xref: /linux-6.15/include/linux/mmzone.h (revision d8a866c7)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_FREE_PAGES_BLOCKS,
142 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 	NR_ZONE_ACTIVE_ANON,
145 	NR_ZONE_INACTIVE_FILE,
146 	NR_ZONE_ACTIVE_FILE,
147 	NR_ZONE_UNEVICTABLE,
148 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
149 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
150 	/* Second 128 byte cacheline */
151 	NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 	NR_ZSPAGES,		/* allocated in zsmalloc */
154 #endif
155 	NR_FREE_CMA_PAGES,
156 #ifdef CONFIG_UNACCEPTED_MEMORY
157 	NR_UNACCEPTED,
158 #endif
159 	NR_VM_ZONE_STAT_ITEMS };
160 
161 enum node_stat_item {
162 	NR_LRU_BASE,
163 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
164 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
165 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
166 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
167 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
168 	NR_SLAB_RECLAIMABLE_B,
169 	NR_SLAB_UNRECLAIMABLE_B,
170 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
171 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
172 	WORKINGSET_NODES,
173 	WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_FILE,
176 	WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_FILE,
179 	WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_FILE,
182 	WORKINGSET_NODERECLAIM,
183 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
184 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
185 			   only modified from process context */
186 	NR_FILE_PAGES,
187 	NR_FILE_DIRTY,
188 	NR_WRITEBACK,
189 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
190 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
191 	NR_SHMEM_THPS,
192 	NR_SHMEM_PMDMAPPED,
193 	NR_FILE_THPS,
194 	NR_FILE_PMDMAPPED,
195 	NR_ANON_THPS,
196 	NR_VMSCAN_WRITE,
197 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
198 	NR_DIRTIED,		/* page dirtyings since bootup */
199 	NR_WRITTEN,		/* page writings since bootup */
200 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
210 #ifdef CONFIG_IOMMU_SUPPORT
211 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
212 #endif
213 #ifdef CONFIG_SWAP
214 	NR_SWAPCACHE,
215 #endif
216 #ifdef CONFIG_NUMA_BALANCING
217 	PGPROMOTE_SUCCESS,	/* promote successfully */
218 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
219 #endif
220 	/* PGDEMOTE_*: pages demoted */
221 	PGDEMOTE_KSWAPD,
222 	PGDEMOTE_DIRECT,
223 	PGDEMOTE_KHUGEPAGED,
224 #ifdef CONFIG_HUGETLB_PAGE
225 	NR_HUGETLB,
226 #endif
227 	NR_BALLOON_PAGES,
228 	NR_VM_NODE_STAT_ITEMS
229 };
230 
231 /*
232  * Returns true if the item should be printed in THPs (/proc/vmstat
233  * currently prints number of anon, file and shmem THPs. But the item
234  * is charged in pages).
235  */
236 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
237 {
238 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
239 		return false;
240 
241 	return item == NR_ANON_THPS ||
242 	       item == NR_FILE_THPS ||
243 	       item == NR_SHMEM_THPS ||
244 	       item == NR_SHMEM_PMDMAPPED ||
245 	       item == NR_FILE_PMDMAPPED;
246 }
247 
248 /*
249  * Returns true if the value is measured in bytes (most vmstat values are
250  * measured in pages). This defines the API part, the internal representation
251  * might be different.
252  */
253 static __always_inline bool vmstat_item_in_bytes(int idx)
254 {
255 	/*
256 	 * Global and per-node slab counters track slab pages.
257 	 * It's expected that changes are multiples of PAGE_SIZE.
258 	 * Internally values are stored in pages.
259 	 *
260 	 * Per-memcg and per-lruvec counters track memory, consumed
261 	 * by individual slab objects. These counters are actually
262 	 * byte-precise.
263 	 */
264 	return (idx == NR_SLAB_RECLAIMABLE_B ||
265 		idx == NR_SLAB_UNRECLAIMABLE_B);
266 }
267 
268 /*
269  * We do arithmetic on the LRU lists in various places in the code,
270  * so it is important to keep the active lists LRU_ACTIVE higher in
271  * the array than the corresponding inactive lists, and to keep
272  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
273  *
274  * This has to be kept in sync with the statistics in zone_stat_item
275  * above and the descriptions in vmstat_text in mm/vmstat.c
276  */
277 #define LRU_BASE 0
278 #define LRU_ACTIVE 1
279 #define LRU_FILE 2
280 
281 enum lru_list {
282 	LRU_INACTIVE_ANON = LRU_BASE,
283 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
284 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
285 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
286 	LRU_UNEVICTABLE,
287 	NR_LRU_LISTS
288 };
289 
290 enum vmscan_throttle_state {
291 	VMSCAN_THROTTLE_WRITEBACK,
292 	VMSCAN_THROTTLE_ISOLATED,
293 	VMSCAN_THROTTLE_NOPROGRESS,
294 	VMSCAN_THROTTLE_CONGESTED,
295 	NR_VMSCAN_THROTTLE,
296 };
297 
298 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
299 
300 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
301 
302 static inline bool is_file_lru(enum lru_list lru)
303 {
304 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
305 }
306 
307 static inline bool is_active_lru(enum lru_list lru)
308 {
309 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
310 }
311 
312 #define WORKINGSET_ANON 0
313 #define WORKINGSET_FILE 1
314 #define ANON_AND_FILE 2
315 
316 enum lruvec_flags {
317 	/*
318 	 * An lruvec has many dirty pages backed by a congested BDI:
319 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
320 	 *    It can be cleared by cgroup reclaim or kswapd.
321 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
322 	 *    It can only be cleared by kswapd.
323 	 *
324 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
325 	 * reclaim, but not vice versa. This only applies to the root cgroup.
326 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
327 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
328 	 * by kswapd).
329 	 */
330 	LRUVEC_CGROUP_CONGESTED,
331 	LRUVEC_NODE_CONGESTED,
332 };
333 
334 #endif /* !__GENERATING_BOUNDS_H */
335 
336 /*
337  * Evictable folios are divided into multiple generations. The youngest and the
338  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
339  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
340  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
341  * corresponding generation. The gen counter in folio->flags stores gen+1 while
342  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
343  *
344  * After a folio is faulted in, the aging needs to check the accessed bit at
345  * least twice before handing this folio over to the eviction. The first check
346  * clears the accessed bit from the initial fault; the second check makes sure
347  * this folio hasn't been used since then. This process, AKA second chance,
348  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
349  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
350  * generations are considered active; the rest of generations, if they exist,
351  * are considered inactive. See lru_gen_is_active().
352  *
353  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
354  * that the sliding window needs not to worry about it. And it's set again when
355  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
356  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
357  *
358  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
359  * number of categories of the active/inactive LRU when keeping track of
360  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
361  * in folio->flags, masked by LRU_GEN_MASK.
362  */
363 #define MIN_NR_GENS		2U
364 #define MAX_NR_GENS		4U
365 
366 /*
367  * Each generation is divided into multiple tiers. A folio accessed N times
368  * through file descriptors is in tier order_base_2(N). A folio in the first
369  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
370  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
371  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
372  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
373  *
374  * In contrast to moving across generations which requires the LRU lock, moving
375  * across tiers only involves atomic operations on folio->flags and therefore
376  * has a negligible cost in the buffered access path. In the eviction path,
377  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
378  * infer whether folios accessed multiple times through file descriptors are
379  * statistically hot and thus worth protecting.
380  *
381  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
382  * number of categories of the active/inactive LRU when keeping track of
383  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
384  * folio->flags, masked by LRU_REFS_MASK.
385  */
386 #define MAX_NR_TIERS		4U
387 
388 #ifndef __GENERATING_BOUNDS_H
389 
390 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
391 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
392 
393 /*
394  * For folios accessed multiple times through file descriptors,
395  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
396  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
397  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
398  * promoted into the second oldest generation in the eviction path. And when
399  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
400  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
401  * only valid when PG_referenced is set.
402  *
403  * For folios accessed multiple times through page tables, folio_update_gen()
404  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
405  * PG_referenced after the accessed bit is cleared for the first time.
406  * Thereafter, those two paths set PG_workingset and promote folios to the
407  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
408  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
409  *
410  * For both cases above, after PG_workingset is set on a folio, it remains until
411  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
412  * can be set again if lru_gen_test_recent() returns true upon a refault.
413  */
414 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
415 
416 struct lruvec;
417 struct page_vma_mapped_walk;
418 
419 #ifdef CONFIG_LRU_GEN
420 
421 enum {
422 	LRU_GEN_ANON,
423 	LRU_GEN_FILE,
424 };
425 
426 enum {
427 	LRU_GEN_CORE,
428 	LRU_GEN_MM_WALK,
429 	LRU_GEN_NONLEAF_YOUNG,
430 	NR_LRU_GEN_CAPS
431 };
432 
433 #define MIN_LRU_BATCH		BITS_PER_LONG
434 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
435 
436 /* whether to keep historical stats from evicted generations */
437 #ifdef CONFIG_LRU_GEN_STATS
438 #define NR_HIST_GENS		MAX_NR_GENS
439 #else
440 #define NR_HIST_GENS		1U
441 #endif
442 
443 /*
444  * The youngest generation number is stored in max_seq for both anon and file
445  * types as they are aged on an equal footing. The oldest generation numbers are
446  * stored in min_seq[] separately for anon and file types so that they can be
447  * incremented independently. Ideally min_seq[] are kept in sync when both anon
448  * and file types are evictable. However, to adapt to situations like extreme
449  * swappiness, they are allowed to be out of sync by at most
450  * MAX_NR_GENS-MIN_NR_GENS-1.
451  *
452  * The number of pages in each generation is eventually consistent and therefore
453  * can be transiently negative when reset_batch_size() is pending.
454  */
455 struct lru_gen_folio {
456 	/* the aging increments the youngest generation number */
457 	unsigned long max_seq;
458 	/* the eviction increments the oldest generation numbers */
459 	unsigned long min_seq[ANON_AND_FILE];
460 	/* the birth time of each generation in jiffies */
461 	unsigned long timestamps[MAX_NR_GENS];
462 	/* the multi-gen LRU lists, lazily sorted on eviction */
463 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
464 	/* the multi-gen LRU sizes, eventually consistent */
465 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
466 	/* the exponential moving average of refaulted */
467 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
468 	/* the exponential moving average of evicted+protected */
469 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
470 	/* can only be modified under the LRU lock */
471 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
472 	/* can be modified without holding the LRU lock */
473 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
474 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
475 	/* whether the multi-gen LRU is enabled */
476 	bool enabled;
477 	/* the memcg generation this lru_gen_folio belongs to */
478 	u8 gen;
479 	/* the list segment this lru_gen_folio belongs to */
480 	u8 seg;
481 	/* per-node lru_gen_folio list for global reclaim */
482 	struct hlist_nulls_node list;
483 };
484 
485 enum {
486 	MM_LEAF_TOTAL,		/* total leaf entries */
487 	MM_LEAF_YOUNG,		/* young leaf entries */
488 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
489 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
490 	NR_MM_STATS
491 };
492 
493 /* double-buffering Bloom filters */
494 #define NR_BLOOM_FILTERS	2
495 
496 struct lru_gen_mm_state {
497 	/* synced with max_seq after each iteration */
498 	unsigned long seq;
499 	/* where the current iteration continues after */
500 	struct list_head *head;
501 	/* where the last iteration ended before */
502 	struct list_head *tail;
503 	/* Bloom filters flip after each iteration */
504 	unsigned long *filters[NR_BLOOM_FILTERS];
505 	/* the mm stats for debugging */
506 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
507 };
508 
509 struct lru_gen_mm_walk {
510 	/* the lruvec under reclaim */
511 	struct lruvec *lruvec;
512 	/* max_seq from lru_gen_folio: can be out of date */
513 	unsigned long seq;
514 	/* the next address within an mm to scan */
515 	unsigned long next_addr;
516 	/* to batch promoted pages */
517 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
518 	/* to batch the mm stats */
519 	int mm_stats[NR_MM_STATS];
520 	/* total batched items */
521 	int batched;
522 	int swappiness;
523 	bool force_scan;
524 };
525 
526 /*
527  * For each node, memcgs are divided into two generations: the old and the
528  * young. For each generation, memcgs are randomly sharded into multiple bins
529  * to improve scalability. For each bin, the hlist_nulls is virtually divided
530  * into three segments: the head, the tail and the default.
531  *
532  * An onlining memcg is added to the tail of a random bin in the old generation.
533  * The eviction starts at the head of a random bin in the old generation. The
534  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
535  * the old generation, is incremented when all its bins become empty.
536  *
537  * There are four operations:
538  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
539  *    current generation (old or young) and updates its "seg" to "head";
540  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
541  *    current generation (old or young) and updates its "seg" to "tail";
542  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
543  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
544  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
545  *    young generation, updates its "gen" to "young" and resets its "seg" to
546  *    "default".
547  *
548  * The events that trigger the above operations are:
549  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
550  * 2. The first attempt to reclaim a memcg below low, which triggers
551  *    MEMCG_LRU_TAIL;
552  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
553  *    threshold, which triggers MEMCG_LRU_TAIL;
554  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
555  *    threshold, which triggers MEMCG_LRU_YOUNG;
556  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
557  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
558  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
559  *
560  * Notes:
561  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
562  *    of their max_seq counters ensures the eventual fairness to all eligible
563  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
564  * 2. There are only two valid generations: old (seq) and young (seq+1).
565  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
566  *    locklessly, a stale value (seq-1) does not wraparound to young.
567  */
568 #define MEMCG_NR_GENS	3
569 #define MEMCG_NR_BINS	8
570 
571 struct lru_gen_memcg {
572 	/* the per-node memcg generation counter */
573 	unsigned long seq;
574 	/* each memcg has one lru_gen_folio per node */
575 	unsigned long nr_memcgs[MEMCG_NR_GENS];
576 	/* per-node lru_gen_folio list for global reclaim */
577 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
578 	/* protects the above */
579 	spinlock_t lock;
580 };
581 
582 void lru_gen_init_pgdat(struct pglist_data *pgdat);
583 void lru_gen_init_lruvec(struct lruvec *lruvec);
584 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
585 
586 void lru_gen_init_memcg(struct mem_cgroup *memcg);
587 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
588 void lru_gen_online_memcg(struct mem_cgroup *memcg);
589 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
590 void lru_gen_release_memcg(struct mem_cgroup *memcg);
591 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
592 
593 #else /* !CONFIG_LRU_GEN */
594 
595 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
596 {
597 }
598 
599 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
600 {
601 }
602 
603 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
604 {
605 	return false;
606 }
607 
608 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
609 {
610 }
611 
612 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
613 {
614 }
615 
616 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
617 {
618 }
619 
620 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
621 {
622 }
623 
624 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
625 {
626 }
627 
628 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
629 {
630 }
631 
632 #endif /* CONFIG_LRU_GEN */
633 
634 struct lruvec {
635 	struct list_head		lists[NR_LRU_LISTS];
636 	/* per lruvec lru_lock for memcg */
637 	spinlock_t			lru_lock;
638 	/*
639 	 * These track the cost of reclaiming one LRU - file or anon -
640 	 * over the other. As the observed cost of reclaiming one LRU
641 	 * increases, the reclaim scan balance tips toward the other.
642 	 */
643 	unsigned long			anon_cost;
644 	unsigned long			file_cost;
645 	/* Non-resident age, driven by LRU movement */
646 	atomic_long_t			nonresident_age;
647 	/* Refaults at the time of last reclaim cycle */
648 	unsigned long			refaults[ANON_AND_FILE];
649 	/* Various lruvec state flags (enum lruvec_flags) */
650 	unsigned long			flags;
651 #ifdef CONFIG_LRU_GEN
652 	/* evictable pages divided into generations */
653 	struct lru_gen_folio		lrugen;
654 #ifdef CONFIG_LRU_GEN_WALKS_MMU
655 	/* to concurrently iterate lru_gen_mm_list */
656 	struct lru_gen_mm_state		mm_state;
657 #endif
658 #endif /* CONFIG_LRU_GEN */
659 #ifdef CONFIG_MEMCG
660 	struct pglist_data *pgdat;
661 #endif
662 	struct zswap_lruvec_state zswap_lruvec_state;
663 };
664 
665 /* Isolate for asynchronous migration */
666 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
667 /* Isolate unevictable pages */
668 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
669 
670 /* LRU Isolation modes. */
671 typedef unsigned __bitwise isolate_mode_t;
672 
673 enum zone_watermarks {
674 	WMARK_MIN,
675 	WMARK_LOW,
676 	WMARK_HIGH,
677 	WMARK_PROMO,
678 	NR_WMARK
679 };
680 
681 /*
682  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
683  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
684  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
685  */
686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
687 #define NR_PCP_THP 2
688 #else
689 #define NR_PCP_THP 0
690 #endif
691 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
692 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
693 
694 /*
695  * Flags used in pcp->flags field.
696  *
697  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
698  * previous page freeing.  To avoid to drain PCP for an accident
699  * high-order page freeing.
700  *
701  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
702  * draining PCP for consecutive high-order pages freeing without
703  * allocation if data cache slice of CPU is large enough.  To reduce
704  * zone lock contention and keep cache-hot pages reusing.
705  */
706 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
707 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
708 
709 struct per_cpu_pages {
710 	spinlock_t lock;	/* Protects lists field */
711 	int count;		/* number of pages in the list */
712 	int high;		/* high watermark, emptying needed */
713 	int high_min;		/* min high watermark */
714 	int high_max;		/* max high watermark */
715 	int batch;		/* chunk size for buddy add/remove */
716 	u8 flags;		/* protected by pcp->lock */
717 	u8 alloc_factor;	/* batch scaling factor during allocate */
718 #ifdef CONFIG_NUMA
719 	u8 expire;		/* When 0, remote pagesets are drained */
720 #endif
721 	short free_count;	/* consecutive free count */
722 
723 	/* Lists of pages, one per migrate type stored on the pcp-lists */
724 	struct list_head lists[NR_PCP_LISTS];
725 } ____cacheline_aligned_in_smp;
726 
727 struct per_cpu_zonestat {
728 #ifdef CONFIG_SMP
729 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
730 	s8 stat_threshold;
731 #endif
732 #ifdef CONFIG_NUMA
733 	/*
734 	 * Low priority inaccurate counters that are only folded
735 	 * on demand. Use a large type to avoid the overhead of
736 	 * folding during refresh_cpu_vm_stats.
737 	 */
738 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
739 #endif
740 };
741 
742 struct per_cpu_nodestat {
743 	s8 stat_threshold;
744 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
745 };
746 
747 #endif /* !__GENERATING_BOUNDS.H */
748 
749 enum zone_type {
750 	/*
751 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
752 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
753 	 * On architectures where this area covers the whole 32 bit address
754 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
755 	 * DMA addressing constraints. This distinction is important as a 32bit
756 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
757 	 * platforms may need both zones as they support peripherals with
758 	 * different DMA addressing limitations.
759 	 */
760 #ifdef CONFIG_ZONE_DMA
761 	ZONE_DMA,
762 #endif
763 #ifdef CONFIG_ZONE_DMA32
764 	ZONE_DMA32,
765 #endif
766 	/*
767 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
768 	 * performed on pages in ZONE_NORMAL if the DMA devices support
769 	 * transfers to all addressable memory.
770 	 */
771 	ZONE_NORMAL,
772 #ifdef CONFIG_HIGHMEM
773 	/*
774 	 * A memory area that is only addressable by the kernel through
775 	 * mapping portions into its own address space. This is for example
776 	 * used by i386 to allow the kernel to address the memory beyond
777 	 * 900MB. The kernel will set up special mappings (page
778 	 * table entries on i386) for each page that the kernel needs to
779 	 * access.
780 	 */
781 	ZONE_HIGHMEM,
782 #endif
783 	/*
784 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
785 	 * movable pages with few exceptional cases described below. Main use
786 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
787 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
788 	 * to increase the number of THP/huge pages. Notable special cases are:
789 	 *
790 	 * 1. Pinned pages: (long-term) pinning of movable pages might
791 	 *    essentially turn such pages unmovable. Therefore, we do not allow
792 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
793 	 *    faulted, they come from the right zone right away. However, it is
794 	 *    still possible that address space already has pages in
795 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
796 	 *    touches that memory before pinning). In such case we migrate them
797 	 *    to a different zone. When migration fails - pinning fails.
798 	 * 2. memblock allocations: kernelcore/movablecore setups might create
799 	 *    situations where ZONE_MOVABLE contains unmovable allocations
800 	 *    after boot. Memory offlining and allocations fail early.
801 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
802 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
803 	 *    for example, if we have sections that are only partially
804 	 *    populated. Memory offlining and allocations fail early.
805 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
806 	 *    memory offlining, such pages cannot be allocated.
807 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
808 	 *    hotplugged memory blocks might only partially be managed by the
809 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
810 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
811 	 *    some cases (virtio-mem), such pages can be skipped during
812 	 *    memory offlining, however, cannot be moved/allocated. These
813 	 *    techniques might use alloc_contig_range() to hide previously
814 	 *    exposed pages from the buddy again (e.g., to implement some sort
815 	 *    of memory unplug in virtio-mem).
816 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
817 	 *    situations where ZERO_PAGE(0) which is allocated differently
818 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
819 	 *    cannot be migrated.
820 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
821 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
822 	 *    such zone. Such pages cannot be really moved around as they are
823 	 *    self-stored in the range, but they are treated as movable when
824 	 *    the range they describe is about to be offlined.
825 	 *
826 	 * In general, no unmovable allocations that degrade memory offlining
827 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
828 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
829 	 * if has_unmovable_pages() states that there are no unmovable pages,
830 	 * there can be false negatives).
831 	 */
832 	ZONE_MOVABLE,
833 #ifdef CONFIG_ZONE_DEVICE
834 	ZONE_DEVICE,
835 #endif
836 	__MAX_NR_ZONES
837 
838 };
839 
840 #ifndef __GENERATING_BOUNDS_H
841 
842 #define ASYNC_AND_SYNC 2
843 
844 struct zone {
845 	/* Read-mostly fields */
846 
847 	/* zone watermarks, access with *_wmark_pages(zone) macros */
848 	unsigned long _watermark[NR_WMARK];
849 	unsigned long watermark_boost;
850 
851 	unsigned long nr_reserved_highatomic;
852 	unsigned long nr_free_highatomic;
853 
854 	/*
855 	 * We don't know if the memory that we're going to allocate will be
856 	 * freeable or/and it will be released eventually, so to avoid totally
857 	 * wasting several GB of ram we must reserve some of the lower zone
858 	 * memory (otherwise we risk to run OOM on the lower zones despite
859 	 * there being tons of freeable ram on the higher zones).  This array is
860 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
861 	 * changes.
862 	 */
863 	long lowmem_reserve[MAX_NR_ZONES];
864 
865 #ifdef CONFIG_NUMA
866 	int node;
867 #endif
868 	struct pglist_data	*zone_pgdat;
869 	struct per_cpu_pages	__percpu *per_cpu_pageset;
870 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
871 	/*
872 	 * the high and batch values are copied to individual pagesets for
873 	 * faster access
874 	 */
875 	int pageset_high_min;
876 	int pageset_high_max;
877 	int pageset_batch;
878 
879 #ifndef CONFIG_SPARSEMEM
880 	/*
881 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
882 	 * In SPARSEMEM, this map is stored in struct mem_section
883 	 */
884 	unsigned long		*pageblock_flags;
885 #endif /* CONFIG_SPARSEMEM */
886 
887 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
888 	unsigned long		zone_start_pfn;
889 
890 	/*
891 	 * spanned_pages is the total pages spanned by the zone, including
892 	 * holes, which is calculated as:
893 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
894 	 *
895 	 * present_pages is physical pages existing within the zone, which
896 	 * is calculated as:
897 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
898 	 *
899 	 * present_early_pages is present pages existing within the zone
900 	 * located on memory available since early boot, excluding hotplugged
901 	 * memory.
902 	 *
903 	 * managed_pages is present pages managed by the buddy system, which
904 	 * is calculated as (reserved_pages includes pages allocated by the
905 	 * bootmem allocator):
906 	 *	managed_pages = present_pages - reserved_pages;
907 	 *
908 	 * cma pages is present pages that are assigned for CMA use
909 	 * (MIGRATE_CMA).
910 	 *
911 	 * So present_pages may be used by memory hotplug or memory power
912 	 * management logic to figure out unmanaged pages by checking
913 	 * (present_pages - managed_pages). And managed_pages should be used
914 	 * by page allocator and vm scanner to calculate all kinds of watermarks
915 	 * and thresholds.
916 	 *
917 	 * Locking rules:
918 	 *
919 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
920 	 * It is a seqlock because it has to be read outside of zone->lock,
921 	 * and it is done in the main allocator path.  But, it is written
922 	 * quite infrequently.
923 	 *
924 	 * The span_seq lock is declared along with zone->lock because it is
925 	 * frequently read in proximity to zone->lock.  It's good to
926 	 * give them a chance of being in the same cacheline.
927 	 *
928 	 * Write access to present_pages at runtime should be protected by
929 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
930 	 * present_pages should use get_online_mems() to get a stable value.
931 	 */
932 	atomic_long_t		managed_pages;
933 	unsigned long		spanned_pages;
934 	unsigned long		present_pages;
935 #if defined(CONFIG_MEMORY_HOTPLUG)
936 	unsigned long		present_early_pages;
937 #endif
938 #ifdef CONFIG_CMA
939 	unsigned long		cma_pages;
940 #endif
941 
942 	const char		*name;
943 
944 #ifdef CONFIG_MEMORY_ISOLATION
945 	/*
946 	 * Number of isolated pageblock. It is used to solve incorrect
947 	 * freepage counting problem due to racy retrieving migratetype
948 	 * of pageblock. Protected by zone->lock.
949 	 */
950 	unsigned long		nr_isolate_pageblock;
951 #endif
952 
953 #ifdef CONFIG_MEMORY_HOTPLUG
954 	/* see spanned/present_pages for more description */
955 	seqlock_t		span_seqlock;
956 #endif
957 
958 	int initialized;
959 
960 	/* Write-intensive fields used from the page allocator */
961 	CACHELINE_PADDING(_pad1_);
962 
963 	/* free areas of different sizes */
964 	struct free_area	free_area[NR_PAGE_ORDERS];
965 
966 #ifdef CONFIG_UNACCEPTED_MEMORY
967 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
968 	struct list_head	unaccepted_pages;
969 #endif
970 
971 	/* zone flags, see below */
972 	unsigned long		flags;
973 
974 	/* Primarily protects free_area */
975 	spinlock_t		lock;
976 
977 	/* Write-intensive fields used by compaction and vmstats. */
978 	CACHELINE_PADDING(_pad2_);
979 
980 	/*
981 	 * When free pages are below this point, additional steps are taken
982 	 * when reading the number of free pages to avoid per-cpu counter
983 	 * drift allowing watermarks to be breached
984 	 */
985 	unsigned long percpu_drift_mark;
986 
987 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
988 	/* pfn where compaction free scanner should start */
989 	unsigned long		compact_cached_free_pfn;
990 	/* pfn where compaction migration scanner should start */
991 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
992 	unsigned long		compact_init_migrate_pfn;
993 	unsigned long		compact_init_free_pfn;
994 #endif
995 
996 #ifdef CONFIG_COMPACTION
997 	/*
998 	 * On compaction failure, 1<<compact_defer_shift compactions
999 	 * are skipped before trying again. The number attempted since
1000 	 * last failure is tracked with compact_considered.
1001 	 * compact_order_failed is the minimum compaction failed order.
1002 	 */
1003 	unsigned int		compact_considered;
1004 	unsigned int		compact_defer_shift;
1005 	int			compact_order_failed;
1006 #endif
1007 
1008 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1009 	/* Set to true when the PG_migrate_skip bits should be cleared */
1010 	bool			compact_blockskip_flush;
1011 #endif
1012 
1013 	bool			contiguous;
1014 
1015 	CACHELINE_PADDING(_pad3_);
1016 	/* Zone statistics */
1017 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1018 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1019 } ____cacheline_internodealigned_in_smp;
1020 
1021 enum pgdat_flags {
1022 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1023 					 * many dirty file pages at the tail
1024 					 * of the LRU.
1025 					 */
1026 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1027 					 * many pages under writeback
1028 					 */
1029 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1030 };
1031 
1032 enum zone_flags {
1033 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1034 					 * Cleared when kswapd is woken.
1035 					 */
1036 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1037 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1038 };
1039 
1040 static inline unsigned long wmark_pages(const struct zone *z,
1041 					enum zone_watermarks w)
1042 {
1043 	return z->_watermark[w] + z->watermark_boost;
1044 }
1045 
1046 static inline unsigned long min_wmark_pages(const struct zone *z)
1047 {
1048 	return wmark_pages(z, WMARK_MIN);
1049 }
1050 
1051 static inline unsigned long low_wmark_pages(const struct zone *z)
1052 {
1053 	return wmark_pages(z, WMARK_LOW);
1054 }
1055 
1056 static inline unsigned long high_wmark_pages(const struct zone *z)
1057 {
1058 	return wmark_pages(z, WMARK_HIGH);
1059 }
1060 
1061 static inline unsigned long promo_wmark_pages(const struct zone *z)
1062 {
1063 	return wmark_pages(z, WMARK_PROMO);
1064 }
1065 
1066 static inline unsigned long zone_managed_pages(struct zone *zone)
1067 {
1068 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1069 }
1070 
1071 static inline unsigned long zone_cma_pages(struct zone *zone)
1072 {
1073 #ifdef CONFIG_CMA
1074 	return zone->cma_pages;
1075 #else
1076 	return 0;
1077 #endif
1078 }
1079 
1080 static inline unsigned long zone_end_pfn(const struct zone *zone)
1081 {
1082 	return zone->zone_start_pfn + zone->spanned_pages;
1083 }
1084 
1085 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1086 {
1087 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1088 }
1089 
1090 static inline bool zone_is_initialized(struct zone *zone)
1091 {
1092 	return zone->initialized;
1093 }
1094 
1095 static inline bool zone_is_empty(struct zone *zone)
1096 {
1097 	return zone->spanned_pages == 0;
1098 }
1099 
1100 #ifndef BUILD_VDSO32_64
1101 /*
1102  * The zone field is never updated after free_area_init_core()
1103  * sets it, so none of the operations on it need to be atomic.
1104  */
1105 
1106 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1107 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1108 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1109 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1110 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1111 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1112 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1113 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1114 
1115 /*
1116  * Define the bit shifts to access each section.  For non-existent
1117  * sections we define the shift as 0; that plus a 0 mask ensures
1118  * the compiler will optimise away reference to them.
1119  */
1120 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1121 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1122 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1123 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1124 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1125 
1126 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1127 #ifdef NODE_NOT_IN_PAGE_FLAGS
1128 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1129 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1130 						SECTIONS_PGOFF : ZONES_PGOFF)
1131 #else
1132 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1133 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1134 						NODES_PGOFF : ZONES_PGOFF)
1135 #endif
1136 
1137 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1138 
1139 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1140 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1141 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1142 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1143 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1144 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1145 
1146 static inline enum zone_type page_zonenum(const struct page *page)
1147 {
1148 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1149 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1150 }
1151 
1152 static inline enum zone_type folio_zonenum(const struct folio *folio)
1153 {
1154 	return page_zonenum(&folio->page);
1155 }
1156 
1157 #ifdef CONFIG_ZONE_DEVICE
1158 static inline bool is_zone_device_page(const struct page *page)
1159 {
1160 	return page_zonenum(page) == ZONE_DEVICE;
1161 }
1162 
1163 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1164 {
1165 	VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1166 	return page_folio(page)->pgmap;
1167 }
1168 
1169 /*
1170  * Consecutive zone device pages should not be merged into the same sgl
1171  * or bvec segment with other types of pages or if they belong to different
1172  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1173  * without scanning the entire segment. This helper returns true either if
1174  * both pages are not zone device pages or both pages are zone device pages
1175  * with the same pgmap.
1176  */
1177 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1178 						     const struct page *b)
1179 {
1180 	if (is_zone_device_page(a) != is_zone_device_page(b))
1181 		return false;
1182 	if (!is_zone_device_page(a))
1183 		return true;
1184 	return page_pgmap(a) == page_pgmap(b);
1185 }
1186 
1187 extern void memmap_init_zone_device(struct zone *, unsigned long,
1188 				    unsigned long, struct dev_pagemap *);
1189 #else
1190 static inline bool is_zone_device_page(const struct page *page)
1191 {
1192 	return false;
1193 }
1194 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1195 						     const struct page *b)
1196 {
1197 	return true;
1198 }
1199 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1200 {
1201 	return NULL;
1202 }
1203 #endif
1204 
1205 static inline bool folio_is_zone_device(const struct folio *folio)
1206 {
1207 	return is_zone_device_page(&folio->page);
1208 }
1209 
1210 static inline bool is_zone_movable_page(const struct page *page)
1211 {
1212 	return page_zonenum(page) == ZONE_MOVABLE;
1213 }
1214 
1215 static inline bool folio_is_zone_movable(const struct folio *folio)
1216 {
1217 	return folio_zonenum(folio) == ZONE_MOVABLE;
1218 }
1219 #endif
1220 
1221 /*
1222  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1223  * intersection with the given zone
1224  */
1225 static inline bool zone_intersects(struct zone *zone,
1226 		unsigned long start_pfn, unsigned long nr_pages)
1227 {
1228 	if (zone_is_empty(zone))
1229 		return false;
1230 	if (start_pfn >= zone_end_pfn(zone) ||
1231 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
1237 /*
1238  * The "priority" of VM scanning is how much of the queues we will scan in one
1239  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1240  * queues ("queue_length >> 12") during an aging round.
1241  */
1242 #define DEF_PRIORITY 12
1243 
1244 /* Maximum number of zones on a zonelist */
1245 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1246 
1247 enum {
1248 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1249 #ifdef CONFIG_NUMA
1250 	/*
1251 	 * The NUMA zonelists are doubled because we need zonelists that
1252 	 * restrict the allocations to a single node for __GFP_THISNODE.
1253 	 */
1254 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1255 #endif
1256 	MAX_ZONELISTS
1257 };
1258 
1259 /*
1260  * This struct contains information about a zone in a zonelist. It is stored
1261  * here to avoid dereferences into large structures and lookups of tables
1262  */
1263 struct zoneref {
1264 	struct zone *zone;	/* Pointer to actual zone */
1265 	int zone_idx;		/* zone_idx(zoneref->zone) */
1266 };
1267 
1268 /*
1269  * One allocation request operates on a zonelist. A zonelist
1270  * is a list of zones, the first one is the 'goal' of the
1271  * allocation, the other zones are fallback zones, in decreasing
1272  * priority.
1273  *
1274  * To speed the reading of the zonelist, the zonerefs contain the zone index
1275  * of the entry being read. Helper functions to access information given
1276  * a struct zoneref are
1277  *
1278  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1279  * zonelist_zone_idx()	- Return the index of the zone for an entry
1280  * zonelist_node_idx()	- Return the index of the node for an entry
1281  */
1282 struct zonelist {
1283 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1284 };
1285 
1286 /*
1287  * The array of struct pages for flatmem.
1288  * It must be declared for SPARSEMEM as well because there are configurations
1289  * that rely on that.
1290  */
1291 extern struct page *mem_map;
1292 
1293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1294 struct deferred_split {
1295 	spinlock_t split_queue_lock;
1296 	struct list_head split_queue;
1297 	unsigned long split_queue_len;
1298 };
1299 #endif
1300 
1301 #ifdef CONFIG_MEMORY_FAILURE
1302 /*
1303  * Per NUMA node memory failure handling statistics.
1304  */
1305 struct memory_failure_stats {
1306 	/*
1307 	 * Number of raw pages poisoned.
1308 	 * Cases not accounted: memory outside kernel control, offline page,
1309 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1310 	 * error events, and unpoison actions from hwpoison_unpoison.
1311 	 */
1312 	unsigned long total;
1313 	/*
1314 	 * Recovery results of poisoned raw pages handled by memory_failure,
1315 	 * in sync with mf_result.
1316 	 * total = ignored + failed + delayed + recovered.
1317 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1318 	 */
1319 	unsigned long ignored;
1320 	unsigned long failed;
1321 	unsigned long delayed;
1322 	unsigned long recovered;
1323 };
1324 #endif
1325 
1326 /*
1327  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1328  * it's memory layout. On UMA machines there is a single pglist_data which
1329  * describes the whole memory.
1330  *
1331  * Memory statistics and page replacement data structures are maintained on a
1332  * per-zone basis.
1333  */
1334 typedef struct pglist_data {
1335 	/*
1336 	 * node_zones contains just the zones for THIS node. Not all of the
1337 	 * zones may be populated, but it is the full list. It is referenced by
1338 	 * this node's node_zonelists as well as other node's node_zonelists.
1339 	 */
1340 	struct zone node_zones[MAX_NR_ZONES];
1341 
1342 	/*
1343 	 * node_zonelists contains references to all zones in all nodes.
1344 	 * Generally the first zones will be references to this node's
1345 	 * node_zones.
1346 	 */
1347 	struct zonelist node_zonelists[MAX_ZONELISTS];
1348 
1349 	int nr_zones; /* number of populated zones in this node */
1350 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1351 	struct page *node_mem_map;
1352 #ifdef CONFIG_PAGE_EXTENSION
1353 	struct page_ext *node_page_ext;
1354 #endif
1355 #endif
1356 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1357 	/*
1358 	 * Must be held any time you expect node_start_pfn,
1359 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1360 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1361 	 * init.
1362 	 *
1363 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1364 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1365 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1366 	 *
1367 	 * Nests above zone->lock and zone->span_seqlock
1368 	 */
1369 	spinlock_t node_size_lock;
1370 #endif
1371 	unsigned long node_start_pfn;
1372 	unsigned long node_present_pages; /* total number of physical pages */
1373 	unsigned long node_spanned_pages; /* total size of physical page
1374 					     range, including holes */
1375 	int node_id;
1376 	wait_queue_head_t kswapd_wait;
1377 	wait_queue_head_t pfmemalloc_wait;
1378 
1379 	/* workqueues for throttling reclaim for different reasons. */
1380 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1381 
1382 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1383 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1384 					 * when throttling started. */
1385 #ifdef CONFIG_MEMORY_HOTPLUG
1386 	struct mutex kswapd_lock;
1387 #endif
1388 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1389 	int kswapd_order;
1390 	enum zone_type kswapd_highest_zoneidx;
1391 
1392 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1393 
1394 #ifdef CONFIG_COMPACTION
1395 	int kcompactd_max_order;
1396 	enum zone_type kcompactd_highest_zoneidx;
1397 	wait_queue_head_t kcompactd_wait;
1398 	struct task_struct *kcompactd;
1399 	bool proactive_compact_trigger;
1400 #endif
1401 	/*
1402 	 * This is a per-node reserve of pages that are not available
1403 	 * to userspace allocations.
1404 	 */
1405 	unsigned long		totalreserve_pages;
1406 
1407 #ifdef CONFIG_NUMA
1408 	/*
1409 	 * node reclaim becomes active if more unmapped pages exist.
1410 	 */
1411 	unsigned long		min_unmapped_pages;
1412 	unsigned long		min_slab_pages;
1413 #endif /* CONFIG_NUMA */
1414 
1415 	/* Write-intensive fields used by page reclaim */
1416 	CACHELINE_PADDING(_pad1_);
1417 
1418 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1419 	/*
1420 	 * If memory initialisation on large machines is deferred then this
1421 	 * is the first PFN that needs to be initialised.
1422 	 */
1423 	unsigned long first_deferred_pfn;
1424 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1425 
1426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1427 	struct deferred_split deferred_split_queue;
1428 #endif
1429 
1430 #ifdef CONFIG_NUMA_BALANCING
1431 	/* start time in ms of current promote rate limit period */
1432 	unsigned int nbp_rl_start;
1433 	/* number of promote candidate pages at start time of current rate limit period */
1434 	unsigned long nbp_rl_nr_cand;
1435 	/* promote threshold in ms */
1436 	unsigned int nbp_threshold;
1437 	/* start time in ms of current promote threshold adjustment period */
1438 	unsigned int nbp_th_start;
1439 	/*
1440 	 * number of promote candidate pages at start time of current promote
1441 	 * threshold adjustment period
1442 	 */
1443 	unsigned long nbp_th_nr_cand;
1444 #endif
1445 	/* Fields commonly accessed by the page reclaim scanner */
1446 
1447 	/*
1448 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1449 	 *
1450 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1451 	 */
1452 	struct lruvec		__lruvec;
1453 
1454 	unsigned long		flags;
1455 
1456 #ifdef CONFIG_LRU_GEN
1457 	/* kswap mm walk data */
1458 	struct lru_gen_mm_walk mm_walk;
1459 	/* lru_gen_folio list */
1460 	struct lru_gen_memcg memcg_lru;
1461 #endif
1462 
1463 	CACHELINE_PADDING(_pad2_);
1464 
1465 	/* Per-node vmstats */
1466 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1467 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1468 #ifdef CONFIG_NUMA
1469 	struct memory_tier __rcu *memtier;
1470 #endif
1471 #ifdef CONFIG_MEMORY_FAILURE
1472 	struct memory_failure_stats mf_stats;
1473 #endif
1474 } pg_data_t;
1475 
1476 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1477 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1478 
1479 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1480 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1481 
1482 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1483 {
1484 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1485 }
1486 
1487 #include <linux/memory_hotplug.h>
1488 
1489 void build_all_zonelists(pg_data_t *pgdat);
1490 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1491 		   enum zone_type highest_zoneidx);
1492 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1493 			 int highest_zoneidx, unsigned int alloc_flags,
1494 			 long free_pages);
1495 bool zone_watermark_ok(struct zone *z, unsigned int order,
1496 		unsigned long mark, int highest_zoneidx,
1497 		unsigned int alloc_flags);
1498 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1499 		unsigned long mark, int highest_zoneidx);
1500 /*
1501  * Memory initialization context, use to differentiate memory added by
1502  * the platform statically or via memory hotplug interface.
1503  */
1504 enum meminit_context {
1505 	MEMINIT_EARLY,
1506 	MEMINIT_HOTPLUG,
1507 };
1508 
1509 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1510 				     unsigned long size);
1511 
1512 extern void lruvec_init(struct lruvec *lruvec);
1513 
1514 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1515 {
1516 #ifdef CONFIG_MEMCG
1517 	return lruvec->pgdat;
1518 #else
1519 	return container_of(lruvec, struct pglist_data, __lruvec);
1520 #endif
1521 }
1522 
1523 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1524 int local_memory_node(int node_id);
1525 #else
1526 static inline int local_memory_node(int node_id) { return node_id; };
1527 #endif
1528 
1529 /*
1530  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1531  */
1532 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1533 
1534 #ifdef CONFIG_ZONE_DEVICE
1535 static inline bool zone_is_zone_device(struct zone *zone)
1536 {
1537 	return zone_idx(zone) == ZONE_DEVICE;
1538 }
1539 #else
1540 static inline bool zone_is_zone_device(struct zone *zone)
1541 {
1542 	return false;
1543 }
1544 #endif
1545 
1546 /*
1547  * Returns true if a zone has pages managed by the buddy allocator.
1548  * All the reclaim decisions have to use this function rather than
1549  * populated_zone(). If the whole zone is reserved then we can easily
1550  * end up with populated_zone() && !managed_zone().
1551  */
1552 static inline bool managed_zone(struct zone *zone)
1553 {
1554 	return zone_managed_pages(zone);
1555 }
1556 
1557 /* Returns true if a zone has memory */
1558 static inline bool populated_zone(struct zone *zone)
1559 {
1560 	return zone->present_pages;
1561 }
1562 
1563 #ifdef CONFIG_NUMA
1564 static inline int zone_to_nid(struct zone *zone)
1565 {
1566 	return zone->node;
1567 }
1568 
1569 static inline void zone_set_nid(struct zone *zone, int nid)
1570 {
1571 	zone->node = nid;
1572 }
1573 #else
1574 static inline int zone_to_nid(struct zone *zone)
1575 {
1576 	return 0;
1577 }
1578 
1579 static inline void zone_set_nid(struct zone *zone, int nid) {}
1580 #endif
1581 
1582 extern int movable_zone;
1583 
1584 static inline int is_highmem_idx(enum zone_type idx)
1585 {
1586 #ifdef CONFIG_HIGHMEM
1587 	return (idx == ZONE_HIGHMEM ||
1588 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1589 #else
1590 	return 0;
1591 #endif
1592 }
1593 
1594 /**
1595  * is_highmem - helper function to quickly check if a struct zone is a
1596  *              highmem zone or not.  This is an attempt to keep references
1597  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1598  * @zone: pointer to struct zone variable
1599  * Return: 1 for a highmem zone, 0 otherwise
1600  */
1601 static inline int is_highmem(struct zone *zone)
1602 {
1603 	return is_highmem_idx(zone_idx(zone));
1604 }
1605 
1606 #ifdef CONFIG_ZONE_DMA
1607 bool has_managed_dma(void);
1608 #else
1609 static inline bool has_managed_dma(void)
1610 {
1611 	return false;
1612 }
1613 #endif
1614 
1615 
1616 #ifndef CONFIG_NUMA
1617 
1618 extern struct pglist_data contig_page_data;
1619 static inline struct pglist_data *NODE_DATA(int nid)
1620 {
1621 	return &contig_page_data;
1622 }
1623 
1624 #else /* CONFIG_NUMA */
1625 
1626 #include <asm/mmzone.h>
1627 
1628 #endif /* !CONFIG_NUMA */
1629 
1630 extern struct pglist_data *first_online_pgdat(void);
1631 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1632 extern struct zone *next_zone(struct zone *zone);
1633 
1634 /**
1635  * for_each_online_pgdat - helper macro to iterate over all online nodes
1636  * @pgdat: pointer to a pg_data_t variable
1637  */
1638 #define for_each_online_pgdat(pgdat)			\
1639 	for (pgdat = first_online_pgdat();		\
1640 	     pgdat;					\
1641 	     pgdat = next_online_pgdat(pgdat))
1642 /**
1643  * for_each_zone - helper macro to iterate over all memory zones
1644  * @zone: pointer to struct zone variable
1645  *
1646  * The user only needs to declare the zone variable, for_each_zone
1647  * fills it in.
1648  */
1649 #define for_each_zone(zone)			        \
1650 	for (zone = (first_online_pgdat())->node_zones; \
1651 	     zone;					\
1652 	     zone = next_zone(zone))
1653 
1654 #define for_each_populated_zone(zone)		        \
1655 	for (zone = (first_online_pgdat())->node_zones; \
1656 	     zone;					\
1657 	     zone = next_zone(zone))			\
1658 		if (!populated_zone(zone))		\
1659 			; /* do nothing */		\
1660 		else
1661 
1662 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1663 {
1664 	return zoneref->zone;
1665 }
1666 
1667 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1668 {
1669 	return zoneref->zone_idx;
1670 }
1671 
1672 static inline int zonelist_node_idx(struct zoneref *zoneref)
1673 {
1674 	return zone_to_nid(zoneref->zone);
1675 }
1676 
1677 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1678 					enum zone_type highest_zoneidx,
1679 					nodemask_t *nodes);
1680 
1681 /**
1682  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1683  * @z: The cursor used as a starting point for the search
1684  * @highest_zoneidx: The zone index of the highest zone to return
1685  * @nodes: An optional nodemask to filter the zonelist with
1686  *
1687  * This function returns the next zone at or below a given zone index that is
1688  * within the allowed nodemask using a cursor as the starting point for the
1689  * search. The zoneref returned is a cursor that represents the current zone
1690  * being examined. It should be advanced by one before calling
1691  * next_zones_zonelist again.
1692  *
1693  * Return: the next zone at or below highest_zoneidx within the allowed
1694  * nodemask using a cursor within a zonelist as a starting point
1695  */
1696 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1697 					enum zone_type highest_zoneidx,
1698 					nodemask_t *nodes)
1699 {
1700 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1701 		return z;
1702 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1703 }
1704 
1705 /**
1706  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1707  * @zonelist: The zonelist to search for a suitable zone
1708  * @highest_zoneidx: The zone index of the highest zone to return
1709  * @nodes: An optional nodemask to filter the zonelist with
1710  *
1711  * This function returns the first zone at or below a given zone index that is
1712  * within the allowed nodemask. The zoneref returned is a cursor that can be
1713  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1714  * one before calling.
1715  *
1716  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1717  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1718  * update due to cpuset modification.
1719  *
1720  * Return: Zoneref pointer for the first suitable zone found
1721  */
1722 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1723 					enum zone_type highest_zoneidx,
1724 					nodemask_t *nodes)
1725 {
1726 	return next_zones_zonelist(zonelist->_zonerefs,
1727 							highest_zoneidx, nodes);
1728 }
1729 
1730 /**
1731  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1732  * @zone: The current zone in the iterator
1733  * @z: The current pointer within zonelist->_zonerefs being iterated
1734  * @zlist: The zonelist being iterated
1735  * @highidx: The zone index of the highest zone to return
1736  * @nodemask: Nodemask allowed by the allocator
1737  *
1738  * This iterator iterates though all zones at or below a given zone index and
1739  * within a given nodemask
1740  */
1741 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1742 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1743 		zone;							\
1744 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1745 			zone = zonelist_zone(z))
1746 
1747 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1748 	for (zone = zonelist_zone(z);	\
1749 		zone;							\
1750 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1751 			zone = zonelist_zone(z))
1752 
1753 
1754 /**
1755  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1756  * @zone: The current zone in the iterator
1757  * @z: The current pointer within zonelist->zones being iterated
1758  * @zlist: The zonelist being iterated
1759  * @highidx: The zone index of the highest zone to return
1760  *
1761  * This iterator iterates though all zones at or below a given zone index.
1762  */
1763 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1764 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1765 
1766 /* Whether the 'nodes' are all movable nodes */
1767 static inline bool movable_only_nodes(nodemask_t *nodes)
1768 {
1769 	struct zonelist *zonelist;
1770 	struct zoneref *z;
1771 	int nid;
1772 
1773 	if (nodes_empty(*nodes))
1774 		return false;
1775 
1776 	/*
1777 	 * We can chose arbitrary node from the nodemask to get a
1778 	 * zonelist as they are interlinked. We just need to find
1779 	 * at least one zone that can satisfy kernel allocations.
1780 	 */
1781 	nid = first_node(*nodes);
1782 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1783 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1784 	return (!zonelist_zone(z)) ? true : false;
1785 }
1786 
1787 
1788 #ifdef CONFIG_SPARSEMEM
1789 #include <asm/sparsemem.h>
1790 #endif
1791 
1792 #ifdef CONFIG_FLATMEM
1793 #define pfn_to_nid(pfn)		(0)
1794 #endif
1795 
1796 #ifdef CONFIG_SPARSEMEM
1797 
1798 /*
1799  * PA_SECTION_SHIFT		physical address to/from section number
1800  * PFN_SECTION_SHIFT		pfn to/from section number
1801  */
1802 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1803 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1804 
1805 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1806 
1807 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1808 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1809 
1810 #define SECTION_BLOCKFLAGS_BITS \
1811 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1812 
1813 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1814 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1815 #endif
1816 
1817 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1818 {
1819 	return pfn >> PFN_SECTION_SHIFT;
1820 }
1821 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1822 {
1823 	return sec << PFN_SECTION_SHIFT;
1824 }
1825 
1826 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1827 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1828 
1829 #define SUBSECTION_SHIFT 21
1830 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1831 
1832 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1833 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1834 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1835 
1836 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1837 #error Subsection size exceeds section size
1838 #else
1839 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1840 #endif
1841 
1842 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1843 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1844 
1845 struct mem_section_usage {
1846 	struct rcu_head rcu;
1847 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1848 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1849 #endif
1850 	/* See declaration of similar field in struct zone */
1851 	unsigned long pageblock_flags[0];
1852 };
1853 
1854 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1855 
1856 struct page;
1857 struct page_ext;
1858 struct mem_section {
1859 	/*
1860 	 * This is, logically, a pointer to an array of struct
1861 	 * pages.  However, it is stored with some other magic.
1862 	 * (see sparse.c::sparse_init_one_section())
1863 	 *
1864 	 * Additionally during early boot we encode node id of
1865 	 * the location of the section here to guide allocation.
1866 	 * (see sparse.c::memory_present())
1867 	 *
1868 	 * Making it a UL at least makes someone do a cast
1869 	 * before using it wrong.
1870 	 */
1871 	unsigned long section_mem_map;
1872 
1873 	struct mem_section_usage *usage;
1874 #ifdef CONFIG_PAGE_EXTENSION
1875 	/*
1876 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1877 	 * section. (see page_ext.h about this.)
1878 	 */
1879 	struct page_ext *page_ext;
1880 	unsigned long pad;
1881 #endif
1882 	/*
1883 	 * WARNING: mem_section must be a power-of-2 in size for the
1884 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1885 	 */
1886 };
1887 
1888 #ifdef CONFIG_SPARSEMEM_EXTREME
1889 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1890 #else
1891 #define SECTIONS_PER_ROOT	1
1892 #endif
1893 
1894 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1895 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1896 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1897 
1898 #ifdef CONFIG_SPARSEMEM_EXTREME
1899 extern struct mem_section **mem_section;
1900 #else
1901 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1902 #endif
1903 
1904 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1905 {
1906 	return ms->usage->pageblock_flags;
1907 }
1908 
1909 static inline struct mem_section *__nr_to_section(unsigned long nr)
1910 {
1911 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1912 
1913 	if (unlikely(root >= NR_SECTION_ROOTS))
1914 		return NULL;
1915 
1916 #ifdef CONFIG_SPARSEMEM_EXTREME
1917 	if (!mem_section || !mem_section[root])
1918 		return NULL;
1919 #endif
1920 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1921 }
1922 extern size_t mem_section_usage_size(void);
1923 
1924 /*
1925  * We use the lower bits of the mem_map pointer to store
1926  * a little bit of information.  The pointer is calculated
1927  * as mem_map - section_nr_to_pfn(pnum).  The result is
1928  * aligned to the minimum alignment of the two values:
1929  *   1. All mem_map arrays are page-aligned.
1930  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1931  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1932  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1933  *      worst combination is powerpc with 256k pages,
1934  *      which results in PFN_SECTION_SHIFT equal 6.
1935  * To sum it up, at least 6 bits are available on all architectures.
1936  * However, we can exceed 6 bits on some other architectures except
1937  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1938  * with the worst case of 64K pages on arm64) if we make sure the
1939  * exceeded bit is not applicable to powerpc.
1940  */
1941 enum {
1942 	SECTION_MARKED_PRESENT_BIT,
1943 	SECTION_HAS_MEM_MAP_BIT,
1944 	SECTION_IS_ONLINE_BIT,
1945 	SECTION_IS_EARLY_BIT,
1946 #ifdef CONFIG_ZONE_DEVICE
1947 	SECTION_TAINT_ZONE_DEVICE_BIT,
1948 #endif
1949 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1950 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1951 #endif
1952 	SECTION_MAP_LAST_BIT,
1953 };
1954 
1955 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1956 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1957 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1958 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1959 #ifdef CONFIG_ZONE_DEVICE
1960 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1961 #endif
1962 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1963 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1964 #endif
1965 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1966 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1967 
1968 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1969 {
1970 	unsigned long map = section->section_mem_map;
1971 	map &= SECTION_MAP_MASK;
1972 	return (struct page *)map;
1973 }
1974 
1975 static inline int present_section(struct mem_section *section)
1976 {
1977 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1978 }
1979 
1980 static inline int present_section_nr(unsigned long nr)
1981 {
1982 	return present_section(__nr_to_section(nr));
1983 }
1984 
1985 static inline int valid_section(struct mem_section *section)
1986 {
1987 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1988 }
1989 
1990 static inline int early_section(struct mem_section *section)
1991 {
1992 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1993 }
1994 
1995 static inline int valid_section_nr(unsigned long nr)
1996 {
1997 	return valid_section(__nr_to_section(nr));
1998 }
1999 
2000 static inline int online_section(struct mem_section *section)
2001 {
2002 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2003 }
2004 
2005 #ifdef CONFIG_ZONE_DEVICE
2006 static inline int online_device_section(struct mem_section *section)
2007 {
2008 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2009 
2010 	return section && ((section->section_mem_map & flags) == flags);
2011 }
2012 #else
2013 static inline int online_device_section(struct mem_section *section)
2014 {
2015 	return 0;
2016 }
2017 #endif
2018 
2019 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
2020 static inline int preinited_vmemmap_section(struct mem_section *section)
2021 {
2022 	return (section &&
2023 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2024 }
2025 
2026 void sparse_vmemmap_init_nid_early(int nid);
2027 void sparse_vmemmap_init_nid_late(int nid);
2028 
2029 #else
2030 static inline int preinited_vmemmap_section(struct mem_section *section)
2031 {
2032 	return 0;
2033 }
2034 static inline void sparse_vmemmap_init_nid_early(int nid)
2035 {
2036 }
2037 
2038 static inline void sparse_vmemmap_init_nid_late(int nid)
2039 {
2040 }
2041 #endif
2042 
2043 static inline int online_section_nr(unsigned long nr)
2044 {
2045 	return online_section(__nr_to_section(nr));
2046 }
2047 
2048 #ifdef CONFIG_MEMORY_HOTPLUG
2049 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2050 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2051 #endif
2052 
2053 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2054 {
2055 	return __nr_to_section(pfn_to_section_nr(pfn));
2056 }
2057 
2058 extern unsigned long __highest_present_section_nr;
2059 
2060 static inline int subsection_map_index(unsigned long pfn)
2061 {
2062 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2063 }
2064 
2065 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2066 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2067 {
2068 	int idx = subsection_map_index(pfn);
2069 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2070 
2071 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2072 }
2073 #else
2074 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2075 {
2076 	return 1;
2077 }
2078 #endif
2079 
2080 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2081 			       unsigned long flags);
2082 
2083 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2084 /**
2085  * pfn_valid - check if there is a valid memory map entry for a PFN
2086  * @pfn: the page frame number to check
2087  *
2088  * Check if there is a valid memory map entry aka struct page for the @pfn.
2089  * Note, that availability of the memory map entry does not imply that
2090  * there is actual usable memory at that @pfn. The struct page may
2091  * represent a hole or an unusable page frame.
2092  *
2093  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2094  */
2095 static inline int pfn_valid(unsigned long pfn)
2096 {
2097 	struct mem_section *ms;
2098 	int ret;
2099 
2100 	/*
2101 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2102 	 * pfn. Else it might lead to false positives when
2103 	 * some of the upper bits are set, but the lower bits
2104 	 * match a valid pfn.
2105 	 */
2106 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2107 		return 0;
2108 
2109 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2110 		return 0;
2111 	ms = __pfn_to_section(pfn);
2112 	rcu_read_lock_sched();
2113 	if (!valid_section(ms)) {
2114 		rcu_read_unlock_sched();
2115 		return 0;
2116 	}
2117 	/*
2118 	 * Traditionally early sections always returned pfn_valid() for
2119 	 * the entire section-sized span.
2120 	 */
2121 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2122 	rcu_read_unlock_sched();
2123 
2124 	return ret;
2125 }
2126 #endif
2127 
2128 static inline int pfn_in_present_section(unsigned long pfn)
2129 {
2130 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2131 		return 0;
2132 	return present_section(__pfn_to_section(pfn));
2133 }
2134 
2135 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2136 {
2137 	while (++section_nr <= __highest_present_section_nr) {
2138 		if (present_section_nr(section_nr))
2139 			return section_nr;
2140 	}
2141 
2142 	return -1;
2143 }
2144 
2145 #define for_each_present_section_nr(start, section_nr)		\
2146 	for (section_nr = next_present_section_nr(start - 1);	\
2147 	     section_nr != -1;					\
2148 	     section_nr = next_present_section_nr(section_nr))
2149 
2150 /*
2151  * These are _only_ used during initialisation, therefore they
2152  * can use __initdata ...  They could have names to indicate
2153  * this restriction.
2154  */
2155 #ifdef CONFIG_NUMA
2156 #define pfn_to_nid(pfn)							\
2157 ({									\
2158 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2159 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2160 })
2161 #else
2162 #define pfn_to_nid(pfn)		(0)
2163 #endif
2164 
2165 void sparse_init(void);
2166 #else
2167 #define sparse_init()	do {} while (0)
2168 #define sparse_index_init(_sec, _nid)  do {} while (0)
2169 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2170 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2171 #define pfn_in_present_section pfn_valid
2172 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2173 #endif /* CONFIG_SPARSEMEM */
2174 
2175 #endif /* !__GENERATING_BOUNDS.H */
2176 #endif /* !__ASSEMBLY__ */
2177 #endif /* _LINUX_MMZONE_H */
2178