xref: /linux-6.15/include/linux/mmzone.h (revision c8ea0d67)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117  * So add a wild amount of padding here to ensure that they fall into separate
118  * cachelines.  There are very few zone structures in the machine, so space
119  * consumption is not a concern here.
120  */
121 #if defined(CONFIG_SMP)
122 struct zone_padding {
123 	char x[0];
124 } ____cacheline_internodealigned_in_smp;
125 #define ZONE_PADDING(name)	struct zone_padding name;
126 #else
127 #define ZONE_PADDING(name)
128 #endif
129 
130 #ifdef CONFIG_NUMA
131 enum numa_stat_item {
132 	NUMA_HIT,		/* allocated in intended node */
133 	NUMA_MISS,		/* allocated in non intended node */
134 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
135 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
136 	NUMA_LOCAL,		/* allocation from local node */
137 	NUMA_OTHER,		/* allocation from other node */
138 	NR_VM_NUMA_STAT_ITEMS
139 };
140 #else
141 #define NR_VM_NUMA_STAT_ITEMS 0
142 #endif
143 
144 enum zone_stat_item {
145 	/* First 128 byte cacheline (assuming 64 bit words) */
146 	NR_FREE_PAGES,
147 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 	NR_ZONE_ACTIVE_ANON,
150 	NR_ZONE_INACTIVE_FILE,
151 	NR_ZONE_ACTIVE_FILE,
152 	NR_ZONE_UNEVICTABLE,
153 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
154 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
155 	NR_PAGETABLE,		/* used for pagetables */
156 	/* Second 128 byte cacheline */
157 	NR_BOUNCE,
158 #if IS_ENABLED(CONFIG_ZSMALLOC)
159 	NR_ZSPAGES,		/* allocated in zsmalloc */
160 #endif
161 	NR_FREE_CMA_PAGES,
162 	NR_VM_ZONE_STAT_ITEMS };
163 
164 enum node_stat_item {
165 	NR_LRU_BASE,
166 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
168 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
169 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
170 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
171 	NR_SLAB_RECLAIMABLE_B,
172 	NR_SLAB_UNRECLAIMABLE_B,
173 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
174 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
175 	WORKINGSET_NODES,
176 	WORKINGSET_REFAULT_BASE,
177 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 	WORKINGSET_REFAULT_FILE,
179 	WORKINGSET_ACTIVATE_BASE,
180 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 	WORKINGSET_ACTIVATE_FILE,
182 	WORKINGSET_RESTORE_BASE,
183 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 	WORKINGSET_RESTORE_FILE,
185 	WORKINGSET_NODERECLAIM,
186 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
187 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
188 			   only modified from process context */
189 	NR_FILE_PAGES,
190 	NR_FILE_DIRTY,
191 	NR_WRITEBACK,
192 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
193 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
194 	NR_SHMEM_THPS,
195 	NR_SHMEM_PMDMAPPED,
196 	NR_FILE_THPS,
197 	NR_FILE_PMDMAPPED,
198 	NR_ANON_THPS,
199 	NR_VMSCAN_WRITE,
200 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
201 	NR_DIRTIED,		/* page dirtyings since bootup */
202 	NR_WRITTEN,		/* page writings since bootup */
203 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
204 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
205 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
206 	NR_KERNEL_STACK_KB,	/* measured in KiB */
207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 	NR_KERNEL_SCS_KB,	/* measured in KiB */
209 #endif
210 	NR_VM_NODE_STAT_ITEMS
211 };
212 
213 /*
214  * Returns true if the value is measured in bytes (most vmstat values are
215  * measured in pages). This defines the API part, the internal representation
216  * might be different.
217  */
218 static __always_inline bool vmstat_item_in_bytes(int idx)
219 {
220 	/*
221 	 * Global and per-node slab counters track slab pages.
222 	 * It's expected that changes are multiples of PAGE_SIZE.
223 	 * Internally values are stored in pages.
224 	 *
225 	 * Per-memcg and per-lruvec counters track memory, consumed
226 	 * by individual slab objects. These counters are actually
227 	 * byte-precise.
228 	 */
229 	return (idx == NR_SLAB_RECLAIMABLE_B ||
230 		idx == NR_SLAB_UNRECLAIMABLE_B);
231 }
232 
233 /*
234  * We do arithmetic on the LRU lists in various places in the code,
235  * so it is important to keep the active lists LRU_ACTIVE higher in
236  * the array than the corresponding inactive lists, and to keep
237  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238  *
239  * This has to be kept in sync with the statistics in zone_stat_item
240  * above and the descriptions in vmstat_text in mm/vmstat.c
241  */
242 #define LRU_BASE 0
243 #define LRU_ACTIVE 1
244 #define LRU_FILE 2
245 
246 enum lru_list {
247 	LRU_INACTIVE_ANON = LRU_BASE,
248 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
251 	LRU_UNEVICTABLE,
252 	NR_LRU_LISTS
253 };
254 
255 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
256 
257 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
258 
259 static inline bool is_file_lru(enum lru_list lru)
260 {
261 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
262 }
263 
264 static inline bool is_active_lru(enum lru_list lru)
265 {
266 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
267 }
268 
269 enum lruvec_flags {
270 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
271 					 * backed by a congested BDI
272 					 */
273 };
274 
275 struct lruvec {
276 	struct list_head		lists[NR_LRU_LISTS];
277 	/*
278 	 * These track the cost of reclaiming one LRU - file or anon -
279 	 * over the other. As the observed cost of reclaiming one LRU
280 	 * increases, the reclaim scan balance tips toward the other.
281 	 */
282 	unsigned long			anon_cost;
283 	unsigned long			file_cost;
284 	/* Non-resident age, driven by LRU movement */
285 	atomic_long_t			nonresident_age;
286 	/* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 	unsigned long			refaults[2];
288 	/* Various lruvec state flags (enum lruvec_flags) */
289 	unsigned long			flags;
290 #ifdef CONFIG_MEMCG
291 	struct pglist_data *pgdat;
292 #endif
293 };
294 
295 /* Isolate unmapped pages */
296 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
297 /* Isolate for asynchronous migration */
298 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
299 /* Isolate unevictable pages */
300 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
301 
302 /* LRU Isolation modes. */
303 typedef unsigned __bitwise isolate_mode_t;
304 
305 enum zone_watermarks {
306 	WMARK_MIN,
307 	WMARK_LOW,
308 	WMARK_HIGH,
309 	NR_WMARK
310 };
311 
312 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
316 
317 struct per_cpu_pages {
318 	int count;		/* number of pages in the list */
319 	int high;		/* high watermark, emptying needed */
320 	int batch;		/* chunk size for buddy add/remove */
321 
322 	/* Lists of pages, one per migrate type stored on the pcp-lists */
323 	struct list_head lists[MIGRATE_PCPTYPES];
324 };
325 
326 struct per_cpu_pageset {
327 	struct per_cpu_pages pcp;
328 #ifdef CONFIG_NUMA
329 	s8 expire;
330 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
331 #endif
332 #ifdef CONFIG_SMP
333 	s8 stat_threshold;
334 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335 #endif
336 };
337 
338 struct per_cpu_nodestat {
339 	s8 stat_threshold;
340 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341 };
342 
343 #endif /* !__GENERATING_BOUNDS.H */
344 
345 enum zone_type {
346 	/*
347 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 	 * On architectures where this area covers the whole 32 bit address
350 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 	 * DMA addressing constraints. This distinction is important as a 32bit
352 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 	 * platforms may need both zones as they support peripherals with
354 	 * different DMA addressing limitations.
355 	 *
356 	 * Some examples:
357 	 *
358 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 	 *    rest of the lower 4G.
360 	 *
361 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 	 *    the specific device.
363 	 *
364 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 	 *    lower 4G.
366 	 *
367 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 	 *    depending on the specific device.
369 	 *
370 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
371 	 *
372 	 *  - ia64 and riscv only use ZONE_DMA32.
373 	 *
374 	 *  - parisc uses neither.
375 	 */
376 #ifdef CONFIG_ZONE_DMA
377 	ZONE_DMA,
378 #endif
379 #ifdef CONFIG_ZONE_DMA32
380 	ZONE_DMA32,
381 #endif
382 	/*
383 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 	 * performed on pages in ZONE_NORMAL if the DMA devices support
385 	 * transfers to all addressable memory.
386 	 */
387 	ZONE_NORMAL,
388 #ifdef CONFIG_HIGHMEM
389 	/*
390 	 * A memory area that is only addressable by the kernel through
391 	 * mapping portions into its own address space. This is for example
392 	 * used by i386 to allow the kernel to address the memory beyond
393 	 * 900MB. The kernel will set up special mappings (page
394 	 * table entries on i386) for each page that the kernel needs to
395 	 * access.
396 	 */
397 	ZONE_HIGHMEM,
398 #endif
399 	ZONE_MOVABLE,
400 #ifdef CONFIG_ZONE_DEVICE
401 	ZONE_DEVICE,
402 #endif
403 	__MAX_NR_ZONES
404 
405 };
406 
407 #ifndef __GENERATING_BOUNDS_H
408 
409 struct zone {
410 	/* Read-mostly fields */
411 
412 	/* zone watermarks, access with *_wmark_pages(zone) macros */
413 	unsigned long _watermark[NR_WMARK];
414 	unsigned long watermark_boost;
415 
416 	unsigned long nr_reserved_highatomic;
417 
418 	/*
419 	 * We don't know if the memory that we're going to allocate will be
420 	 * freeable or/and it will be released eventually, so to avoid totally
421 	 * wasting several GB of ram we must reserve some of the lower zone
422 	 * memory (otherwise we risk to run OOM on the lower zones despite
423 	 * there being tons of freeable ram on the higher zones).  This array is
424 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
425 	 * changes.
426 	 */
427 	long lowmem_reserve[MAX_NR_ZONES];
428 
429 #ifdef CONFIG_NUMA
430 	int node;
431 #endif
432 	struct pglist_data	*zone_pgdat;
433 	struct per_cpu_pageset __percpu *pageset;
434 
435 #ifndef CONFIG_SPARSEMEM
436 	/*
437 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
438 	 * In SPARSEMEM, this map is stored in struct mem_section
439 	 */
440 	unsigned long		*pageblock_flags;
441 #endif /* CONFIG_SPARSEMEM */
442 
443 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 	unsigned long		zone_start_pfn;
445 
446 	/*
447 	 * spanned_pages is the total pages spanned by the zone, including
448 	 * holes, which is calculated as:
449 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
450 	 *
451 	 * present_pages is physical pages existing within the zone, which
452 	 * is calculated as:
453 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
454 	 *
455 	 * managed_pages is present pages managed by the buddy system, which
456 	 * is calculated as (reserved_pages includes pages allocated by the
457 	 * bootmem allocator):
458 	 *	managed_pages = present_pages - reserved_pages;
459 	 *
460 	 * So present_pages may be used by memory hotplug or memory power
461 	 * management logic to figure out unmanaged pages by checking
462 	 * (present_pages - managed_pages). And managed_pages should be used
463 	 * by page allocator and vm scanner to calculate all kinds of watermarks
464 	 * and thresholds.
465 	 *
466 	 * Locking rules:
467 	 *
468 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 	 * It is a seqlock because it has to be read outside of zone->lock,
470 	 * and it is done in the main allocator path.  But, it is written
471 	 * quite infrequently.
472 	 *
473 	 * The span_seq lock is declared along with zone->lock because it is
474 	 * frequently read in proximity to zone->lock.  It's good to
475 	 * give them a chance of being in the same cacheline.
476 	 *
477 	 * Write access to present_pages at runtime should be protected by
478 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
479 	 * present_pages should get_online_mems() to get a stable value.
480 	 */
481 	atomic_long_t		managed_pages;
482 	unsigned long		spanned_pages;
483 	unsigned long		present_pages;
484 
485 	const char		*name;
486 
487 #ifdef CONFIG_MEMORY_ISOLATION
488 	/*
489 	 * Number of isolated pageblock. It is used to solve incorrect
490 	 * freepage counting problem due to racy retrieving migratetype
491 	 * of pageblock. Protected by zone->lock.
492 	 */
493 	unsigned long		nr_isolate_pageblock;
494 #endif
495 
496 #ifdef CONFIG_MEMORY_HOTPLUG
497 	/* see spanned/present_pages for more description */
498 	seqlock_t		span_seqlock;
499 #endif
500 
501 	int initialized;
502 
503 	/* Write-intensive fields used from the page allocator */
504 	ZONE_PADDING(_pad1_)
505 
506 	/* free areas of different sizes */
507 	struct free_area	free_area[MAX_ORDER];
508 
509 	/* zone flags, see below */
510 	unsigned long		flags;
511 
512 	/* Primarily protects free_area */
513 	spinlock_t		lock;
514 
515 	/* Write-intensive fields used by compaction and vmstats. */
516 	ZONE_PADDING(_pad2_)
517 
518 	/*
519 	 * When free pages are below this point, additional steps are taken
520 	 * when reading the number of free pages to avoid per-cpu counter
521 	 * drift allowing watermarks to be breached
522 	 */
523 	unsigned long percpu_drift_mark;
524 
525 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
526 	/* pfn where compaction free scanner should start */
527 	unsigned long		compact_cached_free_pfn;
528 	/* pfn where async and sync compaction migration scanner should start */
529 	unsigned long		compact_cached_migrate_pfn[2];
530 	unsigned long		compact_init_migrate_pfn;
531 	unsigned long		compact_init_free_pfn;
532 #endif
533 
534 #ifdef CONFIG_COMPACTION
535 	/*
536 	 * On compaction failure, 1<<compact_defer_shift compactions
537 	 * are skipped before trying again. The number attempted since
538 	 * last failure is tracked with compact_considered.
539 	 * compact_order_failed is the minimum compaction failed order.
540 	 */
541 	unsigned int		compact_considered;
542 	unsigned int		compact_defer_shift;
543 	int			compact_order_failed;
544 #endif
545 
546 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
547 	/* Set to true when the PG_migrate_skip bits should be cleared */
548 	bool			compact_blockskip_flush;
549 #endif
550 
551 	bool			contiguous;
552 
553 	ZONE_PADDING(_pad3_)
554 	/* Zone statistics */
555 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
556 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
557 } ____cacheline_internodealigned_in_smp;
558 
559 enum pgdat_flags {
560 	PGDAT_DIRTY,			/* reclaim scanning has recently found
561 					 * many dirty file pages at the tail
562 					 * of the LRU.
563 					 */
564 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
565 					 * many pages under writeback
566 					 */
567 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
568 };
569 
570 enum zone_flags {
571 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
572 					 * Cleared when kswapd is woken.
573 					 */
574 };
575 
576 static inline unsigned long zone_managed_pages(struct zone *zone)
577 {
578 	return (unsigned long)atomic_long_read(&zone->managed_pages);
579 }
580 
581 static inline unsigned long zone_end_pfn(const struct zone *zone)
582 {
583 	return zone->zone_start_pfn + zone->spanned_pages;
584 }
585 
586 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
587 {
588 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
589 }
590 
591 static inline bool zone_is_initialized(struct zone *zone)
592 {
593 	return zone->initialized;
594 }
595 
596 static inline bool zone_is_empty(struct zone *zone)
597 {
598 	return zone->spanned_pages == 0;
599 }
600 
601 /*
602  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
603  * intersection with the given zone
604  */
605 static inline bool zone_intersects(struct zone *zone,
606 		unsigned long start_pfn, unsigned long nr_pages)
607 {
608 	if (zone_is_empty(zone))
609 		return false;
610 	if (start_pfn >= zone_end_pfn(zone) ||
611 	    start_pfn + nr_pages <= zone->zone_start_pfn)
612 		return false;
613 
614 	return true;
615 }
616 
617 /*
618  * The "priority" of VM scanning is how much of the queues we will scan in one
619  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
620  * queues ("queue_length >> 12") during an aging round.
621  */
622 #define DEF_PRIORITY 12
623 
624 /* Maximum number of zones on a zonelist */
625 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
626 
627 enum {
628 	ZONELIST_FALLBACK,	/* zonelist with fallback */
629 #ifdef CONFIG_NUMA
630 	/*
631 	 * The NUMA zonelists are doubled because we need zonelists that
632 	 * restrict the allocations to a single node for __GFP_THISNODE.
633 	 */
634 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
635 #endif
636 	MAX_ZONELISTS
637 };
638 
639 /*
640  * This struct contains information about a zone in a zonelist. It is stored
641  * here to avoid dereferences into large structures and lookups of tables
642  */
643 struct zoneref {
644 	struct zone *zone;	/* Pointer to actual zone */
645 	int zone_idx;		/* zone_idx(zoneref->zone) */
646 };
647 
648 /*
649  * One allocation request operates on a zonelist. A zonelist
650  * is a list of zones, the first one is the 'goal' of the
651  * allocation, the other zones are fallback zones, in decreasing
652  * priority.
653  *
654  * To speed the reading of the zonelist, the zonerefs contain the zone index
655  * of the entry being read. Helper functions to access information given
656  * a struct zoneref are
657  *
658  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
659  * zonelist_zone_idx()	- Return the index of the zone for an entry
660  * zonelist_node_idx()	- Return the index of the node for an entry
661  */
662 struct zonelist {
663 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
664 };
665 
666 #ifndef CONFIG_DISCONTIGMEM
667 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
668 extern struct page *mem_map;
669 #endif
670 
671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
672 struct deferred_split {
673 	spinlock_t split_queue_lock;
674 	struct list_head split_queue;
675 	unsigned long split_queue_len;
676 };
677 #endif
678 
679 /*
680  * On NUMA machines, each NUMA node would have a pg_data_t to describe
681  * it's memory layout. On UMA machines there is a single pglist_data which
682  * describes the whole memory.
683  *
684  * Memory statistics and page replacement data structures are maintained on a
685  * per-zone basis.
686  */
687 typedef struct pglist_data {
688 	/*
689 	 * node_zones contains just the zones for THIS node. Not all of the
690 	 * zones may be populated, but it is the full list. It is referenced by
691 	 * this node's node_zonelists as well as other node's node_zonelists.
692 	 */
693 	struct zone node_zones[MAX_NR_ZONES];
694 
695 	/*
696 	 * node_zonelists contains references to all zones in all nodes.
697 	 * Generally the first zones will be references to this node's
698 	 * node_zones.
699 	 */
700 	struct zonelist node_zonelists[MAX_ZONELISTS];
701 
702 	int nr_zones; /* number of populated zones in this node */
703 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
704 	struct page *node_mem_map;
705 #ifdef CONFIG_PAGE_EXTENSION
706 	struct page_ext *node_page_ext;
707 #endif
708 #endif
709 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
710 	/*
711 	 * Must be held any time you expect node_start_pfn,
712 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
713 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
714 	 * init.
715 	 *
716 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
717 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
718 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
719 	 *
720 	 * Nests above zone->lock and zone->span_seqlock
721 	 */
722 	spinlock_t node_size_lock;
723 #endif
724 	unsigned long node_start_pfn;
725 	unsigned long node_present_pages; /* total number of physical pages */
726 	unsigned long node_spanned_pages; /* total size of physical page
727 					     range, including holes */
728 	int node_id;
729 	wait_queue_head_t kswapd_wait;
730 	wait_queue_head_t pfmemalloc_wait;
731 	struct task_struct *kswapd;	/* Protected by
732 					   mem_hotplug_begin/end() */
733 	int kswapd_order;
734 	enum zone_type kswapd_highest_zoneidx;
735 
736 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
737 
738 #ifdef CONFIG_COMPACTION
739 	int kcompactd_max_order;
740 	enum zone_type kcompactd_highest_zoneidx;
741 	wait_queue_head_t kcompactd_wait;
742 	struct task_struct *kcompactd;
743 #endif
744 	/*
745 	 * This is a per-node reserve of pages that are not available
746 	 * to userspace allocations.
747 	 */
748 	unsigned long		totalreserve_pages;
749 
750 #ifdef CONFIG_NUMA
751 	/*
752 	 * node reclaim becomes active if more unmapped pages exist.
753 	 */
754 	unsigned long		min_unmapped_pages;
755 	unsigned long		min_slab_pages;
756 #endif /* CONFIG_NUMA */
757 
758 	/* Write-intensive fields used by page reclaim */
759 	ZONE_PADDING(_pad1_)
760 	spinlock_t		lru_lock;
761 
762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
763 	/*
764 	 * If memory initialisation on large machines is deferred then this
765 	 * is the first PFN that needs to be initialised.
766 	 */
767 	unsigned long first_deferred_pfn;
768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
769 
770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
771 	struct deferred_split deferred_split_queue;
772 #endif
773 
774 	/* Fields commonly accessed by the page reclaim scanner */
775 
776 	/*
777 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
778 	 *
779 	 * Use mem_cgroup_lruvec() to look up lruvecs.
780 	 */
781 	struct lruvec		__lruvec;
782 
783 	unsigned long		flags;
784 
785 	ZONE_PADDING(_pad2_)
786 
787 	/* Per-node vmstats */
788 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
789 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
790 } pg_data_t;
791 
792 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
793 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
794 #ifdef CONFIG_FLAT_NODE_MEM_MAP
795 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
796 #else
797 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
798 #endif
799 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
800 
801 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
802 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
803 
804 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
805 {
806 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
807 }
808 
809 static inline bool pgdat_is_empty(pg_data_t *pgdat)
810 {
811 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
812 }
813 
814 #include <linux/memory_hotplug.h>
815 
816 void build_all_zonelists(pg_data_t *pgdat);
817 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
818 		   enum zone_type highest_zoneidx);
819 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
820 			 int highest_zoneidx, unsigned int alloc_flags,
821 			 long free_pages);
822 bool zone_watermark_ok(struct zone *z, unsigned int order,
823 		unsigned long mark, int highest_zoneidx,
824 		unsigned int alloc_flags);
825 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
826 		unsigned long mark, int highest_zoneidx);
827 enum memmap_context {
828 	MEMMAP_EARLY,
829 	MEMMAP_HOTPLUG,
830 };
831 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
832 				     unsigned long size);
833 
834 extern void lruvec_init(struct lruvec *lruvec);
835 
836 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
837 {
838 #ifdef CONFIG_MEMCG
839 	return lruvec->pgdat;
840 #else
841 	return container_of(lruvec, struct pglist_data, __lruvec);
842 #endif
843 }
844 
845 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
846 
847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
848 int local_memory_node(int node_id);
849 #else
850 static inline int local_memory_node(int node_id) { return node_id; };
851 #endif
852 
853 /*
854  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
855  */
856 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
857 
858 /*
859  * Returns true if a zone has pages managed by the buddy allocator.
860  * All the reclaim decisions have to use this function rather than
861  * populated_zone(). If the whole zone is reserved then we can easily
862  * end up with populated_zone() && !managed_zone().
863  */
864 static inline bool managed_zone(struct zone *zone)
865 {
866 	return zone_managed_pages(zone);
867 }
868 
869 /* Returns true if a zone has memory */
870 static inline bool populated_zone(struct zone *zone)
871 {
872 	return zone->present_pages;
873 }
874 
875 #ifdef CONFIG_NUMA
876 static inline int zone_to_nid(struct zone *zone)
877 {
878 	return zone->node;
879 }
880 
881 static inline void zone_set_nid(struct zone *zone, int nid)
882 {
883 	zone->node = nid;
884 }
885 #else
886 static inline int zone_to_nid(struct zone *zone)
887 {
888 	return 0;
889 }
890 
891 static inline void zone_set_nid(struct zone *zone, int nid) {}
892 #endif
893 
894 extern int movable_zone;
895 
896 #ifdef CONFIG_HIGHMEM
897 static inline int zone_movable_is_highmem(void)
898 {
899 #ifdef CONFIG_NEED_MULTIPLE_NODES
900 	return movable_zone == ZONE_HIGHMEM;
901 #else
902 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
903 #endif
904 }
905 #endif
906 
907 static inline int is_highmem_idx(enum zone_type idx)
908 {
909 #ifdef CONFIG_HIGHMEM
910 	return (idx == ZONE_HIGHMEM ||
911 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
912 #else
913 	return 0;
914 #endif
915 }
916 
917 /**
918  * is_highmem - helper function to quickly check if a struct zone is a
919  *              highmem zone or not.  This is an attempt to keep references
920  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
921  * @zone - pointer to struct zone variable
922  */
923 static inline int is_highmem(struct zone *zone)
924 {
925 #ifdef CONFIG_HIGHMEM
926 	return is_highmem_idx(zone_idx(zone));
927 #else
928 	return 0;
929 #endif
930 }
931 
932 /* These two functions are used to setup the per zone pages min values */
933 struct ctl_table;
934 
935 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
936 		loff_t *);
937 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
938 		size_t *, loff_t *);
939 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
940 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
941 		size_t *, loff_t *);
942 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
943 		void *, size_t *, loff_t *);
944 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
945 		void *, size_t *, loff_t *);
946 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
947 		void *, size_t *, loff_t *);
948 int numa_zonelist_order_handler(struct ctl_table *, int,
949 		void *, size_t *, loff_t *);
950 extern int percpu_pagelist_fraction;
951 extern char numa_zonelist_order[];
952 #define NUMA_ZONELIST_ORDER_LEN	16
953 
954 #ifndef CONFIG_NEED_MULTIPLE_NODES
955 
956 extern struct pglist_data contig_page_data;
957 #define NODE_DATA(nid)		(&contig_page_data)
958 #define NODE_MEM_MAP(nid)	mem_map
959 
960 #else /* CONFIG_NEED_MULTIPLE_NODES */
961 
962 #include <asm/mmzone.h>
963 
964 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
965 
966 extern struct pglist_data *first_online_pgdat(void);
967 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
968 extern struct zone *next_zone(struct zone *zone);
969 
970 /**
971  * for_each_online_pgdat - helper macro to iterate over all online nodes
972  * @pgdat - pointer to a pg_data_t variable
973  */
974 #define for_each_online_pgdat(pgdat)			\
975 	for (pgdat = first_online_pgdat();		\
976 	     pgdat;					\
977 	     pgdat = next_online_pgdat(pgdat))
978 /**
979  * for_each_zone - helper macro to iterate over all memory zones
980  * @zone - pointer to struct zone variable
981  *
982  * The user only needs to declare the zone variable, for_each_zone
983  * fills it in.
984  */
985 #define for_each_zone(zone)			        \
986 	for (zone = (first_online_pgdat())->node_zones; \
987 	     zone;					\
988 	     zone = next_zone(zone))
989 
990 #define for_each_populated_zone(zone)		        \
991 	for (zone = (first_online_pgdat())->node_zones; \
992 	     zone;					\
993 	     zone = next_zone(zone))			\
994 		if (!populated_zone(zone))		\
995 			; /* do nothing */		\
996 		else
997 
998 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
999 {
1000 	return zoneref->zone;
1001 }
1002 
1003 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1004 {
1005 	return zoneref->zone_idx;
1006 }
1007 
1008 static inline int zonelist_node_idx(struct zoneref *zoneref)
1009 {
1010 	return zone_to_nid(zoneref->zone);
1011 }
1012 
1013 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1014 					enum zone_type highest_zoneidx,
1015 					nodemask_t *nodes);
1016 
1017 /**
1018  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1019  * @z - The cursor used as a starting point for the search
1020  * @highest_zoneidx - The zone index of the highest zone to return
1021  * @nodes - An optional nodemask to filter the zonelist with
1022  *
1023  * This function returns the next zone at or below a given zone index that is
1024  * within the allowed nodemask using a cursor as the starting point for the
1025  * search. The zoneref returned is a cursor that represents the current zone
1026  * being examined. It should be advanced by one before calling
1027  * next_zones_zonelist again.
1028  */
1029 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1030 					enum zone_type highest_zoneidx,
1031 					nodemask_t *nodes)
1032 {
1033 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1034 		return z;
1035 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1036 }
1037 
1038 /**
1039  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1040  * @zonelist - The zonelist to search for a suitable zone
1041  * @highest_zoneidx - The zone index of the highest zone to return
1042  * @nodes - An optional nodemask to filter the zonelist with
1043  * @return - Zoneref pointer for the first suitable zone found (see below)
1044  *
1045  * This function returns the first zone at or below a given zone index that is
1046  * within the allowed nodemask. The zoneref returned is a cursor that can be
1047  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1048  * one before calling.
1049  *
1050  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1051  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1052  * update due to cpuset modification.
1053  */
1054 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1055 					enum zone_type highest_zoneidx,
1056 					nodemask_t *nodes)
1057 {
1058 	return next_zones_zonelist(zonelist->_zonerefs,
1059 							highest_zoneidx, nodes);
1060 }
1061 
1062 /**
1063  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1064  * @zone - The current zone in the iterator
1065  * @z - The current pointer within zonelist->_zonerefs being iterated
1066  * @zlist - The zonelist being iterated
1067  * @highidx - The zone index of the highest zone to return
1068  * @nodemask - Nodemask allowed by the allocator
1069  *
1070  * This iterator iterates though all zones at or below a given zone index and
1071  * within a given nodemask
1072  */
1073 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1074 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1075 		zone;							\
1076 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1077 			zone = zonelist_zone(z))
1078 
1079 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1080 	for (zone = z->zone;	\
1081 		zone;							\
1082 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1083 			zone = zonelist_zone(z))
1084 
1085 
1086 /**
1087  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1088  * @zone - The current zone in the iterator
1089  * @z - The current pointer within zonelist->zones being iterated
1090  * @zlist - The zonelist being iterated
1091  * @highidx - The zone index of the highest zone to return
1092  *
1093  * This iterator iterates though all zones at or below a given zone index.
1094  */
1095 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1096 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1097 
1098 #ifdef CONFIG_SPARSEMEM
1099 #include <asm/sparsemem.h>
1100 #endif
1101 
1102 #ifdef CONFIG_FLATMEM
1103 #define pfn_to_nid(pfn)		(0)
1104 #endif
1105 
1106 #ifdef CONFIG_SPARSEMEM
1107 
1108 /*
1109  * SECTION_SHIFT    		#bits space required to store a section #
1110  *
1111  * PA_SECTION_SHIFT		physical address to/from section number
1112  * PFN_SECTION_SHIFT		pfn to/from section number
1113  */
1114 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1115 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1116 
1117 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1118 
1119 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1120 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1121 
1122 #define SECTION_BLOCKFLAGS_BITS \
1123 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1124 
1125 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1126 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1127 #endif
1128 
1129 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1130 {
1131 	return pfn >> PFN_SECTION_SHIFT;
1132 }
1133 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1134 {
1135 	return sec << PFN_SECTION_SHIFT;
1136 }
1137 
1138 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1139 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1140 
1141 #define SUBSECTION_SHIFT 21
1142 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1143 
1144 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1145 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1146 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1147 
1148 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1149 #error Subsection size exceeds section size
1150 #else
1151 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1152 #endif
1153 
1154 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1155 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1156 
1157 struct mem_section_usage {
1158 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1159 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1160 #endif
1161 	/* See declaration of similar field in struct zone */
1162 	unsigned long pageblock_flags[0];
1163 };
1164 
1165 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1166 
1167 struct page;
1168 struct page_ext;
1169 struct mem_section {
1170 	/*
1171 	 * This is, logically, a pointer to an array of struct
1172 	 * pages.  However, it is stored with some other magic.
1173 	 * (see sparse.c::sparse_init_one_section())
1174 	 *
1175 	 * Additionally during early boot we encode node id of
1176 	 * the location of the section here to guide allocation.
1177 	 * (see sparse.c::memory_present())
1178 	 *
1179 	 * Making it a UL at least makes someone do a cast
1180 	 * before using it wrong.
1181 	 */
1182 	unsigned long section_mem_map;
1183 
1184 	struct mem_section_usage *usage;
1185 #ifdef CONFIG_PAGE_EXTENSION
1186 	/*
1187 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1188 	 * section. (see page_ext.h about this.)
1189 	 */
1190 	struct page_ext *page_ext;
1191 	unsigned long pad;
1192 #endif
1193 	/*
1194 	 * WARNING: mem_section must be a power-of-2 in size for the
1195 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1196 	 */
1197 };
1198 
1199 #ifdef CONFIG_SPARSEMEM_EXTREME
1200 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1201 #else
1202 #define SECTIONS_PER_ROOT	1
1203 #endif
1204 
1205 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1206 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1207 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1208 
1209 #ifdef CONFIG_SPARSEMEM_EXTREME
1210 extern struct mem_section **mem_section;
1211 #else
1212 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1213 #endif
1214 
1215 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1216 {
1217 	return ms->usage->pageblock_flags;
1218 }
1219 
1220 static inline struct mem_section *__nr_to_section(unsigned long nr)
1221 {
1222 #ifdef CONFIG_SPARSEMEM_EXTREME
1223 	if (!mem_section)
1224 		return NULL;
1225 #endif
1226 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1227 		return NULL;
1228 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1229 }
1230 extern unsigned long __section_nr(struct mem_section *ms);
1231 extern size_t mem_section_usage_size(void);
1232 
1233 /*
1234  * We use the lower bits of the mem_map pointer to store
1235  * a little bit of information.  The pointer is calculated
1236  * as mem_map - section_nr_to_pfn(pnum).  The result is
1237  * aligned to the minimum alignment of the two values:
1238  *   1. All mem_map arrays are page-aligned.
1239  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1240  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1241  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1242  *      worst combination is powerpc with 256k pages,
1243  *      which results in PFN_SECTION_SHIFT equal 6.
1244  * To sum it up, at least 6 bits are available.
1245  */
1246 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1247 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1248 #define SECTION_IS_ONLINE	(1UL<<2)
1249 #define SECTION_IS_EARLY	(1UL<<3)
1250 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1251 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1252 #define SECTION_NID_SHIFT	3
1253 
1254 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1255 {
1256 	unsigned long map = section->section_mem_map;
1257 	map &= SECTION_MAP_MASK;
1258 	return (struct page *)map;
1259 }
1260 
1261 static inline int present_section(struct mem_section *section)
1262 {
1263 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1264 }
1265 
1266 static inline int present_section_nr(unsigned long nr)
1267 {
1268 	return present_section(__nr_to_section(nr));
1269 }
1270 
1271 static inline int valid_section(struct mem_section *section)
1272 {
1273 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1274 }
1275 
1276 static inline int early_section(struct mem_section *section)
1277 {
1278 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1279 }
1280 
1281 static inline int valid_section_nr(unsigned long nr)
1282 {
1283 	return valid_section(__nr_to_section(nr));
1284 }
1285 
1286 static inline int online_section(struct mem_section *section)
1287 {
1288 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1289 }
1290 
1291 static inline int online_section_nr(unsigned long nr)
1292 {
1293 	return online_section(__nr_to_section(nr));
1294 }
1295 
1296 #ifdef CONFIG_MEMORY_HOTPLUG
1297 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1298 #ifdef CONFIG_MEMORY_HOTREMOVE
1299 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1300 #endif
1301 #endif
1302 
1303 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1304 {
1305 	return __nr_to_section(pfn_to_section_nr(pfn));
1306 }
1307 
1308 extern unsigned long __highest_present_section_nr;
1309 
1310 static inline int subsection_map_index(unsigned long pfn)
1311 {
1312 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1313 }
1314 
1315 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1316 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1317 {
1318 	int idx = subsection_map_index(pfn);
1319 
1320 	return test_bit(idx, ms->usage->subsection_map);
1321 }
1322 #else
1323 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1324 {
1325 	return 1;
1326 }
1327 #endif
1328 
1329 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1330 static inline int pfn_valid(unsigned long pfn)
1331 {
1332 	struct mem_section *ms;
1333 
1334 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1335 		return 0;
1336 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1337 	if (!valid_section(ms))
1338 		return 0;
1339 	/*
1340 	 * Traditionally early sections always returned pfn_valid() for
1341 	 * the entire section-sized span.
1342 	 */
1343 	return early_section(ms) || pfn_section_valid(ms, pfn);
1344 }
1345 #endif
1346 
1347 static inline int pfn_in_present_section(unsigned long pfn)
1348 {
1349 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1350 		return 0;
1351 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1352 }
1353 
1354 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1355 {
1356 	while (++section_nr <= __highest_present_section_nr) {
1357 		if (present_section_nr(section_nr))
1358 			return section_nr;
1359 	}
1360 
1361 	return -1;
1362 }
1363 
1364 /*
1365  * These are _only_ used during initialisation, therefore they
1366  * can use __initdata ...  They could have names to indicate
1367  * this restriction.
1368  */
1369 #ifdef CONFIG_NUMA
1370 #define pfn_to_nid(pfn)							\
1371 ({									\
1372 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1373 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1374 })
1375 #else
1376 #define pfn_to_nid(pfn)		(0)
1377 #endif
1378 
1379 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1380 void sparse_init(void);
1381 #else
1382 #define sparse_init()	do {} while (0)
1383 #define sparse_index_init(_sec, _nid)  do {} while (0)
1384 #define pfn_in_present_section pfn_valid
1385 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1386 #endif /* CONFIG_SPARSEMEM */
1387 
1388 /*
1389  * During memory init memblocks map pfns to nids. The search is expensive and
1390  * this caches recent lookups. The implementation of __early_pfn_to_nid
1391  * may treat start/end as pfns or sections.
1392  */
1393 struct mminit_pfnnid_cache {
1394 	unsigned long last_start;
1395 	unsigned long last_end;
1396 	int last_nid;
1397 };
1398 
1399 #ifndef early_pfn_valid
1400 #define early_pfn_valid(pfn)	(1)
1401 #endif
1402 
1403 /*
1404  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1405  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1406  * pfn_valid_within() should be used in this case; we optimise this away
1407  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1408  */
1409 #ifdef CONFIG_HOLES_IN_ZONE
1410 #define pfn_valid_within(pfn) pfn_valid(pfn)
1411 #else
1412 #define pfn_valid_within(pfn) (1)
1413 #endif
1414 
1415 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1416 /*
1417  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1418  * associated with it or not. This means that a struct page exists for this
1419  * pfn. The caller cannot assume the page is fully initialized in general.
1420  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1421  * will ensure the struct page is fully online and initialized. Special pages
1422  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1423  *
1424  * In FLATMEM, it is expected that holes always have valid memmap as long as
1425  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1426  * that a valid section has a memmap for the entire section.
1427  *
1428  * However, an ARM, and maybe other embedded architectures in the future
1429  * free memmap backing holes to save memory on the assumption the memmap is
1430  * never used. The page_zone linkages are then broken even though pfn_valid()
1431  * returns true. A walker of the full memmap must then do this additional
1432  * check to ensure the memmap they are looking at is sane by making sure
1433  * the zone and PFN linkages are still valid. This is expensive, but walkers
1434  * of the full memmap are extremely rare.
1435  */
1436 bool memmap_valid_within(unsigned long pfn,
1437 					struct page *page, struct zone *zone);
1438 #else
1439 static inline bool memmap_valid_within(unsigned long pfn,
1440 					struct page *page, struct zone *zone)
1441 {
1442 	return true;
1443 }
1444 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1445 
1446 #endif /* !__GENERATING_BOUNDS.H */
1447 #endif /* !__ASSEMBLY__ */
1448 #endif /* _LINUX_MMZONE_H */
1449