1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 #ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157 #endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160 enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206 #endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209 #ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211 #endif 212 #ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214 #endif 215 #ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218 #endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223 NR_MEMMAP, /* page metadata allocated through buddy allocator */ 224 NR_MEMMAP_BOOT, /* page metadata allocated through boot allocator */ 225 NR_VM_NODE_STAT_ITEMS 226 }; 227 228 /* 229 * Returns true if the item should be printed in THPs (/proc/vmstat 230 * currently prints number of anon, file and shmem THPs. But the item 231 * is charged in pages). 232 */ 233 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 234 { 235 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 236 return false; 237 238 return item == NR_ANON_THPS || 239 item == NR_FILE_THPS || 240 item == NR_SHMEM_THPS || 241 item == NR_SHMEM_PMDMAPPED || 242 item == NR_FILE_PMDMAPPED; 243 } 244 245 /* 246 * Returns true if the value is measured in bytes (most vmstat values are 247 * measured in pages). This defines the API part, the internal representation 248 * might be different. 249 */ 250 static __always_inline bool vmstat_item_in_bytes(int idx) 251 { 252 /* 253 * Global and per-node slab counters track slab pages. 254 * It's expected that changes are multiples of PAGE_SIZE. 255 * Internally values are stored in pages. 256 * 257 * Per-memcg and per-lruvec counters track memory, consumed 258 * by individual slab objects. These counters are actually 259 * byte-precise. 260 */ 261 return (idx == NR_SLAB_RECLAIMABLE_B || 262 idx == NR_SLAB_UNRECLAIMABLE_B); 263 } 264 265 /* 266 * We do arithmetic on the LRU lists in various places in the code, 267 * so it is important to keep the active lists LRU_ACTIVE higher in 268 * the array than the corresponding inactive lists, and to keep 269 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 270 * 271 * This has to be kept in sync with the statistics in zone_stat_item 272 * above and the descriptions in vmstat_text in mm/vmstat.c 273 */ 274 #define LRU_BASE 0 275 #define LRU_ACTIVE 1 276 #define LRU_FILE 2 277 278 enum lru_list { 279 LRU_INACTIVE_ANON = LRU_BASE, 280 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 281 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 282 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 283 LRU_UNEVICTABLE, 284 NR_LRU_LISTS 285 }; 286 287 enum vmscan_throttle_state { 288 VMSCAN_THROTTLE_WRITEBACK, 289 VMSCAN_THROTTLE_ISOLATED, 290 VMSCAN_THROTTLE_NOPROGRESS, 291 VMSCAN_THROTTLE_CONGESTED, 292 NR_VMSCAN_THROTTLE, 293 }; 294 295 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 296 297 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 298 299 static inline bool is_file_lru(enum lru_list lru) 300 { 301 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 302 } 303 304 static inline bool is_active_lru(enum lru_list lru) 305 { 306 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 307 } 308 309 #define WORKINGSET_ANON 0 310 #define WORKINGSET_FILE 1 311 #define ANON_AND_FILE 2 312 313 enum lruvec_flags { 314 /* 315 * An lruvec has many dirty pages backed by a congested BDI: 316 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 317 * It can be cleared by cgroup reclaim or kswapd. 318 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 319 * It can only be cleared by kswapd. 320 * 321 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 322 * reclaim, but not vice versa. This only applies to the root cgroup. 323 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 324 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 325 * by kswapd). 326 */ 327 LRUVEC_CGROUP_CONGESTED, 328 LRUVEC_NODE_CONGESTED, 329 }; 330 331 #endif /* !__GENERATING_BOUNDS_H */ 332 333 /* 334 * Evictable pages are divided into multiple generations. The youngest and the 335 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 336 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 337 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 338 * corresponding generation. The gen counter in folio->flags stores gen+1 while 339 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 340 * 341 * A page is added to the youngest generation on faulting. The aging needs to 342 * check the accessed bit at least twice before handing this page over to the 343 * eviction. The first check takes care of the accessed bit set on the initial 344 * fault; the second check makes sure this page hasn't been used since then. 345 * This process, AKA second chance, requires a minimum of two generations, 346 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 347 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 348 * rest of generations, if they exist, are considered inactive. See 349 * lru_gen_is_active(). 350 * 351 * PG_active is always cleared while a page is on one of lrugen->folios[] so 352 * that the aging needs not to worry about it. And it's set again when a page 353 * considered active is isolated for non-reclaiming purposes, e.g., migration. 354 * See lru_gen_add_folio() and lru_gen_del_folio(). 355 * 356 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 357 * number of categories of the active/inactive LRU when keeping track of 358 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 359 * in folio->flags. 360 */ 361 #define MIN_NR_GENS 2U 362 #define MAX_NR_GENS 4U 363 364 /* 365 * Each generation is divided into multiple tiers. A page accessed N times 366 * through file descriptors is in tier order_base_2(N). A page in the first tier 367 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 368 * tables or read ahead. A page in any other tier (N>1) is marked by 369 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 370 * supported without using additional bits in folio->flags. 371 * 372 * In contrast to moving across generations which requires the LRU lock, moving 373 * across tiers only involves atomic operations on folio->flags and therefore 374 * has a negligible cost in the buffered access path. In the eviction path, 375 * comparisons of refaulted/(evicted+protected) from the first tier and the 376 * rest infer whether pages accessed multiple times through file descriptors 377 * are statistically hot and thus worth protecting. 378 * 379 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 380 * number of categories of the active/inactive LRU when keeping track of 381 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 382 * folio->flags. 383 */ 384 #define MAX_NR_TIERS 4U 385 386 #ifndef __GENERATING_BOUNDS_H 387 388 struct lruvec; 389 struct page_vma_mapped_walk; 390 391 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 392 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 393 394 #ifdef CONFIG_LRU_GEN 395 396 enum { 397 LRU_GEN_ANON, 398 LRU_GEN_FILE, 399 }; 400 401 enum { 402 LRU_GEN_CORE, 403 LRU_GEN_MM_WALK, 404 LRU_GEN_NONLEAF_YOUNG, 405 NR_LRU_GEN_CAPS 406 }; 407 408 #define MIN_LRU_BATCH BITS_PER_LONG 409 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 410 411 /* whether to keep historical stats from evicted generations */ 412 #ifdef CONFIG_LRU_GEN_STATS 413 #define NR_HIST_GENS MAX_NR_GENS 414 #else 415 #define NR_HIST_GENS 1U 416 #endif 417 418 /* 419 * The youngest generation number is stored in max_seq for both anon and file 420 * types as they are aged on an equal footing. The oldest generation numbers are 421 * stored in min_seq[] separately for anon and file types as clean file pages 422 * can be evicted regardless of swap constraints. 423 * 424 * Normally anon and file min_seq are in sync. But if swapping is constrained, 425 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 426 * min_seq behind. 427 * 428 * The number of pages in each generation is eventually consistent and therefore 429 * can be transiently negative when reset_batch_size() is pending. 430 */ 431 struct lru_gen_folio { 432 /* the aging increments the youngest generation number */ 433 unsigned long max_seq; 434 /* the eviction increments the oldest generation numbers */ 435 unsigned long min_seq[ANON_AND_FILE]; 436 /* the birth time of each generation in jiffies */ 437 unsigned long timestamps[MAX_NR_GENS]; 438 /* the multi-gen LRU lists, lazily sorted on eviction */ 439 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 440 /* the multi-gen LRU sizes, eventually consistent */ 441 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 442 /* the exponential moving average of refaulted */ 443 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 444 /* the exponential moving average of evicted+protected */ 445 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 446 /* the first tier doesn't need protection, hence the minus one */ 447 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 448 /* can be modified without holding the LRU lock */ 449 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 450 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 451 /* whether the multi-gen LRU is enabled */ 452 bool enabled; 453 /* the memcg generation this lru_gen_folio belongs to */ 454 u8 gen; 455 /* the list segment this lru_gen_folio belongs to */ 456 u8 seg; 457 /* per-node lru_gen_folio list for global reclaim */ 458 struct hlist_nulls_node list; 459 }; 460 461 enum { 462 MM_LEAF_TOTAL, /* total leaf entries */ 463 MM_LEAF_OLD, /* old leaf entries */ 464 MM_LEAF_YOUNG, /* young leaf entries */ 465 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 466 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 467 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 468 NR_MM_STATS 469 }; 470 471 /* double-buffering Bloom filters */ 472 #define NR_BLOOM_FILTERS 2 473 474 struct lru_gen_mm_state { 475 /* synced with max_seq after each iteration */ 476 unsigned long seq; 477 /* where the current iteration continues after */ 478 struct list_head *head; 479 /* where the last iteration ended before */ 480 struct list_head *tail; 481 /* Bloom filters flip after each iteration */ 482 unsigned long *filters[NR_BLOOM_FILTERS]; 483 /* the mm stats for debugging */ 484 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 485 }; 486 487 struct lru_gen_mm_walk { 488 /* the lruvec under reclaim */ 489 struct lruvec *lruvec; 490 /* max_seq from lru_gen_folio: can be out of date */ 491 unsigned long seq; 492 /* the next address within an mm to scan */ 493 unsigned long next_addr; 494 /* to batch promoted pages */ 495 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 496 /* to batch the mm stats */ 497 int mm_stats[NR_MM_STATS]; 498 /* total batched items */ 499 int batched; 500 bool can_swap; 501 bool force_scan; 502 }; 503 504 /* 505 * For each node, memcgs are divided into two generations: the old and the 506 * young. For each generation, memcgs are randomly sharded into multiple bins 507 * to improve scalability. For each bin, the hlist_nulls is virtually divided 508 * into three segments: the head, the tail and the default. 509 * 510 * An onlining memcg is added to the tail of a random bin in the old generation. 511 * The eviction starts at the head of a random bin in the old generation. The 512 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 513 * the old generation, is incremented when all its bins become empty. 514 * 515 * There are four operations: 516 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 517 * current generation (old or young) and updates its "seg" to "head"; 518 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 519 * current generation (old or young) and updates its "seg" to "tail"; 520 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 521 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 522 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 523 * young generation, updates its "gen" to "young" and resets its "seg" to 524 * "default". 525 * 526 * The events that trigger the above operations are: 527 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 528 * 2. The first attempt to reclaim a memcg below low, which triggers 529 * MEMCG_LRU_TAIL; 530 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 531 * threshold, which triggers MEMCG_LRU_TAIL; 532 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 533 * threshold, which triggers MEMCG_LRU_YOUNG; 534 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 535 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 536 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 537 * 538 * Notes: 539 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 540 * of their max_seq counters ensures the eventual fairness to all eligible 541 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 542 * 2. There are only two valid generations: old (seq) and young (seq+1). 543 * MEMCG_NR_GENS is set to three so that when reading the generation counter 544 * locklessly, a stale value (seq-1) does not wraparound to young. 545 */ 546 #define MEMCG_NR_GENS 3 547 #define MEMCG_NR_BINS 8 548 549 struct lru_gen_memcg { 550 /* the per-node memcg generation counter */ 551 unsigned long seq; 552 /* each memcg has one lru_gen_folio per node */ 553 unsigned long nr_memcgs[MEMCG_NR_GENS]; 554 /* per-node lru_gen_folio list for global reclaim */ 555 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 556 /* protects the above */ 557 spinlock_t lock; 558 }; 559 560 void lru_gen_init_pgdat(struct pglist_data *pgdat); 561 void lru_gen_init_lruvec(struct lruvec *lruvec); 562 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 563 564 void lru_gen_init_memcg(struct mem_cgroup *memcg); 565 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 566 void lru_gen_online_memcg(struct mem_cgroup *memcg); 567 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 568 void lru_gen_release_memcg(struct mem_cgroup *memcg); 569 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 570 571 #else /* !CONFIG_LRU_GEN */ 572 573 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 574 { 575 } 576 577 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 578 { 579 } 580 581 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 582 { 583 } 584 585 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 586 { 587 } 588 589 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 590 { 591 } 592 593 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 594 { 595 } 596 597 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 598 { 599 } 600 601 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 602 { 603 } 604 605 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 606 { 607 } 608 609 #endif /* CONFIG_LRU_GEN */ 610 611 struct lruvec { 612 struct list_head lists[NR_LRU_LISTS]; 613 /* per lruvec lru_lock for memcg */ 614 spinlock_t lru_lock; 615 /* 616 * These track the cost of reclaiming one LRU - file or anon - 617 * over the other. As the observed cost of reclaiming one LRU 618 * increases, the reclaim scan balance tips toward the other. 619 */ 620 unsigned long anon_cost; 621 unsigned long file_cost; 622 /* Non-resident age, driven by LRU movement */ 623 atomic_long_t nonresident_age; 624 /* Refaults at the time of last reclaim cycle */ 625 unsigned long refaults[ANON_AND_FILE]; 626 /* Various lruvec state flags (enum lruvec_flags) */ 627 unsigned long flags; 628 #ifdef CONFIG_LRU_GEN 629 /* evictable pages divided into generations */ 630 struct lru_gen_folio lrugen; 631 #ifdef CONFIG_LRU_GEN_WALKS_MMU 632 /* to concurrently iterate lru_gen_mm_list */ 633 struct lru_gen_mm_state mm_state; 634 #endif 635 #endif /* CONFIG_LRU_GEN */ 636 #ifdef CONFIG_MEMCG 637 struct pglist_data *pgdat; 638 #endif 639 struct zswap_lruvec_state zswap_lruvec_state; 640 }; 641 642 /* Isolate for asynchronous migration */ 643 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 644 /* Isolate unevictable pages */ 645 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 646 647 /* LRU Isolation modes. */ 648 typedef unsigned __bitwise isolate_mode_t; 649 650 enum zone_watermarks { 651 WMARK_MIN, 652 WMARK_LOW, 653 WMARK_HIGH, 654 WMARK_PROMO, 655 NR_WMARK 656 }; 657 658 /* 659 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 660 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 661 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 662 */ 663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 664 #define NR_PCP_THP 2 665 #else 666 #define NR_PCP_THP 0 667 #endif 668 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 669 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 670 671 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 672 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 673 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 674 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 675 676 /* 677 * Flags used in pcp->flags field. 678 * 679 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 680 * previous page freeing. To avoid to drain PCP for an accident 681 * high-order page freeing. 682 * 683 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 684 * draining PCP for consecutive high-order pages freeing without 685 * allocation if data cache slice of CPU is large enough. To reduce 686 * zone lock contention and keep cache-hot pages reusing. 687 */ 688 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 689 #define PCPF_FREE_HIGH_BATCH BIT(1) 690 691 struct per_cpu_pages { 692 spinlock_t lock; /* Protects lists field */ 693 int count; /* number of pages in the list */ 694 int high; /* high watermark, emptying needed */ 695 int high_min; /* min high watermark */ 696 int high_max; /* max high watermark */ 697 int batch; /* chunk size for buddy add/remove */ 698 u8 flags; /* protected by pcp->lock */ 699 u8 alloc_factor; /* batch scaling factor during allocate */ 700 #ifdef CONFIG_NUMA 701 u8 expire; /* When 0, remote pagesets are drained */ 702 #endif 703 short free_count; /* consecutive free count */ 704 705 /* Lists of pages, one per migrate type stored on the pcp-lists */ 706 struct list_head lists[NR_PCP_LISTS]; 707 } ____cacheline_aligned_in_smp; 708 709 struct per_cpu_zonestat { 710 #ifdef CONFIG_SMP 711 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 712 s8 stat_threshold; 713 #endif 714 #ifdef CONFIG_NUMA 715 /* 716 * Low priority inaccurate counters that are only folded 717 * on demand. Use a large type to avoid the overhead of 718 * folding during refresh_cpu_vm_stats. 719 */ 720 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 721 #endif 722 }; 723 724 struct per_cpu_nodestat { 725 s8 stat_threshold; 726 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 727 }; 728 729 #endif /* !__GENERATING_BOUNDS.H */ 730 731 enum zone_type { 732 /* 733 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 734 * to DMA to all of the addressable memory (ZONE_NORMAL). 735 * On architectures where this area covers the whole 32 bit address 736 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 737 * DMA addressing constraints. This distinction is important as a 32bit 738 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 739 * platforms may need both zones as they support peripherals with 740 * different DMA addressing limitations. 741 */ 742 #ifdef CONFIG_ZONE_DMA 743 ZONE_DMA, 744 #endif 745 #ifdef CONFIG_ZONE_DMA32 746 ZONE_DMA32, 747 #endif 748 /* 749 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 750 * performed on pages in ZONE_NORMAL if the DMA devices support 751 * transfers to all addressable memory. 752 */ 753 ZONE_NORMAL, 754 #ifdef CONFIG_HIGHMEM 755 /* 756 * A memory area that is only addressable by the kernel through 757 * mapping portions into its own address space. This is for example 758 * used by i386 to allow the kernel to address the memory beyond 759 * 900MB. The kernel will set up special mappings (page 760 * table entries on i386) for each page that the kernel needs to 761 * access. 762 */ 763 ZONE_HIGHMEM, 764 #endif 765 /* 766 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 767 * movable pages with few exceptional cases described below. Main use 768 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 769 * likely to succeed, and to locally limit unmovable allocations - e.g., 770 * to increase the number of THP/huge pages. Notable special cases are: 771 * 772 * 1. Pinned pages: (long-term) pinning of movable pages might 773 * essentially turn such pages unmovable. Therefore, we do not allow 774 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 775 * faulted, they come from the right zone right away. However, it is 776 * still possible that address space already has pages in 777 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 778 * touches that memory before pinning). In such case we migrate them 779 * to a different zone. When migration fails - pinning fails. 780 * 2. memblock allocations: kernelcore/movablecore setups might create 781 * situations where ZONE_MOVABLE contains unmovable allocations 782 * after boot. Memory offlining and allocations fail early. 783 * 3. Memory holes: kernelcore/movablecore setups might create very rare 784 * situations where ZONE_MOVABLE contains memory holes after boot, 785 * for example, if we have sections that are only partially 786 * populated. Memory offlining and allocations fail early. 787 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 788 * memory offlining, such pages cannot be allocated. 789 * 5. Unmovable PG_offline pages: in paravirtualized environments, 790 * hotplugged memory blocks might only partially be managed by the 791 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 792 * parts not manged by the buddy are unmovable PG_offline pages. In 793 * some cases (virtio-mem), such pages can be skipped during 794 * memory offlining, however, cannot be moved/allocated. These 795 * techniques might use alloc_contig_range() to hide previously 796 * exposed pages from the buddy again (e.g., to implement some sort 797 * of memory unplug in virtio-mem). 798 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 799 * situations where ZERO_PAGE(0) which is allocated differently 800 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 801 * cannot be migrated. 802 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 803 * memory to the MOVABLE zone, the vmemmap pages are also placed in 804 * such zone. Such pages cannot be really moved around as they are 805 * self-stored in the range, but they are treated as movable when 806 * the range they describe is about to be offlined. 807 * 808 * In general, no unmovable allocations that degrade memory offlining 809 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 810 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 811 * if has_unmovable_pages() states that there are no unmovable pages, 812 * there can be false negatives). 813 */ 814 ZONE_MOVABLE, 815 #ifdef CONFIG_ZONE_DEVICE 816 ZONE_DEVICE, 817 #endif 818 __MAX_NR_ZONES 819 820 }; 821 822 #ifndef __GENERATING_BOUNDS_H 823 824 #define ASYNC_AND_SYNC 2 825 826 struct zone { 827 /* Read-mostly fields */ 828 829 /* zone watermarks, access with *_wmark_pages(zone) macros */ 830 unsigned long _watermark[NR_WMARK]; 831 unsigned long watermark_boost; 832 833 unsigned long nr_reserved_highatomic; 834 835 /* 836 * We don't know if the memory that we're going to allocate will be 837 * freeable or/and it will be released eventually, so to avoid totally 838 * wasting several GB of ram we must reserve some of the lower zone 839 * memory (otherwise we risk to run OOM on the lower zones despite 840 * there being tons of freeable ram on the higher zones). This array is 841 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 842 * changes. 843 */ 844 long lowmem_reserve[MAX_NR_ZONES]; 845 846 #ifdef CONFIG_NUMA 847 int node; 848 #endif 849 struct pglist_data *zone_pgdat; 850 struct per_cpu_pages __percpu *per_cpu_pageset; 851 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 852 /* 853 * the high and batch values are copied to individual pagesets for 854 * faster access 855 */ 856 int pageset_high_min; 857 int pageset_high_max; 858 int pageset_batch; 859 860 #ifndef CONFIG_SPARSEMEM 861 /* 862 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 863 * In SPARSEMEM, this map is stored in struct mem_section 864 */ 865 unsigned long *pageblock_flags; 866 #endif /* CONFIG_SPARSEMEM */ 867 868 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 869 unsigned long zone_start_pfn; 870 871 /* 872 * spanned_pages is the total pages spanned by the zone, including 873 * holes, which is calculated as: 874 * spanned_pages = zone_end_pfn - zone_start_pfn; 875 * 876 * present_pages is physical pages existing within the zone, which 877 * is calculated as: 878 * present_pages = spanned_pages - absent_pages(pages in holes); 879 * 880 * present_early_pages is present pages existing within the zone 881 * located on memory available since early boot, excluding hotplugged 882 * memory. 883 * 884 * managed_pages is present pages managed by the buddy system, which 885 * is calculated as (reserved_pages includes pages allocated by the 886 * bootmem allocator): 887 * managed_pages = present_pages - reserved_pages; 888 * 889 * cma pages is present pages that are assigned for CMA use 890 * (MIGRATE_CMA). 891 * 892 * So present_pages may be used by memory hotplug or memory power 893 * management logic to figure out unmanaged pages by checking 894 * (present_pages - managed_pages). And managed_pages should be used 895 * by page allocator and vm scanner to calculate all kinds of watermarks 896 * and thresholds. 897 * 898 * Locking rules: 899 * 900 * zone_start_pfn and spanned_pages are protected by span_seqlock. 901 * It is a seqlock because it has to be read outside of zone->lock, 902 * and it is done in the main allocator path. But, it is written 903 * quite infrequently. 904 * 905 * The span_seq lock is declared along with zone->lock because it is 906 * frequently read in proximity to zone->lock. It's good to 907 * give them a chance of being in the same cacheline. 908 * 909 * Write access to present_pages at runtime should be protected by 910 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 911 * present_pages should use get_online_mems() to get a stable value. 912 */ 913 atomic_long_t managed_pages; 914 unsigned long spanned_pages; 915 unsigned long present_pages; 916 #if defined(CONFIG_MEMORY_HOTPLUG) 917 unsigned long present_early_pages; 918 #endif 919 #ifdef CONFIG_CMA 920 unsigned long cma_pages; 921 #endif 922 923 const char *name; 924 925 #ifdef CONFIG_MEMORY_ISOLATION 926 /* 927 * Number of isolated pageblock. It is used to solve incorrect 928 * freepage counting problem due to racy retrieving migratetype 929 * of pageblock. Protected by zone->lock. 930 */ 931 unsigned long nr_isolate_pageblock; 932 #endif 933 934 #ifdef CONFIG_MEMORY_HOTPLUG 935 /* see spanned/present_pages for more description */ 936 seqlock_t span_seqlock; 937 #endif 938 939 int initialized; 940 941 /* Write-intensive fields used from the page allocator */ 942 CACHELINE_PADDING(_pad1_); 943 944 /* free areas of different sizes */ 945 struct free_area free_area[NR_PAGE_ORDERS]; 946 947 #ifdef CONFIG_UNACCEPTED_MEMORY 948 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 949 struct list_head unaccepted_pages; 950 #endif 951 952 /* zone flags, see below */ 953 unsigned long flags; 954 955 /* Primarily protects free_area */ 956 spinlock_t lock; 957 958 /* Write-intensive fields used by compaction and vmstats. */ 959 CACHELINE_PADDING(_pad2_); 960 961 /* 962 * When free pages are below this point, additional steps are taken 963 * when reading the number of free pages to avoid per-cpu counter 964 * drift allowing watermarks to be breached 965 */ 966 unsigned long percpu_drift_mark; 967 968 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 969 /* pfn where compaction free scanner should start */ 970 unsigned long compact_cached_free_pfn; 971 /* pfn where compaction migration scanner should start */ 972 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 973 unsigned long compact_init_migrate_pfn; 974 unsigned long compact_init_free_pfn; 975 #endif 976 977 #ifdef CONFIG_COMPACTION 978 /* 979 * On compaction failure, 1<<compact_defer_shift compactions 980 * are skipped before trying again. The number attempted since 981 * last failure is tracked with compact_considered. 982 * compact_order_failed is the minimum compaction failed order. 983 */ 984 unsigned int compact_considered; 985 unsigned int compact_defer_shift; 986 int compact_order_failed; 987 #endif 988 989 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 990 /* Set to true when the PG_migrate_skip bits should be cleared */ 991 bool compact_blockskip_flush; 992 #endif 993 994 bool contiguous; 995 996 CACHELINE_PADDING(_pad3_); 997 /* Zone statistics */ 998 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 999 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1000 } ____cacheline_internodealigned_in_smp; 1001 1002 enum pgdat_flags { 1003 PGDAT_DIRTY, /* reclaim scanning has recently found 1004 * many dirty file pages at the tail 1005 * of the LRU. 1006 */ 1007 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1008 * many pages under writeback 1009 */ 1010 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1011 }; 1012 1013 enum zone_flags { 1014 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1015 * Cleared when kswapd is woken. 1016 */ 1017 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1018 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1019 }; 1020 1021 static inline unsigned long zone_managed_pages(struct zone *zone) 1022 { 1023 return (unsigned long)atomic_long_read(&zone->managed_pages); 1024 } 1025 1026 static inline unsigned long zone_cma_pages(struct zone *zone) 1027 { 1028 #ifdef CONFIG_CMA 1029 return zone->cma_pages; 1030 #else 1031 return 0; 1032 #endif 1033 } 1034 1035 static inline unsigned long zone_end_pfn(const struct zone *zone) 1036 { 1037 return zone->zone_start_pfn + zone->spanned_pages; 1038 } 1039 1040 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1041 { 1042 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1043 } 1044 1045 static inline bool zone_is_initialized(struct zone *zone) 1046 { 1047 return zone->initialized; 1048 } 1049 1050 static inline bool zone_is_empty(struct zone *zone) 1051 { 1052 return zone->spanned_pages == 0; 1053 } 1054 1055 #ifndef BUILD_VDSO32_64 1056 /* 1057 * The zone field is never updated after free_area_init_core() 1058 * sets it, so none of the operations on it need to be atomic. 1059 */ 1060 1061 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1062 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1063 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1064 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1065 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1066 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1067 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1068 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1069 1070 /* 1071 * Define the bit shifts to access each section. For non-existent 1072 * sections we define the shift as 0; that plus a 0 mask ensures 1073 * the compiler will optimise away reference to them. 1074 */ 1075 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1076 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1077 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1078 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1079 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1080 1081 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1082 #ifdef NODE_NOT_IN_PAGE_FLAGS 1083 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1084 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1085 SECTIONS_PGOFF : ZONES_PGOFF) 1086 #else 1087 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1088 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1089 NODES_PGOFF : ZONES_PGOFF) 1090 #endif 1091 1092 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1093 1094 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1095 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1096 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1097 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1098 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1099 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1100 1101 static inline enum zone_type page_zonenum(const struct page *page) 1102 { 1103 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1104 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1105 } 1106 1107 static inline enum zone_type folio_zonenum(const struct folio *folio) 1108 { 1109 return page_zonenum(&folio->page); 1110 } 1111 1112 #ifdef CONFIG_ZONE_DEVICE 1113 static inline bool is_zone_device_page(const struct page *page) 1114 { 1115 return page_zonenum(page) == ZONE_DEVICE; 1116 } 1117 1118 /* 1119 * Consecutive zone device pages should not be merged into the same sgl 1120 * or bvec segment with other types of pages or if they belong to different 1121 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1122 * without scanning the entire segment. This helper returns true either if 1123 * both pages are not zone device pages or both pages are zone device pages 1124 * with the same pgmap. 1125 */ 1126 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1127 const struct page *b) 1128 { 1129 if (is_zone_device_page(a) != is_zone_device_page(b)) 1130 return false; 1131 if (!is_zone_device_page(a)) 1132 return true; 1133 return a->pgmap == b->pgmap; 1134 } 1135 1136 extern void memmap_init_zone_device(struct zone *, unsigned long, 1137 unsigned long, struct dev_pagemap *); 1138 #else 1139 static inline bool is_zone_device_page(const struct page *page) 1140 { 1141 return false; 1142 } 1143 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1144 const struct page *b) 1145 { 1146 return true; 1147 } 1148 #endif 1149 1150 static inline bool folio_is_zone_device(const struct folio *folio) 1151 { 1152 return is_zone_device_page(&folio->page); 1153 } 1154 1155 static inline bool is_zone_movable_page(const struct page *page) 1156 { 1157 return page_zonenum(page) == ZONE_MOVABLE; 1158 } 1159 1160 static inline bool folio_is_zone_movable(const struct folio *folio) 1161 { 1162 return folio_zonenum(folio) == ZONE_MOVABLE; 1163 } 1164 #endif 1165 1166 /* 1167 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1168 * intersection with the given zone 1169 */ 1170 static inline bool zone_intersects(struct zone *zone, 1171 unsigned long start_pfn, unsigned long nr_pages) 1172 { 1173 if (zone_is_empty(zone)) 1174 return false; 1175 if (start_pfn >= zone_end_pfn(zone) || 1176 start_pfn + nr_pages <= zone->zone_start_pfn) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 /* 1183 * The "priority" of VM scanning is how much of the queues we will scan in one 1184 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1185 * queues ("queue_length >> 12") during an aging round. 1186 */ 1187 #define DEF_PRIORITY 12 1188 1189 /* Maximum number of zones on a zonelist */ 1190 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1191 1192 enum { 1193 ZONELIST_FALLBACK, /* zonelist with fallback */ 1194 #ifdef CONFIG_NUMA 1195 /* 1196 * The NUMA zonelists are doubled because we need zonelists that 1197 * restrict the allocations to a single node for __GFP_THISNODE. 1198 */ 1199 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1200 #endif 1201 MAX_ZONELISTS 1202 }; 1203 1204 /* 1205 * This struct contains information about a zone in a zonelist. It is stored 1206 * here to avoid dereferences into large structures and lookups of tables 1207 */ 1208 struct zoneref { 1209 struct zone *zone; /* Pointer to actual zone */ 1210 int zone_idx; /* zone_idx(zoneref->zone) */ 1211 }; 1212 1213 /* 1214 * One allocation request operates on a zonelist. A zonelist 1215 * is a list of zones, the first one is the 'goal' of the 1216 * allocation, the other zones are fallback zones, in decreasing 1217 * priority. 1218 * 1219 * To speed the reading of the zonelist, the zonerefs contain the zone index 1220 * of the entry being read. Helper functions to access information given 1221 * a struct zoneref are 1222 * 1223 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1224 * zonelist_zone_idx() - Return the index of the zone for an entry 1225 * zonelist_node_idx() - Return the index of the node for an entry 1226 */ 1227 struct zonelist { 1228 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1229 }; 1230 1231 /* 1232 * The array of struct pages for flatmem. 1233 * It must be declared for SPARSEMEM as well because there are configurations 1234 * that rely on that. 1235 */ 1236 extern struct page *mem_map; 1237 1238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1239 struct deferred_split { 1240 spinlock_t split_queue_lock; 1241 struct list_head split_queue; 1242 unsigned long split_queue_len; 1243 }; 1244 #endif 1245 1246 #ifdef CONFIG_MEMORY_FAILURE 1247 /* 1248 * Per NUMA node memory failure handling statistics. 1249 */ 1250 struct memory_failure_stats { 1251 /* 1252 * Number of raw pages poisoned. 1253 * Cases not accounted: memory outside kernel control, offline page, 1254 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1255 * error events, and unpoison actions from hwpoison_unpoison. 1256 */ 1257 unsigned long total; 1258 /* 1259 * Recovery results of poisoned raw pages handled by memory_failure, 1260 * in sync with mf_result. 1261 * total = ignored + failed + delayed + recovered. 1262 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1263 */ 1264 unsigned long ignored; 1265 unsigned long failed; 1266 unsigned long delayed; 1267 unsigned long recovered; 1268 }; 1269 #endif 1270 1271 /* 1272 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1273 * it's memory layout. On UMA machines there is a single pglist_data which 1274 * describes the whole memory. 1275 * 1276 * Memory statistics and page replacement data structures are maintained on a 1277 * per-zone basis. 1278 */ 1279 typedef struct pglist_data { 1280 /* 1281 * node_zones contains just the zones for THIS node. Not all of the 1282 * zones may be populated, but it is the full list. It is referenced by 1283 * this node's node_zonelists as well as other node's node_zonelists. 1284 */ 1285 struct zone node_zones[MAX_NR_ZONES]; 1286 1287 /* 1288 * node_zonelists contains references to all zones in all nodes. 1289 * Generally the first zones will be references to this node's 1290 * node_zones. 1291 */ 1292 struct zonelist node_zonelists[MAX_ZONELISTS]; 1293 1294 int nr_zones; /* number of populated zones in this node */ 1295 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1296 struct page *node_mem_map; 1297 #ifdef CONFIG_PAGE_EXTENSION 1298 struct page_ext *node_page_ext; 1299 #endif 1300 #endif 1301 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1302 /* 1303 * Must be held any time you expect node_start_pfn, 1304 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1305 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1306 * init. 1307 * 1308 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1309 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1310 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1311 * 1312 * Nests above zone->lock and zone->span_seqlock 1313 */ 1314 spinlock_t node_size_lock; 1315 #endif 1316 unsigned long node_start_pfn; 1317 unsigned long node_present_pages; /* total number of physical pages */ 1318 unsigned long node_spanned_pages; /* total size of physical page 1319 range, including holes */ 1320 int node_id; 1321 wait_queue_head_t kswapd_wait; 1322 wait_queue_head_t pfmemalloc_wait; 1323 1324 /* workqueues for throttling reclaim for different reasons. */ 1325 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1326 1327 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1328 unsigned long nr_reclaim_start; /* nr pages written while throttled 1329 * when throttling started. */ 1330 #ifdef CONFIG_MEMORY_HOTPLUG 1331 struct mutex kswapd_lock; 1332 #endif 1333 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1334 int kswapd_order; 1335 enum zone_type kswapd_highest_zoneidx; 1336 1337 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1338 1339 #ifdef CONFIG_COMPACTION 1340 int kcompactd_max_order; 1341 enum zone_type kcompactd_highest_zoneidx; 1342 wait_queue_head_t kcompactd_wait; 1343 struct task_struct *kcompactd; 1344 bool proactive_compact_trigger; 1345 #endif 1346 /* 1347 * This is a per-node reserve of pages that are not available 1348 * to userspace allocations. 1349 */ 1350 unsigned long totalreserve_pages; 1351 1352 #ifdef CONFIG_NUMA 1353 /* 1354 * node reclaim becomes active if more unmapped pages exist. 1355 */ 1356 unsigned long min_unmapped_pages; 1357 unsigned long min_slab_pages; 1358 #endif /* CONFIG_NUMA */ 1359 1360 /* Write-intensive fields used by page reclaim */ 1361 CACHELINE_PADDING(_pad1_); 1362 1363 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1364 /* 1365 * If memory initialisation on large machines is deferred then this 1366 * is the first PFN that needs to be initialised. 1367 */ 1368 unsigned long first_deferred_pfn; 1369 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1370 1371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1372 struct deferred_split deferred_split_queue; 1373 #endif 1374 1375 #ifdef CONFIG_NUMA_BALANCING 1376 /* start time in ms of current promote rate limit period */ 1377 unsigned int nbp_rl_start; 1378 /* number of promote candidate pages at start time of current rate limit period */ 1379 unsigned long nbp_rl_nr_cand; 1380 /* promote threshold in ms */ 1381 unsigned int nbp_threshold; 1382 /* start time in ms of current promote threshold adjustment period */ 1383 unsigned int nbp_th_start; 1384 /* 1385 * number of promote candidate pages at start time of current promote 1386 * threshold adjustment period 1387 */ 1388 unsigned long nbp_th_nr_cand; 1389 #endif 1390 /* Fields commonly accessed by the page reclaim scanner */ 1391 1392 /* 1393 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1394 * 1395 * Use mem_cgroup_lruvec() to look up lruvecs. 1396 */ 1397 struct lruvec __lruvec; 1398 1399 unsigned long flags; 1400 1401 #ifdef CONFIG_LRU_GEN 1402 /* kswap mm walk data */ 1403 struct lru_gen_mm_walk mm_walk; 1404 /* lru_gen_folio list */ 1405 struct lru_gen_memcg memcg_lru; 1406 #endif 1407 1408 CACHELINE_PADDING(_pad2_); 1409 1410 /* Per-node vmstats */ 1411 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1412 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1413 #ifdef CONFIG_NUMA 1414 struct memory_tier __rcu *memtier; 1415 #endif 1416 #ifdef CONFIG_MEMORY_FAILURE 1417 struct memory_failure_stats mf_stats; 1418 #endif 1419 } pg_data_t; 1420 1421 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1422 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1423 1424 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1425 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1426 1427 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1428 { 1429 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1430 } 1431 1432 #include <linux/memory_hotplug.h> 1433 1434 void build_all_zonelists(pg_data_t *pgdat); 1435 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1436 enum zone_type highest_zoneidx); 1437 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1438 int highest_zoneidx, unsigned int alloc_flags, 1439 long free_pages); 1440 bool zone_watermark_ok(struct zone *z, unsigned int order, 1441 unsigned long mark, int highest_zoneidx, 1442 unsigned int alloc_flags); 1443 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1444 unsigned long mark, int highest_zoneidx); 1445 /* 1446 * Memory initialization context, use to differentiate memory added by 1447 * the platform statically or via memory hotplug interface. 1448 */ 1449 enum meminit_context { 1450 MEMINIT_EARLY, 1451 MEMINIT_HOTPLUG, 1452 }; 1453 1454 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1455 unsigned long size); 1456 1457 extern void lruvec_init(struct lruvec *lruvec); 1458 1459 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1460 { 1461 #ifdef CONFIG_MEMCG 1462 return lruvec->pgdat; 1463 #else 1464 return container_of(lruvec, struct pglist_data, __lruvec); 1465 #endif 1466 } 1467 1468 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1469 int local_memory_node(int node_id); 1470 #else 1471 static inline int local_memory_node(int node_id) { return node_id; }; 1472 #endif 1473 1474 /* 1475 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1476 */ 1477 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1478 1479 #ifdef CONFIG_ZONE_DEVICE 1480 static inline bool zone_is_zone_device(struct zone *zone) 1481 { 1482 return zone_idx(zone) == ZONE_DEVICE; 1483 } 1484 #else 1485 static inline bool zone_is_zone_device(struct zone *zone) 1486 { 1487 return false; 1488 } 1489 #endif 1490 1491 /* 1492 * Returns true if a zone has pages managed by the buddy allocator. 1493 * All the reclaim decisions have to use this function rather than 1494 * populated_zone(). If the whole zone is reserved then we can easily 1495 * end up with populated_zone() && !managed_zone(). 1496 */ 1497 static inline bool managed_zone(struct zone *zone) 1498 { 1499 return zone_managed_pages(zone); 1500 } 1501 1502 /* Returns true if a zone has memory */ 1503 static inline bool populated_zone(struct zone *zone) 1504 { 1505 return zone->present_pages; 1506 } 1507 1508 #ifdef CONFIG_NUMA 1509 static inline int zone_to_nid(struct zone *zone) 1510 { 1511 return zone->node; 1512 } 1513 1514 static inline void zone_set_nid(struct zone *zone, int nid) 1515 { 1516 zone->node = nid; 1517 } 1518 #else 1519 static inline int zone_to_nid(struct zone *zone) 1520 { 1521 return 0; 1522 } 1523 1524 static inline void zone_set_nid(struct zone *zone, int nid) {} 1525 #endif 1526 1527 extern int movable_zone; 1528 1529 static inline int is_highmem_idx(enum zone_type idx) 1530 { 1531 #ifdef CONFIG_HIGHMEM 1532 return (idx == ZONE_HIGHMEM || 1533 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1534 #else 1535 return 0; 1536 #endif 1537 } 1538 1539 /** 1540 * is_highmem - helper function to quickly check if a struct zone is a 1541 * highmem zone or not. This is an attempt to keep references 1542 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1543 * @zone: pointer to struct zone variable 1544 * Return: 1 for a highmem zone, 0 otherwise 1545 */ 1546 static inline int is_highmem(struct zone *zone) 1547 { 1548 return is_highmem_idx(zone_idx(zone)); 1549 } 1550 1551 #ifdef CONFIG_ZONE_DMA 1552 bool has_managed_dma(void); 1553 #else 1554 static inline bool has_managed_dma(void) 1555 { 1556 return false; 1557 } 1558 #endif 1559 1560 1561 #ifndef CONFIG_NUMA 1562 1563 extern struct pglist_data contig_page_data; 1564 static inline struct pglist_data *NODE_DATA(int nid) 1565 { 1566 return &contig_page_data; 1567 } 1568 1569 #else /* CONFIG_NUMA */ 1570 1571 #include <asm/mmzone.h> 1572 1573 #endif /* !CONFIG_NUMA */ 1574 1575 extern struct pglist_data *first_online_pgdat(void); 1576 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1577 extern struct zone *next_zone(struct zone *zone); 1578 1579 /** 1580 * for_each_online_pgdat - helper macro to iterate over all online nodes 1581 * @pgdat: pointer to a pg_data_t variable 1582 */ 1583 #define for_each_online_pgdat(pgdat) \ 1584 for (pgdat = first_online_pgdat(); \ 1585 pgdat; \ 1586 pgdat = next_online_pgdat(pgdat)) 1587 /** 1588 * for_each_zone - helper macro to iterate over all memory zones 1589 * @zone: pointer to struct zone variable 1590 * 1591 * The user only needs to declare the zone variable, for_each_zone 1592 * fills it in. 1593 */ 1594 #define for_each_zone(zone) \ 1595 for (zone = (first_online_pgdat())->node_zones; \ 1596 zone; \ 1597 zone = next_zone(zone)) 1598 1599 #define for_each_populated_zone(zone) \ 1600 for (zone = (first_online_pgdat())->node_zones; \ 1601 zone; \ 1602 zone = next_zone(zone)) \ 1603 if (!populated_zone(zone)) \ 1604 ; /* do nothing */ \ 1605 else 1606 1607 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1608 { 1609 return zoneref->zone; 1610 } 1611 1612 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1613 { 1614 return zoneref->zone_idx; 1615 } 1616 1617 static inline int zonelist_node_idx(struct zoneref *zoneref) 1618 { 1619 return zone_to_nid(zoneref->zone); 1620 } 1621 1622 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1623 enum zone_type highest_zoneidx, 1624 nodemask_t *nodes); 1625 1626 /** 1627 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1628 * @z: The cursor used as a starting point for the search 1629 * @highest_zoneidx: The zone index of the highest zone to return 1630 * @nodes: An optional nodemask to filter the zonelist with 1631 * 1632 * This function returns the next zone at or below a given zone index that is 1633 * within the allowed nodemask using a cursor as the starting point for the 1634 * search. The zoneref returned is a cursor that represents the current zone 1635 * being examined. It should be advanced by one before calling 1636 * next_zones_zonelist again. 1637 * 1638 * Return: the next zone at or below highest_zoneidx within the allowed 1639 * nodemask using a cursor within a zonelist as a starting point 1640 */ 1641 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1642 enum zone_type highest_zoneidx, 1643 nodemask_t *nodes) 1644 { 1645 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1646 return z; 1647 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1648 } 1649 1650 /** 1651 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1652 * @zonelist: The zonelist to search for a suitable zone 1653 * @highest_zoneidx: The zone index of the highest zone to return 1654 * @nodes: An optional nodemask to filter the zonelist with 1655 * 1656 * This function returns the first zone at or below a given zone index that is 1657 * within the allowed nodemask. The zoneref returned is a cursor that can be 1658 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1659 * one before calling. 1660 * 1661 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1662 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1663 * update due to cpuset modification. 1664 * 1665 * Return: Zoneref pointer for the first suitable zone found 1666 */ 1667 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1668 enum zone_type highest_zoneidx, 1669 nodemask_t *nodes) 1670 { 1671 return next_zones_zonelist(zonelist->_zonerefs, 1672 highest_zoneidx, nodes); 1673 } 1674 1675 /** 1676 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1677 * @zone: The current zone in the iterator 1678 * @z: The current pointer within zonelist->_zonerefs being iterated 1679 * @zlist: The zonelist being iterated 1680 * @highidx: The zone index of the highest zone to return 1681 * @nodemask: Nodemask allowed by the allocator 1682 * 1683 * This iterator iterates though all zones at or below a given zone index and 1684 * within a given nodemask 1685 */ 1686 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1687 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1688 zone; \ 1689 z = next_zones_zonelist(++z, highidx, nodemask), \ 1690 zone = zonelist_zone(z)) 1691 1692 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1693 for (zone = z->zone; \ 1694 zone; \ 1695 z = next_zones_zonelist(++z, highidx, nodemask), \ 1696 zone = zonelist_zone(z)) 1697 1698 1699 /** 1700 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1701 * @zone: The current zone in the iterator 1702 * @z: The current pointer within zonelist->zones being iterated 1703 * @zlist: The zonelist being iterated 1704 * @highidx: The zone index of the highest zone to return 1705 * 1706 * This iterator iterates though all zones at or below a given zone index. 1707 */ 1708 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1709 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1710 1711 /* Whether the 'nodes' are all movable nodes */ 1712 static inline bool movable_only_nodes(nodemask_t *nodes) 1713 { 1714 struct zonelist *zonelist; 1715 struct zoneref *z; 1716 int nid; 1717 1718 if (nodes_empty(*nodes)) 1719 return false; 1720 1721 /* 1722 * We can chose arbitrary node from the nodemask to get a 1723 * zonelist as they are interlinked. We just need to find 1724 * at least one zone that can satisfy kernel allocations. 1725 */ 1726 nid = first_node(*nodes); 1727 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1728 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1729 return (!z->zone) ? true : false; 1730 } 1731 1732 1733 #ifdef CONFIG_SPARSEMEM 1734 #include <asm/sparsemem.h> 1735 #endif 1736 1737 #ifdef CONFIG_FLATMEM 1738 #define pfn_to_nid(pfn) (0) 1739 #endif 1740 1741 #ifdef CONFIG_SPARSEMEM 1742 1743 /* 1744 * PA_SECTION_SHIFT physical address to/from section number 1745 * PFN_SECTION_SHIFT pfn to/from section number 1746 */ 1747 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1748 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1749 1750 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1751 1752 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1753 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1754 1755 #define SECTION_BLOCKFLAGS_BITS \ 1756 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1757 1758 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1759 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1760 #endif 1761 1762 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1763 { 1764 return pfn >> PFN_SECTION_SHIFT; 1765 } 1766 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1767 { 1768 return sec << PFN_SECTION_SHIFT; 1769 } 1770 1771 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1772 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1773 1774 #define SUBSECTION_SHIFT 21 1775 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1776 1777 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1778 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1779 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1780 1781 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1782 #error Subsection size exceeds section size 1783 #else 1784 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1785 #endif 1786 1787 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1788 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1789 1790 struct mem_section_usage { 1791 struct rcu_head rcu; 1792 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1793 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1794 #endif 1795 /* See declaration of similar field in struct zone */ 1796 unsigned long pageblock_flags[0]; 1797 }; 1798 1799 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1800 1801 struct page; 1802 struct page_ext; 1803 struct mem_section { 1804 /* 1805 * This is, logically, a pointer to an array of struct 1806 * pages. However, it is stored with some other magic. 1807 * (see sparse.c::sparse_init_one_section()) 1808 * 1809 * Additionally during early boot we encode node id of 1810 * the location of the section here to guide allocation. 1811 * (see sparse.c::memory_present()) 1812 * 1813 * Making it a UL at least makes someone do a cast 1814 * before using it wrong. 1815 */ 1816 unsigned long section_mem_map; 1817 1818 struct mem_section_usage *usage; 1819 #ifdef CONFIG_PAGE_EXTENSION 1820 /* 1821 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1822 * section. (see page_ext.h about this.) 1823 */ 1824 struct page_ext *page_ext; 1825 unsigned long pad; 1826 #endif 1827 /* 1828 * WARNING: mem_section must be a power-of-2 in size for the 1829 * calculation and use of SECTION_ROOT_MASK to make sense. 1830 */ 1831 }; 1832 1833 #ifdef CONFIG_SPARSEMEM_EXTREME 1834 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1835 #else 1836 #define SECTIONS_PER_ROOT 1 1837 #endif 1838 1839 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1840 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1841 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1842 1843 #ifdef CONFIG_SPARSEMEM_EXTREME 1844 extern struct mem_section **mem_section; 1845 #else 1846 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1847 #endif 1848 1849 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1850 { 1851 return ms->usage->pageblock_flags; 1852 } 1853 1854 static inline struct mem_section *__nr_to_section(unsigned long nr) 1855 { 1856 unsigned long root = SECTION_NR_TO_ROOT(nr); 1857 1858 if (unlikely(root >= NR_SECTION_ROOTS)) 1859 return NULL; 1860 1861 #ifdef CONFIG_SPARSEMEM_EXTREME 1862 if (!mem_section || !mem_section[root]) 1863 return NULL; 1864 #endif 1865 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1866 } 1867 extern size_t mem_section_usage_size(void); 1868 1869 /* 1870 * We use the lower bits of the mem_map pointer to store 1871 * a little bit of information. The pointer is calculated 1872 * as mem_map - section_nr_to_pfn(pnum). The result is 1873 * aligned to the minimum alignment of the two values: 1874 * 1. All mem_map arrays are page-aligned. 1875 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1876 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1877 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1878 * worst combination is powerpc with 256k pages, 1879 * which results in PFN_SECTION_SHIFT equal 6. 1880 * To sum it up, at least 6 bits are available on all architectures. 1881 * However, we can exceed 6 bits on some other architectures except 1882 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1883 * with the worst case of 64K pages on arm64) if we make sure the 1884 * exceeded bit is not applicable to powerpc. 1885 */ 1886 enum { 1887 SECTION_MARKED_PRESENT_BIT, 1888 SECTION_HAS_MEM_MAP_BIT, 1889 SECTION_IS_ONLINE_BIT, 1890 SECTION_IS_EARLY_BIT, 1891 #ifdef CONFIG_ZONE_DEVICE 1892 SECTION_TAINT_ZONE_DEVICE_BIT, 1893 #endif 1894 SECTION_MAP_LAST_BIT, 1895 }; 1896 1897 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1898 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1899 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1900 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1901 #ifdef CONFIG_ZONE_DEVICE 1902 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1903 #endif 1904 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1905 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1906 1907 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1908 { 1909 unsigned long map = section->section_mem_map; 1910 map &= SECTION_MAP_MASK; 1911 return (struct page *)map; 1912 } 1913 1914 static inline int present_section(struct mem_section *section) 1915 { 1916 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1917 } 1918 1919 static inline int present_section_nr(unsigned long nr) 1920 { 1921 return present_section(__nr_to_section(nr)); 1922 } 1923 1924 static inline int valid_section(struct mem_section *section) 1925 { 1926 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1927 } 1928 1929 static inline int early_section(struct mem_section *section) 1930 { 1931 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1932 } 1933 1934 static inline int valid_section_nr(unsigned long nr) 1935 { 1936 return valid_section(__nr_to_section(nr)); 1937 } 1938 1939 static inline int online_section(struct mem_section *section) 1940 { 1941 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1942 } 1943 1944 #ifdef CONFIG_ZONE_DEVICE 1945 static inline int online_device_section(struct mem_section *section) 1946 { 1947 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1948 1949 return section && ((section->section_mem_map & flags) == flags); 1950 } 1951 #else 1952 static inline int online_device_section(struct mem_section *section) 1953 { 1954 return 0; 1955 } 1956 #endif 1957 1958 static inline int online_section_nr(unsigned long nr) 1959 { 1960 return online_section(__nr_to_section(nr)); 1961 } 1962 1963 #ifdef CONFIG_MEMORY_HOTPLUG 1964 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1965 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1966 #endif 1967 1968 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1969 { 1970 return __nr_to_section(pfn_to_section_nr(pfn)); 1971 } 1972 1973 extern unsigned long __highest_present_section_nr; 1974 1975 static inline int subsection_map_index(unsigned long pfn) 1976 { 1977 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1978 } 1979 1980 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1981 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1982 { 1983 int idx = subsection_map_index(pfn); 1984 struct mem_section_usage *usage = READ_ONCE(ms->usage); 1985 1986 return usage ? test_bit(idx, usage->subsection_map) : 0; 1987 } 1988 #else 1989 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1990 { 1991 return 1; 1992 } 1993 #endif 1994 1995 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1996 /** 1997 * pfn_valid - check if there is a valid memory map entry for a PFN 1998 * @pfn: the page frame number to check 1999 * 2000 * Check if there is a valid memory map entry aka struct page for the @pfn. 2001 * Note, that availability of the memory map entry does not imply that 2002 * there is actual usable memory at that @pfn. The struct page may 2003 * represent a hole or an unusable page frame. 2004 * 2005 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2006 */ 2007 static inline int pfn_valid(unsigned long pfn) 2008 { 2009 struct mem_section *ms; 2010 int ret; 2011 2012 /* 2013 * Ensure the upper PAGE_SHIFT bits are clear in the 2014 * pfn. Else it might lead to false positives when 2015 * some of the upper bits are set, but the lower bits 2016 * match a valid pfn. 2017 */ 2018 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2019 return 0; 2020 2021 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2022 return 0; 2023 ms = __pfn_to_section(pfn); 2024 rcu_read_lock_sched(); 2025 if (!valid_section(ms)) { 2026 rcu_read_unlock_sched(); 2027 return 0; 2028 } 2029 /* 2030 * Traditionally early sections always returned pfn_valid() for 2031 * the entire section-sized span. 2032 */ 2033 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2034 rcu_read_unlock_sched(); 2035 2036 return ret; 2037 } 2038 #endif 2039 2040 static inline int pfn_in_present_section(unsigned long pfn) 2041 { 2042 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2043 return 0; 2044 return present_section(__pfn_to_section(pfn)); 2045 } 2046 2047 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2048 { 2049 while (++section_nr <= __highest_present_section_nr) { 2050 if (present_section_nr(section_nr)) 2051 return section_nr; 2052 } 2053 2054 return -1; 2055 } 2056 2057 /* 2058 * These are _only_ used during initialisation, therefore they 2059 * can use __initdata ... They could have names to indicate 2060 * this restriction. 2061 */ 2062 #ifdef CONFIG_NUMA 2063 #define pfn_to_nid(pfn) \ 2064 ({ \ 2065 unsigned long __pfn_to_nid_pfn = (pfn); \ 2066 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2067 }) 2068 #else 2069 #define pfn_to_nid(pfn) (0) 2070 #endif 2071 2072 void sparse_init(void); 2073 #else 2074 #define sparse_init() do {} while (0) 2075 #define sparse_index_init(_sec, _nid) do {} while (0) 2076 #define pfn_in_present_section pfn_valid 2077 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2078 #endif /* CONFIG_SPARSEMEM */ 2079 2080 #endif /* !__GENERATING_BOUNDS.H */ 2081 #endif /* !__ASSEMBLY__ */ 2082 #endif /* _LINUX_MMZONE_H */ 2083