1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 92 93 #define get_pageblock_migratetype(page) \ 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 static inline struct page *get_page_from_free_area(struct free_area *area, 102 int migratetype) 103 { 104 return list_first_entry_or_null(&area->free_list[migratetype], 105 struct page, lru); 106 } 107 108 static inline bool free_area_empty(struct free_area *area, int migratetype) 109 { 110 return list_empty(&area->free_list[migratetype]); 111 } 112 113 struct pglist_data; 114 115 /* 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 117 * So add a wild amount of padding here to ensure that they fall into separate 118 * cachelines. There are very few zone structures in the machine, so space 119 * consumption is not a concern here. 120 */ 121 #if defined(CONFIG_SMP) 122 struct zone_padding { 123 char x[0]; 124 } ____cacheline_internodealigned_in_smp; 125 #define ZONE_PADDING(name) struct zone_padding name; 126 #else 127 #define ZONE_PADDING(name) 128 #endif 129 130 #ifdef CONFIG_NUMA 131 enum numa_stat_item { 132 NUMA_HIT, /* allocated in intended node */ 133 NUMA_MISS, /* allocated in non intended node */ 134 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 136 NUMA_LOCAL, /* allocation from local node */ 137 NUMA_OTHER, /* allocation from other node */ 138 NR_VM_NUMA_STAT_ITEMS 139 }; 140 #else 141 #define NR_VM_NUMA_STAT_ITEMS 0 142 #endif 143 144 enum zone_stat_item { 145 /* First 128 byte cacheline (assuming 64 bit words) */ 146 NR_FREE_PAGES, 147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 149 NR_ZONE_ACTIVE_ANON, 150 NR_ZONE_INACTIVE_FILE, 151 NR_ZONE_ACTIVE_FILE, 152 NR_ZONE_UNEVICTABLE, 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 155 NR_PAGETABLE, /* used for pagetables */ 156 /* Second 128 byte cacheline */ 157 NR_BOUNCE, 158 #if IS_ENABLED(CONFIG_ZSMALLOC) 159 NR_ZSPAGES, /* allocated in zsmalloc */ 160 #endif 161 NR_FREE_CMA_PAGES, 162 NR_VM_ZONE_STAT_ITEMS }; 163 164 enum node_stat_item { 165 NR_LRU_BASE, 166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 167 NR_ACTIVE_ANON, /* " " " " " */ 168 NR_INACTIVE_FILE, /* " " " " " */ 169 NR_ACTIVE_FILE, /* " " " " " */ 170 NR_UNEVICTABLE, /* " " " " " */ 171 NR_SLAB_RECLAIMABLE_B, 172 NR_SLAB_UNRECLAIMABLE_B, 173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 175 WORKINGSET_NODES, 176 WORKINGSET_REFAULT_BASE, 177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 178 WORKINGSET_REFAULT_FILE, 179 WORKINGSET_ACTIVATE_BASE, 180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 181 WORKINGSET_ACTIVATE_FILE, 182 WORKINGSET_RESTORE_BASE, 183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 184 WORKINGSET_RESTORE_FILE, 185 WORKINGSET_NODERECLAIM, 186 NR_ANON_MAPPED, /* Mapped anonymous pages */ 187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 188 only modified from process context */ 189 NR_FILE_PAGES, 190 NR_FILE_DIRTY, 191 NR_WRITEBACK, 192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 194 NR_SHMEM_THPS, 195 NR_SHMEM_PMDMAPPED, 196 NR_FILE_THPS, 197 NR_FILE_PMDMAPPED, 198 NR_ANON_THPS, 199 NR_VMSCAN_WRITE, 200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 201 NR_DIRTIED, /* page dirtyings since bootup */ 202 NR_WRITTEN, /* page writings since bootup */ 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 206 NR_KERNEL_STACK_KB, /* measured in KiB */ 207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 208 NR_KERNEL_SCS_KB, /* measured in KiB */ 209 #endif 210 NR_VM_NODE_STAT_ITEMS 211 }; 212 213 /* 214 * Returns true if the value is measured in bytes (most vmstat values are 215 * measured in pages). This defines the API part, the internal representation 216 * might be different. 217 */ 218 static __always_inline bool vmstat_item_in_bytes(int idx) 219 { 220 /* 221 * Global and per-node slab counters track slab pages. 222 * It's expected that changes are multiples of PAGE_SIZE. 223 * Internally values are stored in pages. 224 * 225 * Per-memcg and per-lruvec counters track memory, consumed 226 * by individual slab objects. These counters are actually 227 * byte-precise. 228 */ 229 return (idx == NR_SLAB_RECLAIMABLE_B || 230 idx == NR_SLAB_UNRECLAIMABLE_B); 231 } 232 233 /* 234 * We do arithmetic on the LRU lists in various places in the code, 235 * so it is important to keep the active lists LRU_ACTIVE higher in 236 * the array than the corresponding inactive lists, and to keep 237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 238 * 239 * This has to be kept in sync with the statistics in zone_stat_item 240 * above and the descriptions in vmstat_text in mm/vmstat.c 241 */ 242 #define LRU_BASE 0 243 #define LRU_ACTIVE 1 244 #define LRU_FILE 2 245 246 enum lru_list { 247 LRU_INACTIVE_ANON = LRU_BASE, 248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 251 LRU_UNEVICTABLE, 252 NR_LRU_LISTS 253 }; 254 255 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 256 257 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 258 259 static inline bool is_file_lru(enum lru_list lru) 260 { 261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 262 } 263 264 static inline bool is_active_lru(enum lru_list lru) 265 { 266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 267 } 268 269 enum lruvec_flags { 270 LRUVEC_CONGESTED, /* lruvec has many dirty pages 271 * backed by a congested BDI 272 */ 273 }; 274 275 struct lruvec { 276 struct list_head lists[NR_LRU_LISTS]; 277 /* 278 * These track the cost of reclaiming one LRU - file or anon - 279 * over the other. As the observed cost of reclaiming one LRU 280 * increases, the reclaim scan balance tips toward the other. 281 */ 282 unsigned long anon_cost; 283 unsigned long file_cost; 284 /* Non-resident age, driven by LRU movement */ 285 atomic_long_t nonresident_age; 286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */ 287 unsigned long refaults[2]; 288 /* Various lruvec state flags (enum lruvec_flags) */ 289 unsigned long flags; 290 #ifdef CONFIG_MEMCG 291 struct pglist_data *pgdat; 292 #endif 293 }; 294 295 /* Isolate unmapped pages */ 296 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 297 /* Isolate for asynchronous migration */ 298 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 299 /* Isolate unevictable pages */ 300 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 301 302 /* LRU Isolation modes. */ 303 typedef unsigned __bitwise isolate_mode_t; 304 305 enum zone_watermarks { 306 WMARK_MIN, 307 WMARK_LOW, 308 WMARK_HIGH, 309 NR_WMARK 310 }; 311 312 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 313 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 314 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 315 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 316 317 struct per_cpu_pages { 318 int count; /* number of pages in the list */ 319 int high; /* high watermark, emptying needed */ 320 int batch; /* chunk size for buddy add/remove */ 321 322 /* Lists of pages, one per migrate type stored on the pcp-lists */ 323 struct list_head lists[MIGRATE_PCPTYPES]; 324 }; 325 326 struct per_cpu_pageset { 327 struct per_cpu_pages pcp; 328 #ifdef CONFIG_NUMA 329 s8 expire; 330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 331 #endif 332 #ifdef CONFIG_SMP 333 s8 stat_threshold; 334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 335 #endif 336 }; 337 338 struct per_cpu_nodestat { 339 s8 stat_threshold; 340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 341 }; 342 343 #endif /* !__GENERATING_BOUNDS.H */ 344 345 enum zone_type { 346 /* 347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 348 * to DMA to all of the addressable memory (ZONE_NORMAL). 349 * On architectures where this area covers the whole 32 bit address 350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 351 * DMA addressing constraints. This distinction is important as a 32bit 352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 353 * platforms may need both zones as they support peripherals with 354 * different DMA addressing limitations. 355 * 356 * Some examples: 357 * 358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 359 * rest of the lower 4G. 360 * 361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 362 * the specific device. 363 * 364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 365 * lower 4G. 366 * 367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 368 * depending on the specific device. 369 * 370 * - s390 uses ZONE_DMA fixed to the lower 2G. 371 * 372 * - ia64 and riscv only use ZONE_DMA32. 373 * 374 * - parisc uses neither. 375 */ 376 #ifdef CONFIG_ZONE_DMA 377 ZONE_DMA, 378 #endif 379 #ifdef CONFIG_ZONE_DMA32 380 ZONE_DMA32, 381 #endif 382 /* 383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 384 * performed on pages in ZONE_NORMAL if the DMA devices support 385 * transfers to all addressable memory. 386 */ 387 ZONE_NORMAL, 388 #ifdef CONFIG_HIGHMEM 389 /* 390 * A memory area that is only addressable by the kernel through 391 * mapping portions into its own address space. This is for example 392 * used by i386 to allow the kernel to address the memory beyond 393 * 900MB. The kernel will set up special mappings (page 394 * table entries on i386) for each page that the kernel needs to 395 * access. 396 */ 397 ZONE_HIGHMEM, 398 #endif 399 ZONE_MOVABLE, 400 #ifdef CONFIG_ZONE_DEVICE 401 ZONE_DEVICE, 402 #endif 403 __MAX_NR_ZONES 404 405 }; 406 407 #ifndef __GENERATING_BOUNDS_H 408 409 struct zone { 410 /* Read-mostly fields */ 411 412 /* zone watermarks, access with *_wmark_pages(zone) macros */ 413 unsigned long _watermark[NR_WMARK]; 414 unsigned long watermark_boost; 415 416 unsigned long nr_reserved_highatomic; 417 418 /* 419 * We don't know if the memory that we're going to allocate will be 420 * freeable or/and it will be released eventually, so to avoid totally 421 * wasting several GB of ram we must reserve some of the lower zone 422 * memory (otherwise we risk to run OOM on the lower zones despite 423 * there being tons of freeable ram on the higher zones). This array is 424 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 425 * changes. 426 */ 427 long lowmem_reserve[MAX_NR_ZONES]; 428 429 #ifdef CONFIG_NUMA 430 int node; 431 #endif 432 struct pglist_data *zone_pgdat; 433 struct per_cpu_pageset __percpu *pageset; 434 435 #ifndef CONFIG_SPARSEMEM 436 /* 437 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 438 * In SPARSEMEM, this map is stored in struct mem_section 439 */ 440 unsigned long *pageblock_flags; 441 #endif /* CONFIG_SPARSEMEM */ 442 443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 444 unsigned long zone_start_pfn; 445 446 /* 447 * spanned_pages is the total pages spanned by the zone, including 448 * holes, which is calculated as: 449 * spanned_pages = zone_end_pfn - zone_start_pfn; 450 * 451 * present_pages is physical pages existing within the zone, which 452 * is calculated as: 453 * present_pages = spanned_pages - absent_pages(pages in holes); 454 * 455 * managed_pages is present pages managed by the buddy system, which 456 * is calculated as (reserved_pages includes pages allocated by the 457 * bootmem allocator): 458 * managed_pages = present_pages - reserved_pages; 459 * 460 * So present_pages may be used by memory hotplug or memory power 461 * management logic to figure out unmanaged pages by checking 462 * (present_pages - managed_pages). And managed_pages should be used 463 * by page allocator and vm scanner to calculate all kinds of watermarks 464 * and thresholds. 465 * 466 * Locking rules: 467 * 468 * zone_start_pfn and spanned_pages are protected by span_seqlock. 469 * It is a seqlock because it has to be read outside of zone->lock, 470 * and it is done in the main allocator path. But, it is written 471 * quite infrequently. 472 * 473 * The span_seq lock is declared along with zone->lock because it is 474 * frequently read in proximity to zone->lock. It's good to 475 * give them a chance of being in the same cacheline. 476 * 477 * Write access to present_pages at runtime should be protected by 478 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 479 * present_pages should get_online_mems() to get a stable value. 480 */ 481 atomic_long_t managed_pages; 482 unsigned long spanned_pages; 483 unsigned long present_pages; 484 485 const char *name; 486 487 #ifdef CONFIG_MEMORY_ISOLATION 488 /* 489 * Number of isolated pageblock. It is used to solve incorrect 490 * freepage counting problem due to racy retrieving migratetype 491 * of pageblock. Protected by zone->lock. 492 */ 493 unsigned long nr_isolate_pageblock; 494 #endif 495 496 #ifdef CONFIG_MEMORY_HOTPLUG 497 /* see spanned/present_pages for more description */ 498 seqlock_t span_seqlock; 499 #endif 500 501 int initialized; 502 503 /* Write-intensive fields used from the page allocator */ 504 ZONE_PADDING(_pad1_) 505 506 /* free areas of different sizes */ 507 struct free_area free_area[MAX_ORDER]; 508 509 /* zone flags, see below */ 510 unsigned long flags; 511 512 /* Primarily protects free_area */ 513 spinlock_t lock; 514 515 /* Write-intensive fields used by compaction and vmstats. */ 516 ZONE_PADDING(_pad2_) 517 518 /* 519 * When free pages are below this point, additional steps are taken 520 * when reading the number of free pages to avoid per-cpu counter 521 * drift allowing watermarks to be breached 522 */ 523 unsigned long percpu_drift_mark; 524 525 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 526 /* pfn where compaction free scanner should start */ 527 unsigned long compact_cached_free_pfn; 528 /* pfn where async and sync compaction migration scanner should start */ 529 unsigned long compact_cached_migrate_pfn[2]; 530 unsigned long compact_init_migrate_pfn; 531 unsigned long compact_init_free_pfn; 532 #endif 533 534 #ifdef CONFIG_COMPACTION 535 /* 536 * On compaction failure, 1<<compact_defer_shift compactions 537 * are skipped before trying again. The number attempted since 538 * last failure is tracked with compact_considered. 539 * compact_order_failed is the minimum compaction failed order. 540 */ 541 unsigned int compact_considered; 542 unsigned int compact_defer_shift; 543 int compact_order_failed; 544 #endif 545 546 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 547 /* Set to true when the PG_migrate_skip bits should be cleared */ 548 bool compact_blockskip_flush; 549 #endif 550 551 bool contiguous; 552 553 ZONE_PADDING(_pad3_) 554 /* Zone statistics */ 555 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 556 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 557 } ____cacheline_internodealigned_in_smp; 558 559 enum pgdat_flags { 560 PGDAT_DIRTY, /* reclaim scanning has recently found 561 * many dirty file pages at the tail 562 * of the LRU. 563 */ 564 PGDAT_WRITEBACK, /* reclaim scanning has recently found 565 * many pages under writeback 566 */ 567 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 568 }; 569 570 enum zone_flags { 571 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 572 * Cleared when kswapd is woken. 573 */ 574 }; 575 576 static inline unsigned long zone_managed_pages(struct zone *zone) 577 { 578 return (unsigned long)atomic_long_read(&zone->managed_pages); 579 } 580 581 static inline unsigned long zone_end_pfn(const struct zone *zone) 582 { 583 return zone->zone_start_pfn + zone->spanned_pages; 584 } 585 586 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 587 { 588 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 589 } 590 591 static inline bool zone_is_initialized(struct zone *zone) 592 { 593 return zone->initialized; 594 } 595 596 static inline bool zone_is_empty(struct zone *zone) 597 { 598 return zone->spanned_pages == 0; 599 } 600 601 /* 602 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 603 * intersection with the given zone 604 */ 605 static inline bool zone_intersects(struct zone *zone, 606 unsigned long start_pfn, unsigned long nr_pages) 607 { 608 if (zone_is_empty(zone)) 609 return false; 610 if (start_pfn >= zone_end_pfn(zone) || 611 start_pfn + nr_pages <= zone->zone_start_pfn) 612 return false; 613 614 return true; 615 } 616 617 /* 618 * The "priority" of VM scanning is how much of the queues we will scan in one 619 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 620 * queues ("queue_length >> 12") during an aging round. 621 */ 622 #define DEF_PRIORITY 12 623 624 /* Maximum number of zones on a zonelist */ 625 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 626 627 enum { 628 ZONELIST_FALLBACK, /* zonelist with fallback */ 629 #ifdef CONFIG_NUMA 630 /* 631 * The NUMA zonelists are doubled because we need zonelists that 632 * restrict the allocations to a single node for __GFP_THISNODE. 633 */ 634 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 635 #endif 636 MAX_ZONELISTS 637 }; 638 639 /* 640 * This struct contains information about a zone in a zonelist. It is stored 641 * here to avoid dereferences into large structures and lookups of tables 642 */ 643 struct zoneref { 644 struct zone *zone; /* Pointer to actual zone */ 645 int zone_idx; /* zone_idx(zoneref->zone) */ 646 }; 647 648 /* 649 * One allocation request operates on a zonelist. A zonelist 650 * is a list of zones, the first one is the 'goal' of the 651 * allocation, the other zones are fallback zones, in decreasing 652 * priority. 653 * 654 * To speed the reading of the zonelist, the zonerefs contain the zone index 655 * of the entry being read. Helper functions to access information given 656 * a struct zoneref are 657 * 658 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 659 * zonelist_zone_idx() - Return the index of the zone for an entry 660 * zonelist_node_idx() - Return the index of the node for an entry 661 */ 662 struct zonelist { 663 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 664 }; 665 666 #ifndef CONFIG_DISCONTIGMEM 667 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 668 extern struct page *mem_map; 669 #endif 670 671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 672 struct deferred_split { 673 spinlock_t split_queue_lock; 674 struct list_head split_queue; 675 unsigned long split_queue_len; 676 }; 677 #endif 678 679 /* 680 * On NUMA machines, each NUMA node would have a pg_data_t to describe 681 * it's memory layout. On UMA machines there is a single pglist_data which 682 * describes the whole memory. 683 * 684 * Memory statistics and page replacement data structures are maintained on a 685 * per-zone basis. 686 */ 687 typedef struct pglist_data { 688 /* 689 * node_zones contains just the zones for THIS node. Not all of the 690 * zones may be populated, but it is the full list. It is referenced by 691 * this node's node_zonelists as well as other node's node_zonelists. 692 */ 693 struct zone node_zones[MAX_NR_ZONES]; 694 695 /* 696 * node_zonelists contains references to all zones in all nodes. 697 * Generally the first zones will be references to this node's 698 * node_zones. 699 */ 700 struct zonelist node_zonelists[MAX_ZONELISTS]; 701 702 int nr_zones; /* number of populated zones in this node */ 703 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 704 struct page *node_mem_map; 705 #ifdef CONFIG_PAGE_EXTENSION 706 struct page_ext *node_page_ext; 707 #endif 708 #endif 709 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 710 /* 711 * Must be held any time you expect node_start_pfn, 712 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 713 * Also synchronizes pgdat->first_deferred_pfn during deferred page 714 * init. 715 * 716 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 717 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 718 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 719 * 720 * Nests above zone->lock and zone->span_seqlock 721 */ 722 spinlock_t node_size_lock; 723 #endif 724 unsigned long node_start_pfn; 725 unsigned long node_present_pages; /* total number of physical pages */ 726 unsigned long node_spanned_pages; /* total size of physical page 727 range, including holes */ 728 int node_id; 729 wait_queue_head_t kswapd_wait; 730 wait_queue_head_t pfmemalloc_wait; 731 struct task_struct *kswapd; /* Protected by 732 mem_hotplug_begin/end() */ 733 int kswapd_order; 734 enum zone_type kswapd_highest_zoneidx; 735 736 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 737 738 #ifdef CONFIG_COMPACTION 739 int kcompactd_max_order; 740 enum zone_type kcompactd_highest_zoneidx; 741 wait_queue_head_t kcompactd_wait; 742 struct task_struct *kcompactd; 743 #endif 744 /* 745 * This is a per-node reserve of pages that are not available 746 * to userspace allocations. 747 */ 748 unsigned long totalreserve_pages; 749 750 #ifdef CONFIG_NUMA 751 /* 752 * node reclaim becomes active if more unmapped pages exist. 753 */ 754 unsigned long min_unmapped_pages; 755 unsigned long min_slab_pages; 756 #endif /* CONFIG_NUMA */ 757 758 /* Write-intensive fields used by page reclaim */ 759 ZONE_PADDING(_pad1_) 760 spinlock_t lru_lock; 761 762 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 763 /* 764 * If memory initialisation on large machines is deferred then this 765 * is the first PFN that needs to be initialised. 766 */ 767 unsigned long first_deferred_pfn; 768 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 769 770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 771 struct deferred_split deferred_split_queue; 772 #endif 773 774 /* Fields commonly accessed by the page reclaim scanner */ 775 776 /* 777 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 778 * 779 * Use mem_cgroup_lruvec() to look up lruvecs. 780 */ 781 struct lruvec __lruvec; 782 783 unsigned long flags; 784 785 ZONE_PADDING(_pad2_) 786 787 /* Per-node vmstats */ 788 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 789 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 790 } pg_data_t; 791 792 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 793 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 794 #ifdef CONFIG_FLAT_NODE_MEM_MAP 795 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 796 #else 797 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 798 #endif 799 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 800 801 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 802 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 803 804 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 805 { 806 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 807 } 808 809 static inline bool pgdat_is_empty(pg_data_t *pgdat) 810 { 811 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 812 } 813 814 #include <linux/memory_hotplug.h> 815 816 void build_all_zonelists(pg_data_t *pgdat); 817 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 818 enum zone_type highest_zoneidx); 819 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 820 int highest_zoneidx, unsigned int alloc_flags, 821 long free_pages); 822 bool zone_watermark_ok(struct zone *z, unsigned int order, 823 unsigned long mark, int highest_zoneidx, 824 unsigned int alloc_flags); 825 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 826 unsigned long mark, int highest_zoneidx); 827 enum memmap_context { 828 MEMMAP_EARLY, 829 MEMMAP_HOTPLUG, 830 }; 831 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 832 unsigned long size); 833 834 extern void lruvec_init(struct lruvec *lruvec); 835 836 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 837 { 838 #ifdef CONFIG_MEMCG 839 return lruvec->pgdat; 840 #else 841 return container_of(lruvec, struct pglist_data, __lruvec); 842 #endif 843 } 844 845 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 846 847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 848 int local_memory_node(int node_id); 849 #else 850 static inline int local_memory_node(int node_id) { return node_id; }; 851 #endif 852 853 /* 854 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 855 */ 856 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 857 858 /* 859 * Returns true if a zone has pages managed by the buddy allocator. 860 * All the reclaim decisions have to use this function rather than 861 * populated_zone(). If the whole zone is reserved then we can easily 862 * end up with populated_zone() && !managed_zone(). 863 */ 864 static inline bool managed_zone(struct zone *zone) 865 { 866 return zone_managed_pages(zone); 867 } 868 869 /* Returns true if a zone has memory */ 870 static inline bool populated_zone(struct zone *zone) 871 { 872 return zone->present_pages; 873 } 874 875 #ifdef CONFIG_NUMA 876 static inline int zone_to_nid(struct zone *zone) 877 { 878 return zone->node; 879 } 880 881 static inline void zone_set_nid(struct zone *zone, int nid) 882 { 883 zone->node = nid; 884 } 885 #else 886 static inline int zone_to_nid(struct zone *zone) 887 { 888 return 0; 889 } 890 891 static inline void zone_set_nid(struct zone *zone, int nid) {} 892 #endif 893 894 extern int movable_zone; 895 896 #ifdef CONFIG_HIGHMEM 897 static inline int zone_movable_is_highmem(void) 898 { 899 #ifdef CONFIG_NEED_MULTIPLE_NODES 900 return movable_zone == ZONE_HIGHMEM; 901 #else 902 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 903 #endif 904 } 905 #endif 906 907 static inline int is_highmem_idx(enum zone_type idx) 908 { 909 #ifdef CONFIG_HIGHMEM 910 return (idx == ZONE_HIGHMEM || 911 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 912 #else 913 return 0; 914 #endif 915 } 916 917 /** 918 * is_highmem - helper function to quickly check if a struct zone is a 919 * highmem zone or not. This is an attempt to keep references 920 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 921 * @zone - pointer to struct zone variable 922 */ 923 static inline int is_highmem(struct zone *zone) 924 { 925 #ifdef CONFIG_HIGHMEM 926 return is_highmem_idx(zone_idx(zone)); 927 #else 928 return 0; 929 #endif 930 } 931 932 /* These two functions are used to setup the per zone pages min values */ 933 struct ctl_table; 934 935 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 936 loff_t *); 937 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 938 size_t *, loff_t *); 939 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 940 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 941 size_t *, loff_t *); 942 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 943 void *, size_t *, loff_t *); 944 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 945 void *, size_t *, loff_t *); 946 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 947 void *, size_t *, loff_t *); 948 int numa_zonelist_order_handler(struct ctl_table *, int, 949 void *, size_t *, loff_t *); 950 extern int percpu_pagelist_fraction; 951 extern char numa_zonelist_order[]; 952 #define NUMA_ZONELIST_ORDER_LEN 16 953 954 #ifndef CONFIG_NEED_MULTIPLE_NODES 955 956 extern struct pglist_data contig_page_data; 957 #define NODE_DATA(nid) (&contig_page_data) 958 #define NODE_MEM_MAP(nid) mem_map 959 960 #else /* CONFIG_NEED_MULTIPLE_NODES */ 961 962 #include <asm/mmzone.h> 963 964 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 965 966 extern struct pglist_data *first_online_pgdat(void); 967 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 968 extern struct zone *next_zone(struct zone *zone); 969 970 /** 971 * for_each_online_pgdat - helper macro to iterate over all online nodes 972 * @pgdat - pointer to a pg_data_t variable 973 */ 974 #define for_each_online_pgdat(pgdat) \ 975 for (pgdat = first_online_pgdat(); \ 976 pgdat; \ 977 pgdat = next_online_pgdat(pgdat)) 978 /** 979 * for_each_zone - helper macro to iterate over all memory zones 980 * @zone - pointer to struct zone variable 981 * 982 * The user only needs to declare the zone variable, for_each_zone 983 * fills it in. 984 */ 985 #define for_each_zone(zone) \ 986 for (zone = (first_online_pgdat())->node_zones; \ 987 zone; \ 988 zone = next_zone(zone)) 989 990 #define for_each_populated_zone(zone) \ 991 for (zone = (first_online_pgdat())->node_zones; \ 992 zone; \ 993 zone = next_zone(zone)) \ 994 if (!populated_zone(zone)) \ 995 ; /* do nothing */ \ 996 else 997 998 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 999 { 1000 return zoneref->zone; 1001 } 1002 1003 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1004 { 1005 return zoneref->zone_idx; 1006 } 1007 1008 static inline int zonelist_node_idx(struct zoneref *zoneref) 1009 { 1010 return zone_to_nid(zoneref->zone); 1011 } 1012 1013 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1014 enum zone_type highest_zoneidx, 1015 nodemask_t *nodes); 1016 1017 /** 1018 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1019 * @z - The cursor used as a starting point for the search 1020 * @highest_zoneidx - The zone index of the highest zone to return 1021 * @nodes - An optional nodemask to filter the zonelist with 1022 * 1023 * This function returns the next zone at or below a given zone index that is 1024 * within the allowed nodemask using a cursor as the starting point for the 1025 * search. The zoneref returned is a cursor that represents the current zone 1026 * being examined. It should be advanced by one before calling 1027 * next_zones_zonelist again. 1028 */ 1029 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1030 enum zone_type highest_zoneidx, 1031 nodemask_t *nodes) 1032 { 1033 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1034 return z; 1035 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1036 } 1037 1038 /** 1039 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1040 * @zonelist - The zonelist to search for a suitable zone 1041 * @highest_zoneidx - The zone index of the highest zone to return 1042 * @nodes - An optional nodemask to filter the zonelist with 1043 * @return - Zoneref pointer for the first suitable zone found (see below) 1044 * 1045 * This function returns the first zone at or below a given zone index that is 1046 * within the allowed nodemask. The zoneref returned is a cursor that can be 1047 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1048 * one before calling. 1049 * 1050 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1051 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1052 * update due to cpuset modification. 1053 */ 1054 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1055 enum zone_type highest_zoneidx, 1056 nodemask_t *nodes) 1057 { 1058 return next_zones_zonelist(zonelist->_zonerefs, 1059 highest_zoneidx, nodes); 1060 } 1061 1062 /** 1063 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1064 * @zone - The current zone in the iterator 1065 * @z - The current pointer within zonelist->_zonerefs being iterated 1066 * @zlist - The zonelist being iterated 1067 * @highidx - The zone index of the highest zone to return 1068 * @nodemask - Nodemask allowed by the allocator 1069 * 1070 * This iterator iterates though all zones at or below a given zone index and 1071 * within a given nodemask 1072 */ 1073 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1074 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1075 zone; \ 1076 z = next_zones_zonelist(++z, highidx, nodemask), \ 1077 zone = zonelist_zone(z)) 1078 1079 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1080 for (zone = z->zone; \ 1081 zone; \ 1082 z = next_zones_zonelist(++z, highidx, nodemask), \ 1083 zone = zonelist_zone(z)) 1084 1085 1086 /** 1087 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1088 * @zone - The current zone in the iterator 1089 * @z - The current pointer within zonelist->zones being iterated 1090 * @zlist - The zonelist being iterated 1091 * @highidx - The zone index of the highest zone to return 1092 * 1093 * This iterator iterates though all zones at or below a given zone index. 1094 */ 1095 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1096 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1097 1098 #ifdef CONFIG_SPARSEMEM 1099 #include <asm/sparsemem.h> 1100 #endif 1101 1102 #ifdef CONFIG_FLATMEM 1103 #define pfn_to_nid(pfn) (0) 1104 #endif 1105 1106 #ifdef CONFIG_SPARSEMEM 1107 1108 /* 1109 * SECTION_SHIFT #bits space required to store a section # 1110 * 1111 * PA_SECTION_SHIFT physical address to/from section number 1112 * PFN_SECTION_SHIFT pfn to/from section number 1113 */ 1114 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1115 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1116 1117 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1118 1119 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1120 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1121 1122 #define SECTION_BLOCKFLAGS_BITS \ 1123 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1124 1125 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1126 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1127 #endif 1128 1129 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1130 { 1131 return pfn >> PFN_SECTION_SHIFT; 1132 } 1133 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1134 { 1135 return sec << PFN_SECTION_SHIFT; 1136 } 1137 1138 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1139 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1140 1141 #define SUBSECTION_SHIFT 21 1142 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1143 1144 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1145 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1146 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1147 1148 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1149 #error Subsection size exceeds section size 1150 #else 1151 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1152 #endif 1153 1154 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1155 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1156 1157 struct mem_section_usage { 1158 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1159 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1160 #endif 1161 /* See declaration of similar field in struct zone */ 1162 unsigned long pageblock_flags[0]; 1163 }; 1164 1165 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1166 1167 struct page; 1168 struct page_ext; 1169 struct mem_section { 1170 /* 1171 * This is, logically, a pointer to an array of struct 1172 * pages. However, it is stored with some other magic. 1173 * (see sparse.c::sparse_init_one_section()) 1174 * 1175 * Additionally during early boot we encode node id of 1176 * the location of the section here to guide allocation. 1177 * (see sparse.c::memory_present()) 1178 * 1179 * Making it a UL at least makes someone do a cast 1180 * before using it wrong. 1181 */ 1182 unsigned long section_mem_map; 1183 1184 struct mem_section_usage *usage; 1185 #ifdef CONFIG_PAGE_EXTENSION 1186 /* 1187 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1188 * section. (see page_ext.h about this.) 1189 */ 1190 struct page_ext *page_ext; 1191 unsigned long pad; 1192 #endif 1193 /* 1194 * WARNING: mem_section must be a power-of-2 in size for the 1195 * calculation and use of SECTION_ROOT_MASK to make sense. 1196 */ 1197 }; 1198 1199 #ifdef CONFIG_SPARSEMEM_EXTREME 1200 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1201 #else 1202 #define SECTIONS_PER_ROOT 1 1203 #endif 1204 1205 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1206 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1207 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1208 1209 #ifdef CONFIG_SPARSEMEM_EXTREME 1210 extern struct mem_section **mem_section; 1211 #else 1212 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1213 #endif 1214 1215 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1216 { 1217 return ms->usage->pageblock_flags; 1218 } 1219 1220 static inline struct mem_section *__nr_to_section(unsigned long nr) 1221 { 1222 #ifdef CONFIG_SPARSEMEM_EXTREME 1223 if (!mem_section) 1224 return NULL; 1225 #endif 1226 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1227 return NULL; 1228 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1229 } 1230 extern unsigned long __section_nr(struct mem_section *ms); 1231 extern size_t mem_section_usage_size(void); 1232 1233 /* 1234 * We use the lower bits of the mem_map pointer to store 1235 * a little bit of information. The pointer is calculated 1236 * as mem_map - section_nr_to_pfn(pnum). The result is 1237 * aligned to the minimum alignment of the two values: 1238 * 1. All mem_map arrays are page-aligned. 1239 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1240 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1241 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1242 * worst combination is powerpc with 256k pages, 1243 * which results in PFN_SECTION_SHIFT equal 6. 1244 * To sum it up, at least 6 bits are available. 1245 */ 1246 #define SECTION_MARKED_PRESENT (1UL<<0) 1247 #define SECTION_HAS_MEM_MAP (1UL<<1) 1248 #define SECTION_IS_ONLINE (1UL<<2) 1249 #define SECTION_IS_EARLY (1UL<<3) 1250 #define SECTION_MAP_LAST_BIT (1UL<<4) 1251 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1252 #define SECTION_NID_SHIFT 3 1253 1254 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1255 { 1256 unsigned long map = section->section_mem_map; 1257 map &= SECTION_MAP_MASK; 1258 return (struct page *)map; 1259 } 1260 1261 static inline int present_section(struct mem_section *section) 1262 { 1263 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1264 } 1265 1266 static inline int present_section_nr(unsigned long nr) 1267 { 1268 return present_section(__nr_to_section(nr)); 1269 } 1270 1271 static inline int valid_section(struct mem_section *section) 1272 { 1273 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1274 } 1275 1276 static inline int early_section(struct mem_section *section) 1277 { 1278 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1279 } 1280 1281 static inline int valid_section_nr(unsigned long nr) 1282 { 1283 return valid_section(__nr_to_section(nr)); 1284 } 1285 1286 static inline int online_section(struct mem_section *section) 1287 { 1288 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1289 } 1290 1291 static inline int online_section_nr(unsigned long nr) 1292 { 1293 return online_section(__nr_to_section(nr)); 1294 } 1295 1296 #ifdef CONFIG_MEMORY_HOTPLUG 1297 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1298 #ifdef CONFIG_MEMORY_HOTREMOVE 1299 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1300 #endif 1301 #endif 1302 1303 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1304 { 1305 return __nr_to_section(pfn_to_section_nr(pfn)); 1306 } 1307 1308 extern unsigned long __highest_present_section_nr; 1309 1310 static inline int subsection_map_index(unsigned long pfn) 1311 { 1312 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1313 } 1314 1315 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1316 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1317 { 1318 int idx = subsection_map_index(pfn); 1319 1320 return test_bit(idx, ms->usage->subsection_map); 1321 } 1322 #else 1323 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1324 { 1325 return 1; 1326 } 1327 #endif 1328 1329 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1330 static inline int pfn_valid(unsigned long pfn) 1331 { 1332 struct mem_section *ms; 1333 1334 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1335 return 0; 1336 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1337 if (!valid_section(ms)) 1338 return 0; 1339 /* 1340 * Traditionally early sections always returned pfn_valid() for 1341 * the entire section-sized span. 1342 */ 1343 return early_section(ms) || pfn_section_valid(ms, pfn); 1344 } 1345 #endif 1346 1347 static inline int pfn_in_present_section(unsigned long pfn) 1348 { 1349 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1350 return 0; 1351 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1352 } 1353 1354 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1355 { 1356 while (++section_nr <= __highest_present_section_nr) { 1357 if (present_section_nr(section_nr)) 1358 return section_nr; 1359 } 1360 1361 return -1; 1362 } 1363 1364 /* 1365 * These are _only_ used during initialisation, therefore they 1366 * can use __initdata ... They could have names to indicate 1367 * this restriction. 1368 */ 1369 #ifdef CONFIG_NUMA 1370 #define pfn_to_nid(pfn) \ 1371 ({ \ 1372 unsigned long __pfn_to_nid_pfn = (pfn); \ 1373 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1374 }) 1375 #else 1376 #define pfn_to_nid(pfn) (0) 1377 #endif 1378 1379 #define early_pfn_valid(pfn) pfn_valid(pfn) 1380 void sparse_init(void); 1381 #else 1382 #define sparse_init() do {} while (0) 1383 #define sparse_index_init(_sec, _nid) do {} while (0) 1384 #define pfn_in_present_section pfn_valid 1385 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1386 #endif /* CONFIG_SPARSEMEM */ 1387 1388 /* 1389 * During memory init memblocks map pfns to nids. The search is expensive and 1390 * this caches recent lookups. The implementation of __early_pfn_to_nid 1391 * may treat start/end as pfns or sections. 1392 */ 1393 struct mminit_pfnnid_cache { 1394 unsigned long last_start; 1395 unsigned long last_end; 1396 int last_nid; 1397 }; 1398 1399 #ifndef early_pfn_valid 1400 #define early_pfn_valid(pfn) (1) 1401 #endif 1402 1403 /* 1404 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1405 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1406 * pfn_valid_within() should be used in this case; we optimise this away 1407 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1408 */ 1409 #ifdef CONFIG_HOLES_IN_ZONE 1410 #define pfn_valid_within(pfn) pfn_valid(pfn) 1411 #else 1412 #define pfn_valid_within(pfn) (1) 1413 #endif 1414 1415 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1416 /* 1417 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1418 * associated with it or not. This means that a struct page exists for this 1419 * pfn. The caller cannot assume the page is fully initialized in general. 1420 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1421 * will ensure the struct page is fully online and initialized. Special pages 1422 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1423 * 1424 * In FLATMEM, it is expected that holes always have valid memmap as long as 1425 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1426 * that a valid section has a memmap for the entire section. 1427 * 1428 * However, an ARM, and maybe other embedded architectures in the future 1429 * free memmap backing holes to save memory on the assumption the memmap is 1430 * never used. The page_zone linkages are then broken even though pfn_valid() 1431 * returns true. A walker of the full memmap must then do this additional 1432 * check to ensure the memmap they are looking at is sane by making sure 1433 * the zone and PFN linkages are still valid. This is expensive, but walkers 1434 * of the full memmap are extremely rare. 1435 */ 1436 bool memmap_valid_within(unsigned long pfn, 1437 struct page *page, struct zone *zone); 1438 #else 1439 static inline bool memmap_valid_within(unsigned long pfn, 1440 struct page *page, struct zone *zone) 1441 { 1442 return true; 1443 } 1444 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1445 1446 #endif /* !__GENERATING_BOUNDS.H */ 1447 #endif /* !__ASSEMBLY__ */ 1448 #endif /* _LINUX_MMZONE_H */ 1449