xref: /linux-6.15/include/linux/mmzone.h (revision d3003d9e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * Add a wild amount of padding here to ensure datas fall into separate
117  * cachelines.  There are very few zone structures in the machine, so space
118  * consumption is not a concern here.
119  */
120 #if defined(CONFIG_SMP)
121 struct zone_padding {
122 	char x[0];
123 } ____cacheline_internodealigned_in_smp;
124 #define ZONE_PADDING(name)	struct zone_padding name;
125 #else
126 #define ZONE_PADDING(name)
127 #endif
128 
129 #ifdef CONFIG_NUMA
130 enum numa_stat_item {
131 	NUMA_HIT,		/* allocated in intended node */
132 	NUMA_MISS,		/* allocated in non intended node */
133 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
134 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
135 	NUMA_LOCAL,		/* allocation from local node */
136 	NUMA_OTHER,		/* allocation from other node */
137 	NR_VM_NUMA_STAT_ITEMS
138 };
139 #else
140 #define NR_VM_NUMA_STAT_ITEMS 0
141 #endif
142 
143 enum zone_stat_item {
144 	/* First 128 byte cacheline (assuming 64 bit words) */
145 	NR_FREE_PAGES,
146 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
147 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
148 	NR_ZONE_ACTIVE_ANON,
149 	NR_ZONE_INACTIVE_FILE,
150 	NR_ZONE_ACTIVE_FILE,
151 	NR_ZONE_UNEVICTABLE,
152 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
153 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
154 	/* Second 128 byte cacheline */
155 	NR_BOUNCE,
156 #if IS_ENABLED(CONFIG_ZSMALLOC)
157 	NR_ZSPAGES,		/* allocated in zsmalloc */
158 #endif
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 enum node_stat_item {
163 	NR_LRU_BASE,
164 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
166 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
167 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
168 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
169 	NR_SLAB_RECLAIMABLE_B,
170 	NR_SLAB_UNRECLAIMABLE_B,
171 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
172 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
173 	WORKINGSET_NODES,
174 	WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_FILE,
177 	WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_FILE,
180 	WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_FILE,
183 	WORKINGSET_NODERECLAIM,
184 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
185 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
186 			   only modified from process context */
187 	NR_FILE_PAGES,
188 	NR_FILE_DIRTY,
189 	NR_WRITEBACK,
190 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
191 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
192 	NR_SHMEM_THPS,
193 	NR_SHMEM_PMDMAPPED,
194 	NR_FILE_THPS,
195 	NR_FILE_PMDMAPPED,
196 	NR_ANON_THPS,
197 	NR_VMSCAN_WRITE,
198 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
199 	NR_DIRTIED,		/* page dirtyings since bootup */
200 	NR_WRITTEN,		/* page writings since bootup */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 #ifdef CONFIG_SWAP
210 	NR_SWAPCACHE,
211 #endif
212 	NR_VM_NODE_STAT_ITEMS
213 };
214 
215 /*
216  * Returns true if the item should be printed in THPs (/proc/vmstat
217  * currently prints number of anon, file and shmem THPs. But the item
218  * is charged in pages).
219  */
220 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
221 {
222 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
223 		return false;
224 
225 	return item == NR_ANON_THPS ||
226 	       item == NR_FILE_THPS ||
227 	       item == NR_SHMEM_THPS ||
228 	       item == NR_SHMEM_PMDMAPPED ||
229 	       item == NR_FILE_PMDMAPPED;
230 }
231 
232 /*
233  * Returns true if the value is measured in bytes (most vmstat values are
234  * measured in pages). This defines the API part, the internal representation
235  * might be different.
236  */
237 static __always_inline bool vmstat_item_in_bytes(int idx)
238 {
239 	/*
240 	 * Global and per-node slab counters track slab pages.
241 	 * It's expected that changes are multiples of PAGE_SIZE.
242 	 * Internally values are stored in pages.
243 	 *
244 	 * Per-memcg and per-lruvec counters track memory, consumed
245 	 * by individual slab objects. These counters are actually
246 	 * byte-precise.
247 	 */
248 	return (idx == NR_SLAB_RECLAIMABLE_B ||
249 		idx == NR_SLAB_UNRECLAIMABLE_B);
250 }
251 
252 /*
253  * We do arithmetic on the LRU lists in various places in the code,
254  * so it is important to keep the active lists LRU_ACTIVE higher in
255  * the array than the corresponding inactive lists, and to keep
256  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
257  *
258  * This has to be kept in sync with the statistics in zone_stat_item
259  * above and the descriptions in vmstat_text in mm/vmstat.c
260  */
261 #define LRU_BASE 0
262 #define LRU_ACTIVE 1
263 #define LRU_FILE 2
264 
265 enum lru_list {
266 	LRU_INACTIVE_ANON = LRU_BASE,
267 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
268 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
269 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
270 	LRU_UNEVICTABLE,
271 	NR_LRU_LISTS
272 };
273 
274 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
275 
276 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
277 
278 static inline bool is_file_lru(enum lru_list lru)
279 {
280 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
281 }
282 
283 static inline bool is_active_lru(enum lru_list lru)
284 {
285 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
286 }
287 
288 #define ANON_AND_FILE 2
289 
290 enum lruvec_flags {
291 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
292 					 * backed by a congested BDI
293 					 */
294 };
295 
296 struct lruvec {
297 	struct list_head		lists[NR_LRU_LISTS];
298 	/* per lruvec lru_lock for memcg */
299 	spinlock_t			lru_lock;
300 	/*
301 	 * These track the cost of reclaiming one LRU - file or anon -
302 	 * over the other. As the observed cost of reclaiming one LRU
303 	 * increases, the reclaim scan balance tips toward the other.
304 	 */
305 	unsigned long			anon_cost;
306 	unsigned long			file_cost;
307 	/* Non-resident age, driven by LRU movement */
308 	atomic_long_t			nonresident_age;
309 	/* Refaults at the time of last reclaim cycle */
310 	unsigned long			refaults[ANON_AND_FILE];
311 	/* Various lruvec state flags (enum lruvec_flags) */
312 	unsigned long			flags;
313 #ifdef CONFIG_MEMCG
314 	struct pglist_data *pgdat;
315 #endif
316 };
317 
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
324 
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327 
328 enum zone_watermarks {
329 	WMARK_MIN,
330 	WMARK_LOW,
331 	WMARK_HIGH,
332 	NR_WMARK
333 };
334 
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339 
340 struct per_cpu_pages {
341 	int count;		/* number of pages in the list */
342 	int high;		/* high watermark, emptying needed */
343 	int batch;		/* chunk size for buddy add/remove */
344 
345 	/* Lists of pages, one per migrate type stored on the pcp-lists */
346 	struct list_head lists[MIGRATE_PCPTYPES];
347 };
348 
349 struct per_cpu_pageset {
350 	struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352 	s8 expire;
353 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356 	s8 stat_threshold;
357 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360 
361 struct per_cpu_nodestat {
362 	s8 stat_threshold;
363 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365 
366 #endif /* !__GENERATING_BOUNDS.H */
367 
368 enum zone_type {
369 	/*
370 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 	 * On architectures where this area covers the whole 32 bit address
373 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 	 * DMA addressing constraints. This distinction is important as a 32bit
375 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 	 * platforms may need both zones as they support peripherals with
377 	 * different DMA addressing limitations.
378 	 */
379 #ifdef CONFIG_ZONE_DMA
380 	ZONE_DMA,
381 #endif
382 #ifdef CONFIG_ZONE_DMA32
383 	ZONE_DMA32,
384 #endif
385 	/*
386 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
387 	 * performed on pages in ZONE_NORMAL if the DMA devices support
388 	 * transfers to all addressable memory.
389 	 */
390 	ZONE_NORMAL,
391 #ifdef CONFIG_HIGHMEM
392 	/*
393 	 * A memory area that is only addressable by the kernel through
394 	 * mapping portions into its own address space. This is for example
395 	 * used by i386 to allow the kernel to address the memory beyond
396 	 * 900MB. The kernel will set up special mappings (page
397 	 * table entries on i386) for each page that the kernel needs to
398 	 * access.
399 	 */
400 	ZONE_HIGHMEM,
401 #endif
402 	/*
403 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
404 	 * movable pages with few exceptional cases described below. Main use
405 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
406 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
407 	 * to increase the number of THP/huge pages. Notable special cases are:
408 	 *
409 	 * 1. Pinned pages: (long-term) pinning of movable pages might
410 	 *    essentially turn such pages unmovable. Memory offlining might
411 	 *    retry a long time.
412 	 * 2. memblock allocations: kernelcore/movablecore setups might create
413 	 *    situations where ZONE_MOVABLE contains unmovable allocations
414 	 *    after boot. Memory offlining and allocations fail early.
415 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
416 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
417 	 *    for example, if we have sections that are only partially
418 	 *    populated. Memory offlining and allocations fail early.
419 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
420 	 *    memory offlining, such pages cannot be allocated.
421 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
422 	 *    hotplugged memory blocks might only partially be managed by the
423 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
424 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
425 	 *    some cases (virtio-mem), such pages can be skipped during
426 	 *    memory offlining, however, cannot be moved/allocated. These
427 	 *    techniques might use alloc_contig_range() to hide previously
428 	 *    exposed pages from the buddy again (e.g., to implement some sort
429 	 *    of memory unplug in virtio-mem).
430 	 *
431 	 * In general, no unmovable allocations that degrade memory offlining
432 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
433 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
434 	 * if has_unmovable_pages() states that there are no unmovable pages,
435 	 * there can be false negatives).
436 	 */
437 	ZONE_MOVABLE,
438 #ifdef CONFIG_ZONE_DEVICE
439 	ZONE_DEVICE,
440 #endif
441 	__MAX_NR_ZONES
442 
443 };
444 
445 #ifndef __GENERATING_BOUNDS_H
446 
447 #define ASYNC_AND_SYNC 2
448 
449 struct zone {
450 	/* Read-mostly fields */
451 
452 	/* zone watermarks, access with *_wmark_pages(zone) macros */
453 	unsigned long _watermark[NR_WMARK];
454 	unsigned long watermark_boost;
455 
456 	unsigned long nr_reserved_highatomic;
457 
458 	/*
459 	 * We don't know if the memory that we're going to allocate will be
460 	 * freeable or/and it will be released eventually, so to avoid totally
461 	 * wasting several GB of ram we must reserve some of the lower zone
462 	 * memory (otherwise we risk to run OOM on the lower zones despite
463 	 * there being tons of freeable ram on the higher zones).  This array is
464 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
465 	 * changes.
466 	 */
467 	long lowmem_reserve[MAX_NR_ZONES];
468 
469 #ifdef CONFIG_NUMA
470 	int node;
471 #endif
472 	struct pglist_data	*zone_pgdat;
473 	struct per_cpu_pageset __percpu *pageset;
474 	/*
475 	 * the high and batch values are copied to individual pagesets for
476 	 * faster access
477 	 */
478 	int pageset_high;
479 	int pageset_batch;
480 
481 #ifndef CONFIG_SPARSEMEM
482 	/*
483 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
484 	 * In SPARSEMEM, this map is stored in struct mem_section
485 	 */
486 	unsigned long		*pageblock_flags;
487 #endif /* CONFIG_SPARSEMEM */
488 
489 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
490 	unsigned long		zone_start_pfn;
491 
492 	/*
493 	 * spanned_pages is the total pages spanned by the zone, including
494 	 * holes, which is calculated as:
495 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
496 	 *
497 	 * present_pages is physical pages existing within the zone, which
498 	 * is calculated as:
499 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
500 	 *
501 	 * managed_pages is present pages managed by the buddy system, which
502 	 * is calculated as (reserved_pages includes pages allocated by the
503 	 * bootmem allocator):
504 	 *	managed_pages = present_pages - reserved_pages;
505 	 *
506 	 * cma pages is present pages that are assigned for CMA use
507 	 * (MIGRATE_CMA).
508 	 *
509 	 * So present_pages may be used by memory hotplug or memory power
510 	 * management logic to figure out unmanaged pages by checking
511 	 * (present_pages - managed_pages). And managed_pages should be used
512 	 * by page allocator and vm scanner to calculate all kinds of watermarks
513 	 * and thresholds.
514 	 *
515 	 * Locking rules:
516 	 *
517 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
518 	 * It is a seqlock because it has to be read outside of zone->lock,
519 	 * and it is done in the main allocator path.  But, it is written
520 	 * quite infrequently.
521 	 *
522 	 * The span_seq lock is declared along with zone->lock because it is
523 	 * frequently read in proximity to zone->lock.  It's good to
524 	 * give them a chance of being in the same cacheline.
525 	 *
526 	 * Write access to present_pages at runtime should be protected by
527 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
528 	 * present_pages should get_online_mems() to get a stable value.
529 	 */
530 	atomic_long_t		managed_pages;
531 	unsigned long		spanned_pages;
532 	unsigned long		present_pages;
533 #ifdef CONFIG_CMA
534 	unsigned long		cma_pages;
535 #endif
536 
537 	const char		*name;
538 
539 #ifdef CONFIG_MEMORY_ISOLATION
540 	/*
541 	 * Number of isolated pageblock. It is used to solve incorrect
542 	 * freepage counting problem due to racy retrieving migratetype
543 	 * of pageblock. Protected by zone->lock.
544 	 */
545 	unsigned long		nr_isolate_pageblock;
546 #endif
547 
548 #ifdef CONFIG_MEMORY_HOTPLUG
549 	/* see spanned/present_pages for more description */
550 	seqlock_t		span_seqlock;
551 #endif
552 
553 	int initialized;
554 
555 	/* Write-intensive fields used from the page allocator */
556 	ZONE_PADDING(_pad1_)
557 
558 	/* free areas of different sizes */
559 	struct free_area	free_area[MAX_ORDER];
560 
561 	/* zone flags, see below */
562 	unsigned long		flags;
563 
564 	/* Primarily protects free_area */
565 	spinlock_t		lock;
566 
567 	/* Write-intensive fields used by compaction and vmstats. */
568 	ZONE_PADDING(_pad2_)
569 
570 	/*
571 	 * When free pages are below this point, additional steps are taken
572 	 * when reading the number of free pages to avoid per-cpu counter
573 	 * drift allowing watermarks to be breached
574 	 */
575 	unsigned long percpu_drift_mark;
576 
577 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
578 	/* pfn where compaction free scanner should start */
579 	unsigned long		compact_cached_free_pfn;
580 	/* pfn where compaction migration scanner should start */
581 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
582 	unsigned long		compact_init_migrate_pfn;
583 	unsigned long		compact_init_free_pfn;
584 #endif
585 
586 #ifdef CONFIG_COMPACTION
587 	/*
588 	 * On compaction failure, 1<<compact_defer_shift compactions
589 	 * are skipped before trying again. The number attempted since
590 	 * last failure is tracked with compact_considered.
591 	 * compact_order_failed is the minimum compaction failed order.
592 	 */
593 	unsigned int		compact_considered;
594 	unsigned int		compact_defer_shift;
595 	int			compact_order_failed;
596 #endif
597 
598 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
599 	/* Set to true when the PG_migrate_skip bits should be cleared */
600 	bool			compact_blockskip_flush;
601 #endif
602 
603 	bool			contiguous;
604 
605 	ZONE_PADDING(_pad3_)
606 	/* Zone statistics */
607 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
608 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
609 } ____cacheline_internodealigned_in_smp;
610 
611 enum pgdat_flags {
612 	PGDAT_DIRTY,			/* reclaim scanning has recently found
613 					 * many dirty file pages at the tail
614 					 * of the LRU.
615 					 */
616 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
617 					 * many pages under writeback
618 					 */
619 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
620 };
621 
622 enum zone_flags {
623 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
624 					 * Cleared when kswapd is woken.
625 					 */
626 };
627 
628 static inline unsigned long zone_managed_pages(struct zone *zone)
629 {
630 	return (unsigned long)atomic_long_read(&zone->managed_pages);
631 }
632 
633 static inline unsigned long zone_cma_pages(struct zone *zone)
634 {
635 #ifdef CONFIG_CMA
636 	return zone->cma_pages;
637 #else
638 	return 0;
639 #endif
640 }
641 
642 static inline unsigned long zone_end_pfn(const struct zone *zone)
643 {
644 	return zone->zone_start_pfn + zone->spanned_pages;
645 }
646 
647 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
648 {
649 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
650 }
651 
652 static inline bool zone_is_initialized(struct zone *zone)
653 {
654 	return zone->initialized;
655 }
656 
657 static inline bool zone_is_empty(struct zone *zone)
658 {
659 	return zone->spanned_pages == 0;
660 }
661 
662 /*
663  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
664  * intersection with the given zone
665  */
666 static inline bool zone_intersects(struct zone *zone,
667 		unsigned long start_pfn, unsigned long nr_pages)
668 {
669 	if (zone_is_empty(zone))
670 		return false;
671 	if (start_pfn >= zone_end_pfn(zone) ||
672 	    start_pfn + nr_pages <= zone->zone_start_pfn)
673 		return false;
674 
675 	return true;
676 }
677 
678 /*
679  * The "priority" of VM scanning is how much of the queues we will scan in one
680  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
681  * queues ("queue_length >> 12") during an aging round.
682  */
683 #define DEF_PRIORITY 12
684 
685 /* Maximum number of zones on a zonelist */
686 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
687 
688 enum {
689 	ZONELIST_FALLBACK,	/* zonelist with fallback */
690 #ifdef CONFIG_NUMA
691 	/*
692 	 * The NUMA zonelists are doubled because we need zonelists that
693 	 * restrict the allocations to a single node for __GFP_THISNODE.
694 	 */
695 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
696 #endif
697 	MAX_ZONELISTS
698 };
699 
700 /*
701  * This struct contains information about a zone in a zonelist. It is stored
702  * here to avoid dereferences into large structures and lookups of tables
703  */
704 struct zoneref {
705 	struct zone *zone;	/* Pointer to actual zone */
706 	int zone_idx;		/* zone_idx(zoneref->zone) */
707 };
708 
709 /*
710  * One allocation request operates on a zonelist. A zonelist
711  * is a list of zones, the first one is the 'goal' of the
712  * allocation, the other zones are fallback zones, in decreasing
713  * priority.
714  *
715  * To speed the reading of the zonelist, the zonerefs contain the zone index
716  * of the entry being read. Helper functions to access information given
717  * a struct zoneref are
718  *
719  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
720  * zonelist_zone_idx()	- Return the index of the zone for an entry
721  * zonelist_node_idx()	- Return the index of the node for an entry
722  */
723 struct zonelist {
724 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
725 };
726 
727 #ifndef CONFIG_DISCONTIGMEM
728 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
729 extern struct page *mem_map;
730 #endif
731 
732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
733 struct deferred_split {
734 	spinlock_t split_queue_lock;
735 	struct list_head split_queue;
736 	unsigned long split_queue_len;
737 };
738 #endif
739 
740 /*
741  * On NUMA machines, each NUMA node would have a pg_data_t to describe
742  * it's memory layout. On UMA machines there is a single pglist_data which
743  * describes the whole memory.
744  *
745  * Memory statistics and page replacement data structures are maintained on a
746  * per-zone basis.
747  */
748 typedef struct pglist_data {
749 	/*
750 	 * node_zones contains just the zones for THIS node. Not all of the
751 	 * zones may be populated, but it is the full list. It is referenced by
752 	 * this node's node_zonelists as well as other node's node_zonelists.
753 	 */
754 	struct zone node_zones[MAX_NR_ZONES];
755 
756 	/*
757 	 * node_zonelists contains references to all zones in all nodes.
758 	 * Generally the first zones will be references to this node's
759 	 * node_zones.
760 	 */
761 	struct zonelist node_zonelists[MAX_ZONELISTS];
762 
763 	int nr_zones; /* number of populated zones in this node */
764 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
765 	struct page *node_mem_map;
766 #ifdef CONFIG_PAGE_EXTENSION
767 	struct page_ext *node_page_ext;
768 #endif
769 #endif
770 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
771 	/*
772 	 * Must be held any time you expect node_start_pfn,
773 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
774 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
775 	 * init.
776 	 *
777 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
778 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
779 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
780 	 *
781 	 * Nests above zone->lock and zone->span_seqlock
782 	 */
783 	spinlock_t node_size_lock;
784 #endif
785 	unsigned long node_start_pfn;
786 	unsigned long node_present_pages; /* total number of physical pages */
787 	unsigned long node_spanned_pages; /* total size of physical page
788 					     range, including holes */
789 	int node_id;
790 	wait_queue_head_t kswapd_wait;
791 	wait_queue_head_t pfmemalloc_wait;
792 	struct task_struct *kswapd;	/* Protected by
793 					   mem_hotplug_begin/end() */
794 	int kswapd_order;
795 	enum zone_type kswapd_highest_zoneidx;
796 
797 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
798 
799 #ifdef CONFIG_COMPACTION
800 	int kcompactd_max_order;
801 	enum zone_type kcompactd_highest_zoneidx;
802 	wait_queue_head_t kcompactd_wait;
803 	struct task_struct *kcompactd;
804 #endif
805 	/*
806 	 * This is a per-node reserve of pages that are not available
807 	 * to userspace allocations.
808 	 */
809 	unsigned long		totalreserve_pages;
810 
811 #ifdef CONFIG_NUMA
812 	/*
813 	 * node reclaim becomes active if more unmapped pages exist.
814 	 */
815 	unsigned long		min_unmapped_pages;
816 	unsigned long		min_slab_pages;
817 #endif /* CONFIG_NUMA */
818 
819 	/* Write-intensive fields used by page reclaim */
820 	ZONE_PADDING(_pad1_)
821 
822 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
823 	/*
824 	 * If memory initialisation on large machines is deferred then this
825 	 * is the first PFN that needs to be initialised.
826 	 */
827 	unsigned long first_deferred_pfn;
828 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
829 
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
831 	struct deferred_split deferred_split_queue;
832 #endif
833 
834 	/* Fields commonly accessed by the page reclaim scanner */
835 
836 	/*
837 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
838 	 *
839 	 * Use mem_cgroup_lruvec() to look up lruvecs.
840 	 */
841 	struct lruvec		__lruvec;
842 
843 	unsigned long		flags;
844 
845 	ZONE_PADDING(_pad2_)
846 
847 	/* Per-node vmstats */
848 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
849 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
850 } pg_data_t;
851 
852 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
853 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
854 #ifdef CONFIG_FLAT_NODE_MEM_MAP
855 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
856 #else
857 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
858 #endif
859 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
860 
861 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
862 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
863 
864 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
865 {
866 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
867 }
868 
869 static inline bool pgdat_is_empty(pg_data_t *pgdat)
870 {
871 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
872 }
873 
874 #include <linux/memory_hotplug.h>
875 
876 void build_all_zonelists(pg_data_t *pgdat);
877 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
878 		   enum zone_type highest_zoneidx);
879 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
880 			 int highest_zoneidx, unsigned int alloc_flags,
881 			 long free_pages);
882 bool zone_watermark_ok(struct zone *z, unsigned int order,
883 		unsigned long mark, int highest_zoneidx,
884 		unsigned int alloc_flags);
885 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
886 		unsigned long mark, int highest_zoneidx);
887 /*
888  * Memory initialization context, use to differentiate memory added by
889  * the platform statically or via memory hotplug interface.
890  */
891 enum meminit_context {
892 	MEMINIT_EARLY,
893 	MEMINIT_HOTPLUG,
894 };
895 
896 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
897 				     unsigned long size);
898 
899 extern void lruvec_init(struct lruvec *lruvec);
900 
901 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
902 {
903 #ifdef CONFIG_MEMCG
904 	return lruvec->pgdat;
905 #else
906 	return container_of(lruvec, struct pglist_data, __lruvec);
907 #endif
908 }
909 
910 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
911 int local_memory_node(int node_id);
912 #else
913 static inline int local_memory_node(int node_id) { return node_id; };
914 #endif
915 
916 /*
917  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
918  */
919 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
920 
921 #ifdef CONFIG_ZONE_DEVICE
922 static inline bool zone_is_zone_device(struct zone *zone)
923 {
924 	return zone_idx(zone) == ZONE_DEVICE;
925 }
926 #else
927 static inline bool zone_is_zone_device(struct zone *zone)
928 {
929 	return false;
930 }
931 #endif
932 
933 /*
934  * Returns true if a zone has pages managed by the buddy allocator.
935  * All the reclaim decisions have to use this function rather than
936  * populated_zone(). If the whole zone is reserved then we can easily
937  * end up with populated_zone() && !managed_zone().
938  */
939 static inline bool managed_zone(struct zone *zone)
940 {
941 	return zone_managed_pages(zone);
942 }
943 
944 /* Returns true if a zone has memory */
945 static inline bool populated_zone(struct zone *zone)
946 {
947 	return zone->present_pages;
948 }
949 
950 #ifdef CONFIG_NUMA
951 static inline int zone_to_nid(struct zone *zone)
952 {
953 	return zone->node;
954 }
955 
956 static inline void zone_set_nid(struct zone *zone, int nid)
957 {
958 	zone->node = nid;
959 }
960 #else
961 static inline int zone_to_nid(struct zone *zone)
962 {
963 	return 0;
964 }
965 
966 static inline void zone_set_nid(struct zone *zone, int nid) {}
967 #endif
968 
969 extern int movable_zone;
970 
971 #ifdef CONFIG_HIGHMEM
972 static inline int zone_movable_is_highmem(void)
973 {
974 #ifdef CONFIG_NEED_MULTIPLE_NODES
975 	return movable_zone == ZONE_HIGHMEM;
976 #else
977 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
978 #endif
979 }
980 #endif
981 
982 static inline int is_highmem_idx(enum zone_type idx)
983 {
984 #ifdef CONFIG_HIGHMEM
985 	return (idx == ZONE_HIGHMEM ||
986 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
987 #else
988 	return 0;
989 #endif
990 }
991 
992 /**
993  * is_highmem - helper function to quickly check if a struct zone is a
994  *              highmem zone or not.  This is an attempt to keep references
995  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
996  * @zone - pointer to struct zone variable
997  */
998 static inline int is_highmem(struct zone *zone)
999 {
1000 #ifdef CONFIG_HIGHMEM
1001 	return is_highmem_idx(zone_idx(zone));
1002 #else
1003 	return 0;
1004 #endif
1005 }
1006 
1007 /* These two functions are used to setup the per zone pages min values */
1008 struct ctl_table;
1009 
1010 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1011 		loff_t *);
1012 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1013 		size_t *, loff_t *);
1014 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1015 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1016 		size_t *, loff_t *);
1017 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1018 		void *, size_t *, loff_t *);
1019 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1020 		void *, size_t *, loff_t *);
1021 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1022 		void *, size_t *, loff_t *);
1023 int numa_zonelist_order_handler(struct ctl_table *, int,
1024 		void *, size_t *, loff_t *);
1025 extern int percpu_pagelist_fraction;
1026 extern char numa_zonelist_order[];
1027 #define NUMA_ZONELIST_ORDER_LEN	16
1028 
1029 #ifndef CONFIG_NEED_MULTIPLE_NODES
1030 
1031 extern struct pglist_data contig_page_data;
1032 #define NODE_DATA(nid)		(&contig_page_data)
1033 #define NODE_MEM_MAP(nid)	mem_map
1034 
1035 #else /* CONFIG_NEED_MULTIPLE_NODES */
1036 
1037 #include <asm/mmzone.h>
1038 
1039 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1040 
1041 extern struct pglist_data *first_online_pgdat(void);
1042 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1043 extern struct zone *next_zone(struct zone *zone);
1044 
1045 /**
1046  * for_each_online_pgdat - helper macro to iterate over all online nodes
1047  * @pgdat - pointer to a pg_data_t variable
1048  */
1049 #define for_each_online_pgdat(pgdat)			\
1050 	for (pgdat = first_online_pgdat();		\
1051 	     pgdat;					\
1052 	     pgdat = next_online_pgdat(pgdat))
1053 /**
1054  * for_each_zone - helper macro to iterate over all memory zones
1055  * @zone - pointer to struct zone variable
1056  *
1057  * The user only needs to declare the zone variable, for_each_zone
1058  * fills it in.
1059  */
1060 #define for_each_zone(zone)			        \
1061 	for (zone = (first_online_pgdat())->node_zones; \
1062 	     zone;					\
1063 	     zone = next_zone(zone))
1064 
1065 #define for_each_populated_zone(zone)		        \
1066 	for (zone = (first_online_pgdat())->node_zones; \
1067 	     zone;					\
1068 	     zone = next_zone(zone))			\
1069 		if (!populated_zone(zone))		\
1070 			; /* do nothing */		\
1071 		else
1072 
1073 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1074 {
1075 	return zoneref->zone;
1076 }
1077 
1078 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1079 {
1080 	return zoneref->zone_idx;
1081 }
1082 
1083 static inline int zonelist_node_idx(struct zoneref *zoneref)
1084 {
1085 	return zone_to_nid(zoneref->zone);
1086 }
1087 
1088 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1089 					enum zone_type highest_zoneidx,
1090 					nodemask_t *nodes);
1091 
1092 /**
1093  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1094  * @z - The cursor used as a starting point for the search
1095  * @highest_zoneidx - The zone index of the highest zone to return
1096  * @nodes - An optional nodemask to filter the zonelist with
1097  *
1098  * This function returns the next zone at or below a given zone index that is
1099  * within the allowed nodemask using a cursor as the starting point for the
1100  * search. The zoneref returned is a cursor that represents the current zone
1101  * being examined. It should be advanced by one before calling
1102  * next_zones_zonelist again.
1103  */
1104 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1105 					enum zone_type highest_zoneidx,
1106 					nodemask_t *nodes)
1107 {
1108 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1109 		return z;
1110 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1111 }
1112 
1113 /**
1114  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1115  * @zonelist - The zonelist to search for a suitable zone
1116  * @highest_zoneidx - The zone index of the highest zone to return
1117  * @nodes - An optional nodemask to filter the zonelist with
1118  * @return - Zoneref pointer for the first suitable zone found (see below)
1119  *
1120  * This function returns the first zone at or below a given zone index that is
1121  * within the allowed nodemask. The zoneref returned is a cursor that can be
1122  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1123  * one before calling.
1124  *
1125  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1126  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1127  * update due to cpuset modification.
1128  */
1129 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1130 					enum zone_type highest_zoneidx,
1131 					nodemask_t *nodes)
1132 {
1133 	return next_zones_zonelist(zonelist->_zonerefs,
1134 							highest_zoneidx, nodes);
1135 }
1136 
1137 /**
1138  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1139  * @zone - The current zone in the iterator
1140  * @z - The current pointer within zonelist->_zonerefs being iterated
1141  * @zlist - The zonelist being iterated
1142  * @highidx - The zone index of the highest zone to return
1143  * @nodemask - Nodemask allowed by the allocator
1144  *
1145  * This iterator iterates though all zones at or below a given zone index and
1146  * within a given nodemask
1147  */
1148 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1149 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1150 		zone;							\
1151 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1152 			zone = zonelist_zone(z))
1153 
1154 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1155 	for (zone = z->zone;	\
1156 		zone;							\
1157 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1158 			zone = zonelist_zone(z))
1159 
1160 
1161 /**
1162  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1163  * @zone - The current zone in the iterator
1164  * @z - The current pointer within zonelist->zones being iterated
1165  * @zlist - The zonelist being iterated
1166  * @highidx - The zone index of the highest zone to return
1167  *
1168  * This iterator iterates though all zones at or below a given zone index.
1169  */
1170 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1171 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1172 
1173 #ifdef CONFIG_SPARSEMEM
1174 #include <asm/sparsemem.h>
1175 #endif
1176 
1177 #ifdef CONFIG_FLATMEM
1178 #define pfn_to_nid(pfn)		(0)
1179 #endif
1180 
1181 #ifdef CONFIG_SPARSEMEM
1182 
1183 /*
1184  * SECTION_SHIFT    		#bits space required to store a section #
1185  *
1186  * PA_SECTION_SHIFT		physical address to/from section number
1187  * PFN_SECTION_SHIFT		pfn to/from section number
1188  */
1189 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1190 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1191 
1192 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1193 
1194 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1195 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1196 
1197 #define SECTION_BLOCKFLAGS_BITS \
1198 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1199 
1200 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1201 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1202 #endif
1203 
1204 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1205 {
1206 	return pfn >> PFN_SECTION_SHIFT;
1207 }
1208 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1209 {
1210 	return sec << PFN_SECTION_SHIFT;
1211 }
1212 
1213 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1214 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1215 
1216 #define SUBSECTION_SHIFT 21
1217 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1218 
1219 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1220 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1221 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1222 
1223 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1224 #error Subsection size exceeds section size
1225 #else
1226 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1227 #endif
1228 
1229 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1230 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1231 
1232 struct mem_section_usage {
1233 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1234 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1235 #endif
1236 	/* See declaration of similar field in struct zone */
1237 	unsigned long pageblock_flags[0];
1238 };
1239 
1240 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1241 
1242 struct page;
1243 struct page_ext;
1244 struct mem_section {
1245 	/*
1246 	 * This is, logically, a pointer to an array of struct
1247 	 * pages.  However, it is stored with some other magic.
1248 	 * (see sparse.c::sparse_init_one_section())
1249 	 *
1250 	 * Additionally during early boot we encode node id of
1251 	 * the location of the section here to guide allocation.
1252 	 * (see sparse.c::memory_present())
1253 	 *
1254 	 * Making it a UL at least makes someone do a cast
1255 	 * before using it wrong.
1256 	 */
1257 	unsigned long section_mem_map;
1258 
1259 	struct mem_section_usage *usage;
1260 #ifdef CONFIG_PAGE_EXTENSION
1261 	/*
1262 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1263 	 * section. (see page_ext.h about this.)
1264 	 */
1265 	struct page_ext *page_ext;
1266 	unsigned long pad;
1267 #endif
1268 	/*
1269 	 * WARNING: mem_section must be a power-of-2 in size for the
1270 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1271 	 */
1272 };
1273 
1274 #ifdef CONFIG_SPARSEMEM_EXTREME
1275 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1276 #else
1277 #define SECTIONS_PER_ROOT	1
1278 #endif
1279 
1280 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1281 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1282 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1283 
1284 #ifdef CONFIG_SPARSEMEM_EXTREME
1285 extern struct mem_section **mem_section;
1286 #else
1287 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1288 #endif
1289 
1290 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1291 {
1292 	return ms->usage->pageblock_flags;
1293 }
1294 
1295 static inline struct mem_section *__nr_to_section(unsigned long nr)
1296 {
1297 #ifdef CONFIG_SPARSEMEM_EXTREME
1298 	if (!mem_section)
1299 		return NULL;
1300 #endif
1301 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1302 		return NULL;
1303 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1304 }
1305 extern unsigned long __section_nr(struct mem_section *ms);
1306 extern size_t mem_section_usage_size(void);
1307 
1308 /*
1309  * We use the lower bits of the mem_map pointer to store
1310  * a little bit of information.  The pointer is calculated
1311  * as mem_map - section_nr_to_pfn(pnum).  The result is
1312  * aligned to the minimum alignment of the two values:
1313  *   1. All mem_map arrays are page-aligned.
1314  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1315  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1316  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1317  *      worst combination is powerpc with 256k pages,
1318  *      which results in PFN_SECTION_SHIFT equal 6.
1319  * To sum it up, at least 6 bits are available.
1320  */
1321 #define SECTION_MARKED_PRESENT		(1UL<<0)
1322 #define SECTION_HAS_MEM_MAP		(1UL<<1)
1323 #define SECTION_IS_ONLINE		(1UL<<2)
1324 #define SECTION_IS_EARLY		(1UL<<3)
1325 #define SECTION_TAINT_ZONE_DEVICE	(1UL<<4)
1326 #define SECTION_MAP_LAST_BIT		(1UL<<5)
1327 #define SECTION_MAP_MASK		(~(SECTION_MAP_LAST_BIT-1))
1328 #define SECTION_NID_SHIFT		3
1329 
1330 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1331 {
1332 	unsigned long map = section->section_mem_map;
1333 	map &= SECTION_MAP_MASK;
1334 	return (struct page *)map;
1335 }
1336 
1337 static inline int present_section(struct mem_section *section)
1338 {
1339 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1340 }
1341 
1342 static inline int present_section_nr(unsigned long nr)
1343 {
1344 	return present_section(__nr_to_section(nr));
1345 }
1346 
1347 static inline int valid_section(struct mem_section *section)
1348 {
1349 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1350 }
1351 
1352 static inline int early_section(struct mem_section *section)
1353 {
1354 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1355 }
1356 
1357 static inline int valid_section_nr(unsigned long nr)
1358 {
1359 	return valid_section(__nr_to_section(nr));
1360 }
1361 
1362 static inline int online_section(struct mem_section *section)
1363 {
1364 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1365 }
1366 
1367 static inline int online_device_section(struct mem_section *section)
1368 {
1369 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1370 
1371 	return section && ((section->section_mem_map & flags) == flags);
1372 }
1373 
1374 static inline int online_section_nr(unsigned long nr)
1375 {
1376 	return online_section(__nr_to_section(nr));
1377 }
1378 
1379 #ifdef CONFIG_MEMORY_HOTPLUG
1380 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1381 #ifdef CONFIG_MEMORY_HOTREMOVE
1382 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1383 #endif
1384 #endif
1385 
1386 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1387 {
1388 	return __nr_to_section(pfn_to_section_nr(pfn));
1389 }
1390 
1391 extern unsigned long __highest_present_section_nr;
1392 
1393 static inline int subsection_map_index(unsigned long pfn)
1394 {
1395 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1396 }
1397 
1398 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1399 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1400 {
1401 	int idx = subsection_map_index(pfn);
1402 
1403 	return test_bit(idx, ms->usage->subsection_map);
1404 }
1405 #else
1406 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1407 {
1408 	return 1;
1409 }
1410 #endif
1411 
1412 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1413 static inline int pfn_valid(unsigned long pfn)
1414 {
1415 	struct mem_section *ms;
1416 
1417 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1418 		return 0;
1419 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1420 	if (!valid_section(ms))
1421 		return 0;
1422 	/*
1423 	 * Traditionally early sections always returned pfn_valid() for
1424 	 * the entire section-sized span.
1425 	 */
1426 	return early_section(ms) || pfn_section_valid(ms, pfn);
1427 }
1428 #endif
1429 
1430 static inline int pfn_in_present_section(unsigned long pfn)
1431 {
1432 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1433 		return 0;
1434 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1435 }
1436 
1437 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1438 {
1439 	while (++section_nr <= __highest_present_section_nr) {
1440 		if (present_section_nr(section_nr))
1441 			return section_nr;
1442 	}
1443 
1444 	return -1;
1445 }
1446 
1447 /*
1448  * These are _only_ used during initialisation, therefore they
1449  * can use __initdata ...  They could have names to indicate
1450  * this restriction.
1451  */
1452 #ifdef CONFIG_NUMA
1453 #define pfn_to_nid(pfn)							\
1454 ({									\
1455 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1456 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1457 })
1458 #else
1459 #define pfn_to_nid(pfn)		(0)
1460 #endif
1461 
1462 void sparse_init(void);
1463 #else
1464 #define sparse_init()	do {} while (0)
1465 #define sparse_index_init(_sec, _nid)  do {} while (0)
1466 #define pfn_in_present_section pfn_valid
1467 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1468 #endif /* CONFIG_SPARSEMEM */
1469 
1470 /*
1471  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1472  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1473  * pfn_valid_within() should be used in this case; we optimise this away
1474  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1475  */
1476 #ifdef CONFIG_HOLES_IN_ZONE
1477 #define pfn_valid_within(pfn) pfn_valid(pfn)
1478 #else
1479 #define pfn_valid_within(pfn) (1)
1480 #endif
1481 
1482 #endif /* !__GENERATING_BOUNDS.H */
1483 #endif /* !__ASSEMBLY__ */
1484 #endif /* _LINUX_MMZONE_H */
1485