xref: /linux-6.15/include/linux/mmzone.h (revision d526643f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 11
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
34 
35 /*
36  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
37  * costly to service.  That is between allocation orders which should
38  * coalesce naturally under reasonable reclaim pressure and those which
39  * will not.
40  */
41 #define PAGE_ALLOC_COSTLY_ORDER 3
42 
43 enum migratetype {
44 	MIGRATE_UNMOVABLE,
45 	MIGRATE_MOVABLE,
46 	MIGRATE_RECLAIMABLE,
47 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
48 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
49 #ifdef CONFIG_CMA
50 	/*
51 	 * MIGRATE_CMA migration type is designed to mimic the way
52 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
53 	 * from MIGRATE_CMA pageblocks and page allocator never
54 	 * implicitly change migration type of MIGRATE_CMA pageblock.
55 	 *
56 	 * The way to use it is to change migratetype of a range of
57 	 * pageblocks to MIGRATE_CMA which can be done by
58 	 * __free_pageblock_cma() function.
59 	 */
60 	MIGRATE_CMA,
61 #endif
62 #ifdef CONFIG_MEMORY_ISOLATION
63 	MIGRATE_ISOLATE,	/* can't allocate from here */
64 #endif
65 	MIGRATE_TYPES
66 };
67 
68 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
69 extern const char * const migratetype_names[MIGRATE_TYPES];
70 
71 #ifdef CONFIG_CMA
72 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
73 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
74 #else
75 #  define is_migrate_cma(migratetype) false
76 #  define is_migrate_cma_page(_page) false
77 #endif
78 
79 static inline bool is_migrate_movable(int mt)
80 {
81 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
82 }
83 
84 /*
85  * Check whether a migratetype can be merged with another migratetype.
86  *
87  * It is only mergeable when it can fall back to other migratetypes for
88  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
89  */
90 static inline bool migratetype_is_mergeable(int mt)
91 {
92 	return mt < MIGRATE_PCPTYPES;
93 }
94 
95 #define for_each_migratetype_order(order, type) \
96 	for (order = 0; order < MAX_ORDER; order++) \
97 		for (type = 0; type < MIGRATE_TYPES; type++)
98 
99 extern int page_group_by_mobility_disabled;
100 
101 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
102 
103 #define get_pageblock_migratetype(page)					\
104 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
105 
106 struct free_area {
107 	struct list_head	free_list[MIGRATE_TYPES];
108 	unsigned long		nr_free;
109 };
110 
111 static inline struct page *get_page_from_free_area(struct free_area *area,
112 					    int migratetype)
113 {
114 	return list_first_entry_or_null(&area->free_list[migratetype],
115 					struct page, lru);
116 }
117 
118 static inline bool free_area_empty(struct free_area *area, int migratetype)
119 {
120 	return list_empty(&area->free_list[migratetype]);
121 }
122 
123 struct pglist_data;
124 
125 #ifdef CONFIG_NUMA
126 enum numa_stat_item {
127 	NUMA_HIT,		/* allocated in intended node */
128 	NUMA_MISS,		/* allocated in non intended node */
129 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
130 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
131 	NUMA_LOCAL,		/* allocation from local node */
132 	NUMA_OTHER,		/* allocation from other node */
133 	NR_VM_NUMA_EVENT_ITEMS
134 };
135 #else
136 #define NR_VM_NUMA_EVENT_ITEMS 0
137 #endif
138 
139 enum zone_stat_item {
140 	/* First 128 byte cacheline (assuming 64 bit words) */
141 	NR_FREE_PAGES,
142 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 	NR_ZONE_ACTIVE_ANON,
145 	NR_ZONE_INACTIVE_FILE,
146 	NR_ZONE_ACTIVE_FILE,
147 	NR_ZONE_UNEVICTABLE,
148 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
149 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
150 	/* Second 128 byte cacheline */
151 	NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 	NR_ZSPAGES,		/* allocated in zsmalloc */
154 #endif
155 	NR_FREE_CMA_PAGES,
156 	NR_VM_ZONE_STAT_ITEMS };
157 
158 enum node_stat_item {
159 	NR_LRU_BASE,
160 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
161 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
162 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
163 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
164 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
165 	NR_SLAB_RECLAIMABLE_B,
166 	NR_SLAB_UNRECLAIMABLE_B,
167 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
168 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
169 	WORKINGSET_NODES,
170 	WORKINGSET_REFAULT_BASE,
171 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
172 	WORKINGSET_REFAULT_FILE,
173 	WORKINGSET_ACTIVATE_BASE,
174 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
175 	WORKINGSET_ACTIVATE_FILE,
176 	WORKINGSET_RESTORE_BASE,
177 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
178 	WORKINGSET_RESTORE_FILE,
179 	WORKINGSET_NODERECLAIM,
180 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
181 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
182 			   only modified from process context */
183 	NR_FILE_PAGES,
184 	NR_FILE_DIRTY,
185 	NR_WRITEBACK,
186 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
187 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
188 	NR_SHMEM_THPS,
189 	NR_SHMEM_PMDMAPPED,
190 	NR_FILE_THPS,
191 	NR_FILE_PMDMAPPED,
192 	NR_ANON_THPS,
193 	NR_VMSCAN_WRITE,
194 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
195 	NR_DIRTIED,		/* page dirtyings since bootup */
196 	NR_WRITTEN,		/* page writings since bootup */
197 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
198 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
199 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
200 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
201 	NR_KERNEL_STACK_KB,	/* measured in KiB */
202 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
203 	NR_KERNEL_SCS_KB,	/* measured in KiB */
204 #endif
205 	NR_PAGETABLE,		/* used for pagetables */
206 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
207 #ifdef CONFIG_SWAP
208 	NR_SWAPCACHE,
209 #endif
210 #ifdef CONFIG_NUMA_BALANCING
211 	PGPROMOTE_SUCCESS,	/* promote successfully */
212 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
213 #endif
214 	NR_VM_NODE_STAT_ITEMS
215 };
216 
217 /*
218  * Returns true if the item should be printed in THPs (/proc/vmstat
219  * currently prints number of anon, file and shmem THPs. But the item
220  * is charged in pages).
221  */
222 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
223 {
224 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
225 		return false;
226 
227 	return item == NR_ANON_THPS ||
228 	       item == NR_FILE_THPS ||
229 	       item == NR_SHMEM_THPS ||
230 	       item == NR_SHMEM_PMDMAPPED ||
231 	       item == NR_FILE_PMDMAPPED;
232 }
233 
234 /*
235  * Returns true if the value is measured in bytes (most vmstat values are
236  * measured in pages). This defines the API part, the internal representation
237  * might be different.
238  */
239 static __always_inline bool vmstat_item_in_bytes(int idx)
240 {
241 	/*
242 	 * Global and per-node slab counters track slab pages.
243 	 * It's expected that changes are multiples of PAGE_SIZE.
244 	 * Internally values are stored in pages.
245 	 *
246 	 * Per-memcg and per-lruvec counters track memory, consumed
247 	 * by individual slab objects. These counters are actually
248 	 * byte-precise.
249 	 */
250 	return (idx == NR_SLAB_RECLAIMABLE_B ||
251 		idx == NR_SLAB_UNRECLAIMABLE_B);
252 }
253 
254 /*
255  * We do arithmetic on the LRU lists in various places in the code,
256  * so it is important to keep the active lists LRU_ACTIVE higher in
257  * the array than the corresponding inactive lists, and to keep
258  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
259  *
260  * This has to be kept in sync with the statistics in zone_stat_item
261  * above and the descriptions in vmstat_text in mm/vmstat.c
262  */
263 #define LRU_BASE 0
264 #define LRU_ACTIVE 1
265 #define LRU_FILE 2
266 
267 enum lru_list {
268 	LRU_INACTIVE_ANON = LRU_BASE,
269 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
270 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
271 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
272 	LRU_UNEVICTABLE,
273 	NR_LRU_LISTS
274 };
275 
276 enum vmscan_throttle_state {
277 	VMSCAN_THROTTLE_WRITEBACK,
278 	VMSCAN_THROTTLE_ISOLATED,
279 	VMSCAN_THROTTLE_NOPROGRESS,
280 	VMSCAN_THROTTLE_CONGESTED,
281 	NR_VMSCAN_THROTTLE,
282 };
283 
284 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
285 
286 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
287 
288 static inline bool is_file_lru(enum lru_list lru)
289 {
290 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
291 }
292 
293 static inline bool is_active_lru(enum lru_list lru)
294 {
295 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
296 }
297 
298 #define WORKINGSET_ANON 0
299 #define WORKINGSET_FILE 1
300 #define ANON_AND_FILE 2
301 
302 enum lruvec_flags {
303 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
304 					 * backed by a congested BDI
305 					 */
306 };
307 
308 #endif /* !__GENERATING_BOUNDS_H */
309 
310 /*
311  * Evictable pages are divided into multiple generations. The youngest and the
312  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
313  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
314  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
315  * corresponding generation. The gen counter in folio->flags stores gen+1 while
316  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
317  *
318  * A page is added to the youngest generation on faulting. The aging needs to
319  * check the accessed bit at least twice before handing this page over to the
320  * eviction. The first check takes care of the accessed bit set on the initial
321  * fault; the second check makes sure this page hasn't been used since then.
322  * This process, AKA second chance, requires a minimum of two generations,
323  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
324  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
325  * rest of generations, if they exist, are considered inactive. See
326  * lru_gen_is_active().
327  *
328  * PG_active is always cleared while a page is on one of lrugen->folios[] so
329  * that the aging needs not to worry about it. And it's set again when a page
330  * considered active is isolated for non-reclaiming purposes, e.g., migration.
331  * See lru_gen_add_folio() and lru_gen_del_folio().
332  *
333  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
334  * number of categories of the active/inactive LRU when keeping track of
335  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
336  * in folio->flags.
337  */
338 #define MIN_NR_GENS		2U
339 #define MAX_NR_GENS		4U
340 
341 /*
342  * Each generation is divided into multiple tiers. A page accessed N times
343  * through file descriptors is in tier order_base_2(N). A page in the first tier
344  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
345  * tables or read ahead. A page in any other tier (N>1) is marked by
346  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
347  * supported without using additional bits in folio->flags.
348  *
349  * In contrast to moving across generations which requires the LRU lock, moving
350  * across tiers only involves atomic operations on folio->flags and therefore
351  * has a negligible cost in the buffered access path. In the eviction path,
352  * comparisons of refaulted/(evicted+protected) from the first tier and the
353  * rest infer whether pages accessed multiple times through file descriptors
354  * are statistically hot and thus worth protecting.
355  *
356  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
357  * number of categories of the active/inactive LRU when keeping track of
358  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
359  * folio->flags.
360  */
361 #define MAX_NR_TIERS		4U
362 
363 #ifndef __GENERATING_BOUNDS_H
364 
365 struct lruvec;
366 struct page_vma_mapped_walk;
367 
368 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
369 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
370 
371 /* see the comment on MEMCG_NR_GENS */
372 enum {
373 	MEMCG_LRU_NOP,
374 	MEMCG_LRU_HEAD,
375 	MEMCG_LRU_TAIL,
376 	MEMCG_LRU_OLD,
377 	MEMCG_LRU_YOUNG,
378 };
379 
380 #ifdef CONFIG_LRU_GEN
381 
382 enum {
383 	LRU_GEN_ANON,
384 	LRU_GEN_FILE,
385 };
386 
387 enum {
388 	LRU_GEN_CORE,
389 	LRU_GEN_MM_WALK,
390 	LRU_GEN_NONLEAF_YOUNG,
391 	NR_LRU_GEN_CAPS
392 };
393 
394 #define MIN_LRU_BATCH		BITS_PER_LONG
395 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
396 
397 /* whether to keep historical stats from evicted generations */
398 #ifdef CONFIG_LRU_GEN_STATS
399 #define NR_HIST_GENS		MAX_NR_GENS
400 #else
401 #define NR_HIST_GENS		1U
402 #endif
403 
404 /*
405  * The youngest generation number is stored in max_seq for both anon and file
406  * types as they are aged on an equal footing. The oldest generation numbers are
407  * stored in min_seq[] separately for anon and file types as clean file pages
408  * can be evicted regardless of swap constraints.
409  *
410  * Normally anon and file min_seq are in sync. But if swapping is constrained,
411  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
412  * min_seq behind.
413  *
414  * The number of pages in each generation is eventually consistent and therefore
415  * can be transiently negative when reset_batch_size() is pending.
416  */
417 struct lru_gen_folio {
418 	/* the aging increments the youngest generation number */
419 	unsigned long max_seq;
420 	/* the eviction increments the oldest generation numbers */
421 	unsigned long min_seq[ANON_AND_FILE];
422 	/* the birth time of each generation in jiffies */
423 	unsigned long timestamps[MAX_NR_GENS];
424 	/* the multi-gen LRU lists, lazily sorted on eviction */
425 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
426 	/* the multi-gen LRU sizes, eventually consistent */
427 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
428 	/* the exponential moving average of refaulted */
429 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
430 	/* the exponential moving average of evicted+protected */
431 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
432 	/* the first tier doesn't need protection, hence the minus one */
433 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
434 	/* can be modified without holding the LRU lock */
435 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
436 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
437 	/* whether the multi-gen LRU is enabled */
438 	bool enabled;
439 #ifdef CONFIG_MEMCG
440 	/* the memcg generation this lru_gen_folio belongs to */
441 	u8 gen;
442 	/* the list segment this lru_gen_folio belongs to */
443 	u8 seg;
444 	/* per-node lru_gen_folio list for global reclaim */
445 	struct hlist_nulls_node list;
446 #endif
447 };
448 
449 enum {
450 	MM_LEAF_TOTAL,		/* total leaf entries */
451 	MM_LEAF_OLD,		/* old leaf entries */
452 	MM_LEAF_YOUNG,		/* young leaf entries */
453 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
454 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
455 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
456 	NR_MM_STATS
457 };
458 
459 /* double-buffering Bloom filters */
460 #define NR_BLOOM_FILTERS	2
461 
462 struct lru_gen_mm_state {
463 	/* set to max_seq after each iteration */
464 	unsigned long seq;
465 	/* where the current iteration continues (inclusive) */
466 	struct list_head *head;
467 	/* where the last iteration ended (exclusive) */
468 	struct list_head *tail;
469 	/* to wait for the last page table walker to finish */
470 	struct wait_queue_head wait;
471 	/* Bloom filters flip after each iteration */
472 	unsigned long *filters[NR_BLOOM_FILTERS];
473 	/* the mm stats for debugging */
474 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
475 	/* the number of concurrent page table walkers */
476 	int nr_walkers;
477 };
478 
479 struct lru_gen_mm_walk {
480 	/* the lruvec under reclaim */
481 	struct lruvec *lruvec;
482 	/* unstable max_seq from lru_gen_folio */
483 	unsigned long max_seq;
484 	/* the next address within an mm to scan */
485 	unsigned long next_addr;
486 	/* to batch promoted pages */
487 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
488 	/* to batch the mm stats */
489 	int mm_stats[NR_MM_STATS];
490 	/* total batched items */
491 	int batched;
492 	bool can_swap;
493 	bool force_scan;
494 };
495 
496 void lru_gen_init_lruvec(struct lruvec *lruvec);
497 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
498 
499 #ifdef CONFIG_MEMCG
500 
501 /*
502  * For each node, memcgs are divided into two generations: the old and the
503  * young. For each generation, memcgs are randomly sharded into multiple bins
504  * to improve scalability. For each bin, the hlist_nulls is virtually divided
505  * into three segments: the head, the tail and the default.
506  *
507  * An onlining memcg is added to the tail of a random bin in the old generation.
508  * The eviction starts at the head of a random bin in the old generation. The
509  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
510  * the old generation, is incremented when all its bins become empty.
511  *
512  * There are four operations:
513  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
514  *    current generation (old or young) and updates its "seg" to "head";
515  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
516  *    current generation (old or young) and updates its "seg" to "tail";
517  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
518  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
519  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
520  *    young generation, updates its "gen" to "young" and resets its "seg" to
521  *    "default".
522  *
523  * The events that trigger the above operations are:
524  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
525  * 2. The first attempt to reclaim an memcg below low, which triggers
526  *    MEMCG_LRU_TAIL;
527  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
528  *    which triggers MEMCG_LRU_TAIL;
529  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
530  *    which triggers MEMCG_LRU_YOUNG;
531  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
532  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
533  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
534  *
535  * Note that memcg LRU only applies to global reclaim, and the round-robin
536  * incrementing of their max_seq counters ensures the eventual fairness to all
537  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
538  */
539 #define MEMCG_NR_GENS	2
540 #define MEMCG_NR_BINS	8
541 
542 struct lru_gen_memcg {
543 	/* the per-node memcg generation counter */
544 	unsigned long seq;
545 	/* each memcg has one lru_gen_folio per node */
546 	unsigned long nr_memcgs[MEMCG_NR_GENS];
547 	/* per-node lru_gen_folio list for global reclaim */
548 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
549 	/* protects the above */
550 	spinlock_t lock;
551 };
552 
553 void lru_gen_init_pgdat(struct pglist_data *pgdat);
554 
555 void lru_gen_init_memcg(struct mem_cgroup *memcg);
556 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
557 void lru_gen_online_memcg(struct mem_cgroup *memcg);
558 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
559 void lru_gen_release_memcg(struct mem_cgroup *memcg);
560 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op);
561 
562 #else /* !CONFIG_MEMCG */
563 
564 #define MEMCG_NR_GENS	1
565 
566 struct lru_gen_memcg {
567 };
568 
569 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
570 {
571 }
572 
573 #endif /* CONFIG_MEMCG */
574 
575 #else /* !CONFIG_LRU_GEN */
576 
577 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
578 {
579 }
580 
581 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
582 {
583 }
584 
585 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
586 {
587 }
588 
589 #ifdef CONFIG_MEMCG
590 
591 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
592 {
593 }
594 
595 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
596 {
597 }
598 
599 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
600 {
601 }
602 
603 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
604 {
605 }
606 
607 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
608 {
609 }
610 
611 static inline void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
612 {
613 }
614 
615 #endif /* CONFIG_MEMCG */
616 
617 #endif /* CONFIG_LRU_GEN */
618 
619 struct lruvec {
620 	struct list_head		lists[NR_LRU_LISTS];
621 	/* per lruvec lru_lock for memcg */
622 	spinlock_t			lru_lock;
623 	/*
624 	 * These track the cost of reclaiming one LRU - file or anon -
625 	 * over the other. As the observed cost of reclaiming one LRU
626 	 * increases, the reclaim scan balance tips toward the other.
627 	 */
628 	unsigned long			anon_cost;
629 	unsigned long			file_cost;
630 	/* Non-resident age, driven by LRU movement */
631 	atomic_long_t			nonresident_age;
632 	/* Refaults at the time of last reclaim cycle */
633 	unsigned long			refaults[ANON_AND_FILE];
634 	/* Various lruvec state flags (enum lruvec_flags) */
635 	unsigned long			flags;
636 #ifdef CONFIG_LRU_GEN
637 	/* evictable pages divided into generations */
638 	struct lru_gen_folio		lrugen;
639 	/* to concurrently iterate lru_gen_mm_list */
640 	struct lru_gen_mm_state		mm_state;
641 #endif
642 #ifdef CONFIG_MEMCG
643 	struct pglist_data *pgdat;
644 #endif
645 };
646 
647 /* Isolate unmapped pages */
648 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
649 /* Isolate for asynchronous migration */
650 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
651 /* Isolate unevictable pages */
652 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
653 
654 /* LRU Isolation modes. */
655 typedef unsigned __bitwise isolate_mode_t;
656 
657 enum zone_watermarks {
658 	WMARK_MIN,
659 	WMARK_LOW,
660 	WMARK_HIGH,
661 	WMARK_PROMO,
662 	NR_WMARK
663 };
664 
665 /*
666  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
667  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
668  * it should not contribute to serious fragmentation causing THP allocation
669  * failures.
670  */
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 #define NR_PCP_THP 1
673 #else
674 #define NR_PCP_THP 0
675 #endif
676 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
677 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
678 
679 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
680 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
681 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
682 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
683 
684 /* Fields and list protected by pagesets local_lock in page_alloc.c */
685 struct per_cpu_pages {
686 	spinlock_t lock;	/* Protects lists field */
687 	int count;		/* number of pages in the list */
688 	int high;		/* high watermark, emptying needed */
689 	int batch;		/* chunk size for buddy add/remove */
690 	short free_factor;	/* batch scaling factor during free */
691 #ifdef CONFIG_NUMA
692 	short expire;		/* When 0, remote pagesets are drained */
693 #endif
694 
695 	/* Lists of pages, one per migrate type stored on the pcp-lists */
696 	struct list_head lists[NR_PCP_LISTS];
697 } ____cacheline_aligned_in_smp;
698 
699 struct per_cpu_zonestat {
700 #ifdef CONFIG_SMP
701 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
702 	s8 stat_threshold;
703 #endif
704 #ifdef CONFIG_NUMA
705 	/*
706 	 * Low priority inaccurate counters that are only folded
707 	 * on demand. Use a large type to avoid the overhead of
708 	 * folding during refresh_cpu_vm_stats.
709 	 */
710 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
711 #endif
712 };
713 
714 struct per_cpu_nodestat {
715 	s8 stat_threshold;
716 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
717 };
718 
719 #endif /* !__GENERATING_BOUNDS.H */
720 
721 enum zone_type {
722 	/*
723 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
724 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
725 	 * On architectures where this area covers the whole 32 bit address
726 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
727 	 * DMA addressing constraints. This distinction is important as a 32bit
728 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
729 	 * platforms may need both zones as they support peripherals with
730 	 * different DMA addressing limitations.
731 	 */
732 #ifdef CONFIG_ZONE_DMA
733 	ZONE_DMA,
734 #endif
735 #ifdef CONFIG_ZONE_DMA32
736 	ZONE_DMA32,
737 #endif
738 	/*
739 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
740 	 * performed on pages in ZONE_NORMAL if the DMA devices support
741 	 * transfers to all addressable memory.
742 	 */
743 	ZONE_NORMAL,
744 #ifdef CONFIG_HIGHMEM
745 	/*
746 	 * A memory area that is only addressable by the kernel through
747 	 * mapping portions into its own address space. This is for example
748 	 * used by i386 to allow the kernel to address the memory beyond
749 	 * 900MB. The kernel will set up special mappings (page
750 	 * table entries on i386) for each page that the kernel needs to
751 	 * access.
752 	 */
753 	ZONE_HIGHMEM,
754 #endif
755 	/*
756 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
757 	 * movable pages with few exceptional cases described below. Main use
758 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
759 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
760 	 * to increase the number of THP/huge pages. Notable special cases are:
761 	 *
762 	 * 1. Pinned pages: (long-term) pinning of movable pages might
763 	 *    essentially turn such pages unmovable. Therefore, we do not allow
764 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
765 	 *    faulted, they come from the right zone right away. However, it is
766 	 *    still possible that address space already has pages in
767 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
768 	 *    touches that memory before pinning). In such case we migrate them
769 	 *    to a different zone. When migration fails - pinning fails.
770 	 * 2. memblock allocations: kernelcore/movablecore setups might create
771 	 *    situations where ZONE_MOVABLE contains unmovable allocations
772 	 *    after boot. Memory offlining and allocations fail early.
773 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
774 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
775 	 *    for example, if we have sections that are only partially
776 	 *    populated. Memory offlining and allocations fail early.
777 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
778 	 *    memory offlining, such pages cannot be allocated.
779 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
780 	 *    hotplugged memory blocks might only partially be managed by the
781 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
782 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
783 	 *    some cases (virtio-mem), such pages can be skipped during
784 	 *    memory offlining, however, cannot be moved/allocated. These
785 	 *    techniques might use alloc_contig_range() to hide previously
786 	 *    exposed pages from the buddy again (e.g., to implement some sort
787 	 *    of memory unplug in virtio-mem).
788 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
789 	 *    situations where ZERO_PAGE(0) which is allocated differently
790 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
791 	 *    cannot be migrated.
792 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
793 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
794 	 *    such zone. Such pages cannot be really moved around as they are
795 	 *    self-stored in the range, but they are treated as movable when
796 	 *    the range they describe is about to be offlined.
797 	 *
798 	 * In general, no unmovable allocations that degrade memory offlining
799 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
800 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
801 	 * if has_unmovable_pages() states that there are no unmovable pages,
802 	 * there can be false negatives).
803 	 */
804 	ZONE_MOVABLE,
805 #ifdef CONFIG_ZONE_DEVICE
806 	ZONE_DEVICE,
807 #endif
808 	__MAX_NR_ZONES
809 
810 };
811 
812 #ifndef __GENERATING_BOUNDS_H
813 
814 #define ASYNC_AND_SYNC 2
815 
816 struct zone {
817 	/* Read-mostly fields */
818 
819 	/* zone watermarks, access with *_wmark_pages(zone) macros */
820 	unsigned long _watermark[NR_WMARK];
821 	unsigned long watermark_boost;
822 
823 	unsigned long nr_reserved_highatomic;
824 
825 	/*
826 	 * We don't know if the memory that we're going to allocate will be
827 	 * freeable or/and it will be released eventually, so to avoid totally
828 	 * wasting several GB of ram we must reserve some of the lower zone
829 	 * memory (otherwise we risk to run OOM on the lower zones despite
830 	 * there being tons of freeable ram on the higher zones).  This array is
831 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
832 	 * changes.
833 	 */
834 	long lowmem_reserve[MAX_NR_ZONES];
835 
836 #ifdef CONFIG_NUMA
837 	int node;
838 #endif
839 	struct pglist_data	*zone_pgdat;
840 	struct per_cpu_pages	__percpu *per_cpu_pageset;
841 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
842 	/*
843 	 * the high and batch values are copied to individual pagesets for
844 	 * faster access
845 	 */
846 	int pageset_high;
847 	int pageset_batch;
848 
849 #ifndef CONFIG_SPARSEMEM
850 	/*
851 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
852 	 * In SPARSEMEM, this map is stored in struct mem_section
853 	 */
854 	unsigned long		*pageblock_flags;
855 #endif /* CONFIG_SPARSEMEM */
856 
857 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
858 	unsigned long		zone_start_pfn;
859 
860 	/*
861 	 * spanned_pages is the total pages spanned by the zone, including
862 	 * holes, which is calculated as:
863 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
864 	 *
865 	 * present_pages is physical pages existing within the zone, which
866 	 * is calculated as:
867 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
868 	 *
869 	 * present_early_pages is present pages existing within the zone
870 	 * located on memory available since early boot, excluding hotplugged
871 	 * memory.
872 	 *
873 	 * managed_pages is present pages managed by the buddy system, which
874 	 * is calculated as (reserved_pages includes pages allocated by the
875 	 * bootmem allocator):
876 	 *	managed_pages = present_pages - reserved_pages;
877 	 *
878 	 * cma pages is present pages that are assigned for CMA use
879 	 * (MIGRATE_CMA).
880 	 *
881 	 * So present_pages may be used by memory hotplug or memory power
882 	 * management logic to figure out unmanaged pages by checking
883 	 * (present_pages - managed_pages). And managed_pages should be used
884 	 * by page allocator and vm scanner to calculate all kinds of watermarks
885 	 * and thresholds.
886 	 *
887 	 * Locking rules:
888 	 *
889 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
890 	 * It is a seqlock because it has to be read outside of zone->lock,
891 	 * and it is done in the main allocator path.  But, it is written
892 	 * quite infrequently.
893 	 *
894 	 * The span_seq lock is declared along with zone->lock because it is
895 	 * frequently read in proximity to zone->lock.  It's good to
896 	 * give them a chance of being in the same cacheline.
897 	 *
898 	 * Write access to present_pages at runtime should be protected by
899 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
900 	 * present_pages should use get_online_mems() to get a stable value.
901 	 */
902 	atomic_long_t		managed_pages;
903 	unsigned long		spanned_pages;
904 	unsigned long		present_pages;
905 #if defined(CONFIG_MEMORY_HOTPLUG)
906 	unsigned long		present_early_pages;
907 #endif
908 #ifdef CONFIG_CMA
909 	unsigned long		cma_pages;
910 #endif
911 
912 	const char		*name;
913 
914 #ifdef CONFIG_MEMORY_ISOLATION
915 	/*
916 	 * Number of isolated pageblock. It is used to solve incorrect
917 	 * freepage counting problem due to racy retrieving migratetype
918 	 * of pageblock. Protected by zone->lock.
919 	 */
920 	unsigned long		nr_isolate_pageblock;
921 #endif
922 
923 #ifdef CONFIG_MEMORY_HOTPLUG
924 	/* see spanned/present_pages for more description */
925 	seqlock_t		span_seqlock;
926 #endif
927 
928 	int initialized;
929 
930 	/* Write-intensive fields used from the page allocator */
931 	CACHELINE_PADDING(_pad1_);
932 
933 	/* free areas of different sizes */
934 	struct free_area	free_area[MAX_ORDER];
935 
936 	/* zone flags, see below */
937 	unsigned long		flags;
938 
939 	/* Primarily protects free_area */
940 	spinlock_t		lock;
941 
942 	/* Write-intensive fields used by compaction and vmstats. */
943 	CACHELINE_PADDING(_pad2_);
944 
945 	/*
946 	 * When free pages are below this point, additional steps are taken
947 	 * when reading the number of free pages to avoid per-cpu counter
948 	 * drift allowing watermarks to be breached
949 	 */
950 	unsigned long percpu_drift_mark;
951 
952 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
953 	/* pfn where compaction free scanner should start */
954 	unsigned long		compact_cached_free_pfn;
955 	/* pfn where compaction migration scanner should start */
956 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
957 	unsigned long		compact_init_migrate_pfn;
958 	unsigned long		compact_init_free_pfn;
959 #endif
960 
961 #ifdef CONFIG_COMPACTION
962 	/*
963 	 * On compaction failure, 1<<compact_defer_shift compactions
964 	 * are skipped before trying again. The number attempted since
965 	 * last failure is tracked with compact_considered.
966 	 * compact_order_failed is the minimum compaction failed order.
967 	 */
968 	unsigned int		compact_considered;
969 	unsigned int		compact_defer_shift;
970 	int			compact_order_failed;
971 #endif
972 
973 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
974 	/* Set to true when the PG_migrate_skip bits should be cleared */
975 	bool			compact_blockskip_flush;
976 #endif
977 
978 	bool			contiguous;
979 
980 	CACHELINE_PADDING(_pad3_);
981 	/* Zone statistics */
982 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
983 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
984 } ____cacheline_internodealigned_in_smp;
985 
986 enum pgdat_flags {
987 	PGDAT_DIRTY,			/* reclaim scanning has recently found
988 					 * many dirty file pages at the tail
989 					 * of the LRU.
990 					 */
991 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
992 					 * many pages under writeback
993 					 */
994 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
995 };
996 
997 enum zone_flags {
998 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
999 					 * Cleared when kswapd is woken.
1000 					 */
1001 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1002 };
1003 
1004 static inline unsigned long zone_managed_pages(struct zone *zone)
1005 {
1006 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1007 }
1008 
1009 static inline unsigned long zone_cma_pages(struct zone *zone)
1010 {
1011 #ifdef CONFIG_CMA
1012 	return zone->cma_pages;
1013 #else
1014 	return 0;
1015 #endif
1016 }
1017 
1018 static inline unsigned long zone_end_pfn(const struct zone *zone)
1019 {
1020 	return zone->zone_start_pfn + zone->spanned_pages;
1021 }
1022 
1023 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1024 {
1025 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1026 }
1027 
1028 static inline bool zone_is_initialized(struct zone *zone)
1029 {
1030 	return zone->initialized;
1031 }
1032 
1033 static inline bool zone_is_empty(struct zone *zone)
1034 {
1035 	return zone->spanned_pages == 0;
1036 }
1037 
1038 #ifndef BUILD_VDSO32_64
1039 /*
1040  * The zone field is never updated after free_area_init_core()
1041  * sets it, so none of the operations on it need to be atomic.
1042  */
1043 
1044 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1045 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1046 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1047 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1048 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1049 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1050 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1051 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1052 
1053 /*
1054  * Define the bit shifts to access each section.  For non-existent
1055  * sections we define the shift as 0; that plus a 0 mask ensures
1056  * the compiler will optimise away reference to them.
1057  */
1058 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1059 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1060 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1061 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1062 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1063 
1064 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1065 #ifdef NODE_NOT_IN_PAGE_FLAGS
1066 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1067 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1068 						SECTIONS_PGOFF : ZONES_PGOFF)
1069 #else
1070 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1071 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1072 						NODES_PGOFF : ZONES_PGOFF)
1073 #endif
1074 
1075 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1076 
1077 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1078 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1079 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1080 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1081 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1082 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1083 
1084 static inline enum zone_type page_zonenum(const struct page *page)
1085 {
1086 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1087 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1088 }
1089 
1090 static inline enum zone_type folio_zonenum(const struct folio *folio)
1091 {
1092 	return page_zonenum(&folio->page);
1093 }
1094 
1095 #ifdef CONFIG_ZONE_DEVICE
1096 static inline bool is_zone_device_page(const struct page *page)
1097 {
1098 	return page_zonenum(page) == ZONE_DEVICE;
1099 }
1100 
1101 /*
1102  * Consecutive zone device pages should not be merged into the same sgl
1103  * or bvec segment with other types of pages or if they belong to different
1104  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1105  * without scanning the entire segment. This helper returns true either if
1106  * both pages are not zone device pages or both pages are zone device pages
1107  * with the same pgmap.
1108  */
1109 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1110 						     const struct page *b)
1111 {
1112 	if (is_zone_device_page(a) != is_zone_device_page(b))
1113 		return false;
1114 	if (!is_zone_device_page(a))
1115 		return true;
1116 	return a->pgmap == b->pgmap;
1117 }
1118 
1119 extern void memmap_init_zone_device(struct zone *, unsigned long,
1120 				    unsigned long, struct dev_pagemap *);
1121 #else
1122 static inline bool is_zone_device_page(const struct page *page)
1123 {
1124 	return false;
1125 }
1126 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1127 						     const struct page *b)
1128 {
1129 	return true;
1130 }
1131 #endif
1132 
1133 static inline bool folio_is_zone_device(const struct folio *folio)
1134 {
1135 	return is_zone_device_page(&folio->page);
1136 }
1137 
1138 static inline bool is_zone_movable_page(const struct page *page)
1139 {
1140 	return page_zonenum(page) == ZONE_MOVABLE;
1141 }
1142 #endif
1143 
1144 /*
1145  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1146  * intersection with the given zone
1147  */
1148 static inline bool zone_intersects(struct zone *zone,
1149 		unsigned long start_pfn, unsigned long nr_pages)
1150 {
1151 	if (zone_is_empty(zone))
1152 		return false;
1153 	if (start_pfn >= zone_end_pfn(zone) ||
1154 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1155 		return false;
1156 
1157 	return true;
1158 }
1159 
1160 /*
1161  * The "priority" of VM scanning is how much of the queues we will scan in one
1162  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1163  * queues ("queue_length >> 12") during an aging round.
1164  */
1165 #define DEF_PRIORITY 12
1166 
1167 /* Maximum number of zones on a zonelist */
1168 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1169 
1170 enum {
1171 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1172 #ifdef CONFIG_NUMA
1173 	/*
1174 	 * The NUMA zonelists are doubled because we need zonelists that
1175 	 * restrict the allocations to a single node for __GFP_THISNODE.
1176 	 */
1177 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1178 #endif
1179 	MAX_ZONELISTS
1180 };
1181 
1182 /*
1183  * This struct contains information about a zone in a zonelist. It is stored
1184  * here to avoid dereferences into large structures and lookups of tables
1185  */
1186 struct zoneref {
1187 	struct zone *zone;	/* Pointer to actual zone */
1188 	int zone_idx;		/* zone_idx(zoneref->zone) */
1189 };
1190 
1191 /*
1192  * One allocation request operates on a zonelist. A zonelist
1193  * is a list of zones, the first one is the 'goal' of the
1194  * allocation, the other zones are fallback zones, in decreasing
1195  * priority.
1196  *
1197  * To speed the reading of the zonelist, the zonerefs contain the zone index
1198  * of the entry being read. Helper functions to access information given
1199  * a struct zoneref are
1200  *
1201  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1202  * zonelist_zone_idx()	- Return the index of the zone for an entry
1203  * zonelist_node_idx()	- Return the index of the node for an entry
1204  */
1205 struct zonelist {
1206 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1207 };
1208 
1209 /*
1210  * The array of struct pages for flatmem.
1211  * It must be declared for SPARSEMEM as well because there are configurations
1212  * that rely on that.
1213  */
1214 extern struct page *mem_map;
1215 
1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1217 struct deferred_split {
1218 	spinlock_t split_queue_lock;
1219 	struct list_head split_queue;
1220 	unsigned long split_queue_len;
1221 };
1222 #endif
1223 
1224 /*
1225  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1226  * it's memory layout. On UMA machines there is a single pglist_data which
1227  * describes the whole memory.
1228  *
1229  * Memory statistics and page replacement data structures are maintained on a
1230  * per-zone basis.
1231  */
1232 typedef struct pglist_data {
1233 	/*
1234 	 * node_zones contains just the zones for THIS node. Not all of the
1235 	 * zones may be populated, but it is the full list. It is referenced by
1236 	 * this node's node_zonelists as well as other node's node_zonelists.
1237 	 */
1238 	struct zone node_zones[MAX_NR_ZONES];
1239 
1240 	/*
1241 	 * node_zonelists contains references to all zones in all nodes.
1242 	 * Generally the first zones will be references to this node's
1243 	 * node_zones.
1244 	 */
1245 	struct zonelist node_zonelists[MAX_ZONELISTS];
1246 
1247 	int nr_zones; /* number of populated zones in this node */
1248 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1249 	struct page *node_mem_map;
1250 #ifdef CONFIG_PAGE_EXTENSION
1251 	struct page_ext *node_page_ext;
1252 #endif
1253 #endif
1254 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1255 	/*
1256 	 * Must be held any time you expect node_start_pfn,
1257 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1258 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1259 	 * init.
1260 	 *
1261 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1262 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1263 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1264 	 *
1265 	 * Nests above zone->lock and zone->span_seqlock
1266 	 */
1267 	spinlock_t node_size_lock;
1268 #endif
1269 	unsigned long node_start_pfn;
1270 	unsigned long node_present_pages; /* total number of physical pages */
1271 	unsigned long node_spanned_pages; /* total size of physical page
1272 					     range, including holes */
1273 	int node_id;
1274 	wait_queue_head_t kswapd_wait;
1275 	wait_queue_head_t pfmemalloc_wait;
1276 
1277 	/* workqueues for throttling reclaim for different reasons. */
1278 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1279 
1280 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1281 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1282 					 * when throttling started. */
1283 #ifdef CONFIG_MEMORY_HOTPLUG
1284 	struct mutex kswapd_lock;
1285 #endif
1286 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1287 	int kswapd_order;
1288 	enum zone_type kswapd_highest_zoneidx;
1289 
1290 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1291 
1292 #ifdef CONFIG_COMPACTION
1293 	int kcompactd_max_order;
1294 	enum zone_type kcompactd_highest_zoneidx;
1295 	wait_queue_head_t kcompactd_wait;
1296 	struct task_struct *kcompactd;
1297 	bool proactive_compact_trigger;
1298 #endif
1299 	/*
1300 	 * This is a per-node reserve of pages that are not available
1301 	 * to userspace allocations.
1302 	 */
1303 	unsigned long		totalreserve_pages;
1304 
1305 #ifdef CONFIG_NUMA
1306 	/*
1307 	 * node reclaim becomes active if more unmapped pages exist.
1308 	 */
1309 	unsigned long		min_unmapped_pages;
1310 	unsigned long		min_slab_pages;
1311 #endif /* CONFIG_NUMA */
1312 
1313 	/* Write-intensive fields used by page reclaim */
1314 	CACHELINE_PADDING(_pad1_);
1315 
1316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1317 	/*
1318 	 * If memory initialisation on large machines is deferred then this
1319 	 * is the first PFN that needs to be initialised.
1320 	 */
1321 	unsigned long first_deferred_pfn;
1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1323 
1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 	struct deferred_split deferred_split_queue;
1326 #endif
1327 
1328 #ifdef CONFIG_NUMA_BALANCING
1329 	/* start time in ms of current promote rate limit period */
1330 	unsigned int nbp_rl_start;
1331 	/* number of promote candidate pages at start time of current rate limit period */
1332 	unsigned long nbp_rl_nr_cand;
1333 	/* promote threshold in ms */
1334 	unsigned int nbp_threshold;
1335 	/* start time in ms of current promote threshold adjustment period */
1336 	unsigned int nbp_th_start;
1337 	/*
1338 	 * number of promote candidate pages at start time of current promote
1339 	 * threshold adjustment period
1340 	 */
1341 	unsigned long nbp_th_nr_cand;
1342 #endif
1343 	/* Fields commonly accessed by the page reclaim scanner */
1344 
1345 	/*
1346 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1347 	 *
1348 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1349 	 */
1350 	struct lruvec		__lruvec;
1351 
1352 	unsigned long		flags;
1353 
1354 #ifdef CONFIG_LRU_GEN
1355 	/* kswap mm walk data */
1356 	struct lru_gen_mm_walk	mm_walk;
1357 	/* lru_gen_folio list */
1358 	struct lru_gen_memcg memcg_lru;
1359 #endif
1360 
1361 	CACHELINE_PADDING(_pad2_);
1362 
1363 	/* Per-node vmstats */
1364 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1365 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1366 #ifdef CONFIG_NUMA
1367 	struct memory_tier __rcu *memtier;
1368 #endif
1369 } pg_data_t;
1370 
1371 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1372 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1373 
1374 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1375 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1376 
1377 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1378 {
1379 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1380 }
1381 
1382 #include <linux/memory_hotplug.h>
1383 
1384 void build_all_zonelists(pg_data_t *pgdat);
1385 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1386 		   enum zone_type highest_zoneidx);
1387 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1388 			 int highest_zoneidx, unsigned int alloc_flags,
1389 			 long free_pages);
1390 bool zone_watermark_ok(struct zone *z, unsigned int order,
1391 		unsigned long mark, int highest_zoneidx,
1392 		unsigned int alloc_flags);
1393 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1394 		unsigned long mark, int highest_zoneidx);
1395 /*
1396  * Memory initialization context, use to differentiate memory added by
1397  * the platform statically or via memory hotplug interface.
1398  */
1399 enum meminit_context {
1400 	MEMINIT_EARLY,
1401 	MEMINIT_HOTPLUG,
1402 };
1403 
1404 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1405 				     unsigned long size);
1406 
1407 extern void lruvec_init(struct lruvec *lruvec);
1408 
1409 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1410 {
1411 #ifdef CONFIG_MEMCG
1412 	return lruvec->pgdat;
1413 #else
1414 	return container_of(lruvec, struct pglist_data, __lruvec);
1415 #endif
1416 }
1417 
1418 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1419 int local_memory_node(int node_id);
1420 #else
1421 static inline int local_memory_node(int node_id) { return node_id; };
1422 #endif
1423 
1424 /*
1425  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1426  */
1427 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1428 
1429 #ifdef CONFIG_ZONE_DEVICE
1430 static inline bool zone_is_zone_device(struct zone *zone)
1431 {
1432 	return zone_idx(zone) == ZONE_DEVICE;
1433 }
1434 #else
1435 static inline bool zone_is_zone_device(struct zone *zone)
1436 {
1437 	return false;
1438 }
1439 #endif
1440 
1441 /*
1442  * Returns true if a zone has pages managed by the buddy allocator.
1443  * All the reclaim decisions have to use this function rather than
1444  * populated_zone(). If the whole zone is reserved then we can easily
1445  * end up with populated_zone() && !managed_zone().
1446  */
1447 static inline bool managed_zone(struct zone *zone)
1448 {
1449 	return zone_managed_pages(zone);
1450 }
1451 
1452 /* Returns true if a zone has memory */
1453 static inline bool populated_zone(struct zone *zone)
1454 {
1455 	return zone->present_pages;
1456 }
1457 
1458 #ifdef CONFIG_NUMA
1459 static inline int zone_to_nid(struct zone *zone)
1460 {
1461 	return zone->node;
1462 }
1463 
1464 static inline void zone_set_nid(struct zone *zone, int nid)
1465 {
1466 	zone->node = nid;
1467 }
1468 #else
1469 static inline int zone_to_nid(struct zone *zone)
1470 {
1471 	return 0;
1472 }
1473 
1474 static inline void zone_set_nid(struct zone *zone, int nid) {}
1475 #endif
1476 
1477 extern int movable_zone;
1478 
1479 static inline int is_highmem_idx(enum zone_type idx)
1480 {
1481 #ifdef CONFIG_HIGHMEM
1482 	return (idx == ZONE_HIGHMEM ||
1483 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1484 #else
1485 	return 0;
1486 #endif
1487 }
1488 
1489 /**
1490  * is_highmem - helper function to quickly check if a struct zone is a
1491  *              highmem zone or not.  This is an attempt to keep references
1492  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1493  * @zone: pointer to struct zone variable
1494  * Return: 1 for a highmem zone, 0 otherwise
1495  */
1496 static inline int is_highmem(struct zone *zone)
1497 {
1498 	return is_highmem_idx(zone_idx(zone));
1499 }
1500 
1501 #ifdef CONFIG_ZONE_DMA
1502 bool has_managed_dma(void);
1503 #else
1504 static inline bool has_managed_dma(void)
1505 {
1506 	return false;
1507 }
1508 #endif
1509 
1510 /* These two functions are used to setup the per zone pages min values */
1511 struct ctl_table;
1512 
1513 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1514 		loff_t *);
1515 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1516 		size_t *, loff_t *);
1517 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1518 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1519 		size_t *, loff_t *);
1520 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1521 		void *, size_t *, loff_t *);
1522 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1523 		void *, size_t *, loff_t *);
1524 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1525 		void *, size_t *, loff_t *);
1526 int numa_zonelist_order_handler(struct ctl_table *, int,
1527 		void *, size_t *, loff_t *);
1528 extern int percpu_pagelist_high_fraction;
1529 extern char numa_zonelist_order[];
1530 #define NUMA_ZONELIST_ORDER_LEN	16
1531 
1532 #ifndef CONFIG_NUMA
1533 
1534 extern struct pglist_data contig_page_data;
1535 static inline struct pglist_data *NODE_DATA(int nid)
1536 {
1537 	return &contig_page_data;
1538 }
1539 
1540 #else /* CONFIG_NUMA */
1541 
1542 #include <asm/mmzone.h>
1543 
1544 #endif /* !CONFIG_NUMA */
1545 
1546 extern struct pglist_data *first_online_pgdat(void);
1547 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1548 extern struct zone *next_zone(struct zone *zone);
1549 
1550 /**
1551  * for_each_online_pgdat - helper macro to iterate over all online nodes
1552  * @pgdat: pointer to a pg_data_t variable
1553  */
1554 #define for_each_online_pgdat(pgdat)			\
1555 	for (pgdat = first_online_pgdat();		\
1556 	     pgdat;					\
1557 	     pgdat = next_online_pgdat(pgdat))
1558 /**
1559  * for_each_zone - helper macro to iterate over all memory zones
1560  * @zone: pointer to struct zone variable
1561  *
1562  * The user only needs to declare the zone variable, for_each_zone
1563  * fills it in.
1564  */
1565 #define for_each_zone(zone)			        \
1566 	for (zone = (first_online_pgdat())->node_zones; \
1567 	     zone;					\
1568 	     zone = next_zone(zone))
1569 
1570 #define for_each_populated_zone(zone)		        \
1571 	for (zone = (first_online_pgdat())->node_zones; \
1572 	     zone;					\
1573 	     zone = next_zone(zone))			\
1574 		if (!populated_zone(zone))		\
1575 			; /* do nothing */		\
1576 		else
1577 
1578 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1579 {
1580 	return zoneref->zone;
1581 }
1582 
1583 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1584 {
1585 	return zoneref->zone_idx;
1586 }
1587 
1588 static inline int zonelist_node_idx(struct zoneref *zoneref)
1589 {
1590 	return zone_to_nid(zoneref->zone);
1591 }
1592 
1593 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1594 					enum zone_type highest_zoneidx,
1595 					nodemask_t *nodes);
1596 
1597 /**
1598  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1599  * @z: The cursor used as a starting point for the search
1600  * @highest_zoneidx: The zone index of the highest zone to return
1601  * @nodes: An optional nodemask to filter the zonelist with
1602  *
1603  * This function returns the next zone at or below a given zone index that is
1604  * within the allowed nodemask using a cursor as the starting point for the
1605  * search. The zoneref returned is a cursor that represents the current zone
1606  * being examined. It should be advanced by one before calling
1607  * next_zones_zonelist again.
1608  *
1609  * Return: the next zone at or below highest_zoneidx within the allowed
1610  * nodemask using a cursor within a zonelist as a starting point
1611  */
1612 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1613 					enum zone_type highest_zoneidx,
1614 					nodemask_t *nodes)
1615 {
1616 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1617 		return z;
1618 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1619 }
1620 
1621 /**
1622  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1623  * @zonelist: The zonelist to search for a suitable zone
1624  * @highest_zoneidx: The zone index of the highest zone to return
1625  * @nodes: An optional nodemask to filter the zonelist with
1626  *
1627  * This function returns the first zone at or below a given zone index that is
1628  * within the allowed nodemask. The zoneref returned is a cursor that can be
1629  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1630  * one before calling.
1631  *
1632  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1633  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1634  * update due to cpuset modification.
1635  *
1636  * Return: Zoneref pointer for the first suitable zone found
1637  */
1638 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1639 					enum zone_type highest_zoneidx,
1640 					nodemask_t *nodes)
1641 {
1642 	return next_zones_zonelist(zonelist->_zonerefs,
1643 							highest_zoneidx, nodes);
1644 }
1645 
1646 /**
1647  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1648  * @zone: The current zone in the iterator
1649  * @z: The current pointer within zonelist->_zonerefs being iterated
1650  * @zlist: The zonelist being iterated
1651  * @highidx: The zone index of the highest zone to return
1652  * @nodemask: Nodemask allowed by the allocator
1653  *
1654  * This iterator iterates though all zones at or below a given zone index and
1655  * within a given nodemask
1656  */
1657 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1658 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1659 		zone;							\
1660 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1661 			zone = zonelist_zone(z))
1662 
1663 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1664 	for (zone = z->zone;	\
1665 		zone;							\
1666 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1667 			zone = zonelist_zone(z))
1668 
1669 
1670 /**
1671  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1672  * @zone: The current zone in the iterator
1673  * @z: The current pointer within zonelist->zones being iterated
1674  * @zlist: The zonelist being iterated
1675  * @highidx: The zone index of the highest zone to return
1676  *
1677  * This iterator iterates though all zones at or below a given zone index.
1678  */
1679 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1680 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1681 
1682 /* Whether the 'nodes' are all movable nodes */
1683 static inline bool movable_only_nodes(nodemask_t *nodes)
1684 {
1685 	struct zonelist *zonelist;
1686 	struct zoneref *z;
1687 	int nid;
1688 
1689 	if (nodes_empty(*nodes))
1690 		return false;
1691 
1692 	/*
1693 	 * We can chose arbitrary node from the nodemask to get a
1694 	 * zonelist as they are interlinked. We just need to find
1695 	 * at least one zone that can satisfy kernel allocations.
1696 	 */
1697 	nid = first_node(*nodes);
1698 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1699 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1700 	return (!z->zone) ? true : false;
1701 }
1702 
1703 
1704 #ifdef CONFIG_SPARSEMEM
1705 #include <asm/sparsemem.h>
1706 #endif
1707 
1708 #ifdef CONFIG_FLATMEM
1709 #define pfn_to_nid(pfn)		(0)
1710 #endif
1711 
1712 #ifdef CONFIG_SPARSEMEM
1713 
1714 /*
1715  * PA_SECTION_SHIFT		physical address to/from section number
1716  * PFN_SECTION_SHIFT		pfn to/from section number
1717  */
1718 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1719 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1720 
1721 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1722 
1723 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1724 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1725 
1726 #define SECTION_BLOCKFLAGS_BITS \
1727 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1728 
1729 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1730 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1731 #endif
1732 
1733 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1734 {
1735 	return pfn >> PFN_SECTION_SHIFT;
1736 }
1737 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1738 {
1739 	return sec << PFN_SECTION_SHIFT;
1740 }
1741 
1742 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1743 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1744 
1745 #define SUBSECTION_SHIFT 21
1746 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1747 
1748 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1749 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1750 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1751 
1752 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1753 #error Subsection size exceeds section size
1754 #else
1755 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1756 #endif
1757 
1758 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1759 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1760 
1761 struct mem_section_usage {
1762 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1763 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1764 #endif
1765 	/* See declaration of similar field in struct zone */
1766 	unsigned long pageblock_flags[0];
1767 };
1768 
1769 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1770 
1771 struct page;
1772 struct page_ext;
1773 struct mem_section {
1774 	/*
1775 	 * This is, logically, a pointer to an array of struct
1776 	 * pages.  However, it is stored with some other magic.
1777 	 * (see sparse.c::sparse_init_one_section())
1778 	 *
1779 	 * Additionally during early boot we encode node id of
1780 	 * the location of the section here to guide allocation.
1781 	 * (see sparse.c::memory_present())
1782 	 *
1783 	 * Making it a UL at least makes someone do a cast
1784 	 * before using it wrong.
1785 	 */
1786 	unsigned long section_mem_map;
1787 
1788 	struct mem_section_usage *usage;
1789 #ifdef CONFIG_PAGE_EXTENSION
1790 	/*
1791 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1792 	 * section. (see page_ext.h about this.)
1793 	 */
1794 	struct page_ext *page_ext;
1795 	unsigned long pad;
1796 #endif
1797 	/*
1798 	 * WARNING: mem_section must be a power-of-2 in size for the
1799 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1800 	 */
1801 };
1802 
1803 #ifdef CONFIG_SPARSEMEM_EXTREME
1804 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1805 #else
1806 #define SECTIONS_PER_ROOT	1
1807 #endif
1808 
1809 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1810 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1811 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1812 
1813 #ifdef CONFIG_SPARSEMEM_EXTREME
1814 extern struct mem_section **mem_section;
1815 #else
1816 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1817 #endif
1818 
1819 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1820 {
1821 	return ms->usage->pageblock_flags;
1822 }
1823 
1824 static inline struct mem_section *__nr_to_section(unsigned long nr)
1825 {
1826 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1827 
1828 	if (unlikely(root >= NR_SECTION_ROOTS))
1829 		return NULL;
1830 
1831 #ifdef CONFIG_SPARSEMEM_EXTREME
1832 	if (!mem_section || !mem_section[root])
1833 		return NULL;
1834 #endif
1835 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1836 }
1837 extern size_t mem_section_usage_size(void);
1838 
1839 /*
1840  * We use the lower bits of the mem_map pointer to store
1841  * a little bit of information.  The pointer is calculated
1842  * as mem_map - section_nr_to_pfn(pnum).  The result is
1843  * aligned to the minimum alignment of the two values:
1844  *   1. All mem_map arrays are page-aligned.
1845  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1846  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1847  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1848  *      worst combination is powerpc with 256k pages,
1849  *      which results in PFN_SECTION_SHIFT equal 6.
1850  * To sum it up, at least 6 bits are available on all architectures.
1851  * However, we can exceed 6 bits on some other architectures except
1852  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1853  * with the worst case of 64K pages on arm64) if we make sure the
1854  * exceeded bit is not applicable to powerpc.
1855  */
1856 enum {
1857 	SECTION_MARKED_PRESENT_BIT,
1858 	SECTION_HAS_MEM_MAP_BIT,
1859 	SECTION_IS_ONLINE_BIT,
1860 	SECTION_IS_EARLY_BIT,
1861 #ifdef CONFIG_ZONE_DEVICE
1862 	SECTION_TAINT_ZONE_DEVICE_BIT,
1863 #endif
1864 	SECTION_MAP_LAST_BIT,
1865 };
1866 
1867 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1868 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1869 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1870 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1871 #ifdef CONFIG_ZONE_DEVICE
1872 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1873 #endif
1874 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1875 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1876 
1877 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1878 {
1879 	unsigned long map = section->section_mem_map;
1880 	map &= SECTION_MAP_MASK;
1881 	return (struct page *)map;
1882 }
1883 
1884 static inline int present_section(struct mem_section *section)
1885 {
1886 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1887 }
1888 
1889 static inline int present_section_nr(unsigned long nr)
1890 {
1891 	return present_section(__nr_to_section(nr));
1892 }
1893 
1894 static inline int valid_section(struct mem_section *section)
1895 {
1896 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1897 }
1898 
1899 static inline int early_section(struct mem_section *section)
1900 {
1901 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1902 }
1903 
1904 static inline int valid_section_nr(unsigned long nr)
1905 {
1906 	return valid_section(__nr_to_section(nr));
1907 }
1908 
1909 static inline int online_section(struct mem_section *section)
1910 {
1911 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1912 }
1913 
1914 #ifdef CONFIG_ZONE_DEVICE
1915 static inline int online_device_section(struct mem_section *section)
1916 {
1917 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1918 
1919 	return section && ((section->section_mem_map & flags) == flags);
1920 }
1921 #else
1922 static inline int online_device_section(struct mem_section *section)
1923 {
1924 	return 0;
1925 }
1926 #endif
1927 
1928 static inline int online_section_nr(unsigned long nr)
1929 {
1930 	return online_section(__nr_to_section(nr));
1931 }
1932 
1933 #ifdef CONFIG_MEMORY_HOTPLUG
1934 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1935 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1936 #endif
1937 
1938 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1939 {
1940 	return __nr_to_section(pfn_to_section_nr(pfn));
1941 }
1942 
1943 extern unsigned long __highest_present_section_nr;
1944 
1945 static inline int subsection_map_index(unsigned long pfn)
1946 {
1947 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1948 }
1949 
1950 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1951 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1952 {
1953 	int idx = subsection_map_index(pfn);
1954 
1955 	return test_bit(idx, ms->usage->subsection_map);
1956 }
1957 #else
1958 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1959 {
1960 	return 1;
1961 }
1962 #endif
1963 
1964 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1965 /**
1966  * pfn_valid - check if there is a valid memory map entry for a PFN
1967  * @pfn: the page frame number to check
1968  *
1969  * Check if there is a valid memory map entry aka struct page for the @pfn.
1970  * Note, that availability of the memory map entry does not imply that
1971  * there is actual usable memory at that @pfn. The struct page may
1972  * represent a hole or an unusable page frame.
1973  *
1974  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1975  */
1976 static inline int pfn_valid(unsigned long pfn)
1977 {
1978 	struct mem_section *ms;
1979 
1980 	/*
1981 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1982 	 * pfn. Else it might lead to false positives when
1983 	 * some of the upper bits are set, but the lower bits
1984 	 * match a valid pfn.
1985 	 */
1986 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1987 		return 0;
1988 
1989 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1990 		return 0;
1991 	ms = __pfn_to_section(pfn);
1992 	if (!valid_section(ms))
1993 		return 0;
1994 	/*
1995 	 * Traditionally early sections always returned pfn_valid() for
1996 	 * the entire section-sized span.
1997 	 */
1998 	return early_section(ms) || pfn_section_valid(ms, pfn);
1999 }
2000 #endif
2001 
2002 static inline int pfn_in_present_section(unsigned long pfn)
2003 {
2004 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2005 		return 0;
2006 	return present_section(__pfn_to_section(pfn));
2007 }
2008 
2009 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2010 {
2011 	while (++section_nr <= __highest_present_section_nr) {
2012 		if (present_section_nr(section_nr))
2013 			return section_nr;
2014 	}
2015 
2016 	return -1;
2017 }
2018 
2019 /*
2020  * These are _only_ used during initialisation, therefore they
2021  * can use __initdata ...  They could have names to indicate
2022  * this restriction.
2023  */
2024 #ifdef CONFIG_NUMA
2025 #define pfn_to_nid(pfn)							\
2026 ({									\
2027 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2028 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2029 })
2030 #else
2031 #define pfn_to_nid(pfn)		(0)
2032 #endif
2033 
2034 void sparse_init(void);
2035 #else
2036 #define sparse_init()	do {} while (0)
2037 #define sparse_index_init(_sec, _nid)  do {} while (0)
2038 #define pfn_in_present_section pfn_valid
2039 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2040 #endif /* CONFIG_SPARSEMEM */
2041 
2042 #endif /* !__GENERATING_BOUNDS.H */
2043 #endif /* !__ASSEMBLY__ */
2044 #endif /* _LINUX_MMZONE_H */
2045