1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <asm/page.h> 26 27 /* Free memory management - zoned buddy allocator. */ 28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29 #define MAX_ORDER 11 30 #else 31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32 #endif 33 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 34 35 /* 36 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 37 * costly to service. That is between allocation orders which should 38 * coalesce naturally under reasonable reclaim pressure and those which 39 * will not. 40 */ 41 #define PAGE_ALLOC_COSTLY_ORDER 3 42 43 enum migratetype { 44 MIGRATE_UNMOVABLE, 45 MIGRATE_MOVABLE, 46 MIGRATE_RECLAIMABLE, 47 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 48 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 49 #ifdef CONFIG_CMA 50 /* 51 * MIGRATE_CMA migration type is designed to mimic the way 52 * ZONE_MOVABLE works. Only movable pages can be allocated 53 * from MIGRATE_CMA pageblocks and page allocator never 54 * implicitly change migration type of MIGRATE_CMA pageblock. 55 * 56 * The way to use it is to change migratetype of a range of 57 * pageblocks to MIGRATE_CMA which can be done by 58 * __free_pageblock_cma() function. 59 */ 60 MIGRATE_CMA, 61 #endif 62 #ifdef CONFIG_MEMORY_ISOLATION 63 MIGRATE_ISOLATE, /* can't allocate from here */ 64 #endif 65 MIGRATE_TYPES 66 }; 67 68 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 69 extern const char * const migratetype_names[MIGRATE_TYPES]; 70 71 #ifdef CONFIG_CMA 72 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 73 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 74 #else 75 # define is_migrate_cma(migratetype) false 76 # define is_migrate_cma_page(_page) false 77 #endif 78 79 static inline bool is_migrate_movable(int mt) 80 { 81 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 82 } 83 84 /* 85 * Check whether a migratetype can be merged with another migratetype. 86 * 87 * It is only mergeable when it can fall back to other migratetypes for 88 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 89 */ 90 static inline bool migratetype_is_mergeable(int mt) 91 { 92 return mt < MIGRATE_PCPTYPES; 93 } 94 95 #define for_each_migratetype_order(order, type) \ 96 for (order = 0; order < MAX_ORDER; order++) \ 97 for (type = 0; type < MIGRATE_TYPES; type++) 98 99 extern int page_group_by_mobility_disabled; 100 101 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 102 103 #define get_pageblock_migratetype(page) \ 104 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 105 106 struct free_area { 107 struct list_head free_list[MIGRATE_TYPES]; 108 unsigned long nr_free; 109 }; 110 111 static inline struct page *get_page_from_free_area(struct free_area *area, 112 int migratetype) 113 { 114 return list_first_entry_or_null(&area->free_list[migratetype], 115 struct page, lru); 116 } 117 118 static inline bool free_area_empty(struct free_area *area, int migratetype) 119 { 120 return list_empty(&area->free_list[migratetype]); 121 } 122 123 struct pglist_data; 124 125 #ifdef CONFIG_NUMA 126 enum numa_stat_item { 127 NUMA_HIT, /* allocated in intended node */ 128 NUMA_MISS, /* allocated in non intended node */ 129 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 130 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 131 NUMA_LOCAL, /* allocation from local node */ 132 NUMA_OTHER, /* allocation from other node */ 133 NR_VM_NUMA_EVENT_ITEMS 134 }; 135 #else 136 #define NR_VM_NUMA_EVENT_ITEMS 0 137 #endif 138 139 enum zone_stat_item { 140 /* First 128 byte cacheline (assuming 64 bit words) */ 141 NR_FREE_PAGES, 142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 144 NR_ZONE_ACTIVE_ANON, 145 NR_ZONE_INACTIVE_FILE, 146 NR_ZONE_ACTIVE_FILE, 147 NR_ZONE_UNEVICTABLE, 148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 150 /* Second 128 byte cacheline */ 151 NR_BOUNCE, 152 #if IS_ENABLED(CONFIG_ZSMALLOC) 153 NR_ZSPAGES, /* allocated in zsmalloc */ 154 #endif 155 NR_FREE_CMA_PAGES, 156 NR_VM_ZONE_STAT_ITEMS }; 157 158 enum node_stat_item { 159 NR_LRU_BASE, 160 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 161 NR_ACTIVE_ANON, /* " " " " " */ 162 NR_INACTIVE_FILE, /* " " " " " */ 163 NR_ACTIVE_FILE, /* " " " " " */ 164 NR_UNEVICTABLE, /* " " " " " */ 165 NR_SLAB_RECLAIMABLE_B, 166 NR_SLAB_UNRECLAIMABLE_B, 167 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 168 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 169 WORKINGSET_NODES, 170 WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 172 WORKINGSET_REFAULT_FILE, 173 WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 175 WORKINGSET_ACTIVATE_FILE, 176 WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 178 WORKINGSET_RESTORE_FILE, 179 WORKINGSET_NODERECLAIM, 180 NR_ANON_MAPPED, /* Mapped anonymous pages */ 181 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 182 only modified from process context */ 183 NR_FILE_PAGES, 184 NR_FILE_DIRTY, 185 NR_WRITEBACK, 186 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 187 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 188 NR_SHMEM_THPS, 189 NR_SHMEM_PMDMAPPED, 190 NR_FILE_THPS, 191 NR_FILE_PMDMAPPED, 192 NR_ANON_THPS, 193 NR_VMSCAN_WRITE, 194 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 195 NR_DIRTIED, /* page dirtyings since bootup */ 196 NR_WRITTEN, /* page writings since bootup */ 197 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 198 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 199 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 200 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 201 NR_KERNEL_STACK_KB, /* measured in KiB */ 202 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 203 NR_KERNEL_SCS_KB, /* measured in KiB */ 204 #endif 205 NR_PAGETABLE, /* used for pagetables */ 206 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 207 #ifdef CONFIG_SWAP 208 NR_SWAPCACHE, 209 #endif 210 #ifdef CONFIG_NUMA_BALANCING 211 PGPROMOTE_SUCCESS, /* promote successfully */ 212 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 213 #endif 214 NR_VM_NODE_STAT_ITEMS 215 }; 216 217 /* 218 * Returns true if the item should be printed in THPs (/proc/vmstat 219 * currently prints number of anon, file and shmem THPs. But the item 220 * is charged in pages). 221 */ 222 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 223 { 224 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 225 return false; 226 227 return item == NR_ANON_THPS || 228 item == NR_FILE_THPS || 229 item == NR_SHMEM_THPS || 230 item == NR_SHMEM_PMDMAPPED || 231 item == NR_FILE_PMDMAPPED; 232 } 233 234 /* 235 * Returns true if the value is measured in bytes (most vmstat values are 236 * measured in pages). This defines the API part, the internal representation 237 * might be different. 238 */ 239 static __always_inline bool vmstat_item_in_bytes(int idx) 240 { 241 /* 242 * Global and per-node slab counters track slab pages. 243 * It's expected that changes are multiples of PAGE_SIZE. 244 * Internally values are stored in pages. 245 * 246 * Per-memcg and per-lruvec counters track memory, consumed 247 * by individual slab objects. These counters are actually 248 * byte-precise. 249 */ 250 return (idx == NR_SLAB_RECLAIMABLE_B || 251 idx == NR_SLAB_UNRECLAIMABLE_B); 252 } 253 254 /* 255 * We do arithmetic on the LRU lists in various places in the code, 256 * so it is important to keep the active lists LRU_ACTIVE higher in 257 * the array than the corresponding inactive lists, and to keep 258 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 259 * 260 * This has to be kept in sync with the statistics in zone_stat_item 261 * above and the descriptions in vmstat_text in mm/vmstat.c 262 */ 263 #define LRU_BASE 0 264 #define LRU_ACTIVE 1 265 #define LRU_FILE 2 266 267 enum lru_list { 268 LRU_INACTIVE_ANON = LRU_BASE, 269 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 270 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 271 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 272 LRU_UNEVICTABLE, 273 NR_LRU_LISTS 274 }; 275 276 enum vmscan_throttle_state { 277 VMSCAN_THROTTLE_WRITEBACK, 278 VMSCAN_THROTTLE_ISOLATED, 279 VMSCAN_THROTTLE_NOPROGRESS, 280 VMSCAN_THROTTLE_CONGESTED, 281 NR_VMSCAN_THROTTLE, 282 }; 283 284 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 285 286 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 287 288 static inline bool is_file_lru(enum lru_list lru) 289 { 290 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 291 } 292 293 static inline bool is_active_lru(enum lru_list lru) 294 { 295 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 296 } 297 298 #define WORKINGSET_ANON 0 299 #define WORKINGSET_FILE 1 300 #define ANON_AND_FILE 2 301 302 enum lruvec_flags { 303 LRUVEC_CONGESTED, /* lruvec has many dirty pages 304 * backed by a congested BDI 305 */ 306 }; 307 308 #endif /* !__GENERATING_BOUNDS_H */ 309 310 /* 311 * Evictable pages are divided into multiple generations. The youngest and the 312 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 313 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 314 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 315 * corresponding generation. The gen counter in folio->flags stores gen+1 while 316 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 317 * 318 * A page is added to the youngest generation on faulting. The aging needs to 319 * check the accessed bit at least twice before handing this page over to the 320 * eviction. The first check takes care of the accessed bit set on the initial 321 * fault; the second check makes sure this page hasn't been used since then. 322 * This process, AKA second chance, requires a minimum of two generations, 323 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 324 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 325 * rest of generations, if they exist, are considered inactive. See 326 * lru_gen_is_active(). 327 * 328 * PG_active is always cleared while a page is on one of lrugen->folios[] so 329 * that the aging needs not to worry about it. And it's set again when a page 330 * considered active is isolated for non-reclaiming purposes, e.g., migration. 331 * See lru_gen_add_folio() and lru_gen_del_folio(). 332 * 333 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 334 * number of categories of the active/inactive LRU when keeping track of 335 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 336 * in folio->flags. 337 */ 338 #define MIN_NR_GENS 2U 339 #define MAX_NR_GENS 4U 340 341 /* 342 * Each generation is divided into multiple tiers. A page accessed N times 343 * through file descriptors is in tier order_base_2(N). A page in the first tier 344 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 345 * tables or read ahead. A page in any other tier (N>1) is marked by 346 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 347 * supported without using additional bits in folio->flags. 348 * 349 * In contrast to moving across generations which requires the LRU lock, moving 350 * across tiers only involves atomic operations on folio->flags and therefore 351 * has a negligible cost in the buffered access path. In the eviction path, 352 * comparisons of refaulted/(evicted+protected) from the first tier and the 353 * rest infer whether pages accessed multiple times through file descriptors 354 * are statistically hot and thus worth protecting. 355 * 356 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 357 * number of categories of the active/inactive LRU when keeping track of 358 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 359 * folio->flags. 360 */ 361 #define MAX_NR_TIERS 4U 362 363 #ifndef __GENERATING_BOUNDS_H 364 365 struct lruvec; 366 struct page_vma_mapped_walk; 367 368 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 369 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 370 371 /* see the comment on MEMCG_NR_GENS */ 372 enum { 373 MEMCG_LRU_NOP, 374 MEMCG_LRU_HEAD, 375 MEMCG_LRU_TAIL, 376 MEMCG_LRU_OLD, 377 MEMCG_LRU_YOUNG, 378 }; 379 380 #ifdef CONFIG_LRU_GEN 381 382 enum { 383 LRU_GEN_ANON, 384 LRU_GEN_FILE, 385 }; 386 387 enum { 388 LRU_GEN_CORE, 389 LRU_GEN_MM_WALK, 390 LRU_GEN_NONLEAF_YOUNG, 391 NR_LRU_GEN_CAPS 392 }; 393 394 #define MIN_LRU_BATCH BITS_PER_LONG 395 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 396 397 /* whether to keep historical stats from evicted generations */ 398 #ifdef CONFIG_LRU_GEN_STATS 399 #define NR_HIST_GENS MAX_NR_GENS 400 #else 401 #define NR_HIST_GENS 1U 402 #endif 403 404 /* 405 * The youngest generation number is stored in max_seq for both anon and file 406 * types as they are aged on an equal footing. The oldest generation numbers are 407 * stored in min_seq[] separately for anon and file types as clean file pages 408 * can be evicted regardless of swap constraints. 409 * 410 * Normally anon and file min_seq are in sync. But if swapping is constrained, 411 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 412 * min_seq behind. 413 * 414 * The number of pages in each generation is eventually consistent and therefore 415 * can be transiently negative when reset_batch_size() is pending. 416 */ 417 struct lru_gen_folio { 418 /* the aging increments the youngest generation number */ 419 unsigned long max_seq; 420 /* the eviction increments the oldest generation numbers */ 421 unsigned long min_seq[ANON_AND_FILE]; 422 /* the birth time of each generation in jiffies */ 423 unsigned long timestamps[MAX_NR_GENS]; 424 /* the multi-gen LRU lists, lazily sorted on eviction */ 425 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 426 /* the multi-gen LRU sizes, eventually consistent */ 427 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 428 /* the exponential moving average of refaulted */ 429 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 430 /* the exponential moving average of evicted+protected */ 431 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 432 /* the first tier doesn't need protection, hence the minus one */ 433 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 434 /* can be modified without holding the LRU lock */ 435 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 436 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 437 /* whether the multi-gen LRU is enabled */ 438 bool enabled; 439 #ifdef CONFIG_MEMCG 440 /* the memcg generation this lru_gen_folio belongs to */ 441 u8 gen; 442 /* the list segment this lru_gen_folio belongs to */ 443 u8 seg; 444 /* per-node lru_gen_folio list for global reclaim */ 445 struct hlist_nulls_node list; 446 #endif 447 }; 448 449 enum { 450 MM_LEAF_TOTAL, /* total leaf entries */ 451 MM_LEAF_OLD, /* old leaf entries */ 452 MM_LEAF_YOUNG, /* young leaf entries */ 453 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 454 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 455 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 456 NR_MM_STATS 457 }; 458 459 /* double-buffering Bloom filters */ 460 #define NR_BLOOM_FILTERS 2 461 462 struct lru_gen_mm_state { 463 /* set to max_seq after each iteration */ 464 unsigned long seq; 465 /* where the current iteration continues (inclusive) */ 466 struct list_head *head; 467 /* where the last iteration ended (exclusive) */ 468 struct list_head *tail; 469 /* to wait for the last page table walker to finish */ 470 struct wait_queue_head wait; 471 /* Bloom filters flip after each iteration */ 472 unsigned long *filters[NR_BLOOM_FILTERS]; 473 /* the mm stats for debugging */ 474 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 475 /* the number of concurrent page table walkers */ 476 int nr_walkers; 477 }; 478 479 struct lru_gen_mm_walk { 480 /* the lruvec under reclaim */ 481 struct lruvec *lruvec; 482 /* unstable max_seq from lru_gen_folio */ 483 unsigned long max_seq; 484 /* the next address within an mm to scan */ 485 unsigned long next_addr; 486 /* to batch promoted pages */ 487 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 488 /* to batch the mm stats */ 489 int mm_stats[NR_MM_STATS]; 490 /* total batched items */ 491 int batched; 492 bool can_swap; 493 bool force_scan; 494 }; 495 496 void lru_gen_init_lruvec(struct lruvec *lruvec); 497 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 498 499 #ifdef CONFIG_MEMCG 500 501 /* 502 * For each node, memcgs are divided into two generations: the old and the 503 * young. For each generation, memcgs are randomly sharded into multiple bins 504 * to improve scalability. For each bin, the hlist_nulls is virtually divided 505 * into three segments: the head, the tail and the default. 506 * 507 * An onlining memcg is added to the tail of a random bin in the old generation. 508 * The eviction starts at the head of a random bin in the old generation. The 509 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 510 * the old generation, is incremented when all its bins become empty. 511 * 512 * There are four operations: 513 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its 514 * current generation (old or young) and updates its "seg" to "head"; 515 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its 516 * current generation (old or young) and updates its "seg" to "tail"; 517 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old 518 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 519 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the 520 * young generation, updates its "gen" to "young" and resets its "seg" to 521 * "default". 522 * 523 * The events that trigger the above operations are: 524 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 525 * 2. The first attempt to reclaim an memcg below low, which triggers 526 * MEMCG_LRU_TAIL; 527 * 3. The first attempt to reclaim an memcg below reclaimable size threshold, 528 * which triggers MEMCG_LRU_TAIL; 529 * 4. The second attempt to reclaim an memcg below reclaimable size threshold, 530 * which triggers MEMCG_LRU_YOUNG; 531 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 532 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 533 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. 534 * 535 * Note that memcg LRU only applies to global reclaim, and the round-robin 536 * incrementing of their max_seq counters ensures the eventual fairness to all 537 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 538 */ 539 #define MEMCG_NR_GENS 2 540 #define MEMCG_NR_BINS 8 541 542 struct lru_gen_memcg { 543 /* the per-node memcg generation counter */ 544 unsigned long seq; 545 /* each memcg has one lru_gen_folio per node */ 546 unsigned long nr_memcgs[MEMCG_NR_GENS]; 547 /* per-node lru_gen_folio list for global reclaim */ 548 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 549 /* protects the above */ 550 spinlock_t lock; 551 }; 552 553 void lru_gen_init_pgdat(struct pglist_data *pgdat); 554 555 void lru_gen_init_memcg(struct mem_cgroup *memcg); 556 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 557 void lru_gen_online_memcg(struct mem_cgroup *memcg); 558 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 559 void lru_gen_release_memcg(struct mem_cgroup *memcg); 560 void lru_gen_rotate_memcg(struct lruvec *lruvec, int op); 561 562 #else /* !CONFIG_MEMCG */ 563 564 #define MEMCG_NR_GENS 1 565 566 struct lru_gen_memcg { 567 }; 568 569 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 570 { 571 } 572 573 #endif /* CONFIG_MEMCG */ 574 575 #else /* !CONFIG_LRU_GEN */ 576 577 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 578 { 579 } 580 581 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 582 { 583 } 584 585 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 586 { 587 } 588 589 #ifdef CONFIG_MEMCG 590 591 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 592 { 593 } 594 595 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 596 { 597 } 598 599 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 600 { 601 } 602 603 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 604 { 605 } 606 607 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 608 { 609 } 610 611 static inline void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 612 { 613 } 614 615 #endif /* CONFIG_MEMCG */ 616 617 #endif /* CONFIG_LRU_GEN */ 618 619 struct lruvec { 620 struct list_head lists[NR_LRU_LISTS]; 621 /* per lruvec lru_lock for memcg */ 622 spinlock_t lru_lock; 623 /* 624 * These track the cost of reclaiming one LRU - file or anon - 625 * over the other. As the observed cost of reclaiming one LRU 626 * increases, the reclaim scan balance tips toward the other. 627 */ 628 unsigned long anon_cost; 629 unsigned long file_cost; 630 /* Non-resident age, driven by LRU movement */ 631 atomic_long_t nonresident_age; 632 /* Refaults at the time of last reclaim cycle */ 633 unsigned long refaults[ANON_AND_FILE]; 634 /* Various lruvec state flags (enum lruvec_flags) */ 635 unsigned long flags; 636 #ifdef CONFIG_LRU_GEN 637 /* evictable pages divided into generations */ 638 struct lru_gen_folio lrugen; 639 /* to concurrently iterate lru_gen_mm_list */ 640 struct lru_gen_mm_state mm_state; 641 #endif 642 #ifdef CONFIG_MEMCG 643 struct pglist_data *pgdat; 644 #endif 645 }; 646 647 /* Isolate unmapped pages */ 648 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 649 /* Isolate for asynchronous migration */ 650 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 651 /* Isolate unevictable pages */ 652 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 653 654 /* LRU Isolation modes. */ 655 typedef unsigned __bitwise isolate_mode_t; 656 657 enum zone_watermarks { 658 WMARK_MIN, 659 WMARK_LOW, 660 WMARK_HIGH, 661 WMARK_PROMO, 662 NR_WMARK 663 }; 664 665 /* 666 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 667 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 668 * it should not contribute to serious fragmentation causing THP allocation 669 * failures. 670 */ 671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 672 #define NR_PCP_THP 1 673 #else 674 #define NR_PCP_THP 0 675 #endif 676 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 677 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 678 679 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 680 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 681 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 682 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 683 684 /* Fields and list protected by pagesets local_lock in page_alloc.c */ 685 struct per_cpu_pages { 686 spinlock_t lock; /* Protects lists field */ 687 int count; /* number of pages in the list */ 688 int high; /* high watermark, emptying needed */ 689 int batch; /* chunk size for buddy add/remove */ 690 short free_factor; /* batch scaling factor during free */ 691 #ifdef CONFIG_NUMA 692 short expire; /* When 0, remote pagesets are drained */ 693 #endif 694 695 /* Lists of pages, one per migrate type stored on the pcp-lists */ 696 struct list_head lists[NR_PCP_LISTS]; 697 } ____cacheline_aligned_in_smp; 698 699 struct per_cpu_zonestat { 700 #ifdef CONFIG_SMP 701 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 702 s8 stat_threshold; 703 #endif 704 #ifdef CONFIG_NUMA 705 /* 706 * Low priority inaccurate counters that are only folded 707 * on demand. Use a large type to avoid the overhead of 708 * folding during refresh_cpu_vm_stats. 709 */ 710 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 711 #endif 712 }; 713 714 struct per_cpu_nodestat { 715 s8 stat_threshold; 716 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 717 }; 718 719 #endif /* !__GENERATING_BOUNDS.H */ 720 721 enum zone_type { 722 /* 723 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 724 * to DMA to all of the addressable memory (ZONE_NORMAL). 725 * On architectures where this area covers the whole 32 bit address 726 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 727 * DMA addressing constraints. This distinction is important as a 32bit 728 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 729 * platforms may need both zones as they support peripherals with 730 * different DMA addressing limitations. 731 */ 732 #ifdef CONFIG_ZONE_DMA 733 ZONE_DMA, 734 #endif 735 #ifdef CONFIG_ZONE_DMA32 736 ZONE_DMA32, 737 #endif 738 /* 739 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 740 * performed on pages in ZONE_NORMAL if the DMA devices support 741 * transfers to all addressable memory. 742 */ 743 ZONE_NORMAL, 744 #ifdef CONFIG_HIGHMEM 745 /* 746 * A memory area that is only addressable by the kernel through 747 * mapping portions into its own address space. This is for example 748 * used by i386 to allow the kernel to address the memory beyond 749 * 900MB. The kernel will set up special mappings (page 750 * table entries on i386) for each page that the kernel needs to 751 * access. 752 */ 753 ZONE_HIGHMEM, 754 #endif 755 /* 756 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 757 * movable pages with few exceptional cases described below. Main use 758 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 759 * likely to succeed, and to locally limit unmovable allocations - e.g., 760 * to increase the number of THP/huge pages. Notable special cases are: 761 * 762 * 1. Pinned pages: (long-term) pinning of movable pages might 763 * essentially turn such pages unmovable. Therefore, we do not allow 764 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 765 * faulted, they come from the right zone right away. However, it is 766 * still possible that address space already has pages in 767 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 768 * touches that memory before pinning). In such case we migrate them 769 * to a different zone. When migration fails - pinning fails. 770 * 2. memblock allocations: kernelcore/movablecore setups might create 771 * situations where ZONE_MOVABLE contains unmovable allocations 772 * after boot. Memory offlining and allocations fail early. 773 * 3. Memory holes: kernelcore/movablecore setups might create very rare 774 * situations where ZONE_MOVABLE contains memory holes after boot, 775 * for example, if we have sections that are only partially 776 * populated. Memory offlining and allocations fail early. 777 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 778 * memory offlining, such pages cannot be allocated. 779 * 5. Unmovable PG_offline pages: in paravirtualized environments, 780 * hotplugged memory blocks might only partially be managed by the 781 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 782 * parts not manged by the buddy are unmovable PG_offline pages. In 783 * some cases (virtio-mem), such pages can be skipped during 784 * memory offlining, however, cannot be moved/allocated. These 785 * techniques might use alloc_contig_range() to hide previously 786 * exposed pages from the buddy again (e.g., to implement some sort 787 * of memory unplug in virtio-mem). 788 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 789 * situations where ZERO_PAGE(0) which is allocated differently 790 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 791 * cannot be migrated. 792 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 793 * memory to the MOVABLE zone, the vmemmap pages are also placed in 794 * such zone. Such pages cannot be really moved around as they are 795 * self-stored in the range, but they are treated as movable when 796 * the range they describe is about to be offlined. 797 * 798 * In general, no unmovable allocations that degrade memory offlining 799 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 800 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 801 * if has_unmovable_pages() states that there are no unmovable pages, 802 * there can be false negatives). 803 */ 804 ZONE_MOVABLE, 805 #ifdef CONFIG_ZONE_DEVICE 806 ZONE_DEVICE, 807 #endif 808 __MAX_NR_ZONES 809 810 }; 811 812 #ifndef __GENERATING_BOUNDS_H 813 814 #define ASYNC_AND_SYNC 2 815 816 struct zone { 817 /* Read-mostly fields */ 818 819 /* zone watermarks, access with *_wmark_pages(zone) macros */ 820 unsigned long _watermark[NR_WMARK]; 821 unsigned long watermark_boost; 822 823 unsigned long nr_reserved_highatomic; 824 825 /* 826 * We don't know if the memory that we're going to allocate will be 827 * freeable or/and it will be released eventually, so to avoid totally 828 * wasting several GB of ram we must reserve some of the lower zone 829 * memory (otherwise we risk to run OOM on the lower zones despite 830 * there being tons of freeable ram on the higher zones). This array is 831 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 832 * changes. 833 */ 834 long lowmem_reserve[MAX_NR_ZONES]; 835 836 #ifdef CONFIG_NUMA 837 int node; 838 #endif 839 struct pglist_data *zone_pgdat; 840 struct per_cpu_pages __percpu *per_cpu_pageset; 841 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 842 /* 843 * the high and batch values are copied to individual pagesets for 844 * faster access 845 */ 846 int pageset_high; 847 int pageset_batch; 848 849 #ifndef CONFIG_SPARSEMEM 850 /* 851 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 852 * In SPARSEMEM, this map is stored in struct mem_section 853 */ 854 unsigned long *pageblock_flags; 855 #endif /* CONFIG_SPARSEMEM */ 856 857 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 858 unsigned long zone_start_pfn; 859 860 /* 861 * spanned_pages is the total pages spanned by the zone, including 862 * holes, which is calculated as: 863 * spanned_pages = zone_end_pfn - zone_start_pfn; 864 * 865 * present_pages is physical pages existing within the zone, which 866 * is calculated as: 867 * present_pages = spanned_pages - absent_pages(pages in holes); 868 * 869 * present_early_pages is present pages existing within the zone 870 * located on memory available since early boot, excluding hotplugged 871 * memory. 872 * 873 * managed_pages is present pages managed by the buddy system, which 874 * is calculated as (reserved_pages includes pages allocated by the 875 * bootmem allocator): 876 * managed_pages = present_pages - reserved_pages; 877 * 878 * cma pages is present pages that are assigned for CMA use 879 * (MIGRATE_CMA). 880 * 881 * So present_pages may be used by memory hotplug or memory power 882 * management logic to figure out unmanaged pages by checking 883 * (present_pages - managed_pages). And managed_pages should be used 884 * by page allocator and vm scanner to calculate all kinds of watermarks 885 * and thresholds. 886 * 887 * Locking rules: 888 * 889 * zone_start_pfn and spanned_pages are protected by span_seqlock. 890 * It is a seqlock because it has to be read outside of zone->lock, 891 * and it is done in the main allocator path. But, it is written 892 * quite infrequently. 893 * 894 * The span_seq lock is declared along with zone->lock because it is 895 * frequently read in proximity to zone->lock. It's good to 896 * give them a chance of being in the same cacheline. 897 * 898 * Write access to present_pages at runtime should be protected by 899 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 900 * present_pages should use get_online_mems() to get a stable value. 901 */ 902 atomic_long_t managed_pages; 903 unsigned long spanned_pages; 904 unsigned long present_pages; 905 #if defined(CONFIG_MEMORY_HOTPLUG) 906 unsigned long present_early_pages; 907 #endif 908 #ifdef CONFIG_CMA 909 unsigned long cma_pages; 910 #endif 911 912 const char *name; 913 914 #ifdef CONFIG_MEMORY_ISOLATION 915 /* 916 * Number of isolated pageblock. It is used to solve incorrect 917 * freepage counting problem due to racy retrieving migratetype 918 * of pageblock. Protected by zone->lock. 919 */ 920 unsigned long nr_isolate_pageblock; 921 #endif 922 923 #ifdef CONFIG_MEMORY_HOTPLUG 924 /* see spanned/present_pages for more description */ 925 seqlock_t span_seqlock; 926 #endif 927 928 int initialized; 929 930 /* Write-intensive fields used from the page allocator */ 931 CACHELINE_PADDING(_pad1_); 932 933 /* free areas of different sizes */ 934 struct free_area free_area[MAX_ORDER]; 935 936 /* zone flags, see below */ 937 unsigned long flags; 938 939 /* Primarily protects free_area */ 940 spinlock_t lock; 941 942 /* Write-intensive fields used by compaction and vmstats. */ 943 CACHELINE_PADDING(_pad2_); 944 945 /* 946 * When free pages are below this point, additional steps are taken 947 * when reading the number of free pages to avoid per-cpu counter 948 * drift allowing watermarks to be breached 949 */ 950 unsigned long percpu_drift_mark; 951 952 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 953 /* pfn where compaction free scanner should start */ 954 unsigned long compact_cached_free_pfn; 955 /* pfn where compaction migration scanner should start */ 956 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 957 unsigned long compact_init_migrate_pfn; 958 unsigned long compact_init_free_pfn; 959 #endif 960 961 #ifdef CONFIG_COMPACTION 962 /* 963 * On compaction failure, 1<<compact_defer_shift compactions 964 * are skipped before trying again. The number attempted since 965 * last failure is tracked with compact_considered. 966 * compact_order_failed is the minimum compaction failed order. 967 */ 968 unsigned int compact_considered; 969 unsigned int compact_defer_shift; 970 int compact_order_failed; 971 #endif 972 973 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 974 /* Set to true when the PG_migrate_skip bits should be cleared */ 975 bool compact_blockskip_flush; 976 #endif 977 978 bool contiguous; 979 980 CACHELINE_PADDING(_pad3_); 981 /* Zone statistics */ 982 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 983 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 984 } ____cacheline_internodealigned_in_smp; 985 986 enum pgdat_flags { 987 PGDAT_DIRTY, /* reclaim scanning has recently found 988 * many dirty file pages at the tail 989 * of the LRU. 990 */ 991 PGDAT_WRITEBACK, /* reclaim scanning has recently found 992 * many pages under writeback 993 */ 994 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 995 }; 996 997 enum zone_flags { 998 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 999 * Cleared when kswapd is woken. 1000 */ 1001 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1002 }; 1003 1004 static inline unsigned long zone_managed_pages(struct zone *zone) 1005 { 1006 return (unsigned long)atomic_long_read(&zone->managed_pages); 1007 } 1008 1009 static inline unsigned long zone_cma_pages(struct zone *zone) 1010 { 1011 #ifdef CONFIG_CMA 1012 return zone->cma_pages; 1013 #else 1014 return 0; 1015 #endif 1016 } 1017 1018 static inline unsigned long zone_end_pfn(const struct zone *zone) 1019 { 1020 return zone->zone_start_pfn + zone->spanned_pages; 1021 } 1022 1023 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1024 { 1025 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1026 } 1027 1028 static inline bool zone_is_initialized(struct zone *zone) 1029 { 1030 return zone->initialized; 1031 } 1032 1033 static inline bool zone_is_empty(struct zone *zone) 1034 { 1035 return zone->spanned_pages == 0; 1036 } 1037 1038 #ifndef BUILD_VDSO32_64 1039 /* 1040 * The zone field is never updated after free_area_init_core() 1041 * sets it, so none of the operations on it need to be atomic. 1042 */ 1043 1044 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1045 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1046 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1047 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1048 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1049 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1050 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1051 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1052 1053 /* 1054 * Define the bit shifts to access each section. For non-existent 1055 * sections we define the shift as 0; that plus a 0 mask ensures 1056 * the compiler will optimise away reference to them. 1057 */ 1058 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1059 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1060 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1061 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1062 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1063 1064 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1065 #ifdef NODE_NOT_IN_PAGE_FLAGS 1066 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1067 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1068 SECTIONS_PGOFF : ZONES_PGOFF) 1069 #else 1070 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1071 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1072 NODES_PGOFF : ZONES_PGOFF) 1073 #endif 1074 1075 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1076 1077 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1078 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1079 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1080 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1081 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1082 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1083 1084 static inline enum zone_type page_zonenum(const struct page *page) 1085 { 1086 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1087 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1088 } 1089 1090 static inline enum zone_type folio_zonenum(const struct folio *folio) 1091 { 1092 return page_zonenum(&folio->page); 1093 } 1094 1095 #ifdef CONFIG_ZONE_DEVICE 1096 static inline bool is_zone_device_page(const struct page *page) 1097 { 1098 return page_zonenum(page) == ZONE_DEVICE; 1099 } 1100 1101 /* 1102 * Consecutive zone device pages should not be merged into the same sgl 1103 * or bvec segment with other types of pages or if they belong to different 1104 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1105 * without scanning the entire segment. This helper returns true either if 1106 * both pages are not zone device pages or both pages are zone device pages 1107 * with the same pgmap. 1108 */ 1109 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1110 const struct page *b) 1111 { 1112 if (is_zone_device_page(a) != is_zone_device_page(b)) 1113 return false; 1114 if (!is_zone_device_page(a)) 1115 return true; 1116 return a->pgmap == b->pgmap; 1117 } 1118 1119 extern void memmap_init_zone_device(struct zone *, unsigned long, 1120 unsigned long, struct dev_pagemap *); 1121 #else 1122 static inline bool is_zone_device_page(const struct page *page) 1123 { 1124 return false; 1125 } 1126 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1127 const struct page *b) 1128 { 1129 return true; 1130 } 1131 #endif 1132 1133 static inline bool folio_is_zone_device(const struct folio *folio) 1134 { 1135 return is_zone_device_page(&folio->page); 1136 } 1137 1138 static inline bool is_zone_movable_page(const struct page *page) 1139 { 1140 return page_zonenum(page) == ZONE_MOVABLE; 1141 } 1142 #endif 1143 1144 /* 1145 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1146 * intersection with the given zone 1147 */ 1148 static inline bool zone_intersects(struct zone *zone, 1149 unsigned long start_pfn, unsigned long nr_pages) 1150 { 1151 if (zone_is_empty(zone)) 1152 return false; 1153 if (start_pfn >= zone_end_pfn(zone) || 1154 start_pfn + nr_pages <= zone->zone_start_pfn) 1155 return false; 1156 1157 return true; 1158 } 1159 1160 /* 1161 * The "priority" of VM scanning is how much of the queues we will scan in one 1162 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1163 * queues ("queue_length >> 12") during an aging round. 1164 */ 1165 #define DEF_PRIORITY 12 1166 1167 /* Maximum number of zones on a zonelist */ 1168 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1169 1170 enum { 1171 ZONELIST_FALLBACK, /* zonelist with fallback */ 1172 #ifdef CONFIG_NUMA 1173 /* 1174 * The NUMA zonelists are doubled because we need zonelists that 1175 * restrict the allocations to a single node for __GFP_THISNODE. 1176 */ 1177 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1178 #endif 1179 MAX_ZONELISTS 1180 }; 1181 1182 /* 1183 * This struct contains information about a zone in a zonelist. It is stored 1184 * here to avoid dereferences into large structures and lookups of tables 1185 */ 1186 struct zoneref { 1187 struct zone *zone; /* Pointer to actual zone */ 1188 int zone_idx; /* zone_idx(zoneref->zone) */ 1189 }; 1190 1191 /* 1192 * One allocation request operates on a zonelist. A zonelist 1193 * is a list of zones, the first one is the 'goal' of the 1194 * allocation, the other zones are fallback zones, in decreasing 1195 * priority. 1196 * 1197 * To speed the reading of the zonelist, the zonerefs contain the zone index 1198 * of the entry being read. Helper functions to access information given 1199 * a struct zoneref are 1200 * 1201 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1202 * zonelist_zone_idx() - Return the index of the zone for an entry 1203 * zonelist_node_idx() - Return the index of the node for an entry 1204 */ 1205 struct zonelist { 1206 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1207 }; 1208 1209 /* 1210 * The array of struct pages for flatmem. 1211 * It must be declared for SPARSEMEM as well because there are configurations 1212 * that rely on that. 1213 */ 1214 extern struct page *mem_map; 1215 1216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1217 struct deferred_split { 1218 spinlock_t split_queue_lock; 1219 struct list_head split_queue; 1220 unsigned long split_queue_len; 1221 }; 1222 #endif 1223 1224 /* 1225 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1226 * it's memory layout. On UMA machines there is a single pglist_data which 1227 * describes the whole memory. 1228 * 1229 * Memory statistics and page replacement data structures are maintained on a 1230 * per-zone basis. 1231 */ 1232 typedef struct pglist_data { 1233 /* 1234 * node_zones contains just the zones for THIS node. Not all of the 1235 * zones may be populated, but it is the full list. It is referenced by 1236 * this node's node_zonelists as well as other node's node_zonelists. 1237 */ 1238 struct zone node_zones[MAX_NR_ZONES]; 1239 1240 /* 1241 * node_zonelists contains references to all zones in all nodes. 1242 * Generally the first zones will be references to this node's 1243 * node_zones. 1244 */ 1245 struct zonelist node_zonelists[MAX_ZONELISTS]; 1246 1247 int nr_zones; /* number of populated zones in this node */ 1248 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1249 struct page *node_mem_map; 1250 #ifdef CONFIG_PAGE_EXTENSION 1251 struct page_ext *node_page_ext; 1252 #endif 1253 #endif 1254 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1255 /* 1256 * Must be held any time you expect node_start_pfn, 1257 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1258 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1259 * init. 1260 * 1261 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1262 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1263 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1264 * 1265 * Nests above zone->lock and zone->span_seqlock 1266 */ 1267 spinlock_t node_size_lock; 1268 #endif 1269 unsigned long node_start_pfn; 1270 unsigned long node_present_pages; /* total number of physical pages */ 1271 unsigned long node_spanned_pages; /* total size of physical page 1272 range, including holes */ 1273 int node_id; 1274 wait_queue_head_t kswapd_wait; 1275 wait_queue_head_t pfmemalloc_wait; 1276 1277 /* workqueues for throttling reclaim for different reasons. */ 1278 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1279 1280 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1281 unsigned long nr_reclaim_start; /* nr pages written while throttled 1282 * when throttling started. */ 1283 #ifdef CONFIG_MEMORY_HOTPLUG 1284 struct mutex kswapd_lock; 1285 #endif 1286 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1287 int kswapd_order; 1288 enum zone_type kswapd_highest_zoneidx; 1289 1290 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1291 1292 #ifdef CONFIG_COMPACTION 1293 int kcompactd_max_order; 1294 enum zone_type kcompactd_highest_zoneidx; 1295 wait_queue_head_t kcompactd_wait; 1296 struct task_struct *kcompactd; 1297 bool proactive_compact_trigger; 1298 #endif 1299 /* 1300 * This is a per-node reserve of pages that are not available 1301 * to userspace allocations. 1302 */ 1303 unsigned long totalreserve_pages; 1304 1305 #ifdef CONFIG_NUMA 1306 /* 1307 * node reclaim becomes active if more unmapped pages exist. 1308 */ 1309 unsigned long min_unmapped_pages; 1310 unsigned long min_slab_pages; 1311 #endif /* CONFIG_NUMA */ 1312 1313 /* Write-intensive fields used by page reclaim */ 1314 CACHELINE_PADDING(_pad1_); 1315 1316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1317 /* 1318 * If memory initialisation on large machines is deferred then this 1319 * is the first PFN that needs to be initialised. 1320 */ 1321 unsigned long first_deferred_pfn; 1322 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1323 1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1325 struct deferred_split deferred_split_queue; 1326 #endif 1327 1328 #ifdef CONFIG_NUMA_BALANCING 1329 /* start time in ms of current promote rate limit period */ 1330 unsigned int nbp_rl_start; 1331 /* number of promote candidate pages at start time of current rate limit period */ 1332 unsigned long nbp_rl_nr_cand; 1333 /* promote threshold in ms */ 1334 unsigned int nbp_threshold; 1335 /* start time in ms of current promote threshold adjustment period */ 1336 unsigned int nbp_th_start; 1337 /* 1338 * number of promote candidate pages at start time of current promote 1339 * threshold adjustment period 1340 */ 1341 unsigned long nbp_th_nr_cand; 1342 #endif 1343 /* Fields commonly accessed by the page reclaim scanner */ 1344 1345 /* 1346 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1347 * 1348 * Use mem_cgroup_lruvec() to look up lruvecs. 1349 */ 1350 struct lruvec __lruvec; 1351 1352 unsigned long flags; 1353 1354 #ifdef CONFIG_LRU_GEN 1355 /* kswap mm walk data */ 1356 struct lru_gen_mm_walk mm_walk; 1357 /* lru_gen_folio list */ 1358 struct lru_gen_memcg memcg_lru; 1359 #endif 1360 1361 CACHELINE_PADDING(_pad2_); 1362 1363 /* Per-node vmstats */ 1364 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1365 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1366 #ifdef CONFIG_NUMA 1367 struct memory_tier __rcu *memtier; 1368 #endif 1369 } pg_data_t; 1370 1371 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1372 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1373 1374 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1375 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1376 1377 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1378 { 1379 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1380 } 1381 1382 #include <linux/memory_hotplug.h> 1383 1384 void build_all_zonelists(pg_data_t *pgdat); 1385 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1386 enum zone_type highest_zoneidx); 1387 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1388 int highest_zoneidx, unsigned int alloc_flags, 1389 long free_pages); 1390 bool zone_watermark_ok(struct zone *z, unsigned int order, 1391 unsigned long mark, int highest_zoneidx, 1392 unsigned int alloc_flags); 1393 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1394 unsigned long mark, int highest_zoneidx); 1395 /* 1396 * Memory initialization context, use to differentiate memory added by 1397 * the platform statically or via memory hotplug interface. 1398 */ 1399 enum meminit_context { 1400 MEMINIT_EARLY, 1401 MEMINIT_HOTPLUG, 1402 }; 1403 1404 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1405 unsigned long size); 1406 1407 extern void lruvec_init(struct lruvec *lruvec); 1408 1409 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1410 { 1411 #ifdef CONFIG_MEMCG 1412 return lruvec->pgdat; 1413 #else 1414 return container_of(lruvec, struct pglist_data, __lruvec); 1415 #endif 1416 } 1417 1418 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1419 int local_memory_node(int node_id); 1420 #else 1421 static inline int local_memory_node(int node_id) { return node_id; }; 1422 #endif 1423 1424 /* 1425 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1426 */ 1427 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1428 1429 #ifdef CONFIG_ZONE_DEVICE 1430 static inline bool zone_is_zone_device(struct zone *zone) 1431 { 1432 return zone_idx(zone) == ZONE_DEVICE; 1433 } 1434 #else 1435 static inline bool zone_is_zone_device(struct zone *zone) 1436 { 1437 return false; 1438 } 1439 #endif 1440 1441 /* 1442 * Returns true if a zone has pages managed by the buddy allocator. 1443 * All the reclaim decisions have to use this function rather than 1444 * populated_zone(). If the whole zone is reserved then we can easily 1445 * end up with populated_zone() && !managed_zone(). 1446 */ 1447 static inline bool managed_zone(struct zone *zone) 1448 { 1449 return zone_managed_pages(zone); 1450 } 1451 1452 /* Returns true if a zone has memory */ 1453 static inline bool populated_zone(struct zone *zone) 1454 { 1455 return zone->present_pages; 1456 } 1457 1458 #ifdef CONFIG_NUMA 1459 static inline int zone_to_nid(struct zone *zone) 1460 { 1461 return zone->node; 1462 } 1463 1464 static inline void zone_set_nid(struct zone *zone, int nid) 1465 { 1466 zone->node = nid; 1467 } 1468 #else 1469 static inline int zone_to_nid(struct zone *zone) 1470 { 1471 return 0; 1472 } 1473 1474 static inline void zone_set_nid(struct zone *zone, int nid) {} 1475 #endif 1476 1477 extern int movable_zone; 1478 1479 static inline int is_highmem_idx(enum zone_type idx) 1480 { 1481 #ifdef CONFIG_HIGHMEM 1482 return (idx == ZONE_HIGHMEM || 1483 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1484 #else 1485 return 0; 1486 #endif 1487 } 1488 1489 /** 1490 * is_highmem - helper function to quickly check if a struct zone is a 1491 * highmem zone or not. This is an attempt to keep references 1492 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1493 * @zone: pointer to struct zone variable 1494 * Return: 1 for a highmem zone, 0 otherwise 1495 */ 1496 static inline int is_highmem(struct zone *zone) 1497 { 1498 return is_highmem_idx(zone_idx(zone)); 1499 } 1500 1501 #ifdef CONFIG_ZONE_DMA 1502 bool has_managed_dma(void); 1503 #else 1504 static inline bool has_managed_dma(void) 1505 { 1506 return false; 1507 } 1508 #endif 1509 1510 /* These two functions are used to setup the per zone pages min values */ 1511 struct ctl_table; 1512 1513 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1514 loff_t *); 1515 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1516 size_t *, loff_t *); 1517 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1518 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1519 size_t *, loff_t *); 1520 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1521 void *, size_t *, loff_t *); 1522 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1523 void *, size_t *, loff_t *); 1524 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1525 void *, size_t *, loff_t *); 1526 int numa_zonelist_order_handler(struct ctl_table *, int, 1527 void *, size_t *, loff_t *); 1528 extern int percpu_pagelist_high_fraction; 1529 extern char numa_zonelist_order[]; 1530 #define NUMA_ZONELIST_ORDER_LEN 16 1531 1532 #ifndef CONFIG_NUMA 1533 1534 extern struct pglist_data contig_page_data; 1535 static inline struct pglist_data *NODE_DATA(int nid) 1536 { 1537 return &contig_page_data; 1538 } 1539 1540 #else /* CONFIG_NUMA */ 1541 1542 #include <asm/mmzone.h> 1543 1544 #endif /* !CONFIG_NUMA */ 1545 1546 extern struct pglist_data *first_online_pgdat(void); 1547 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1548 extern struct zone *next_zone(struct zone *zone); 1549 1550 /** 1551 * for_each_online_pgdat - helper macro to iterate over all online nodes 1552 * @pgdat: pointer to a pg_data_t variable 1553 */ 1554 #define for_each_online_pgdat(pgdat) \ 1555 for (pgdat = first_online_pgdat(); \ 1556 pgdat; \ 1557 pgdat = next_online_pgdat(pgdat)) 1558 /** 1559 * for_each_zone - helper macro to iterate over all memory zones 1560 * @zone: pointer to struct zone variable 1561 * 1562 * The user only needs to declare the zone variable, for_each_zone 1563 * fills it in. 1564 */ 1565 #define for_each_zone(zone) \ 1566 for (zone = (first_online_pgdat())->node_zones; \ 1567 zone; \ 1568 zone = next_zone(zone)) 1569 1570 #define for_each_populated_zone(zone) \ 1571 for (zone = (first_online_pgdat())->node_zones; \ 1572 zone; \ 1573 zone = next_zone(zone)) \ 1574 if (!populated_zone(zone)) \ 1575 ; /* do nothing */ \ 1576 else 1577 1578 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1579 { 1580 return zoneref->zone; 1581 } 1582 1583 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1584 { 1585 return zoneref->zone_idx; 1586 } 1587 1588 static inline int zonelist_node_idx(struct zoneref *zoneref) 1589 { 1590 return zone_to_nid(zoneref->zone); 1591 } 1592 1593 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1594 enum zone_type highest_zoneidx, 1595 nodemask_t *nodes); 1596 1597 /** 1598 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1599 * @z: The cursor used as a starting point for the search 1600 * @highest_zoneidx: The zone index of the highest zone to return 1601 * @nodes: An optional nodemask to filter the zonelist with 1602 * 1603 * This function returns the next zone at or below a given zone index that is 1604 * within the allowed nodemask using a cursor as the starting point for the 1605 * search. The zoneref returned is a cursor that represents the current zone 1606 * being examined. It should be advanced by one before calling 1607 * next_zones_zonelist again. 1608 * 1609 * Return: the next zone at or below highest_zoneidx within the allowed 1610 * nodemask using a cursor within a zonelist as a starting point 1611 */ 1612 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1613 enum zone_type highest_zoneidx, 1614 nodemask_t *nodes) 1615 { 1616 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1617 return z; 1618 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1619 } 1620 1621 /** 1622 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1623 * @zonelist: The zonelist to search for a suitable zone 1624 * @highest_zoneidx: The zone index of the highest zone to return 1625 * @nodes: An optional nodemask to filter the zonelist with 1626 * 1627 * This function returns the first zone at or below a given zone index that is 1628 * within the allowed nodemask. The zoneref returned is a cursor that can be 1629 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1630 * one before calling. 1631 * 1632 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1633 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1634 * update due to cpuset modification. 1635 * 1636 * Return: Zoneref pointer for the first suitable zone found 1637 */ 1638 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1639 enum zone_type highest_zoneidx, 1640 nodemask_t *nodes) 1641 { 1642 return next_zones_zonelist(zonelist->_zonerefs, 1643 highest_zoneidx, nodes); 1644 } 1645 1646 /** 1647 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1648 * @zone: The current zone in the iterator 1649 * @z: The current pointer within zonelist->_zonerefs being iterated 1650 * @zlist: The zonelist being iterated 1651 * @highidx: The zone index of the highest zone to return 1652 * @nodemask: Nodemask allowed by the allocator 1653 * 1654 * This iterator iterates though all zones at or below a given zone index and 1655 * within a given nodemask 1656 */ 1657 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1658 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1659 zone; \ 1660 z = next_zones_zonelist(++z, highidx, nodemask), \ 1661 zone = zonelist_zone(z)) 1662 1663 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1664 for (zone = z->zone; \ 1665 zone; \ 1666 z = next_zones_zonelist(++z, highidx, nodemask), \ 1667 zone = zonelist_zone(z)) 1668 1669 1670 /** 1671 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1672 * @zone: The current zone in the iterator 1673 * @z: The current pointer within zonelist->zones being iterated 1674 * @zlist: The zonelist being iterated 1675 * @highidx: The zone index of the highest zone to return 1676 * 1677 * This iterator iterates though all zones at or below a given zone index. 1678 */ 1679 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1680 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1681 1682 /* Whether the 'nodes' are all movable nodes */ 1683 static inline bool movable_only_nodes(nodemask_t *nodes) 1684 { 1685 struct zonelist *zonelist; 1686 struct zoneref *z; 1687 int nid; 1688 1689 if (nodes_empty(*nodes)) 1690 return false; 1691 1692 /* 1693 * We can chose arbitrary node from the nodemask to get a 1694 * zonelist as they are interlinked. We just need to find 1695 * at least one zone that can satisfy kernel allocations. 1696 */ 1697 nid = first_node(*nodes); 1698 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1699 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1700 return (!z->zone) ? true : false; 1701 } 1702 1703 1704 #ifdef CONFIG_SPARSEMEM 1705 #include <asm/sparsemem.h> 1706 #endif 1707 1708 #ifdef CONFIG_FLATMEM 1709 #define pfn_to_nid(pfn) (0) 1710 #endif 1711 1712 #ifdef CONFIG_SPARSEMEM 1713 1714 /* 1715 * PA_SECTION_SHIFT physical address to/from section number 1716 * PFN_SECTION_SHIFT pfn to/from section number 1717 */ 1718 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1719 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1720 1721 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1722 1723 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1724 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1725 1726 #define SECTION_BLOCKFLAGS_BITS \ 1727 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1728 1729 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1730 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1731 #endif 1732 1733 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1734 { 1735 return pfn >> PFN_SECTION_SHIFT; 1736 } 1737 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1738 { 1739 return sec << PFN_SECTION_SHIFT; 1740 } 1741 1742 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1743 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1744 1745 #define SUBSECTION_SHIFT 21 1746 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1747 1748 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1749 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1750 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1751 1752 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1753 #error Subsection size exceeds section size 1754 #else 1755 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1756 #endif 1757 1758 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1759 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1760 1761 struct mem_section_usage { 1762 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1763 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1764 #endif 1765 /* See declaration of similar field in struct zone */ 1766 unsigned long pageblock_flags[0]; 1767 }; 1768 1769 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1770 1771 struct page; 1772 struct page_ext; 1773 struct mem_section { 1774 /* 1775 * This is, logically, a pointer to an array of struct 1776 * pages. However, it is stored with some other magic. 1777 * (see sparse.c::sparse_init_one_section()) 1778 * 1779 * Additionally during early boot we encode node id of 1780 * the location of the section here to guide allocation. 1781 * (see sparse.c::memory_present()) 1782 * 1783 * Making it a UL at least makes someone do a cast 1784 * before using it wrong. 1785 */ 1786 unsigned long section_mem_map; 1787 1788 struct mem_section_usage *usage; 1789 #ifdef CONFIG_PAGE_EXTENSION 1790 /* 1791 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1792 * section. (see page_ext.h about this.) 1793 */ 1794 struct page_ext *page_ext; 1795 unsigned long pad; 1796 #endif 1797 /* 1798 * WARNING: mem_section must be a power-of-2 in size for the 1799 * calculation and use of SECTION_ROOT_MASK to make sense. 1800 */ 1801 }; 1802 1803 #ifdef CONFIG_SPARSEMEM_EXTREME 1804 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1805 #else 1806 #define SECTIONS_PER_ROOT 1 1807 #endif 1808 1809 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1810 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1811 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1812 1813 #ifdef CONFIG_SPARSEMEM_EXTREME 1814 extern struct mem_section **mem_section; 1815 #else 1816 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1817 #endif 1818 1819 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1820 { 1821 return ms->usage->pageblock_flags; 1822 } 1823 1824 static inline struct mem_section *__nr_to_section(unsigned long nr) 1825 { 1826 unsigned long root = SECTION_NR_TO_ROOT(nr); 1827 1828 if (unlikely(root >= NR_SECTION_ROOTS)) 1829 return NULL; 1830 1831 #ifdef CONFIG_SPARSEMEM_EXTREME 1832 if (!mem_section || !mem_section[root]) 1833 return NULL; 1834 #endif 1835 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1836 } 1837 extern size_t mem_section_usage_size(void); 1838 1839 /* 1840 * We use the lower bits of the mem_map pointer to store 1841 * a little bit of information. The pointer is calculated 1842 * as mem_map - section_nr_to_pfn(pnum). The result is 1843 * aligned to the minimum alignment of the two values: 1844 * 1. All mem_map arrays are page-aligned. 1845 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1846 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1847 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1848 * worst combination is powerpc with 256k pages, 1849 * which results in PFN_SECTION_SHIFT equal 6. 1850 * To sum it up, at least 6 bits are available on all architectures. 1851 * However, we can exceed 6 bits on some other architectures except 1852 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1853 * with the worst case of 64K pages on arm64) if we make sure the 1854 * exceeded bit is not applicable to powerpc. 1855 */ 1856 enum { 1857 SECTION_MARKED_PRESENT_BIT, 1858 SECTION_HAS_MEM_MAP_BIT, 1859 SECTION_IS_ONLINE_BIT, 1860 SECTION_IS_EARLY_BIT, 1861 #ifdef CONFIG_ZONE_DEVICE 1862 SECTION_TAINT_ZONE_DEVICE_BIT, 1863 #endif 1864 SECTION_MAP_LAST_BIT, 1865 }; 1866 1867 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1868 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1869 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1870 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1871 #ifdef CONFIG_ZONE_DEVICE 1872 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1873 #endif 1874 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1875 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1876 1877 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1878 { 1879 unsigned long map = section->section_mem_map; 1880 map &= SECTION_MAP_MASK; 1881 return (struct page *)map; 1882 } 1883 1884 static inline int present_section(struct mem_section *section) 1885 { 1886 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1887 } 1888 1889 static inline int present_section_nr(unsigned long nr) 1890 { 1891 return present_section(__nr_to_section(nr)); 1892 } 1893 1894 static inline int valid_section(struct mem_section *section) 1895 { 1896 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1897 } 1898 1899 static inline int early_section(struct mem_section *section) 1900 { 1901 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1902 } 1903 1904 static inline int valid_section_nr(unsigned long nr) 1905 { 1906 return valid_section(__nr_to_section(nr)); 1907 } 1908 1909 static inline int online_section(struct mem_section *section) 1910 { 1911 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1912 } 1913 1914 #ifdef CONFIG_ZONE_DEVICE 1915 static inline int online_device_section(struct mem_section *section) 1916 { 1917 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1918 1919 return section && ((section->section_mem_map & flags) == flags); 1920 } 1921 #else 1922 static inline int online_device_section(struct mem_section *section) 1923 { 1924 return 0; 1925 } 1926 #endif 1927 1928 static inline int online_section_nr(unsigned long nr) 1929 { 1930 return online_section(__nr_to_section(nr)); 1931 } 1932 1933 #ifdef CONFIG_MEMORY_HOTPLUG 1934 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1935 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1936 #endif 1937 1938 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1939 { 1940 return __nr_to_section(pfn_to_section_nr(pfn)); 1941 } 1942 1943 extern unsigned long __highest_present_section_nr; 1944 1945 static inline int subsection_map_index(unsigned long pfn) 1946 { 1947 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1948 } 1949 1950 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1951 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1952 { 1953 int idx = subsection_map_index(pfn); 1954 1955 return test_bit(idx, ms->usage->subsection_map); 1956 } 1957 #else 1958 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1959 { 1960 return 1; 1961 } 1962 #endif 1963 1964 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1965 /** 1966 * pfn_valid - check if there is a valid memory map entry for a PFN 1967 * @pfn: the page frame number to check 1968 * 1969 * Check if there is a valid memory map entry aka struct page for the @pfn. 1970 * Note, that availability of the memory map entry does not imply that 1971 * there is actual usable memory at that @pfn. The struct page may 1972 * represent a hole or an unusable page frame. 1973 * 1974 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1975 */ 1976 static inline int pfn_valid(unsigned long pfn) 1977 { 1978 struct mem_section *ms; 1979 1980 /* 1981 * Ensure the upper PAGE_SHIFT bits are clear in the 1982 * pfn. Else it might lead to false positives when 1983 * some of the upper bits are set, but the lower bits 1984 * match a valid pfn. 1985 */ 1986 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1987 return 0; 1988 1989 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1990 return 0; 1991 ms = __pfn_to_section(pfn); 1992 if (!valid_section(ms)) 1993 return 0; 1994 /* 1995 * Traditionally early sections always returned pfn_valid() for 1996 * the entire section-sized span. 1997 */ 1998 return early_section(ms) || pfn_section_valid(ms, pfn); 1999 } 2000 #endif 2001 2002 static inline int pfn_in_present_section(unsigned long pfn) 2003 { 2004 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2005 return 0; 2006 return present_section(__pfn_to_section(pfn)); 2007 } 2008 2009 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2010 { 2011 while (++section_nr <= __highest_present_section_nr) { 2012 if (present_section_nr(section_nr)) 2013 return section_nr; 2014 } 2015 2016 return -1; 2017 } 2018 2019 /* 2020 * These are _only_ used during initialisation, therefore they 2021 * can use __initdata ... They could have names to indicate 2022 * this restriction. 2023 */ 2024 #ifdef CONFIG_NUMA 2025 #define pfn_to_nid(pfn) \ 2026 ({ \ 2027 unsigned long __pfn_to_nid_pfn = (pfn); \ 2028 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2029 }) 2030 #else 2031 #define pfn_to_nid(pfn) (0) 2032 #endif 2033 2034 void sparse_init(void); 2035 #else 2036 #define sparse_init() do {} while (0) 2037 #define sparse_index_init(_sec, _nid) do {} while (0) 2038 #define pfn_in_present_section pfn_valid 2039 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2040 #endif /* CONFIG_SPARSEMEM */ 2041 2042 #endif /* !__GENERATING_BOUNDS.H */ 2043 #endif /* !__ASSEMBLY__ */ 2044 #endif /* _LINUX_MMZONE_H */ 2045