1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <asm/page.h> 26 27 /* Free memory management - zoned buddy allocator. */ 28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29 #define MAX_ORDER 10 30 #else 31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32 #endif 33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER) 34 35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 36 37 /* 38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 39 * costly to service. That is between allocation orders which should 40 * coalesce naturally under reasonable reclaim pressure and those which 41 * will not. 42 */ 43 #define PAGE_ALLOC_COSTLY_ORDER 3 44 45 enum migratetype { 46 MIGRATE_UNMOVABLE, 47 MIGRATE_MOVABLE, 48 MIGRATE_RECLAIMABLE, 49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 51 #ifdef CONFIG_CMA 52 /* 53 * MIGRATE_CMA migration type is designed to mimic the way 54 * ZONE_MOVABLE works. Only movable pages can be allocated 55 * from MIGRATE_CMA pageblocks and page allocator never 56 * implicitly change migration type of MIGRATE_CMA pageblock. 57 * 58 * The way to use it is to change migratetype of a range of 59 * pageblocks to MIGRATE_CMA which can be done by 60 * __free_pageblock_cma() function. 61 */ 62 MIGRATE_CMA, 63 #endif 64 #ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66 #endif 67 MIGRATE_TYPES 68 }; 69 70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71 extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73 #ifdef CONFIG_CMA 74 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76 #else 77 # define is_migrate_cma(migratetype) false 78 # define is_migrate_cma_page(_page) false 79 #endif 80 81 static inline bool is_migrate_movable(int mt) 82 { 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84 } 85 86 /* 87 * Check whether a migratetype can be merged with another migratetype. 88 * 89 * It is only mergeable when it can fall back to other migratetypes for 90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 91 */ 92 static inline bool migratetype_is_mergeable(int mt) 93 { 94 return mt < MIGRATE_PCPTYPES; 95 } 96 97 #define for_each_migratetype_order(order, type) \ 98 for (order = 0; order <= MAX_ORDER; order++) \ 99 for (type = 0; type < MIGRATE_TYPES; type++) 100 101 extern int page_group_by_mobility_disabled; 102 103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 104 105 #define get_pageblock_migratetype(page) \ 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 107 108 #define folio_migratetype(folio) \ 109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 110 MIGRATETYPE_MASK) 111 struct free_area { 112 struct list_head free_list[MIGRATE_TYPES]; 113 unsigned long nr_free; 114 }; 115 116 struct pglist_data; 117 118 #ifdef CONFIG_NUMA 119 enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_EVENT_ITEMS 127 }; 128 #else 129 #define NR_VM_NUMA_EVENT_ITEMS 0 130 #endif 131 132 enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 /* Second 128 byte cacheline */ 144 NR_BOUNCE, 145 #if IS_ENABLED(CONFIG_ZSMALLOC) 146 NR_ZSPAGES, /* allocated in zsmalloc */ 147 #endif 148 NR_FREE_CMA_PAGES, 149 #ifdef CONFIG_UNACCEPTED_MEMORY 150 NR_UNACCEPTED, 151 #endif 152 NR_VM_ZONE_STAT_ITEMS }; 153 154 enum node_stat_item { 155 NR_LRU_BASE, 156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 157 NR_ACTIVE_ANON, /* " " " " " */ 158 NR_INACTIVE_FILE, /* " " " " " */ 159 NR_ACTIVE_FILE, /* " " " " " */ 160 NR_UNEVICTABLE, /* " " " " " */ 161 NR_SLAB_RECLAIMABLE_B, 162 NR_SLAB_UNRECLAIMABLE_B, 163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 165 WORKINGSET_NODES, 166 WORKINGSET_REFAULT_BASE, 167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 168 WORKINGSET_REFAULT_FILE, 169 WORKINGSET_ACTIVATE_BASE, 170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 171 WORKINGSET_ACTIVATE_FILE, 172 WORKINGSET_RESTORE_BASE, 173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 174 WORKINGSET_RESTORE_FILE, 175 WORKINGSET_NODERECLAIM, 176 NR_ANON_MAPPED, /* Mapped anonymous pages */ 177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 178 only modified from process context */ 179 NR_FILE_PAGES, 180 NR_FILE_DIRTY, 181 NR_WRITEBACK, 182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 184 NR_SHMEM_THPS, 185 NR_SHMEM_PMDMAPPED, 186 NR_FILE_THPS, 187 NR_FILE_PMDMAPPED, 188 NR_ANON_THPS, 189 NR_VMSCAN_WRITE, 190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 191 NR_DIRTIED, /* page dirtyings since bootup */ 192 NR_WRITTEN, /* page writings since bootup */ 193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 197 NR_KERNEL_STACK_KB, /* measured in KiB */ 198 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 199 NR_KERNEL_SCS_KB, /* measured in KiB */ 200 #endif 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 203 #ifdef CONFIG_SWAP 204 NR_SWAPCACHE, 205 #endif 206 #ifdef CONFIG_NUMA_BALANCING 207 PGPROMOTE_SUCCESS, /* promote successfully */ 208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 209 #endif 210 NR_VM_NODE_STAT_ITEMS 211 }; 212 213 /* 214 * Returns true if the item should be printed in THPs (/proc/vmstat 215 * currently prints number of anon, file and shmem THPs. But the item 216 * is charged in pages). 217 */ 218 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 219 { 220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 221 return false; 222 223 return item == NR_ANON_THPS || 224 item == NR_FILE_THPS || 225 item == NR_SHMEM_THPS || 226 item == NR_SHMEM_PMDMAPPED || 227 item == NR_FILE_PMDMAPPED; 228 } 229 230 /* 231 * Returns true if the value is measured in bytes (most vmstat values are 232 * measured in pages). This defines the API part, the internal representation 233 * might be different. 234 */ 235 static __always_inline bool vmstat_item_in_bytes(int idx) 236 { 237 /* 238 * Global and per-node slab counters track slab pages. 239 * It's expected that changes are multiples of PAGE_SIZE. 240 * Internally values are stored in pages. 241 * 242 * Per-memcg and per-lruvec counters track memory, consumed 243 * by individual slab objects. These counters are actually 244 * byte-precise. 245 */ 246 return (idx == NR_SLAB_RECLAIMABLE_B || 247 idx == NR_SLAB_UNRECLAIMABLE_B); 248 } 249 250 /* 251 * We do arithmetic on the LRU lists in various places in the code, 252 * so it is important to keep the active lists LRU_ACTIVE higher in 253 * the array than the corresponding inactive lists, and to keep 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 255 * 256 * This has to be kept in sync with the statistics in zone_stat_item 257 * above and the descriptions in vmstat_text in mm/vmstat.c 258 */ 259 #define LRU_BASE 0 260 #define LRU_ACTIVE 1 261 #define LRU_FILE 2 262 263 enum lru_list { 264 LRU_INACTIVE_ANON = LRU_BASE, 265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 268 LRU_UNEVICTABLE, 269 NR_LRU_LISTS 270 }; 271 272 enum vmscan_throttle_state { 273 VMSCAN_THROTTLE_WRITEBACK, 274 VMSCAN_THROTTLE_ISOLATED, 275 VMSCAN_THROTTLE_NOPROGRESS, 276 VMSCAN_THROTTLE_CONGESTED, 277 NR_VMSCAN_THROTTLE, 278 }; 279 280 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 281 282 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 283 284 static inline bool is_file_lru(enum lru_list lru) 285 { 286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 287 } 288 289 static inline bool is_active_lru(enum lru_list lru) 290 { 291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 292 } 293 294 #define WORKINGSET_ANON 0 295 #define WORKINGSET_FILE 1 296 #define ANON_AND_FILE 2 297 298 enum lruvec_flags { 299 /* 300 * An lruvec has many dirty pages backed by a congested BDI: 301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 302 * It can be cleared by cgroup reclaim or kswapd. 303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 304 * It can only be cleared by kswapd. 305 * 306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 307 * reclaim, but not vice versa. This only applies to the root cgroup. 308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 310 * by kswapd). 311 */ 312 LRUVEC_CGROUP_CONGESTED, 313 LRUVEC_NODE_CONGESTED, 314 }; 315 316 #endif /* !__GENERATING_BOUNDS_H */ 317 318 /* 319 * Evictable pages are divided into multiple generations. The youngest and the 320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 323 * corresponding generation. The gen counter in folio->flags stores gen+1 while 324 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 325 * 326 * A page is added to the youngest generation on faulting. The aging needs to 327 * check the accessed bit at least twice before handing this page over to the 328 * eviction. The first check takes care of the accessed bit set on the initial 329 * fault; the second check makes sure this page hasn't been used since then. 330 * This process, AKA second chance, requires a minimum of two generations, 331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 333 * rest of generations, if they exist, are considered inactive. See 334 * lru_gen_is_active(). 335 * 336 * PG_active is always cleared while a page is on one of lrugen->folios[] so 337 * that the aging needs not to worry about it. And it's set again when a page 338 * considered active is isolated for non-reclaiming purposes, e.g., migration. 339 * See lru_gen_add_folio() and lru_gen_del_folio(). 340 * 341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 342 * number of categories of the active/inactive LRU when keeping track of 343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 344 * in folio->flags. 345 */ 346 #define MIN_NR_GENS 2U 347 #define MAX_NR_GENS 4U 348 349 /* 350 * Each generation is divided into multiple tiers. A page accessed N times 351 * through file descriptors is in tier order_base_2(N). A page in the first tier 352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 353 * tables or read ahead. A page in any other tier (N>1) is marked by 354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 355 * supported without using additional bits in folio->flags. 356 * 357 * In contrast to moving across generations which requires the LRU lock, moving 358 * across tiers only involves atomic operations on folio->flags and therefore 359 * has a negligible cost in the buffered access path. In the eviction path, 360 * comparisons of refaulted/(evicted+protected) from the first tier and the 361 * rest infer whether pages accessed multiple times through file descriptors 362 * are statistically hot and thus worth protecting. 363 * 364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 365 * number of categories of the active/inactive LRU when keeping track of 366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 367 * folio->flags. 368 */ 369 #define MAX_NR_TIERS 4U 370 371 #ifndef __GENERATING_BOUNDS_H 372 373 struct lruvec; 374 struct page_vma_mapped_walk; 375 376 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 377 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 378 379 #ifdef CONFIG_LRU_GEN 380 381 enum { 382 LRU_GEN_ANON, 383 LRU_GEN_FILE, 384 }; 385 386 enum { 387 LRU_GEN_CORE, 388 LRU_GEN_MM_WALK, 389 LRU_GEN_NONLEAF_YOUNG, 390 NR_LRU_GEN_CAPS 391 }; 392 393 #define MIN_LRU_BATCH BITS_PER_LONG 394 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 395 396 /* whether to keep historical stats from evicted generations */ 397 #ifdef CONFIG_LRU_GEN_STATS 398 #define NR_HIST_GENS MAX_NR_GENS 399 #else 400 #define NR_HIST_GENS 1U 401 #endif 402 403 /* 404 * The youngest generation number is stored in max_seq for both anon and file 405 * types as they are aged on an equal footing. The oldest generation numbers are 406 * stored in min_seq[] separately for anon and file types as clean file pages 407 * can be evicted regardless of swap constraints. 408 * 409 * Normally anon and file min_seq are in sync. But if swapping is constrained, 410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 411 * min_seq behind. 412 * 413 * The number of pages in each generation is eventually consistent and therefore 414 * can be transiently negative when reset_batch_size() is pending. 415 */ 416 struct lru_gen_folio { 417 /* the aging increments the youngest generation number */ 418 unsigned long max_seq; 419 /* the eviction increments the oldest generation numbers */ 420 unsigned long min_seq[ANON_AND_FILE]; 421 /* the birth time of each generation in jiffies */ 422 unsigned long timestamps[MAX_NR_GENS]; 423 /* the multi-gen LRU lists, lazily sorted on eviction */ 424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 425 /* the multi-gen LRU sizes, eventually consistent */ 426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 427 /* the exponential moving average of refaulted */ 428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 429 /* the exponential moving average of evicted+protected */ 430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 431 /* the first tier doesn't need protection, hence the minus one */ 432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 433 /* can be modified without holding the LRU lock */ 434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 436 /* whether the multi-gen LRU is enabled */ 437 bool enabled; 438 #ifdef CONFIG_MEMCG 439 /* the memcg generation this lru_gen_folio belongs to */ 440 u8 gen; 441 /* the list segment this lru_gen_folio belongs to */ 442 u8 seg; 443 /* per-node lru_gen_folio list for global reclaim */ 444 struct hlist_nulls_node list; 445 #endif 446 }; 447 448 enum { 449 MM_LEAF_TOTAL, /* total leaf entries */ 450 MM_LEAF_OLD, /* old leaf entries */ 451 MM_LEAF_YOUNG, /* young leaf entries */ 452 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 455 NR_MM_STATS 456 }; 457 458 /* double-buffering Bloom filters */ 459 #define NR_BLOOM_FILTERS 2 460 461 struct lru_gen_mm_state { 462 /* set to max_seq after each iteration */ 463 unsigned long seq; 464 /* where the current iteration continues after */ 465 struct list_head *head; 466 /* where the last iteration ended before */ 467 struct list_head *tail; 468 /* Bloom filters flip after each iteration */ 469 unsigned long *filters[NR_BLOOM_FILTERS]; 470 /* the mm stats for debugging */ 471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 472 }; 473 474 struct lru_gen_mm_walk { 475 /* the lruvec under reclaim */ 476 struct lruvec *lruvec; 477 /* unstable max_seq from lru_gen_folio */ 478 unsigned long max_seq; 479 /* the next address within an mm to scan */ 480 unsigned long next_addr; 481 /* to batch promoted pages */ 482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 483 /* to batch the mm stats */ 484 int mm_stats[NR_MM_STATS]; 485 /* total batched items */ 486 int batched; 487 bool can_swap; 488 bool force_scan; 489 }; 490 491 void lru_gen_init_lruvec(struct lruvec *lruvec); 492 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 493 494 #ifdef CONFIG_MEMCG 495 496 /* 497 * For each node, memcgs are divided into two generations: the old and the 498 * young. For each generation, memcgs are randomly sharded into multiple bins 499 * to improve scalability. For each bin, the hlist_nulls is virtually divided 500 * into three segments: the head, the tail and the default. 501 * 502 * An onlining memcg is added to the tail of a random bin in the old generation. 503 * The eviction starts at the head of a random bin in the old generation. The 504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 505 * the old generation, is incremented when all its bins become empty. 506 * 507 * There are four operations: 508 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 509 * current generation (old or young) and updates its "seg" to "head"; 510 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 511 * current generation (old or young) and updates its "seg" to "tail"; 512 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 513 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 514 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 515 * young generation, updates its "gen" to "young" and resets its "seg" to 516 * "default". 517 * 518 * The events that trigger the above operations are: 519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 520 * 2. The first attempt to reclaim a memcg below low, which triggers 521 * MEMCG_LRU_TAIL; 522 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 523 * threshold, which triggers MEMCG_LRU_TAIL; 524 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 525 * threshold, which triggers MEMCG_LRU_YOUNG; 526 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 528 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 529 * 530 * Notes: 531 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 532 * of their max_seq counters ensures the eventual fairness to all eligible 533 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 534 * 2. There are only two valid generations: old (seq) and young (seq+1). 535 * MEMCG_NR_GENS is set to three so that when reading the generation counter 536 * locklessly, a stale value (seq-1) does not wraparound to young. 537 */ 538 #define MEMCG_NR_GENS 3 539 #define MEMCG_NR_BINS 8 540 541 struct lru_gen_memcg { 542 /* the per-node memcg generation counter */ 543 unsigned long seq; 544 /* each memcg has one lru_gen_folio per node */ 545 unsigned long nr_memcgs[MEMCG_NR_GENS]; 546 /* per-node lru_gen_folio list for global reclaim */ 547 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 548 /* protects the above */ 549 spinlock_t lock; 550 }; 551 552 void lru_gen_init_pgdat(struct pglist_data *pgdat); 553 554 void lru_gen_init_memcg(struct mem_cgroup *memcg); 555 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 556 void lru_gen_online_memcg(struct mem_cgroup *memcg); 557 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 558 void lru_gen_release_memcg(struct mem_cgroup *memcg); 559 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 560 561 #else /* !CONFIG_MEMCG */ 562 563 #define MEMCG_NR_GENS 1 564 565 struct lru_gen_memcg { 566 }; 567 568 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 569 { 570 } 571 572 #endif /* CONFIG_MEMCG */ 573 574 #else /* !CONFIG_LRU_GEN */ 575 576 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 577 { 578 } 579 580 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 581 { 582 } 583 584 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 585 { 586 } 587 588 #ifdef CONFIG_MEMCG 589 590 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 591 { 592 } 593 594 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 595 { 596 } 597 598 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 599 { 600 } 601 602 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 603 { 604 } 605 606 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 607 { 608 } 609 610 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 611 { 612 } 613 614 #endif /* CONFIG_MEMCG */ 615 616 #endif /* CONFIG_LRU_GEN */ 617 618 struct lruvec { 619 struct list_head lists[NR_LRU_LISTS]; 620 /* per lruvec lru_lock for memcg */ 621 spinlock_t lru_lock; 622 /* 623 * These track the cost of reclaiming one LRU - file or anon - 624 * over the other. As the observed cost of reclaiming one LRU 625 * increases, the reclaim scan balance tips toward the other. 626 */ 627 unsigned long anon_cost; 628 unsigned long file_cost; 629 /* Non-resident age, driven by LRU movement */ 630 atomic_long_t nonresident_age; 631 /* Refaults at the time of last reclaim cycle */ 632 unsigned long refaults[ANON_AND_FILE]; 633 /* Various lruvec state flags (enum lruvec_flags) */ 634 unsigned long flags; 635 #ifdef CONFIG_LRU_GEN 636 /* evictable pages divided into generations */ 637 struct lru_gen_folio lrugen; 638 /* to concurrently iterate lru_gen_mm_list */ 639 struct lru_gen_mm_state mm_state; 640 #endif 641 #ifdef CONFIG_MEMCG 642 struct pglist_data *pgdat; 643 #endif 644 }; 645 646 /* Isolate for asynchronous migration */ 647 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 648 /* Isolate unevictable pages */ 649 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 650 651 /* LRU Isolation modes. */ 652 typedef unsigned __bitwise isolate_mode_t; 653 654 enum zone_watermarks { 655 WMARK_MIN, 656 WMARK_LOW, 657 WMARK_HIGH, 658 WMARK_PROMO, 659 NR_WMARK 660 }; 661 662 /* 663 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 664 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 665 * it should not contribute to serious fragmentation causing THP allocation 666 * failures. 667 */ 668 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 669 #define NR_PCP_THP 1 670 #else 671 #define NR_PCP_THP 0 672 #endif 673 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 674 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 675 676 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 677 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 678 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 679 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 680 681 /* 682 * Flags used in pcp->flags field. 683 * 684 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 685 * previous page freeing. To avoid to drain PCP for an accident 686 * high-order page freeing. 687 * 688 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 689 * draining PCP for consecutive high-order pages freeing without 690 * allocation if data cache slice of CPU is large enough. To reduce 691 * zone lock contention and keep cache-hot pages reusing. 692 */ 693 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 694 #define PCPF_FREE_HIGH_BATCH BIT(1) 695 696 struct per_cpu_pages { 697 spinlock_t lock; /* Protects lists field */ 698 int count; /* number of pages in the list */ 699 int high; /* high watermark, emptying needed */ 700 int high_min; /* min high watermark */ 701 int high_max; /* max high watermark */ 702 int batch; /* chunk size for buddy add/remove */ 703 u8 flags; /* protected by pcp->lock */ 704 u8 alloc_factor; /* batch scaling factor during allocate */ 705 #ifdef CONFIG_NUMA 706 u8 expire; /* When 0, remote pagesets are drained */ 707 #endif 708 short free_count; /* consecutive free count */ 709 710 /* Lists of pages, one per migrate type stored on the pcp-lists */ 711 struct list_head lists[NR_PCP_LISTS]; 712 } ____cacheline_aligned_in_smp; 713 714 struct per_cpu_zonestat { 715 #ifdef CONFIG_SMP 716 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 717 s8 stat_threshold; 718 #endif 719 #ifdef CONFIG_NUMA 720 /* 721 * Low priority inaccurate counters that are only folded 722 * on demand. Use a large type to avoid the overhead of 723 * folding during refresh_cpu_vm_stats. 724 */ 725 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 726 #endif 727 }; 728 729 struct per_cpu_nodestat { 730 s8 stat_threshold; 731 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 732 }; 733 734 #endif /* !__GENERATING_BOUNDS.H */ 735 736 enum zone_type { 737 /* 738 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 739 * to DMA to all of the addressable memory (ZONE_NORMAL). 740 * On architectures where this area covers the whole 32 bit address 741 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 742 * DMA addressing constraints. This distinction is important as a 32bit 743 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 744 * platforms may need both zones as they support peripherals with 745 * different DMA addressing limitations. 746 */ 747 #ifdef CONFIG_ZONE_DMA 748 ZONE_DMA, 749 #endif 750 #ifdef CONFIG_ZONE_DMA32 751 ZONE_DMA32, 752 #endif 753 /* 754 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 755 * performed on pages in ZONE_NORMAL if the DMA devices support 756 * transfers to all addressable memory. 757 */ 758 ZONE_NORMAL, 759 #ifdef CONFIG_HIGHMEM 760 /* 761 * A memory area that is only addressable by the kernel through 762 * mapping portions into its own address space. This is for example 763 * used by i386 to allow the kernel to address the memory beyond 764 * 900MB. The kernel will set up special mappings (page 765 * table entries on i386) for each page that the kernel needs to 766 * access. 767 */ 768 ZONE_HIGHMEM, 769 #endif 770 /* 771 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 772 * movable pages with few exceptional cases described below. Main use 773 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 774 * likely to succeed, and to locally limit unmovable allocations - e.g., 775 * to increase the number of THP/huge pages. Notable special cases are: 776 * 777 * 1. Pinned pages: (long-term) pinning of movable pages might 778 * essentially turn such pages unmovable. Therefore, we do not allow 779 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 780 * faulted, they come from the right zone right away. However, it is 781 * still possible that address space already has pages in 782 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 783 * touches that memory before pinning). In such case we migrate them 784 * to a different zone. When migration fails - pinning fails. 785 * 2. memblock allocations: kernelcore/movablecore setups might create 786 * situations where ZONE_MOVABLE contains unmovable allocations 787 * after boot. Memory offlining and allocations fail early. 788 * 3. Memory holes: kernelcore/movablecore setups might create very rare 789 * situations where ZONE_MOVABLE contains memory holes after boot, 790 * for example, if we have sections that are only partially 791 * populated. Memory offlining and allocations fail early. 792 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 793 * memory offlining, such pages cannot be allocated. 794 * 5. Unmovable PG_offline pages: in paravirtualized environments, 795 * hotplugged memory blocks might only partially be managed by the 796 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 797 * parts not manged by the buddy are unmovable PG_offline pages. In 798 * some cases (virtio-mem), such pages can be skipped during 799 * memory offlining, however, cannot be moved/allocated. These 800 * techniques might use alloc_contig_range() to hide previously 801 * exposed pages from the buddy again (e.g., to implement some sort 802 * of memory unplug in virtio-mem). 803 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 804 * situations where ZERO_PAGE(0) which is allocated differently 805 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 806 * cannot be migrated. 807 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 808 * memory to the MOVABLE zone, the vmemmap pages are also placed in 809 * such zone. Such pages cannot be really moved around as they are 810 * self-stored in the range, but they are treated as movable when 811 * the range they describe is about to be offlined. 812 * 813 * In general, no unmovable allocations that degrade memory offlining 814 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 815 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 816 * if has_unmovable_pages() states that there are no unmovable pages, 817 * there can be false negatives). 818 */ 819 ZONE_MOVABLE, 820 #ifdef CONFIG_ZONE_DEVICE 821 ZONE_DEVICE, 822 #endif 823 __MAX_NR_ZONES 824 825 }; 826 827 #ifndef __GENERATING_BOUNDS_H 828 829 #define ASYNC_AND_SYNC 2 830 831 struct zone { 832 /* Read-mostly fields */ 833 834 /* zone watermarks, access with *_wmark_pages(zone) macros */ 835 unsigned long _watermark[NR_WMARK]; 836 unsigned long watermark_boost; 837 838 unsigned long nr_reserved_highatomic; 839 840 /* 841 * We don't know if the memory that we're going to allocate will be 842 * freeable or/and it will be released eventually, so to avoid totally 843 * wasting several GB of ram we must reserve some of the lower zone 844 * memory (otherwise we risk to run OOM on the lower zones despite 845 * there being tons of freeable ram on the higher zones). This array is 846 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 847 * changes. 848 */ 849 long lowmem_reserve[MAX_NR_ZONES]; 850 851 #ifdef CONFIG_NUMA 852 int node; 853 #endif 854 struct pglist_data *zone_pgdat; 855 struct per_cpu_pages __percpu *per_cpu_pageset; 856 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 857 /* 858 * the high and batch values are copied to individual pagesets for 859 * faster access 860 */ 861 int pageset_high_min; 862 int pageset_high_max; 863 int pageset_batch; 864 865 #ifndef CONFIG_SPARSEMEM 866 /* 867 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 868 * In SPARSEMEM, this map is stored in struct mem_section 869 */ 870 unsigned long *pageblock_flags; 871 #endif /* CONFIG_SPARSEMEM */ 872 873 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 874 unsigned long zone_start_pfn; 875 876 /* 877 * spanned_pages is the total pages spanned by the zone, including 878 * holes, which is calculated as: 879 * spanned_pages = zone_end_pfn - zone_start_pfn; 880 * 881 * present_pages is physical pages existing within the zone, which 882 * is calculated as: 883 * present_pages = spanned_pages - absent_pages(pages in holes); 884 * 885 * present_early_pages is present pages existing within the zone 886 * located on memory available since early boot, excluding hotplugged 887 * memory. 888 * 889 * managed_pages is present pages managed by the buddy system, which 890 * is calculated as (reserved_pages includes pages allocated by the 891 * bootmem allocator): 892 * managed_pages = present_pages - reserved_pages; 893 * 894 * cma pages is present pages that are assigned for CMA use 895 * (MIGRATE_CMA). 896 * 897 * So present_pages may be used by memory hotplug or memory power 898 * management logic to figure out unmanaged pages by checking 899 * (present_pages - managed_pages). And managed_pages should be used 900 * by page allocator and vm scanner to calculate all kinds of watermarks 901 * and thresholds. 902 * 903 * Locking rules: 904 * 905 * zone_start_pfn and spanned_pages are protected by span_seqlock. 906 * It is a seqlock because it has to be read outside of zone->lock, 907 * and it is done in the main allocator path. But, it is written 908 * quite infrequently. 909 * 910 * The span_seq lock is declared along with zone->lock because it is 911 * frequently read in proximity to zone->lock. It's good to 912 * give them a chance of being in the same cacheline. 913 * 914 * Write access to present_pages at runtime should be protected by 915 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 916 * present_pages should use get_online_mems() to get a stable value. 917 */ 918 atomic_long_t managed_pages; 919 unsigned long spanned_pages; 920 unsigned long present_pages; 921 #if defined(CONFIG_MEMORY_HOTPLUG) 922 unsigned long present_early_pages; 923 #endif 924 #ifdef CONFIG_CMA 925 unsigned long cma_pages; 926 #endif 927 928 const char *name; 929 930 #ifdef CONFIG_MEMORY_ISOLATION 931 /* 932 * Number of isolated pageblock. It is used to solve incorrect 933 * freepage counting problem due to racy retrieving migratetype 934 * of pageblock. Protected by zone->lock. 935 */ 936 unsigned long nr_isolate_pageblock; 937 #endif 938 939 #ifdef CONFIG_MEMORY_HOTPLUG 940 /* see spanned/present_pages for more description */ 941 seqlock_t span_seqlock; 942 #endif 943 944 int initialized; 945 946 /* Write-intensive fields used from the page allocator */ 947 CACHELINE_PADDING(_pad1_); 948 949 /* free areas of different sizes */ 950 struct free_area free_area[MAX_ORDER + 1]; 951 952 #ifdef CONFIG_UNACCEPTED_MEMORY 953 /* Pages to be accepted. All pages on the list are MAX_ORDER */ 954 struct list_head unaccepted_pages; 955 #endif 956 957 /* zone flags, see below */ 958 unsigned long flags; 959 960 /* Primarily protects free_area */ 961 spinlock_t lock; 962 963 /* Write-intensive fields used by compaction and vmstats. */ 964 CACHELINE_PADDING(_pad2_); 965 966 /* 967 * When free pages are below this point, additional steps are taken 968 * when reading the number of free pages to avoid per-cpu counter 969 * drift allowing watermarks to be breached 970 */ 971 unsigned long percpu_drift_mark; 972 973 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 974 /* pfn where compaction free scanner should start */ 975 unsigned long compact_cached_free_pfn; 976 /* pfn where compaction migration scanner should start */ 977 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 978 unsigned long compact_init_migrate_pfn; 979 unsigned long compact_init_free_pfn; 980 #endif 981 982 #ifdef CONFIG_COMPACTION 983 /* 984 * On compaction failure, 1<<compact_defer_shift compactions 985 * are skipped before trying again. The number attempted since 986 * last failure is tracked with compact_considered. 987 * compact_order_failed is the minimum compaction failed order. 988 */ 989 unsigned int compact_considered; 990 unsigned int compact_defer_shift; 991 int compact_order_failed; 992 #endif 993 994 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 995 /* Set to true when the PG_migrate_skip bits should be cleared */ 996 bool compact_blockskip_flush; 997 #endif 998 999 bool contiguous; 1000 1001 CACHELINE_PADDING(_pad3_); 1002 /* Zone statistics */ 1003 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1004 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1005 } ____cacheline_internodealigned_in_smp; 1006 1007 enum pgdat_flags { 1008 PGDAT_DIRTY, /* reclaim scanning has recently found 1009 * many dirty file pages at the tail 1010 * of the LRU. 1011 */ 1012 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1013 * many pages under writeback 1014 */ 1015 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1016 }; 1017 1018 enum zone_flags { 1019 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1020 * Cleared when kswapd is woken. 1021 */ 1022 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1023 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1024 }; 1025 1026 static inline unsigned long zone_managed_pages(struct zone *zone) 1027 { 1028 return (unsigned long)atomic_long_read(&zone->managed_pages); 1029 } 1030 1031 static inline unsigned long zone_cma_pages(struct zone *zone) 1032 { 1033 #ifdef CONFIG_CMA 1034 return zone->cma_pages; 1035 #else 1036 return 0; 1037 #endif 1038 } 1039 1040 static inline unsigned long zone_end_pfn(const struct zone *zone) 1041 { 1042 return zone->zone_start_pfn + zone->spanned_pages; 1043 } 1044 1045 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1046 { 1047 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1048 } 1049 1050 static inline bool zone_is_initialized(struct zone *zone) 1051 { 1052 return zone->initialized; 1053 } 1054 1055 static inline bool zone_is_empty(struct zone *zone) 1056 { 1057 return zone->spanned_pages == 0; 1058 } 1059 1060 #ifndef BUILD_VDSO32_64 1061 /* 1062 * The zone field is never updated after free_area_init_core() 1063 * sets it, so none of the operations on it need to be atomic. 1064 */ 1065 1066 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1067 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1068 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1069 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1070 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1071 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1072 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1073 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1074 1075 /* 1076 * Define the bit shifts to access each section. For non-existent 1077 * sections we define the shift as 0; that plus a 0 mask ensures 1078 * the compiler will optimise away reference to them. 1079 */ 1080 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1081 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1082 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1083 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1084 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1085 1086 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1087 #ifdef NODE_NOT_IN_PAGE_FLAGS 1088 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1089 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1090 SECTIONS_PGOFF : ZONES_PGOFF) 1091 #else 1092 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1093 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1094 NODES_PGOFF : ZONES_PGOFF) 1095 #endif 1096 1097 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1098 1099 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1100 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1101 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1102 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1103 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1104 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1105 1106 static inline enum zone_type page_zonenum(const struct page *page) 1107 { 1108 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1109 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1110 } 1111 1112 static inline enum zone_type folio_zonenum(const struct folio *folio) 1113 { 1114 return page_zonenum(&folio->page); 1115 } 1116 1117 #ifdef CONFIG_ZONE_DEVICE 1118 static inline bool is_zone_device_page(const struct page *page) 1119 { 1120 return page_zonenum(page) == ZONE_DEVICE; 1121 } 1122 1123 /* 1124 * Consecutive zone device pages should not be merged into the same sgl 1125 * or bvec segment with other types of pages or if they belong to different 1126 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1127 * without scanning the entire segment. This helper returns true either if 1128 * both pages are not zone device pages or both pages are zone device pages 1129 * with the same pgmap. 1130 */ 1131 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1132 const struct page *b) 1133 { 1134 if (is_zone_device_page(a) != is_zone_device_page(b)) 1135 return false; 1136 if (!is_zone_device_page(a)) 1137 return true; 1138 return a->pgmap == b->pgmap; 1139 } 1140 1141 extern void memmap_init_zone_device(struct zone *, unsigned long, 1142 unsigned long, struct dev_pagemap *); 1143 #else 1144 static inline bool is_zone_device_page(const struct page *page) 1145 { 1146 return false; 1147 } 1148 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1149 const struct page *b) 1150 { 1151 return true; 1152 } 1153 #endif 1154 1155 static inline bool folio_is_zone_device(const struct folio *folio) 1156 { 1157 return is_zone_device_page(&folio->page); 1158 } 1159 1160 static inline bool is_zone_movable_page(const struct page *page) 1161 { 1162 return page_zonenum(page) == ZONE_MOVABLE; 1163 } 1164 1165 static inline bool folio_is_zone_movable(const struct folio *folio) 1166 { 1167 return folio_zonenum(folio) == ZONE_MOVABLE; 1168 } 1169 #endif 1170 1171 /* 1172 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1173 * intersection with the given zone 1174 */ 1175 static inline bool zone_intersects(struct zone *zone, 1176 unsigned long start_pfn, unsigned long nr_pages) 1177 { 1178 if (zone_is_empty(zone)) 1179 return false; 1180 if (start_pfn >= zone_end_pfn(zone) || 1181 start_pfn + nr_pages <= zone->zone_start_pfn) 1182 return false; 1183 1184 return true; 1185 } 1186 1187 /* 1188 * The "priority" of VM scanning is how much of the queues we will scan in one 1189 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1190 * queues ("queue_length >> 12") during an aging round. 1191 */ 1192 #define DEF_PRIORITY 12 1193 1194 /* Maximum number of zones on a zonelist */ 1195 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1196 1197 enum { 1198 ZONELIST_FALLBACK, /* zonelist with fallback */ 1199 #ifdef CONFIG_NUMA 1200 /* 1201 * The NUMA zonelists are doubled because we need zonelists that 1202 * restrict the allocations to a single node for __GFP_THISNODE. 1203 */ 1204 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1205 #endif 1206 MAX_ZONELISTS 1207 }; 1208 1209 /* 1210 * This struct contains information about a zone in a zonelist. It is stored 1211 * here to avoid dereferences into large structures and lookups of tables 1212 */ 1213 struct zoneref { 1214 struct zone *zone; /* Pointer to actual zone */ 1215 int zone_idx; /* zone_idx(zoneref->zone) */ 1216 }; 1217 1218 /* 1219 * One allocation request operates on a zonelist. A zonelist 1220 * is a list of zones, the first one is the 'goal' of the 1221 * allocation, the other zones are fallback zones, in decreasing 1222 * priority. 1223 * 1224 * To speed the reading of the zonelist, the zonerefs contain the zone index 1225 * of the entry being read. Helper functions to access information given 1226 * a struct zoneref are 1227 * 1228 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1229 * zonelist_zone_idx() - Return the index of the zone for an entry 1230 * zonelist_node_idx() - Return the index of the node for an entry 1231 */ 1232 struct zonelist { 1233 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1234 }; 1235 1236 /* 1237 * The array of struct pages for flatmem. 1238 * It must be declared for SPARSEMEM as well because there are configurations 1239 * that rely on that. 1240 */ 1241 extern struct page *mem_map; 1242 1243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1244 struct deferred_split { 1245 spinlock_t split_queue_lock; 1246 struct list_head split_queue; 1247 unsigned long split_queue_len; 1248 }; 1249 #endif 1250 1251 #ifdef CONFIG_MEMORY_FAILURE 1252 /* 1253 * Per NUMA node memory failure handling statistics. 1254 */ 1255 struct memory_failure_stats { 1256 /* 1257 * Number of raw pages poisoned. 1258 * Cases not accounted: memory outside kernel control, offline page, 1259 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1260 * error events, and unpoison actions from hwpoison_unpoison. 1261 */ 1262 unsigned long total; 1263 /* 1264 * Recovery results of poisoned raw pages handled by memory_failure, 1265 * in sync with mf_result. 1266 * total = ignored + failed + delayed + recovered. 1267 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1268 */ 1269 unsigned long ignored; 1270 unsigned long failed; 1271 unsigned long delayed; 1272 unsigned long recovered; 1273 }; 1274 #endif 1275 1276 /* 1277 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1278 * it's memory layout. On UMA machines there is a single pglist_data which 1279 * describes the whole memory. 1280 * 1281 * Memory statistics and page replacement data structures are maintained on a 1282 * per-zone basis. 1283 */ 1284 typedef struct pglist_data { 1285 /* 1286 * node_zones contains just the zones for THIS node. Not all of the 1287 * zones may be populated, but it is the full list. It is referenced by 1288 * this node's node_zonelists as well as other node's node_zonelists. 1289 */ 1290 struct zone node_zones[MAX_NR_ZONES]; 1291 1292 /* 1293 * node_zonelists contains references to all zones in all nodes. 1294 * Generally the first zones will be references to this node's 1295 * node_zones. 1296 */ 1297 struct zonelist node_zonelists[MAX_ZONELISTS]; 1298 1299 int nr_zones; /* number of populated zones in this node */ 1300 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1301 struct page *node_mem_map; 1302 #ifdef CONFIG_PAGE_EXTENSION 1303 struct page_ext *node_page_ext; 1304 #endif 1305 #endif 1306 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1307 /* 1308 * Must be held any time you expect node_start_pfn, 1309 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1310 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1311 * init. 1312 * 1313 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1314 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1315 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1316 * 1317 * Nests above zone->lock and zone->span_seqlock 1318 */ 1319 spinlock_t node_size_lock; 1320 #endif 1321 unsigned long node_start_pfn; 1322 unsigned long node_present_pages; /* total number of physical pages */ 1323 unsigned long node_spanned_pages; /* total size of physical page 1324 range, including holes */ 1325 int node_id; 1326 wait_queue_head_t kswapd_wait; 1327 wait_queue_head_t pfmemalloc_wait; 1328 1329 /* workqueues for throttling reclaim for different reasons. */ 1330 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1331 1332 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1333 unsigned long nr_reclaim_start; /* nr pages written while throttled 1334 * when throttling started. */ 1335 #ifdef CONFIG_MEMORY_HOTPLUG 1336 struct mutex kswapd_lock; 1337 #endif 1338 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1339 int kswapd_order; 1340 enum zone_type kswapd_highest_zoneidx; 1341 1342 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1343 1344 #ifdef CONFIG_COMPACTION 1345 int kcompactd_max_order; 1346 enum zone_type kcompactd_highest_zoneidx; 1347 wait_queue_head_t kcompactd_wait; 1348 struct task_struct *kcompactd; 1349 bool proactive_compact_trigger; 1350 #endif 1351 /* 1352 * This is a per-node reserve of pages that are not available 1353 * to userspace allocations. 1354 */ 1355 unsigned long totalreserve_pages; 1356 1357 #ifdef CONFIG_NUMA 1358 /* 1359 * node reclaim becomes active if more unmapped pages exist. 1360 */ 1361 unsigned long min_unmapped_pages; 1362 unsigned long min_slab_pages; 1363 #endif /* CONFIG_NUMA */ 1364 1365 /* Write-intensive fields used by page reclaim */ 1366 CACHELINE_PADDING(_pad1_); 1367 1368 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1369 /* 1370 * If memory initialisation on large machines is deferred then this 1371 * is the first PFN that needs to be initialised. 1372 */ 1373 unsigned long first_deferred_pfn; 1374 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1375 1376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1377 struct deferred_split deferred_split_queue; 1378 #endif 1379 1380 #ifdef CONFIG_NUMA_BALANCING 1381 /* start time in ms of current promote rate limit period */ 1382 unsigned int nbp_rl_start; 1383 /* number of promote candidate pages at start time of current rate limit period */ 1384 unsigned long nbp_rl_nr_cand; 1385 /* promote threshold in ms */ 1386 unsigned int nbp_threshold; 1387 /* start time in ms of current promote threshold adjustment period */ 1388 unsigned int nbp_th_start; 1389 /* 1390 * number of promote candidate pages at start time of current promote 1391 * threshold adjustment period 1392 */ 1393 unsigned long nbp_th_nr_cand; 1394 #endif 1395 /* Fields commonly accessed by the page reclaim scanner */ 1396 1397 /* 1398 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1399 * 1400 * Use mem_cgroup_lruvec() to look up lruvecs. 1401 */ 1402 struct lruvec __lruvec; 1403 1404 unsigned long flags; 1405 1406 #ifdef CONFIG_LRU_GEN 1407 /* kswap mm walk data */ 1408 struct lru_gen_mm_walk mm_walk; 1409 /* lru_gen_folio list */ 1410 struct lru_gen_memcg memcg_lru; 1411 #endif 1412 1413 CACHELINE_PADDING(_pad2_); 1414 1415 /* Per-node vmstats */ 1416 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1417 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1418 #ifdef CONFIG_NUMA 1419 struct memory_tier __rcu *memtier; 1420 #endif 1421 #ifdef CONFIG_MEMORY_FAILURE 1422 struct memory_failure_stats mf_stats; 1423 #endif 1424 } pg_data_t; 1425 1426 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1427 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1428 1429 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1430 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1431 1432 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1433 { 1434 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1435 } 1436 1437 #include <linux/memory_hotplug.h> 1438 1439 void build_all_zonelists(pg_data_t *pgdat); 1440 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1441 enum zone_type highest_zoneidx); 1442 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1443 int highest_zoneidx, unsigned int alloc_flags, 1444 long free_pages); 1445 bool zone_watermark_ok(struct zone *z, unsigned int order, 1446 unsigned long mark, int highest_zoneidx, 1447 unsigned int alloc_flags); 1448 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1449 unsigned long mark, int highest_zoneidx); 1450 /* 1451 * Memory initialization context, use to differentiate memory added by 1452 * the platform statically or via memory hotplug interface. 1453 */ 1454 enum meminit_context { 1455 MEMINIT_EARLY, 1456 MEMINIT_HOTPLUG, 1457 }; 1458 1459 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1460 unsigned long size); 1461 1462 extern void lruvec_init(struct lruvec *lruvec); 1463 1464 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1465 { 1466 #ifdef CONFIG_MEMCG 1467 return lruvec->pgdat; 1468 #else 1469 return container_of(lruvec, struct pglist_data, __lruvec); 1470 #endif 1471 } 1472 1473 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1474 int local_memory_node(int node_id); 1475 #else 1476 static inline int local_memory_node(int node_id) { return node_id; }; 1477 #endif 1478 1479 /* 1480 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1481 */ 1482 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1483 1484 #ifdef CONFIG_ZONE_DEVICE 1485 static inline bool zone_is_zone_device(struct zone *zone) 1486 { 1487 return zone_idx(zone) == ZONE_DEVICE; 1488 } 1489 #else 1490 static inline bool zone_is_zone_device(struct zone *zone) 1491 { 1492 return false; 1493 } 1494 #endif 1495 1496 /* 1497 * Returns true if a zone has pages managed by the buddy allocator. 1498 * All the reclaim decisions have to use this function rather than 1499 * populated_zone(). If the whole zone is reserved then we can easily 1500 * end up with populated_zone() && !managed_zone(). 1501 */ 1502 static inline bool managed_zone(struct zone *zone) 1503 { 1504 return zone_managed_pages(zone); 1505 } 1506 1507 /* Returns true if a zone has memory */ 1508 static inline bool populated_zone(struct zone *zone) 1509 { 1510 return zone->present_pages; 1511 } 1512 1513 #ifdef CONFIG_NUMA 1514 static inline int zone_to_nid(struct zone *zone) 1515 { 1516 return zone->node; 1517 } 1518 1519 static inline void zone_set_nid(struct zone *zone, int nid) 1520 { 1521 zone->node = nid; 1522 } 1523 #else 1524 static inline int zone_to_nid(struct zone *zone) 1525 { 1526 return 0; 1527 } 1528 1529 static inline void zone_set_nid(struct zone *zone, int nid) {} 1530 #endif 1531 1532 extern int movable_zone; 1533 1534 static inline int is_highmem_idx(enum zone_type idx) 1535 { 1536 #ifdef CONFIG_HIGHMEM 1537 return (idx == ZONE_HIGHMEM || 1538 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1539 #else 1540 return 0; 1541 #endif 1542 } 1543 1544 /** 1545 * is_highmem - helper function to quickly check if a struct zone is a 1546 * highmem zone or not. This is an attempt to keep references 1547 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1548 * @zone: pointer to struct zone variable 1549 * Return: 1 for a highmem zone, 0 otherwise 1550 */ 1551 static inline int is_highmem(struct zone *zone) 1552 { 1553 return is_highmem_idx(zone_idx(zone)); 1554 } 1555 1556 #ifdef CONFIG_ZONE_DMA 1557 bool has_managed_dma(void); 1558 #else 1559 static inline bool has_managed_dma(void) 1560 { 1561 return false; 1562 } 1563 #endif 1564 1565 1566 #ifndef CONFIG_NUMA 1567 1568 extern struct pglist_data contig_page_data; 1569 static inline struct pglist_data *NODE_DATA(int nid) 1570 { 1571 return &contig_page_data; 1572 } 1573 1574 #else /* CONFIG_NUMA */ 1575 1576 #include <asm/mmzone.h> 1577 1578 #endif /* !CONFIG_NUMA */ 1579 1580 extern struct pglist_data *first_online_pgdat(void); 1581 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1582 extern struct zone *next_zone(struct zone *zone); 1583 1584 /** 1585 * for_each_online_pgdat - helper macro to iterate over all online nodes 1586 * @pgdat: pointer to a pg_data_t variable 1587 */ 1588 #define for_each_online_pgdat(pgdat) \ 1589 for (pgdat = first_online_pgdat(); \ 1590 pgdat; \ 1591 pgdat = next_online_pgdat(pgdat)) 1592 /** 1593 * for_each_zone - helper macro to iterate over all memory zones 1594 * @zone: pointer to struct zone variable 1595 * 1596 * The user only needs to declare the zone variable, for_each_zone 1597 * fills it in. 1598 */ 1599 #define for_each_zone(zone) \ 1600 for (zone = (first_online_pgdat())->node_zones; \ 1601 zone; \ 1602 zone = next_zone(zone)) 1603 1604 #define for_each_populated_zone(zone) \ 1605 for (zone = (first_online_pgdat())->node_zones; \ 1606 zone; \ 1607 zone = next_zone(zone)) \ 1608 if (!populated_zone(zone)) \ 1609 ; /* do nothing */ \ 1610 else 1611 1612 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1613 { 1614 return zoneref->zone; 1615 } 1616 1617 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1618 { 1619 return zoneref->zone_idx; 1620 } 1621 1622 static inline int zonelist_node_idx(struct zoneref *zoneref) 1623 { 1624 return zone_to_nid(zoneref->zone); 1625 } 1626 1627 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1628 enum zone_type highest_zoneidx, 1629 nodemask_t *nodes); 1630 1631 /** 1632 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1633 * @z: The cursor used as a starting point for the search 1634 * @highest_zoneidx: The zone index of the highest zone to return 1635 * @nodes: An optional nodemask to filter the zonelist with 1636 * 1637 * This function returns the next zone at or below a given zone index that is 1638 * within the allowed nodemask using a cursor as the starting point for the 1639 * search. The zoneref returned is a cursor that represents the current zone 1640 * being examined. It should be advanced by one before calling 1641 * next_zones_zonelist again. 1642 * 1643 * Return: the next zone at or below highest_zoneidx within the allowed 1644 * nodemask using a cursor within a zonelist as a starting point 1645 */ 1646 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1647 enum zone_type highest_zoneidx, 1648 nodemask_t *nodes) 1649 { 1650 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1651 return z; 1652 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1653 } 1654 1655 /** 1656 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1657 * @zonelist: The zonelist to search for a suitable zone 1658 * @highest_zoneidx: The zone index of the highest zone to return 1659 * @nodes: An optional nodemask to filter the zonelist with 1660 * 1661 * This function returns the first zone at or below a given zone index that is 1662 * within the allowed nodemask. The zoneref returned is a cursor that can be 1663 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1664 * one before calling. 1665 * 1666 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1667 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1668 * update due to cpuset modification. 1669 * 1670 * Return: Zoneref pointer for the first suitable zone found 1671 */ 1672 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1673 enum zone_type highest_zoneidx, 1674 nodemask_t *nodes) 1675 { 1676 return next_zones_zonelist(zonelist->_zonerefs, 1677 highest_zoneidx, nodes); 1678 } 1679 1680 /** 1681 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1682 * @zone: The current zone in the iterator 1683 * @z: The current pointer within zonelist->_zonerefs being iterated 1684 * @zlist: The zonelist being iterated 1685 * @highidx: The zone index of the highest zone to return 1686 * @nodemask: Nodemask allowed by the allocator 1687 * 1688 * This iterator iterates though all zones at or below a given zone index and 1689 * within a given nodemask 1690 */ 1691 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1692 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1693 zone; \ 1694 z = next_zones_zonelist(++z, highidx, nodemask), \ 1695 zone = zonelist_zone(z)) 1696 1697 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1698 for (zone = z->zone; \ 1699 zone; \ 1700 z = next_zones_zonelist(++z, highidx, nodemask), \ 1701 zone = zonelist_zone(z)) 1702 1703 1704 /** 1705 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1706 * @zone: The current zone in the iterator 1707 * @z: The current pointer within zonelist->zones being iterated 1708 * @zlist: The zonelist being iterated 1709 * @highidx: The zone index of the highest zone to return 1710 * 1711 * This iterator iterates though all zones at or below a given zone index. 1712 */ 1713 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1714 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1715 1716 /* Whether the 'nodes' are all movable nodes */ 1717 static inline bool movable_only_nodes(nodemask_t *nodes) 1718 { 1719 struct zonelist *zonelist; 1720 struct zoneref *z; 1721 int nid; 1722 1723 if (nodes_empty(*nodes)) 1724 return false; 1725 1726 /* 1727 * We can chose arbitrary node from the nodemask to get a 1728 * zonelist as they are interlinked. We just need to find 1729 * at least one zone that can satisfy kernel allocations. 1730 */ 1731 nid = first_node(*nodes); 1732 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1733 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1734 return (!z->zone) ? true : false; 1735 } 1736 1737 1738 #ifdef CONFIG_SPARSEMEM 1739 #include <asm/sparsemem.h> 1740 #endif 1741 1742 #ifdef CONFIG_FLATMEM 1743 #define pfn_to_nid(pfn) (0) 1744 #endif 1745 1746 #ifdef CONFIG_SPARSEMEM 1747 1748 /* 1749 * PA_SECTION_SHIFT physical address to/from section number 1750 * PFN_SECTION_SHIFT pfn to/from section number 1751 */ 1752 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1753 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1754 1755 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1756 1757 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1758 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1759 1760 #define SECTION_BLOCKFLAGS_BITS \ 1761 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1762 1763 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1764 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1765 #endif 1766 1767 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1768 { 1769 return pfn >> PFN_SECTION_SHIFT; 1770 } 1771 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1772 { 1773 return sec << PFN_SECTION_SHIFT; 1774 } 1775 1776 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1777 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1778 1779 #define SUBSECTION_SHIFT 21 1780 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1781 1782 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1783 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1784 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1785 1786 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1787 #error Subsection size exceeds section size 1788 #else 1789 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1790 #endif 1791 1792 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1793 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1794 1795 struct mem_section_usage { 1796 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1797 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1798 #endif 1799 /* See declaration of similar field in struct zone */ 1800 unsigned long pageblock_flags[0]; 1801 }; 1802 1803 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1804 1805 struct page; 1806 struct page_ext; 1807 struct mem_section { 1808 /* 1809 * This is, logically, a pointer to an array of struct 1810 * pages. However, it is stored with some other magic. 1811 * (see sparse.c::sparse_init_one_section()) 1812 * 1813 * Additionally during early boot we encode node id of 1814 * the location of the section here to guide allocation. 1815 * (see sparse.c::memory_present()) 1816 * 1817 * Making it a UL at least makes someone do a cast 1818 * before using it wrong. 1819 */ 1820 unsigned long section_mem_map; 1821 1822 struct mem_section_usage *usage; 1823 #ifdef CONFIG_PAGE_EXTENSION 1824 /* 1825 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1826 * section. (see page_ext.h about this.) 1827 */ 1828 struct page_ext *page_ext; 1829 unsigned long pad; 1830 #endif 1831 /* 1832 * WARNING: mem_section must be a power-of-2 in size for the 1833 * calculation and use of SECTION_ROOT_MASK to make sense. 1834 */ 1835 }; 1836 1837 #ifdef CONFIG_SPARSEMEM_EXTREME 1838 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1839 #else 1840 #define SECTIONS_PER_ROOT 1 1841 #endif 1842 1843 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1844 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1845 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1846 1847 #ifdef CONFIG_SPARSEMEM_EXTREME 1848 extern struct mem_section **mem_section; 1849 #else 1850 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1851 #endif 1852 1853 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1854 { 1855 return ms->usage->pageblock_flags; 1856 } 1857 1858 static inline struct mem_section *__nr_to_section(unsigned long nr) 1859 { 1860 unsigned long root = SECTION_NR_TO_ROOT(nr); 1861 1862 if (unlikely(root >= NR_SECTION_ROOTS)) 1863 return NULL; 1864 1865 #ifdef CONFIG_SPARSEMEM_EXTREME 1866 if (!mem_section || !mem_section[root]) 1867 return NULL; 1868 #endif 1869 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1870 } 1871 extern size_t mem_section_usage_size(void); 1872 1873 /* 1874 * We use the lower bits of the mem_map pointer to store 1875 * a little bit of information. The pointer is calculated 1876 * as mem_map - section_nr_to_pfn(pnum). The result is 1877 * aligned to the minimum alignment of the two values: 1878 * 1. All mem_map arrays are page-aligned. 1879 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1880 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1881 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1882 * worst combination is powerpc with 256k pages, 1883 * which results in PFN_SECTION_SHIFT equal 6. 1884 * To sum it up, at least 6 bits are available on all architectures. 1885 * However, we can exceed 6 bits on some other architectures except 1886 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1887 * with the worst case of 64K pages on arm64) if we make sure the 1888 * exceeded bit is not applicable to powerpc. 1889 */ 1890 enum { 1891 SECTION_MARKED_PRESENT_BIT, 1892 SECTION_HAS_MEM_MAP_BIT, 1893 SECTION_IS_ONLINE_BIT, 1894 SECTION_IS_EARLY_BIT, 1895 #ifdef CONFIG_ZONE_DEVICE 1896 SECTION_TAINT_ZONE_DEVICE_BIT, 1897 #endif 1898 SECTION_MAP_LAST_BIT, 1899 }; 1900 1901 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1902 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1903 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1904 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1905 #ifdef CONFIG_ZONE_DEVICE 1906 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1907 #endif 1908 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1909 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1910 1911 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1912 { 1913 unsigned long map = section->section_mem_map; 1914 map &= SECTION_MAP_MASK; 1915 return (struct page *)map; 1916 } 1917 1918 static inline int present_section(struct mem_section *section) 1919 { 1920 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1921 } 1922 1923 static inline int present_section_nr(unsigned long nr) 1924 { 1925 return present_section(__nr_to_section(nr)); 1926 } 1927 1928 static inline int valid_section(struct mem_section *section) 1929 { 1930 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1931 } 1932 1933 static inline int early_section(struct mem_section *section) 1934 { 1935 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1936 } 1937 1938 static inline int valid_section_nr(unsigned long nr) 1939 { 1940 return valid_section(__nr_to_section(nr)); 1941 } 1942 1943 static inline int online_section(struct mem_section *section) 1944 { 1945 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1946 } 1947 1948 #ifdef CONFIG_ZONE_DEVICE 1949 static inline int online_device_section(struct mem_section *section) 1950 { 1951 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1952 1953 return section && ((section->section_mem_map & flags) == flags); 1954 } 1955 #else 1956 static inline int online_device_section(struct mem_section *section) 1957 { 1958 return 0; 1959 } 1960 #endif 1961 1962 static inline int online_section_nr(unsigned long nr) 1963 { 1964 return online_section(__nr_to_section(nr)); 1965 } 1966 1967 #ifdef CONFIG_MEMORY_HOTPLUG 1968 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1969 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1970 #endif 1971 1972 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1973 { 1974 return __nr_to_section(pfn_to_section_nr(pfn)); 1975 } 1976 1977 extern unsigned long __highest_present_section_nr; 1978 1979 static inline int subsection_map_index(unsigned long pfn) 1980 { 1981 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1982 } 1983 1984 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1985 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1986 { 1987 int idx = subsection_map_index(pfn); 1988 1989 return test_bit(idx, ms->usage->subsection_map); 1990 } 1991 #else 1992 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1993 { 1994 return 1; 1995 } 1996 #endif 1997 1998 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1999 /** 2000 * pfn_valid - check if there is a valid memory map entry for a PFN 2001 * @pfn: the page frame number to check 2002 * 2003 * Check if there is a valid memory map entry aka struct page for the @pfn. 2004 * Note, that availability of the memory map entry does not imply that 2005 * there is actual usable memory at that @pfn. The struct page may 2006 * represent a hole or an unusable page frame. 2007 * 2008 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2009 */ 2010 static inline int pfn_valid(unsigned long pfn) 2011 { 2012 struct mem_section *ms; 2013 2014 /* 2015 * Ensure the upper PAGE_SHIFT bits are clear in the 2016 * pfn. Else it might lead to false positives when 2017 * some of the upper bits are set, but the lower bits 2018 * match a valid pfn. 2019 */ 2020 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2021 return 0; 2022 2023 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2024 return 0; 2025 ms = __pfn_to_section(pfn); 2026 if (!valid_section(ms)) 2027 return 0; 2028 /* 2029 * Traditionally early sections always returned pfn_valid() for 2030 * the entire section-sized span. 2031 */ 2032 return early_section(ms) || pfn_section_valid(ms, pfn); 2033 } 2034 #endif 2035 2036 static inline int pfn_in_present_section(unsigned long pfn) 2037 { 2038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2039 return 0; 2040 return present_section(__pfn_to_section(pfn)); 2041 } 2042 2043 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2044 { 2045 while (++section_nr <= __highest_present_section_nr) { 2046 if (present_section_nr(section_nr)) 2047 return section_nr; 2048 } 2049 2050 return -1; 2051 } 2052 2053 /* 2054 * These are _only_ used during initialisation, therefore they 2055 * can use __initdata ... They could have names to indicate 2056 * this restriction. 2057 */ 2058 #ifdef CONFIG_NUMA 2059 #define pfn_to_nid(pfn) \ 2060 ({ \ 2061 unsigned long __pfn_to_nid_pfn = (pfn); \ 2062 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2063 }) 2064 #else 2065 #define pfn_to_nid(pfn) (0) 2066 #endif 2067 2068 void sparse_init(void); 2069 #else 2070 #define sparse_init() do {} while (0) 2071 #define sparse_index_init(_sec, _nid) do {} while (0) 2072 #define pfn_in_present_section pfn_valid 2073 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2074 #endif /* CONFIG_SPARSEMEM */ 2075 2076 #endif /* !__GENERATING_BOUNDS.H */ 2077 #endif /* !__ASSEMBLY__ */ 2078 #endif /* _LINUX_MMZONE_H */ 2079