xref: /linux-6.15/include/linux/mmzone.h (revision c75bec79)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 /* Used for pages not on another list */
104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 			     int migratetype)
106 {
107 	list_add(&page->lru, &area->free_list[migratetype]);
108 	area->nr_free++;
109 }
110 
111 /* Used for pages not on another list */
112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 				  int migratetype)
114 {
115 	list_add_tail(&page->lru, &area->free_list[migratetype]);
116 	area->nr_free++;
117 }
118 
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 		int migratetype);
123 #else
124 static inline void add_to_free_area_random(struct page *page,
125 		struct free_area *area, int migratetype)
126 {
127 	add_to_free_area(page, area, migratetype);
128 }
129 #endif
130 
131 /* Used for pages which are on another list */
132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 			     int migratetype)
134 {
135 	list_move(&page->lru, &area->free_list[migratetype]);
136 }
137 
138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 					    int migratetype)
140 {
141 	return list_first_entry_or_null(&area->free_list[migratetype],
142 					struct page, lru);
143 }
144 
145 static inline void del_page_from_free_area(struct page *page,
146 		struct free_area *area)
147 {
148 	list_del(&page->lru);
149 	__ClearPageBuddy(page);
150 	set_page_private(page, 0);
151 	area->nr_free--;
152 }
153 
154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 	return list_empty(&area->free_list[migratetype]);
157 }
158 
159 struct pglist_data;
160 
161 /*
162  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163  * So add a wild amount of padding here to ensure that they fall into separate
164  * cachelines.  There are very few zone structures in the machine, so space
165  * consumption is not a concern here.
166  */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 	char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name)	struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175 
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 	NUMA_HIT,		/* allocated in intended node */
179 	NUMA_MISS,		/* allocated in non intended node */
180 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
181 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
182 	NUMA_LOCAL,		/* allocation from local node */
183 	NUMA_OTHER,		/* allocation from other node */
184 	NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189 
190 enum zone_stat_item {
191 	/* First 128 byte cacheline (assuming 64 bit words) */
192 	NR_FREE_PAGES,
193 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 	NR_ZONE_ACTIVE_ANON,
196 	NR_ZONE_INACTIVE_FILE,
197 	NR_ZONE_ACTIVE_FILE,
198 	NR_ZONE_UNEVICTABLE,
199 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
200 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_KERNEL_STACK_KB,	/* measured in KiB */
203 	/* Second 128 byte cacheline */
204 	NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206 	NR_ZSPAGES,		/* allocated in zsmalloc */
207 #endif
208 	NR_FREE_CMA_PAGES,
209 	NR_VM_ZONE_STAT_ITEMS };
210 
211 enum node_stat_item {
212 	NR_LRU_BASE,
213 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
215 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
216 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
217 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
218 	NR_SLAB_RECLAIMABLE,
219 	NR_SLAB_UNRECLAIMABLE,
220 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
221 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
222 	WORKINGSET_NODES,
223 	WORKINGSET_REFAULT,
224 	WORKINGSET_ACTIVATE,
225 	WORKINGSET_RESTORE,
226 	WORKINGSET_NODERECLAIM,
227 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
228 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
229 			   only modified from process context */
230 	NR_FILE_PAGES,
231 	NR_FILE_DIRTY,
232 	NR_WRITEBACK,
233 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
234 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
235 	NR_SHMEM_THPS,
236 	NR_SHMEM_PMDMAPPED,
237 	NR_FILE_THPS,
238 	NR_FILE_PMDMAPPED,
239 	NR_ANON_THPS,
240 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
241 	NR_VMSCAN_WRITE,
242 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
243 	NR_DIRTIED,		/* page dirtyings since bootup */
244 	NR_WRITTEN,		/* page writings since bootup */
245 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
246 	NR_VM_NODE_STAT_ITEMS
247 };
248 
249 /*
250  * We do arithmetic on the LRU lists in various places in the code,
251  * so it is important to keep the active lists LRU_ACTIVE higher in
252  * the array than the corresponding inactive lists, and to keep
253  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
254  *
255  * This has to be kept in sync with the statistics in zone_stat_item
256  * above and the descriptions in vmstat_text in mm/vmstat.c
257  */
258 #define LRU_BASE 0
259 #define LRU_ACTIVE 1
260 #define LRU_FILE 2
261 
262 enum lru_list {
263 	LRU_INACTIVE_ANON = LRU_BASE,
264 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
265 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
266 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
267 	LRU_UNEVICTABLE,
268 	NR_LRU_LISTS
269 };
270 
271 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
272 
273 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
274 
275 static inline bool is_file_lru(enum lru_list lru)
276 {
277 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
278 }
279 
280 static inline bool is_active_lru(enum lru_list lru)
281 {
282 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
283 }
284 
285 struct zone_reclaim_stat {
286 	/*
287 	 * The pageout code in vmscan.c keeps track of how many of the
288 	 * mem/swap backed and file backed pages are referenced.
289 	 * The higher the rotated/scanned ratio, the more valuable
290 	 * that cache is.
291 	 *
292 	 * The anon LRU stats live in [0], file LRU stats in [1]
293 	 */
294 	unsigned long		recent_rotated[2];
295 	unsigned long		recent_scanned[2];
296 };
297 
298 enum lruvec_flags {
299 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
300 					 * backed by a congested BDI
301 					 */
302 };
303 
304 struct lruvec {
305 	struct list_head		lists[NR_LRU_LISTS];
306 	struct zone_reclaim_stat	reclaim_stat;
307 	/* Evictions & activations on the inactive file list */
308 	atomic_long_t			inactive_age;
309 	/* Refaults at the time of last reclaim cycle */
310 	unsigned long			refaults;
311 	/* Various lruvec state flags (enum lruvec_flags) */
312 	unsigned long			flags;
313 #ifdef CONFIG_MEMCG
314 	struct pglist_data *pgdat;
315 #endif
316 };
317 
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
324 
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327 
328 enum zone_watermarks {
329 	WMARK_MIN,
330 	WMARK_LOW,
331 	WMARK_HIGH,
332 	NR_WMARK
333 };
334 
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339 
340 struct per_cpu_pages {
341 	int count;		/* number of pages in the list */
342 	int high;		/* high watermark, emptying needed */
343 	int batch;		/* chunk size for buddy add/remove */
344 
345 	/* Lists of pages, one per migrate type stored on the pcp-lists */
346 	struct list_head lists[MIGRATE_PCPTYPES];
347 };
348 
349 struct per_cpu_pageset {
350 	struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352 	s8 expire;
353 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356 	s8 stat_threshold;
357 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360 
361 struct per_cpu_nodestat {
362 	s8 stat_threshold;
363 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365 
366 #endif /* !__GENERATING_BOUNDS.H */
367 
368 enum zone_type {
369 	/*
370 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
372 	 * On architectures where this area covers the whole 32 bit address
373 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374 	 * DMA addressing constraints. This distinction is important as a 32bit
375 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376 	 * platforms may need both zones as they support peripherals with
377 	 * different DMA addressing limitations.
378 	 *
379 	 * Some examples:
380 	 *
381 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
382 	 *    rest of the lower 4G.
383 	 *
384 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
385 	 *    the specific device.
386 	 *
387 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
388 	 *    lower 4G.
389 	 *
390 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
391 	 *    depending on the specific device.
392 	 *
393 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
394 	 *
395 	 *  - ia64 and riscv only use ZONE_DMA32.
396 	 *
397 	 *  - parisc uses neither.
398 	 */
399 #ifdef CONFIG_ZONE_DMA
400 	ZONE_DMA,
401 #endif
402 #ifdef CONFIG_ZONE_DMA32
403 	ZONE_DMA32,
404 #endif
405 	/*
406 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
407 	 * performed on pages in ZONE_NORMAL if the DMA devices support
408 	 * transfers to all addressable memory.
409 	 */
410 	ZONE_NORMAL,
411 #ifdef CONFIG_HIGHMEM
412 	/*
413 	 * A memory area that is only addressable by the kernel through
414 	 * mapping portions into its own address space. This is for example
415 	 * used by i386 to allow the kernel to address the memory beyond
416 	 * 900MB. The kernel will set up special mappings (page
417 	 * table entries on i386) for each page that the kernel needs to
418 	 * access.
419 	 */
420 	ZONE_HIGHMEM,
421 #endif
422 	ZONE_MOVABLE,
423 #ifdef CONFIG_ZONE_DEVICE
424 	ZONE_DEVICE,
425 #endif
426 	__MAX_NR_ZONES
427 
428 };
429 
430 #ifndef __GENERATING_BOUNDS_H
431 
432 struct zone {
433 	/* Read-mostly fields */
434 
435 	/* zone watermarks, access with *_wmark_pages(zone) macros */
436 	unsigned long _watermark[NR_WMARK];
437 	unsigned long watermark_boost;
438 
439 	unsigned long nr_reserved_highatomic;
440 
441 	/*
442 	 * We don't know if the memory that we're going to allocate will be
443 	 * freeable or/and it will be released eventually, so to avoid totally
444 	 * wasting several GB of ram we must reserve some of the lower zone
445 	 * memory (otherwise we risk to run OOM on the lower zones despite
446 	 * there being tons of freeable ram on the higher zones).  This array is
447 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
448 	 * changes.
449 	 */
450 	long lowmem_reserve[MAX_NR_ZONES];
451 
452 #ifdef CONFIG_NUMA
453 	int node;
454 #endif
455 	struct pglist_data	*zone_pgdat;
456 	struct per_cpu_pageset __percpu *pageset;
457 
458 #ifndef CONFIG_SPARSEMEM
459 	/*
460 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
461 	 * In SPARSEMEM, this map is stored in struct mem_section
462 	 */
463 	unsigned long		*pageblock_flags;
464 #endif /* CONFIG_SPARSEMEM */
465 
466 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
467 	unsigned long		zone_start_pfn;
468 
469 	/*
470 	 * spanned_pages is the total pages spanned by the zone, including
471 	 * holes, which is calculated as:
472 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
473 	 *
474 	 * present_pages is physical pages existing within the zone, which
475 	 * is calculated as:
476 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
477 	 *
478 	 * managed_pages is present pages managed by the buddy system, which
479 	 * is calculated as (reserved_pages includes pages allocated by the
480 	 * bootmem allocator):
481 	 *	managed_pages = present_pages - reserved_pages;
482 	 *
483 	 * So present_pages may be used by memory hotplug or memory power
484 	 * management logic to figure out unmanaged pages by checking
485 	 * (present_pages - managed_pages). And managed_pages should be used
486 	 * by page allocator and vm scanner to calculate all kinds of watermarks
487 	 * and thresholds.
488 	 *
489 	 * Locking rules:
490 	 *
491 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
492 	 * It is a seqlock because it has to be read outside of zone->lock,
493 	 * and it is done in the main allocator path.  But, it is written
494 	 * quite infrequently.
495 	 *
496 	 * The span_seq lock is declared along with zone->lock because it is
497 	 * frequently read in proximity to zone->lock.  It's good to
498 	 * give them a chance of being in the same cacheline.
499 	 *
500 	 * Write access to present_pages at runtime should be protected by
501 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
502 	 * present_pages should get_online_mems() to get a stable value.
503 	 */
504 	atomic_long_t		managed_pages;
505 	unsigned long		spanned_pages;
506 	unsigned long		present_pages;
507 
508 	const char		*name;
509 
510 #ifdef CONFIG_MEMORY_ISOLATION
511 	/*
512 	 * Number of isolated pageblock. It is used to solve incorrect
513 	 * freepage counting problem due to racy retrieving migratetype
514 	 * of pageblock. Protected by zone->lock.
515 	 */
516 	unsigned long		nr_isolate_pageblock;
517 #endif
518 
519 #ifdef CONFIG_MEMORY_HOTPLUG
520 	/* see spanned/present_pages for more description */
521 	seqlock_t		span_seqlock;
522 #endif
523 
524 	int initialized;
525 
526 	/* Write-intensive fields used from the page allocator */
527 	ZONE_PADDING(_pad1_)
528 
529 	/* free areas of different sizes */
530 	struct free_area	free_area[MAX_ORDER];
531 
532 	/* zone flags, see below */
533 	unsigned long		flags;
534 
535 	/* Primarily protects free_area */
536 	spinlock_t		lock;
537 
538 	/* Write-intensive fields used by compaction and vmstats. */
539 	ZONE_PADDING(_pad2_)
540 
541 	/*
542 	 * When free pages are below this point, additional steps are taken
543 	 * when reading the number of free pages to avoid per-cpu counter
544 	 * drift allowing watermarks to be breached
545 	 */
546 	unsigned long percpu_drift_mark;
547 
548 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
549 	/* pfn where compaction free scanner should start */
550 	unsigned long		compact_cached_free_pfn;
551 	/* pfn where async and sync compaction migration scanner should start */
552 	unsigned long		compact_cached_migrate_pfn[2];
553 	unsigned long		compact_init_migrate_pfn;
554 	unsigned long		compact_init_free_pfn;
555 #endif
556 
557 #ifdef CONFIG_COMPACTION
558 	/*
559 	 * On compaction failure, 1<<compact_defer_shift compactions
560 	 * are skipped before trying again. The number attempted since
561 	 * last failure is tracked with compact_considered.
562 	 */
563 	unsigned int		compact_considered;
564 	unsigned int		compact_defer_shift;
565 	int			compact_order_failed;
566 #endif
567 
568 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
569 	/* Set to true when the PG_migrate_skip bits should be cleared */
570 	bool			compact_blockskip_flush;
571 #endif
572 
573 	bool			contiguous;
574 
575 	ZONE_PADDING(_pad3_)
576 	/* Zone statistics */
577 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
578 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
579 } ____cacheline_internodealigned_in_smp;
580 
581 enum pgdat_flags {
582 	PGDAT_DIRTY,			/* reclaim scanning has recently found
583 					 * many dirty file pages at the tail
584 					 * of the LRU.
585 					 */
586 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
587 					 * many pages under writeback
588 					 */
589 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
590 };
591 
592 enum zone_flags {
593 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
594 					 * Cleared when kswapd is woken.
595 					 */
596 };
597 
598 static inline unsigned long zone_managed_pages(struct zone *zone)
599 {
600 	return (unsigned long)atomic_long_read(&zone->managed_pages);
601 }
602 
603 static inline unsigned long zone_end_pfn(const struct zone *zone)
604 {
605 	return zone->zone_start_pfn + zone->spanned_pages;
606 }
607 
608 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
609 {
610 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
611 }
612 
613 static inline bool zone_is_initialized(struct zone *zone)
614 {
615 	return zone->initialized;
616 }
617 
618 static inline bool zone_is_empty(struct zone *zone)
619 {
620 	return zone->spanned_pages == 0;
621 }
622 
623 /*
624  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
625  * intersection with the given zone
626  */
627 static inline bool zone_intersects(struct zone *zone,
628 		unsigned long start_pfn, unsigned long nr_pages)
629 {
630 	if (zone_is_empty(zone))
631 		return false;
632 	if (start_pfn >= zone_end_pfn(zone) ||
633 	    start_pfn + nr_pages <= zone->zone_start_pfn)
634 		return false;
635 
636 	return true;
637 }
638 
639 /*
640  * The "priority" of VM scanning is how much of the queues we will scan in one
641  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
642  * queues ("queue_length >> 12") during an aging round.
643  */
644 #define DEF_PRIORITY 12
645 
646 /* Maximum number of zones on a zonelist */
647 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
648 
649 enum {
650 	ZONELIST_FALLBACK,	/* zonelist with fallback */
651 #ifdef CONFIG_NUMA
652 	/*
653 	 * The NUMA zonelists are doubled because we need zonelists that
654 	 * restrict the allocations to a single node for __GFP_THISNODE.
655 	 */
656 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
657 #endif
658 	MAX_ZONELISTS
659 };
660 
661 /*
662  * This struct contains information about a zone in a zonelist. It is stored
663  * here to avoid dereferences into large structures and lookups of tables
664  */
665 struct zoneref {
666 	struct zone *zone;	/* Pointer to actual zone */
667 	int zone_idx;		/* zone_idx(zoneref->zone) */
668 };
669 
670 /*
671  * One allocation request operates on a zonelist. A zonelist
672  * is a list of zones, the first one is the 'goal' of the
673  * allocation, the other zones are fallback zones, in decreasing
674  * priority.
675  *
676  * To speed the reading of the zonelist, the zonerefs contain the zone index
677  * of the entry being read. Helper functions to access information given
678  * a struct zoneref are
679  *
680  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
681  * zonelist_zone_idx()	- Return the index of the zone for an entry
682  * zonelist_node_idx()	- Return the index of the node for an entry
683  */
684 struct zonelist {
685 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
686 };
687 
688 #ifndef CONFIG_DISCONTIGMEM
689 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
690 extern struct page *mem_map;
691 #endif
692 
693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 struct deferred_split {
695 	spinlock_t split_queue_lock;
696 	struct list_head split_queue;
697 	unsigned long split_queue_len;
698 };
699 #endif
700 
701 /*
702  * On NUMA machines, each NUMA node would have a pg_data_t to describe
703  * it's memory layout. On UMA machines there is a single pglist_data which
704  * describes the whole memory.
705  *
706  * Memory statistics and page replacement data structures are maintained on a
707  * per-zone basis.
708  */
709 struct bootmem_data;
710 typedef struct pglist_data {
711 	struct zone node_zones[MAX_NR_ZONES];
712 	struct zonelist node_zonelists[MAX_ZONELISTS];
713 	int nr_zones;
714 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
715 	struct page *node_mem_map;
716 #ifdef CONFIG_PAGE_EXTENSION
717 	struct page_ext *node_page_ext;
718 #endif
719 #endif
720 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
721 	/*
722 	 * Must be held any time you expect node_start_pfn,
723 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
724 	 *
725 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
726 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
727 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
728 	 *
729 	 * Nests above zone->lock and zone->span_seqlock
730 	 */
731 	spinlock_t node_size_lock;
732 #endif
733 	unsigned long node_start_pfn;
734 	unsigned long node_present_pages; /* total number of physical pages */
735 	unsigned long node_spanned_pages; /* total size of physical page
736 					     range, including holes */
737 	int node_id;
738 	wait_queue_head_t kswapd_wait;
739 	wait_queue_head_t pfmemalloc_wait;
740 	struct task_struct *kswapd;	/* Protected by
741 					   mem_hotplug_begin/end() */
742 	int kswapd_order;
743 	enum zone_type kswapd_classzone_idx;
744 
745 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
746 
747 #ifdef CONFIG_COMPACTION
748 	int kcompactd_max_order;
749 	enum zone_type kcompactd_classzone_idx;
750 	wait_queue_head_t kcompactd_wait;
751 	struct task_struct *kcompactd;
752 #endif
753 	/*
754 	 * This is a per-node reserve of pages that are not available
755 	 * to userspace allocations.
756 	 */
757 	unsigned long		totalreserve_pages;
758 
759 #ifdef CONFIG_NUMA
760 	/*
761 	 * node reclaim becomes active if more unmapped pages exist.
762 	 */
763 	unsigned long		min_unmapped_pages;
764 	unsigned long		min_slab_pages;
765 #endif /* CONFIG_NUMA */
766 
767 	/* Write-intensive fields used by page reclaim */
768 	ZONE_PADDING(_pad1_)
769 	spinlock_t		lru_lock;
770 
771 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
772 	/*
773 	 * If memory initialisation on large machines is deferred then this
774 	 * is the first PFN that needs to be initialised.
775 	 */
776 	unsigned long first_deferred_pfn;
777 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
778 
779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
780 	struct deferred_split deferred_split_queue;
781 #endif
782 
783 	/* Fields commonly accessed by the page reclaim scanner */
784 
785 	/*
786 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
787 	 *
788 	 * Use mem_cgroup_lruvec() to look up lruvecs.
789 	 */
790 	struct lruvec		__lruvec;
791 
792 	unsigned long		flags;
793 
794 	ZONE_PADDING(_pad2_)
795 
796 	/* Per-node vmstats */
797 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
798 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
799 } pg_data_t;
800 
801 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
802 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
803 #ifdef CONFIG_FLAT_NODE_MEM_MAP
804 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
805 #else
806 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
807 #endif
808 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
809 
810 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
811 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
812 
813 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
814 {
815 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
816 }
817 
818 static inline bool pgdat_is_empty(pg_data_t *pgdat)
819 {
820 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
821 }
822 
823 #include <linux/memory_hotplug.h>
824 
825 void build_all_zonelists(pg_data_t *pgdat);
826 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
827 		   enum zone_type classzone_idx);
828 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
829 			 int classzone_idx, unsigned int alloc_flags,
830 			 long free_pages);
831 bool zone_watermark_ok(struct zone *z, unsigned int order,
832 		unsigned long mark, int classzone_idx,
833 		unsigned int alloc_flags);
834 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
835 		unsigned long mark, int classzone_idx);
836 enum memmap_context {
837 	MEMMAP_EARLY,
838 	MEMMAP_HOTPLUG,
839 };
840 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
841 				     unsigned long size);
842 
843 extern void lruvec_init(struct lruvec *lruvec);
844 
845 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
846 {
847 #ifdef CONFIG_MEMCG
848 	return lruvec->pgdat;
849 #else
850 	return container_of(lruvec, struct pglist_data, __lruvec);
851 #endif
852 }
853 
854 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
855 
856 #ifdef CONFIG_HAVE_MEMORY_PRESENT
857 void memory_present(int nid, unsigned long start, unsigned long end);
858 #else
859 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
860 #endif
861 
862 #if defined(CONFIG_SPARSEMEM)
863 void memblocks_present(void);
864 #else
865 static inline void memblocks_present(void) {}
866 #endif
867 
868 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
869 int local_memory_node(int node_id);
870 #else
871 static inline int local_memory_node(int node_id) { return node_id; };
872 #endif
873 
874 /*
875  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
876  */
877 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
878 
879 /*
880  * Returns true if a zone has pages managed by the buddy allocator.
881  * All the reclaim decisions have to use this function rather than
882  * populated_zone(). If the whole zone is reserved then we can easily
883  * end up with populated_zone() && !managed_zone().
884  */
885 static inline bool managed_zone(struct zone *zone)
886 {
887 	return zone_managed_pages(zone);
888 }
889 
890 /* Returns true if a zone has memory */
891 static inline bool populated_zone(struct zone *zone)
892 {
893 	return zone->present_pages;
894 }
895 
896 #ifdef CONFIG_NUMA
897 static inline int zone_to_nid(struct zone *zone)
898 {
899 	return zone->node;
900 }
901 
902 static inline void zone_set_nid(struct zone *zone, int nid)
903 {
904 	zone->node = nid;
905 }
906 #else
907 static inline int zone_to_nid(struct zone *zone)
908 {
909 	return 0;
910 }
911 
912 static inline void zone_set_nid(struct zone *zone, int nid) {}
913 #endif
914 
915 extern int movable_zone;
916 
917 #ifdef CONFIG_HIGHMEM
918 static inline int zone_movable_is_highmem(void)
919 {
920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
921 	return movable_zone == ZONE_HIGHMEM;
922 #else
923 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
924 #endif
925 }
926 #endif
927 
928 static inline int is_highmem_idx(enum zone_type idx)
929 {
930 #ifdef CONFIG_HIGHMEM
931 	return (idx == ZONE_HIGHMEM ||
932 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
933 #else
934 	return 0;
935 #endif
936 }
937 
938 /**
939  * is_highmem - helper function to quickly check if a struct zone is a
940  *              highmem zone or not.  This is an attempt to keep references
941  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
942  * @zone - pointer to struct zone variable
943  */
944 static inline int is_highmem(struct zone *zone)
945 {
946 #ifdef CONFIG_HIGHMEM
947 	return is_highmem_idx(zone_idx(zone));
948 #else
949 	return 0;
950 #endif
951 }
952 
953 /* These two functions are used to setup the per zone pages min values */
954 struct ctl_table;
955 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
956 					void __user *, size_t *, loff_t *);
957 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
958 					void __user *, size_t *, loff_t *);
959 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
960 					void __user *, size_t *, loff_t *);
961 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
962 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
963 					void __user *, size_t *, loff_t *);
964 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
965 					void __user *, size_t *, loff_t *);
966 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
967 			void __user *, size_t *, loff_t *);
968 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
969 			void __user *, size_t *, loff_t *);
970 
971 extern int numa_zonelist_order_handler(struct ctl_table *, int,
972 			void __user *, size_t *, loff_t *);
973 extern char numa_zonelist_order[];
974 #define NUMA_ZONELIST_ORDER_LEN	16
975 
976 #ifndef CONFIG_NEED_MULTIPLE_NODES
977 
978 extern struct pglist_data contig_page_data;
979 #define NODE_DATA(nid)		(&contig_page_data)
980 #define NODE_MEM_MAP(nid)	mem_map
981 
982 #else /* CONFIG_NEED_MULTIPLE_NODES */
983 
984 #include <asm/mmzone.h>
985 
986 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
987 
988 extern struct pglist_data *first_online_pgdat(void);
989 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
990 extern struct zone *next_zone(struct zone *zone);
991 
992 /**
993  * for_each_online_pgdat - helper macro to iterate over all online nodes
994  * @pgdat - pointer to a pg_data_t variable
995  */
996 #define for_each_online_pgdat(pgdat)			\
997 	for (pgdat = first_online_pgdat();		\
998 	     pgdat;					\
999 	     pgdat = next_online_pgdat(pgdat))
1000 /**
1001  * for_each_zone - helper macro to iterate over all memory zones
1002  * @zone - pointer to struct zone variable
1003  *
1004  * The user only needs to declare the zone variable, for_each_zone
1005  * fills it in.
1006  */
1007 #define for_each_zone(zone)			        \
1008 	for (zone = (first_online_pgdat())->node_zones; \
1009 	     zone;					\
1010 	     zone = next_zone(zone))
1011 
1012 #define for_each_populated_zone(zone)		        \
1013 	for (zone = (first_online_pgdat())->node_zones; \
1014 	     zone;					\
1015 	     zone = next_zone(zone))			\
1016 		if (!populated_zone(zone))		\
1017 			; /* do nothing */		\
1018 		else
1019 
1020 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1021 {
1022 	return zoneref->zone;
1023 }
1024 
1025 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1026 {
1027 	return zoneref->zone_idx;
1028 }
1029 
1030 static inline int zonelist_node_idx(struct zoneref *zoneref)
1031 {
1032 	return zone_to_nid(zoneref->zone);
1033 }
1034 
1035 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1036 					enum zone_type highest_zoneidx,
1037 					nodemask_t *nodes);
1038 
1039 /**
1040  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1041  * @z - The cursor used as a starting point for the search
1042  * @highest_zoneidx - The zone index of the highest zone to return
1043  * @nodes - An optional nodemask to filter the zonelist with
1044  *
1045  * This function returns the next zone at or below a given zone index that is
1046  * within the allowed nodemask using a cursor as the starting point for the
1047  * search. The zoneref returned is a cursor that represents the current zone
1048  * being examined. It should be advanced by one before calling
1049  * next_zones_zonelist again.
1050  */
1051 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1052 					enum zone_type highest_zoneidx,
1053 					nodemask_t *nodes)
1054 {
1055 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1056 		return z;
1057 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1058 }
1059 
1060 /**
1061  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1062  * @zonelist - The zonelist to search for a suitable zone
1063  * @highest_zoneidx - The zone index of the highest zone to return
1064  * @nodes - An optional nodemask to filter the zonelist with
1065  * @return - Zoneref pointer for the first suitable zone found (see below)
1066  *
1067  * This function returns the first zone at or below a given zone index that is
1068  * within the allowed nodemask. The zoneref returned is a cursor that can be
1069  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1070  * one before calling.
1071  *
1072  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1073  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1074  * update due to cpuset modification.
1075  */
1076 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1077 					enum zone_type highest_zoneidx,
1078 					nodemask_t *nodes)
1079 {
1080 	return next_zones_zonelist(zonelist->_zonerefs,
1081 							highest_zoneidx, nodes);
1082 }
1083 
1084 /**
1085  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1086  * @zone - The current zone in the iterator
1087  * @z - The current pointer within zonelist->_zonerefs being iterated
1088  * @zlist - The zonelist being iterated
1089  * @highidx - The zone index of the highest zone to return
1090  * @nodemask - Nodemask allowed by the allocator
1091  *
1092  * This iterator iterates though all zones at or below a given zone index and
1093  * within a given nodemask
1094  */
1095 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1096 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1097 		zone;							\
1098 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1099 			zone = zonelist_zone(z))
1100 
1101 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1102 	for (zone = z->zone;	\
1103 		zone;							\
1104 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1105 			zone = zonelist_zone(z))
1106 
1107 
1108 /**
1109  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1110  * @zone - The current zone in the iterator
1111  * @z - The current pointer within zonelist->zones being iterated
1112  * @zlist - The zonelist being iterated
1113  * @highidx - The zone index of the highest zone to return
1114  *
1115  * This iterator iterates though all zones at or below a given zone index.
1116  */
1117 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1118 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1119 
1120 #ifdef CONFIG_SPARSEMEM
1121 #include <asm/sparsemem.h>
1122 #endif
1123 
1124 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1125 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1126 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1127 {
1128 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1129 	return 0;
1130 }
1131 #endif
1132 
1133 #ifdef CONFIG_FLATMEM
1134 #define pfn_to_nid(pfn)		(0)
1135 #endif
1136 
1137 #ifdef CONFIG_SPARSEMEM
1138 
1139 /*
1140  * SECTION_SHIFT    		#bits space required to store a section #
1141  *
1142  * PA_SECTION_SHIFT		physical address to/from section number
1143  * PFN_SECTION_SHIFT		pfn to/from section number
1144  */
1145 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1146 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1147 
1148 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1149 
1150 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1151 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1152 
1153 #define SECTION_BLOCKFLAGS_BITS \
1154 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1155 
1156 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1157 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1158 #endif
1159 
1160 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1161 {
1162 	return pfn >> PFN_SECTION_SHIFT;
1163 }
1164 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1165 {
1166 	return sec << PFN_SECTION_SHIFT;
1167 }
1168 
1169 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1170 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1171 
1172 #define SUBSECTION_SHIFT 21
1173 
1174 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1175 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1176 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1177 
1178 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1179 #error Subsection size exceeds section size
1180 #else
1181 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1182 #endif
1183 
1184 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1185 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1186 
1187 struct mem_section_usage {
1188 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1189 	/* See declaration of similar field in struct zone */
1190 	unsigned long pageblock_flags[0];
1191 };
1192 
1193 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1194 
1195 struct page;
1196 struct page_ext;
1197 struct mem_section {
1198 	/*
1199 	 * This is, logically, a pointer to an array of struct
1200 	 * pages.  However, it is stored with some other magic.
1201 	 * (see sparse.c::sparse_init_one_section())
1202 	 *
1203 	 * Additionally during early boot we encode node id of
1204 	 * the location of the section here to guide allocation.
1205 	 * (see sparse.c::memory_present())
1206 	 *
1207 	 * Making it a UL at least makes someone do a cast
1208 	 * before using it wrong.
1209 	 */
1210 	unsigned long section_mem_map;
1211 
1212 	struct mem_section_usage *usage;
1213 #ifdef CONFIG_PAGE_EXTENSION
1214 	/*
1215 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1216 	 * section. (see page_ext.h about this.)
1217 	 */
1218 	struct page_ext *page_ext;
1219 	unsigned long pad;
1220 #endif
1221 	/*
1222 	 * WARNING: mem_section must be a power-of-2 in size for the
1223 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1224 	 */
1225 };
1226 
1227 #ifdef CONFIG_SPARSEMEM_EXTREME
1228 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1229 #else
1230 #define SECTIONS_PER_ROOT	1
1231 #endif
1232 
1233 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1234 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1235 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1236 
1237 #ifdef CONFIG_SPARSEMEM_EXTREME
1238 extern struct mem_section **mem_section;
1239 #else
1240 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1241 #endif
1242 
1243 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1244 {
1245 	return ms->usage->pageblock_flags;
1246 }
1247 
1248 static inline struct mem_section *__nr_to_section(unsigned long nr)
1249 {
1250 #ifdef CONFIG_SPARSEMEM_EXTREME
1251 	if (!mem_section)
1252 		return NULL;
1253 #endif
1254 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1255 		return NULL;
1256 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1257 }
1258 extern unsigned long __section_nr(struct mem_section *ms);
1259 extern size_t mem_section_usage_size(void);
1260 
1261 /*
1262  * We use the lower bits of the mem_map pointer to store
1263  * a little bit of information.  The pointer is calculated
1264  * as mem_map - section_nr_to_pfn(pnum).  The result is
1265  * aligned to the minimum alignment of the two values:
1266  *   1. All mem_map arrays are page-aligned.
1267  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1268  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1269  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1270  *      worst combination is powerpc with 256k pages,
1271  *      which results in PFN_SECTION_SHIFT equal 6.
1272  * To sum it up, at least 6 bits are available.
1273  */
1274 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1275 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1276 #define SECTION_IS_ONLINE	(1UL<<2)
1277 #define SECTION_IS_EARLY	(1UL<<3)
1278 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1279 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1280 #define SECTION_NID_SHIFT	3
1281 
1282 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1283 {
1284 	unsigned long map = section->section_mem_map;
1285 	map &= SECTION_MAP_MASK;
1286 	return (struct page *)map;
1287 }
1288 
1289 static inline int present_section(struct mem_section *section)
1290 {
1291 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1292 }
1293 
1294 static inline int present_section_nr(unsigned long nr)
1295 {
1296 	return present_section(__nr_to_section(nr));
1297 }
1298 
1299 static inline int valid_section(struct mem_section *section)
1300 {
1301 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1302 }
1303 
1304 static inline int early_section(struct mem_section *section)
1305 {
1306 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1307 }
1308 
1309 static inline int valid_section_nr(unsigned long nr)
1310 {
1311 	return valid_section(__nr_to_section(nr));
1312 }
1313 
1314 static inline int online_section(struct mem_section *section)
1315 {
1316 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1317 }
1318 
1319 static inline int online_section_nr(unsigned long nr)
1320 {
1321 	return online_section(__nr_to_section(nr));
1322 }
1323 
1324 #ifdef CONFIG_MEMORY_HOTPLUG
1325 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1326 #ifdef CONFIG_MEMORY_HOTREMOVE
1327 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1328 #endif
1329 #endif
1330 
1331 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1332 {
1333 	return __nr_to_section(pfn_to_section_nr(pfn));
1334 }
1335 
1336 extern unsigned long __highest_present_section_nr;
1337 
1338 static inline int subsection_map_index(unsigned long pfn)
1339 {
1340 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1341 }
1342 
1343 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1344 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1345 {
1346 	int idx = subsection_map_index(pfn);
1347 
1348 	return test_bit(idx, ms->usage->subsection_map);
1349 }
1350 #else
1351 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1352 {
1353 	return 1;
1354 }
1355 #endif
1356 
1357 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1358 static inline int pfn_valid(unsigned long pfn)
1359 {
1360 	struct mem_section *ms;
1361 
1362 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1363 		return 0;
1364 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1365 	if (!valid_section(ms))
1366 		return 0;
1367 	/*
1368 	 * Traditionally early sections always returned pfn_valid() for
1369 	 * the entire section-sized span.
1370 	 */
1371 	return early_section(ms) || pfn_section_valid(ms, pfn);
1372 }
1373 #endif
1374 
1375 static inline int pfn_present(unsigned long pfn)
1376 {
1377 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1378 		return 0;
1379 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1380 }
1381 
1382 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1383 {
1384 	while (++section_nr <= __highest_present_section_nr) {
1385 		if (present_section_nr(section_nr))
1386 			return section_nr;
1387 	}
1388 
1389 	return -1;
1390 }
1391 
1392 /*
1393  * These are _only_ used during initialisation, therefore they
1394  * can use __initdata ...  They could have names to indicate
1395  * this restriction.
1396  */
1397 #ifdef CONFIG_NUMA
1398 #define pfn_to_nid(pfn)							\
1399 ({									\
1400 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1401 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1402 })
1403 #else
1404 #define pfn_to_nid(pfn)		(0)
1405 #endif
1406 
1407 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1408 void sparse_init(void);
1409 #else
1410 #define sparse_init()	do {} while (0)
1411 #define sparse_index_init(_sec, _nid)  do {} while (0)
1412 #define pfn_present pfn_valid
1413 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1414 #endif /* CONFIG_SPARSEMEM */
1415 
1416 /*
1417  * During memory init memblocks map pfns to nids. The search is expensive and
1418  * this caches recent lookups. The implementation of __early_pfn_to_nid
1419  * may treat start/end as pfns or sections.
1420  */
1421 struct mminit_pfnnid_cache {
1422 	unsigned long last_start;
1423 	unsigned long last_end;
1424 	int last_nid;
1425 };
1426 
1427 #ifndef early_pfn_valid
1428 #define early_pfn_valid(pfn)	(1)
1429 #endif
1430 
1431 void memory_present(int nid, unsigned long start, unsigned long end);
1432 
1433 /*
1434  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1435  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1436  * pfn_valid_within() should be used in this case; we optimise this away
1437  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1438  */
1439 #ifdef CONFIG_HOLES_IN_ZONE
1440 #define pfn_valid_within(pfn) pfn_valid(pfn)
1441 #else
1442 #define pfn_valid_within(pfn) (1)
1443 #endif
1444 
1445 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1446 /*
1447  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1448  * associated with it or not. This means that a struct page exists for this
1449  * pfn. The caller cannot assume the page is fully initialized in general.
1450  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1451  * will ensure the struct page is fully online and initialized. Special pages
1452  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1453  *
1454  * In FLATMEM, it is expected that holes always have valid memmap as long as
1455  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1456  * that a valid section has a memmap for the entire section.
1457  *
1458  * However, an ARM, and maybe other embedded architectures in the future
1459  * free memmap backing holes to save memory on the assumption the memmap is
1460  * never used. The page_zone linkages are then broken even though pfn_valid()
1461  * returns true. A walker of the full memmap must then do this additional
1462  * check to ensure the memmap they are looking at is sane by making sure
1463  * the zone and PFN linkages are still valid. This is expensive, but walkers
1464  * of the full memmap are extremely rare.
1465  */
1466 bool memmap_valid_within(unsigned long pfn,
1467 					struct page *page, struct zone *zone);
1468 #else
1469 static inline bool memmap_valid_within(unsigned long pfn,
1470 					struct page *page, struct zone *zone)
1471 {
1472 	return true;
1473 }
1474 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1475 
1476 #endif /* !__GENERATING_BOUNDS.H */
1477 #endif /* !__ASSEMBLY__ */
1478 #endif /* _LINUX_MMZONE_H */
1479