a 0 mask ensures 1118 * the compiler will optimise away reference to them. 1119 */ 1120 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1121 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1122 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1123 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1124 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1125 1126 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1127 #ifdef NODE_NOT_IN_PAGE_FLAGS 1128 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1129 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1130 SECTIONS_PGOFF : ZONES_PGOFF) 1131 #else 1132 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1133 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1134 NODES_PGOFF : ZONES_PGOFF) 1135 #endif 1136 1137 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1138 1139 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1140 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1141 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1142 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1143 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1144 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1145 1146 static inline enum zone_type page_zonenum(const struct page *page) 1147 { 1148 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1149 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1150 } 1151 1152 static inline enum zone_type folio_zonenum(const struct folio *folio) 1153 { 1154 return page_zonenum(&folio->page); 1155 } 1156 1157 #ifdef CONFIG_ZONE_DEVICE 1158 static inline bool is_zone_device_page(const struct page *page) 1159 { 1160 return page_zonenum(page) == ZONE_DEVICE; 1161 } 1162 1163 static inline struct dev_pagemap *page_pgmap(const struct page *page) 1164 { 1165 VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page); 1166 return page_folio(page)->pgmap; 1167 } 1168 1169 /* 1170 * Consecutive zone device pages should not be merged into the same sgl 1171 * or bvec segment with other types of pages or if they belong to different 1172 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1173 * without scanning the entire segment. This helper returns true either if 1174 * both pages are not zone device pages or both pages are zone device pages 1175 * with the same pgmap. 1176 */ 1177 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1178 const struct page *b) 1179 { 1180 if (is_zone_device_page(a) != is_zone_device_page(b)) 1181 return false; 1182 if (!is_zone_device_page(a)) 1183 return true; 1184 return page_pgmap(a) == page_pgmap(b); 1185 } 1186 1187 extern void memmap_init_zone_device(struct zone *, unsigned long, 1188 unsigned long, struct dev_pagemap *); 1189 #else 1190 static inline bool is_zone_device_page(const struct page *page) 1191 { 1192 return false; 1193 } 1194 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1195 const struct page *b) 1196 { 1197 return true; 1198 } 1199 static inline struct dev_pagemap *page_pgmap(const struct page *page) 1200 { 1201 return NULL; 1202 } 1203 #endif 1204 1205 static inline bool folio_is_zone_device(const struct folio *folio) 1206 { 1207 return is_zone_device_page(&folio->page); 1208 } 1209 1210 static inline bool is_zone_movable_page(const struct page *page) 1211 { 1212 return page_zonenum(page) == ZONE_MOVABLE; 1213 } 1214 1215 static inline bool folio_is_zone_movable(const struct folio *folio) 1216 { 1217 return folio_zonenum(folio) == ZONE_MOVABLE; 1218 } 1219 #endif 1220 1221 /* 1222 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1223 * intersection with the given zone 1224 */ 1225 static inline bool zone_intersects(struct zone *zone, 1226 unsigned long start_pfn, unsigned long nr_pages) 1227 { 1228 if (zone_is_empty(zone)) 1229 return false; 1230 if (start_pfn >= zone_end_pfn(zone) || 1231 start_pfn + nr_pages <= zone->zone_start_pfn) 1232 return false; 1233 1234 return true; 1235 } 1236 1237 /* 1238 * The "priority" of VM scanning is how much of the queues we will scan in one 1239 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1240 * queues ("queue_length >> 12") during an aging round. 1241 */ 1242 #define DEF_PRIORITY 12 1243 1244 /* Maximum number of zones on a zonelist */ 1245 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1246 1247 enum { 1248 ZONELIST_FALLBACK, /* zonelist with fallback */ 1249 #ifdef CONFIG_NUMA 1250 /* 1251 * The NUMA zonelists are doubled because we need zonelists that 1252 * restrict the allocations to a single node for __GFP_THISNODE. 1253 */ 1254 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1255 #endif 1256 MAX_ZONELISTS 1257 }; 1258 1259 /* 1260 * This struct contains information about a zone in a zonelist. It is stored 1261 * here to avoid dereferences into large structures and lookups of tables 1262 */ 1263 struct zoneref { 1264 struct zone *zone; /* Pointer to actual zone */ 1265 int zone_idx; /* zone_idx(zoneref->zone) */ 1266 }; 1267 1268 /* 1269 * One allocation request operates on a zonelist. A zonelist 1270 * is a list of zones, the first one is the 'goal' of the 1271 * allocation, the other zones are fallback zones, in decreasing 1272 * priority. 1273 * 1274 * To speed the reading of the zonelist, the zonerefs contain the zone index 1275 * of the entry being read. Helper functions to access information given 1276 * a struct zoneref are 1277 * 1278 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1279 * zonelist_zone_idx() - Return the index of the zone for an entry 1280 * zonelist_node_idx() - Return the index of the node for an entry 1281 */ 1282 struct zonelist { 1283 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1284 }; 1285 1286 /* 1287 * The array of struct pages for flatmem. 1288 * It must be declared for SPARSEMEM as well because there are configurations 1289 * that rely on that. 1290 */ 1291 extern struct page *mem_map; 1292 1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1294 struct deferred_split { 1295 spinlock_t split_queue_lock; 1296 struct list_head split_queue; 1297 unsigned long split_queue_len; 1298 }; 1299 #endif 1300 1301 #ifdef CONFIG_MEMORY_FAILURE 1302 /* 1303 * Per NUMA node memory failure handling statistics. 1304 */ 1305 struct memory_failure_stats { 1306 /* 1307 * Number of raw pages poisoned. 1308 * Cases not accounted: memory outside kernel control, offline page, 1309 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1310 * error events, and unpoison actions from hwpoison_unpoison. 1311 */ 1312 unsigned long total; 1313 /* 1314 * Recovery results of poisoned raw pages handled by memory_failure, 1315 * in sync with mf_result. 1316 * total = ignored + failed + delayed + recovered. 1317 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1318 */ 1319 unsigned long ignored; 1320 unsigned long failed; 1321 unsigned long delayed; 1322 unsigned long recovered; 1323 }; 1324 #endif 1325 1326 /* 1327 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1328 * it's memory layout. On UMA machines there is a single pglist_data which 1329 * describes the whole memory. 1330 * 1331 * Memory statistics and page replacement data structures are maintained on a 1332 * per-zone basis. 1333 */ 1334 typedef struct pglist_data { 1335 /* 1336 * node_zones contains just the zones for THIS node. Not all of the 1337 * zones may be populated, but it is the full list. It is referenced by 1338 * this node's node_zonelists as well as other node's node_zonelists. 1339 */ 1340 struct zone node_zones[MAX_NR_ZONES]; 1341 1342 /* 1343 * node_zonelists contains references to all zones in all nodes. 1344 * Generally the first zones will be references to this node's 1345 * node_zones. 1346 */ 1347 struct zonelist node_zonelists[MAX_ZONELISTS]; 1348 1349 int nr_zones; /* number of populated zones in this node */ 1350 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1351 struct page *node_mem_map; 1352 #ifdef CONFIG_PAGE_EXTENSION 1353 struct page_ext *node_page_ext; 1354 #endif 1355 #endif 1356 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1357 /* 1358 * Must be held any time you expect node_start_pfn, 1359 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1360 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1361 * init. 1362 * 1363 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1364 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1365 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1366 * 1367 * Nests above zone->lock and zone->span_seqlock 1368 */ 1369 spinlock_t node_size_lock; 1370 #endif 1371 unsigned long node_start_pfn; 1372 unsigned long node_present_pages; /* total number of physical pages */ 1373 unsigned long node_spanned_pages; /* total size of physical page 1374 range, including holes */ 1375 int node_id; 1376 wait_queue_head_t kswapd_wait; 1377 wait_queue_head_t pfmemalloc_wait; 1378 1379 /* workqueues for throttling reclaim for different reasons. */ 1380 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1381 1382 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1383 unsigned long nr_reclaim_start; /* nr pages written while throttled 1384 * when throttling started. */ 1385 #ifdef CONFIG_MEMORY_HOTPLUG 1386 struct mutex kswapd_lock; 1387 #endif 1388 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1389 int kswapd_order; 1390 enum zone_type kswapd_highest_zoneidx; 1391 1392 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1393 1394 #ifdef CONFIG_COMPACTION 1395 int kcompactd_max_order; 1396 enum zone_type kcompactd_highest_zoneidx; 1397 wait_queue_head_t kcompactd_wait; 1398 struct task_struct *kcompactd; 1399 bool proactive_compact_trigger; 1400 #endif 1401 /* 1402 * This is a per-node reserve of pages that are not available 1403 * to userspace allocations. 1404 */ 1405 unsigned long totalreserve_pages; 1406 1407 #ifdef CONFIG_NUMA 1408 /* 1409 * node reclaim becomes active if more unmapped pages exist. 1410 */ 1411 unsigned long min_unmapped_pages; 1412 unsigned long min_slab_pages; 1413 #endif /* CONFIG_NUMA */ 1414 1415 /* Write-intensive fields used by page reclaim */ 1416 CACHELINE_PADDING(_pad1_); 1417 1418 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1419 /* 1420 * If memory initialisation on large machines is deferred then this 1421 * is the first PFN that needs to be initialised. 1422 */ 1423 unsigned long first_deferred_pfn; 1424 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1425 1426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1427 struct deferred_split deferred_split_queue; 1428 #endif 1429 1430 #ifdef CONFIG_NUMA_BALANCING 1431 /* start time in ms of current promote rate limit period */ 1432 unsigned int nbp_rl_start; 1433 /* number of promote candidate pages at start time of current rate limit period */ 1434 unsigned long nbp_rl_nr_cand; 1435 /* promote threshold in ms */ 1436 unsigned int nbp_threshold; 1437 /* start time in ms of current promote threshold adjustment period */ 1438 unsigned int nbp_th_start; 1439 /* 1440 * number of promote candidate pages at start time of current promote 1441 * threshold adjustment period 1442 */ 1443 unsigned long nbp_th_nr_cand; 1444 #endif 1445 /* Fields commonly accessed by the page reclaim scanner */ 1446 1447 /* 1448 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1449 * 1450 * Use mem_cgroup_lruvec() to look up lruvecs. 1451 */ 1452 struct lruvec __lruvec; 1453 1454 unsigned long flags; 1455 1456 #ifdef CONFIG_LRU_GEN 1457 /* kswap mm walk data */ 1458 struct lru_gen_mm_walk mm_walk; 1459 /* lru_gen_folio list */ 1460 struct lru_gen_memcg memcg_lru; 1461 #endif 1462 1463 CACHELINE_PADDING(_pad2_); 1464 1465 /* Per-node vmstats */ 1466 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1467 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1468 #ifdef CONFIG_NUMA 1469 struct memory_tier __rcu *memtier; 1470 #endif 1471 #ifdef CONFIG_MEMORY_FAILURE 1472 struct memory_failure_stats mf_stats; 1473 #endif 1474 } pg_data_t; 1475 1476 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1477 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1478 1479 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1480 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1481 1482 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1483 { 1484 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1485 } 1486 1487 #include <linux/memory_hotplug.h> 1488 1489 void build_all_zonelists(pg_data_t *pgdat); 1490 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1491 enum zone_type highest_zoneidx); 1492 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1493 int highest_zoneidx, unsigned int alloc_flags, 1494 long free_pages); 1495 bool zone_watermark_ok(struct zone *z, unsigned int order, 1496 unsigned long mark, int highest_zoneidx, 1497 unsigned int alloc_flags); 1498 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1499 unsigned long mark, int highest_zoneidx); 1500 /* 1501 * Memory initialization context, use to differentiate memory added by 1502 * the platform statically or via memory hotplug interface. 1503 */ 1504 enum meminit_context { 1505 MEMINIT_EARLY, 1506 MEMINIT_HOTPLUG, 1507 }; 1508 1509 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1510 unsigned long size); 1511 1512 extern void lruvec_init(struct lruvec *lruvec); 1513 1514 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1515 { 1516 #ifdef CONFIG_MEMCG 1517 return lruvec->pgdat; 1518 #else 1519 return container_of(lruvec, struct pglist_data, __lruvec); 1520 #endif 1521 } 1522 1523 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1524 int local_memory_node(int node_id); 1525 #else 1526 static inline int local_memory_node(int node_id) { return node_id; }; 1527 #endif 1528 1529 /* 1530 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1531 */ 1532 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1533 1534 #ifdef CONFIG_ZONE_DEVICE 1535 static inline bool zone_is_zone_device(struct zone *zone) 1536 { 1537 return zone_idx(zone) == ZONE_DEVICE; 1538 } 1539 #else 1540 static inline bool zone_is_zone_device(struct zone *zone) 1541 { 1542 return false; 1543 } 1544 #endif 1545 1546 /* 1547 * Returns true if a zone has pages managed by the buddy allocator. 1548 * All the reclaim decisions have to use this function rather than 1549 * populated_zone(). If the whole zone is reserved then we can easily 1550 * end up with populated_zone() && !managed_zone(). 1551 */ 1552 static inline bool managed_zone(struct zone *zone) 1553 { 1554 return zone_managed_pages(zone); 1555 } 1556 1557 /* Returns true if a zone has memory */ 1558 static inline bool populated_zone(struct zone *zone) 1559 { 1560 return zone->present_pages; 1561 } 1562 1563 #ifdef CONFIG_NUMA 1564 static inline int zone_to_nid(struct zone *zone) 1565 { 1566 return zone->node; 1567 } 1568 1569 static inline void zone_set_nid(struct zone *zone, int nid) 1570 { 1571 zone->node = nid; 1572 } 1573 #else 1574 static inline int zone_to_nid(struct zone *zone) 1575 { 1576 return 0; 1577 } 1578 1579 static inline void zone_set_nid(struct zone *zone, int nid) {} 1580 #endif 1581 1582 extern int movable_zone; 1583 1584 static inline int is_highmem_idx(enum zone_type idx) 1585 { 1586 #ifdef CONFIG_HIGHMEM 1587 return (idx == ZONE_HIGHMEM || 1588 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1589 #else 1590 return 0; 1591 #endif 1592 } 1593 1594 /** 1595 * is_highmem - helper function to quickly check if a struct zone is a 1596 * highmem zone or not. This is an attempt to keep references 1597 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1598 * @zone: pointer to struct zone variable 1599 * Return: 1 for a highmem zone, 0 otherwise 1600 */ 1601 static inline int is_highmem(struct zone *zone) 1602 { 1603 return is_highmem_idx(zone_idx(zone)); 1604 } 1605 1606 #ifdef CONFIG_ZONE_DMA 1607 bool has_managed_dma(void); 1608 #else 1609 static inline bool has_managed_dma(void) 1610 { 1611 return false; 1612 } 1613 #endif 1614 1615 1616 #ifndef CONFIG_NUMA 1617 1618 extern struct pglist_data contig_page_data; 1619 static inline struct pglist_data *NODE_DATA(int nid) 1620 { 1621 return &contig_page_data; 1622 } 1623 1624 #else /* CONFIG_NUMA */ 1625 1626 #include <asm/mmzone.h> 1627 1628 #endif /* !CONFIG_NUMA */ 1629 1630 extern struct pglist_data *first_online_pgdat(void); 1631 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1632 extern struct zone *next_zone(struct zone *zone); 1633 1634 /** 1635 * for_each_online_pgdat - helper macro to iterate over all online nodes 1636 * @pgdat: pointer to a pg_data_t variable 1637 */ 1638 #define for_each_online_pgdat(pgdat) \ 1639 for (pgdat = first_online_pgdat(); \ 1640 pgdat; \ 1641 pgdat = next_online_pgdat(pgdat)) 1642 /** 1643 * for_each_zone - helper macro to iterate over all memory zones 1644 * @zone: pointer to struct zone variable 1645 * 1646 * The user only needs to declare the zone variable, for_each_zone 1647 * fills it in. 1648 */ 1649 #define for_each_zone(zone) \ 1650 for (zone = (first_online_pgdat())->node_zones; \ 1651 zone; \ 1652 zone = next_zone(zone)) 1653 1654 #define for_each_populated_zone(zone) \ 1655 for (zone = (first_online_pgdat())->node_zones; \ 1656 zone; \ 1657 zone = next_zone(zone)) \ 1658 if (!populated_zone(zone)) \ 1659 ; /* do nothing */ \ 1660 else 1661 1662 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1663 { 1664 return zoneref->zone; 1665 } 1666 1667 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1668 { 1669 return zoneref->zone_idx; 1670 } 1671 1672 static inline int zonelist_node_idx(struct zoneref *zoneref) 1673 { 1674 return zone_to_nid(zoneref->zone); 1675 } 1676 1677 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1678 enum zone_type highest_zoneidx, 1679 nodemask_t *nodes); 1680 1681 /** 1682 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1683 * @z: The cursor used as a starting point for the search 1684 * @highest_zoneidx: The zone index of the highest zone to return 1685 * @nodes: An optional nodemask to filter the zonelist with 1686 * 1687 * This function returns the next zone at or below a given zone index that is 1688 * within the allowed nodemask using a cursor as the starting point for the 1689 * search. The zoneref returned is a cursor that represents the current zone 1690 * being examined. It should be advanced by one before calling 1691 * next_zones_zonelist again. 1692 * 1693 * Return: the next zone at or below highest_zoneidx within the allowed 1694 * nodemask using a cursor within a zonelist as a starting point 1695 */ 1696 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1697 enum zone_type highest_zoneidx, 1698 nodemask_t *nodes) 1699 { 1700 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1701 return z; 1702 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1703 } 1704 1705 /** 1706 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1707 * @zonelist: The zonelist to search for a suitable zone 1708 * @highest_zoneidx: The zone index of the highest zone to return 1709 * @nodes: An optional nodemask to filter the zonelist with 1710 * 1711 * This function returns the first zone at or below a given zone index that is 1712 * within the allowed nodemask. The zoneref returned is a cursor that can be 1713 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1714 * one before calling. 1715 * 1716 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1717 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1718 * update due to cpuset modification. 1719 * 1720 * Return: Zoneref pointer for the first suitable zone found 1721 */ 1722 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1723 enum zone_type highest_zoneidx, 1724 nodemask_t *nodes) 1725 { 1726 return next_zones_zonelist(zonelist->_zonerefs, 1727 highest_zoneidx, nodes); 1728 } 1729 1730 /** 1731 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1732 * @zone: The current zone in the iterator 1733 * @z: The current pointer within zonelist->_zonerefs being iterated 1734 * @zlist: The zonelist being iterated 1735 * @highidx: The zone index of the highest zone to return 1736 * @nodemask: Nodemask allowed by the allocator 1737 * 1738 * This iterator iterates though all zones at or below a given zone index and 1739 * within a given nodemask 1740 */ 1741 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1742 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1743 zone; \ 1744 z = next_zones_zonelist(++z, highidx, nodemask), \ 1745 zone = zonelist_zone(z)) 1746 1747 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1748 for (zone = zonelist_zone(z); \ 1749 zone; \ 1750 z = next_zones_zonelist(++z, highidx, nodemask), \ 1751 zone = zonelist_zone(z)) 1752 1753 1754 /** 1755 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1756 * @zone: The current zone in the iterator 1757 * @z: The current pointer within zonelist->zones being iterated 1758 * @zlist: The zonelist being iterated 1759 * @highidx: The zone index of the highest zone to return 1760 * 1761 * This iterator iterates though all zones at or below a given zone index. 1762 */ 1763 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1764 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1765 1766 /* Whether the 'nodes' are all movable nodes */ 1767 static inline bool movable_only_nodes(nodemask_t *nodes) 1768 { 1769 struct zonelist *zonelist; 1770 struct zoneref *z; 1771 int nid; 1772 1773 if (nodes_empty(*nodes)) 1774 return false; 1775 1776 /* 1777 * We can chose arbitrary node from the nodemask to get a 1778 * zonelist as they are interlinked. We just need to find 1779 * at least one zone that can satisfy kernel allocations. 1780 */ 1781 nid = first_node(*nodes); 1782 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1783 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1784 return (!zonelist_zone(z)) ? true : false; 1785 } 1786 1787 1788 #ifdef CONFIG_SPARSEMEM 1789 #include <asm/sparsemem.h> 1790 #endif 1791 1792 #ifdef CONFIG_FLATMEM 1793 #define pfn_to_nid(pfn) (0) 1794 #endif 1795 1796 #ifdef CONFIG_SPARSEMEM 1797 1798 /* 1799 * PA_SECTION_SHIFT physical address to/from section number 1800 * PFN_SECTION_SHIFT pfn to/from section number 1801 */ 1802 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1803 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1804 1805 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1806 1807 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1808 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1809 1810 #define SECTION_BLOCKFLAGS_BITS \ 1811 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1812 1813 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1814 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1815 #endif 1816 1817 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1818 { 1819 return pfn >> PFN_SECTION_SHIFT; 1820 } 1821 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1822 { 1823 return sec << PFN_SECTION_SHIFT; 1824 } 1825 1826 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1827 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1828 1829 #define SUBSECTION_SHIFT 21 1830 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1831 1832 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1833 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1834 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1835 1836 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1837 #error Subsection size exceeds section size 1838 #else 1839 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1840 #endif 1841 1842 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1843 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1844 1845 struct mem_section_usage { 1846 struct rcu_head rcu; 1847 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1848 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1849 #endif 1850 /* See declaration of similar field in struct zone */ 1851 unsigned long pageblock_flags[0]; 1852 }; 1853 1854 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1855 1856 struct page; 1857 struct page_ext; 1858 struct mem_section { 1859 /* 1860 * This is, logically, a pointer to an array of struct 1861 * pages. However, it is stored with some other magic. 1862 * (see sparse.c::sparse_init_one_section()) 1863 * 1864 * Additionally during early boot we encode node id of 1865 * the location of the section here to guide allocation. 1866 * (see sparse.c::memory_present()) 1867 * 1868 * Making it a UL at least makes someone do a cast 1869 * before using it wrong. 1870 */ 1871 unsigned long section_mem_map; 1872 1873 struct mem_section_usage *usage; 1874 #ifdef CONFIG_PAGE_EXTENSION 1875 /* 1876 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1877 * section. (see page_ext.h about this.) 1878 */ 1879 struct page_ext *page_ext; 1880 unsigned long pad; 1881 #endif 1882 /* 1883 * WARNING: mem_section must be a power-of-2 in size for the 1884 * calculation and use of SECTION_ROOT_MASK to make sense. 1885 */ 1886 }; 1887 1888 #ifdef CONFIG_SPARSEMEM_EXTREME 1889 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1890 #else 1891 #define SECTIONS_PER_ROOT 1 1892 #endif 1893 1894 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1895 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1896 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1897 1898 #ifdef CONFIG_SPARSEMEM_EXTREME 1899 extern struct mem_section **mem_section; 1900 #else 1901 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1902 #endif 1903 1904 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1905 { 1906 return ms->usage->pageblock_flags; 1907 } 1908 1909 static inline struct mem_section *__nr_to_section(unsigned long nr) 1910 { 1911 unsigned long root = SECTION_NR_TO_ROOT(nr); 1912 1913 if (unlikely(root >= NR_SECTION_ROOTS)) 1914 return NULL; 1915 1916 #ifdef CONFIG_SPARSEMEM_EXTREME 1917 if (!mem_section || !mem_section[root]) 1918 return NULL; 1919 #endif 1920 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1921 } 1922 extern size_t mem_section_usage_size(void); 1923 1924 /* 1925 * We use the lower bits of the mem_map pointer to store 1926 * a little bit of information. The pointer is calculated 1927 * as mem_map - section_nr_to_pfn(pnum). The result is 1928 * aligned to the minimum alignment of the two values: 1929 * 1. All mem_map arrays are page-aligned. 1930 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1931 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1932 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1933 * worst combination is powerpc with 256k pages, 1934 * which results in PFN_SECTION_SHIFT equal 6. 1935 * To sum it up, at least 6 bits are available on all architectures. 1936 * However, we can exceed 6 bits on some other architectures except 1937 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1938 * with the worst case of 64K pages on arm64) if we make sure the 1939 * exceeded bit is not applicable to powerpc. 1940 */ 1941 enum { 1942 SECTION_MARKED_PRESENT_BIT, 1943 SECTION_HAS_MEM_MAP_BIT, 1944 SECTION_IS_ONLINE_BIT, 1945 SECTION_IS_EARLY_BIT, 1946 #ifdef CONFIG_ZONE_DEVICE 1947 SECTION_TAINT_ZONE_DEVICE_BIT, 1948 #endif 1949 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1950 SECTION_IS_VMEMMAP_PREINIT_BIT, 1951 #endif 1952 SECTION_MAP_LAST_BIT, 1953 }; 1954 1955 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1956 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1957 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1958 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1959 #ifdef CONFIG_ZONE_DEVICE 1960 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1961 #endif 1962 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1963 #define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) 1964 #endif 1965 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1966 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1967 1968 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1969 { 1970 unsigned long map = section->section_mem_map; 1971 map &= SECTION_MAP_MASK; 1972 return (struct page *)map; 1973 } 1974 1975 static inline int present_section(struct mem_section *section) 1976 { 1977 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1978 } 1979 1980 static inline int present_section_nr(unsigned long nr) 1981 { 1982 return present_section(__nr_to_section(nr)); 1983 } 1984 1985 static inline int valid_section(struct mem_section *section) 1986 { 1987 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1988 } 1989 1990 static inline int early_section(struct mem_section *section) 1991 { 1992 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1993 } 1994 1995 static inline int valid_section_nr(unsigned long nr) 1996 { 1997 return valid_section(__nr_to_section(nr)); 1998 } 1999 2000 static inline int online_section(struct mem_section *section) 2001 { 2002 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 2003 } 2004 2005 #ifdef CONFIG_ZONE_DEVICE 2006 static inline int online_device_section(struct mem_section *section) 2007 { 2008 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 2009 2010 return section && ((section->section_mem_map & flags) == flags); 2011 } 2012 #else 2013 static inline int online_device_section(struct mem_section *section) 2014 { 2015 return 0; 2016 } 2017 #endif 2018 2019 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 2020 static inline int preinited_vmemmap_section(struct mem_section *section) 2021 { 2022 return (section && 2023 (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); 2024 } 2025 2026 void sparse_vmemmap_init_nid_early(int nid); 2027 void sparse_vmemmap_init_nid_late(int nid); 2028 2029 #else 2030 static inline int preinited_vmemmap_section(struct mem_section *section) 2031 { 2032 return 0; 2033 } 2034 static inline void sparse_vmemmap_init_nid_early(int nid) 2035 { 2036 } 2037 2038 static inline void sparse_vmemmap_init_nid_late(int nid) 2039 { 2040 } 2041 #endif 2042 2043 static inline int online_section_nr(unsigned long nr) 2044 { 2045 return online_section(__nr_to_section(nr)); 2046 } 2047 2048 #ifdef CONFIG_MEMORY_HOTPLUG 2049 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2050 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2051 #endif 2052 2053 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 2054 { 2055 return __nr_to_section(pfn_to_section_nr(pfn)); 2056 } 2057 2058 extern unsigned long __highest_present_section_nr; 2059 2060 static inline int subsection_map_index(unsigned long pfn) 2061 { 2062 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2063 } 2064 2065 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2066 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2067 { 2068 int idx = subsection_map_index(pfn); 2069 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2070 2071 return usage ? test_bit(idx, usage->subsection_map) : 0; 2072 } 2073 #else 2074 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2075 { 2076 return 1; 2077 } 2078 #endif 2079 2080 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, 2081 unsigned long flags); 2082 2083 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 2084 /** 2085 * pfn_valid - check if there is a valid memory map entry for a PFN 2086 * @pfn: the page frame number to check 2087 * 2088 * Check if there is a valid memory map entry aka struct page for the @pfn. 2089 * Note, that availability of the memory map entry does not imply that 2090 * there is actual usable memory at that @pfn. The struct page may 2091 * represent a hole or an unusable page frame. 2092 * 2093 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2094 */ 2095 static inline int pfn_valid(unsigned long pfn) 2096 { 2097 struct mem_section *ms; 2098 int ret; 2099 2100 /* 2101 * Ensure the upper PAGE_SHIFT bits are clear in the 2102 * pfn. Else it might lead to false positives when 2103 * some of the upper bits are set, but the lower bits 2104 * match a valid pfn. 2105 */ 2106 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2107 return 0; 2108 2109 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2110 return 0; 2111 ms = __pfn_to_section(pfn); 2112 rcu_read_lock_sched(); 2113 if (!valid_section(ms)) { 2114 rcu_read_unlock_sched(); 2115 return 0; 2116 } 2117 /* 2118 * Traditionally early sections always returned pfn_valid() for 2119 * the entire section-sized span. 2120 */ 2121 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2122 rcu_read_unlock_sched(); 2123 2124 return ret; 2125 } 2126 #endif 2127 2128 static inline int pfn_in_present_section(unsigned long pfn) 2129 { 2130 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2131 return 0; 2132 return present_section(__pfn_to_section(pfn)); 2133 } 2134 2135 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2136 { 2137 while (++section_nr <= __highest_present_section_nr) { 2138 if (present_section_nr(section_nr)) 2139 return section_nr; 2140 } 2141 2142 return -1; 2143 } 2144 2145 #define for_each_present_section_nr(start, section_nr) \ 2146 for (section_nr = next_present_section_nr(start - 1); \ 2147 section_nr != -1; \ 2148 section_nr = next_present_section_nr(section_nr)) 2149 2150 /* 2151 * These are _only_ used during initialisation, therefore they 2152 * can use __initdata ... They could have names to indicate 2153 * this restriction. 2154 */ 2155 #ifdef CONFIG_NUMA 2156 #define pfn_to_nid(pfn) \ 2157 ({ \ 2158 unsigned long __pfn_to_nid_pfn = (pfn); \ 2159 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2160 }) 2161 #else 2162 #define pfn_to_nid(pfn) (0) 2163 #endif 2164 2165 void sparse_init(void); 2166 #else 2167 #define sparse_init() do {} while (0) 2168 #define sparse_index_init(_sec, _nid) do {} while (0) 2169 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) 2170 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0) 2171 #define pfn_in_present_section pfn_valid 2172 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2173 #endif /* CONFIG_SPARSEMEM */ 2174 2175 #endif /* !__GENERATING_BOUNDS.H */ 2176 #endif /* !__ASSEMBLY__ */ 2177 #endif /* _LINUX_MMZONE_H */ 2178