xref: /linux-6.15/include/linux/mmzone.h (revision bbf62599)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117  * So add a wild amount of padding here to ensure that they fall into separate
118  * cachelines.  There are very few zone structures in the machine, so space
119  * consumption is not a concern here.
120  */
121 #if defined(CONFIG_SMP)
122 struct zone_padding {
123 	char x[0];
124 } ____cacheline_internodealigned_in_smp;
125 #define ZONE_PADDING(name)	struct zone_padding name;
126 #else
127 #define ZONE_PADDING(name)
128 #endif
129 
130 #ifdef CONFIG_NUMA
131 enum numa_stat_item {
132 	NUMA_HIT,		/* allocated in intended node */
133 	NUMA_MISS,		/* allocated in non intended node */
134 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
135 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
136 	NUMA_LOCAL,		/* allocation from local node */
137 	NUMA_OTHER,		/* allocation from other node */
138 	NR_VM_NUMA_STAT_ITEMS
139 };
140 #else
141 #define NR_VM_NUMA_STAT_ITEMS 0
142 #endif
143 
144 enum zone_stat_item {
145 	/* First 128 byte cacheline (assuming 64 bit words) */
146 	NR_FREE_PAGES,
147 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 	NR_ZONE_ACTIVE_ANON,
150 	NR_ZONE_INACTIVE_FILE,
151 	NR_ZONE_ACTIVE_FILE,
152 	NR_ZONE_UNEVICTABLE,
153 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
154 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
155 	NR_PAGETABLE,		/* used for pagetables */
156 	/* Second 128 byte cacheline */
157 	NR_BOUNCE,
158 #if IS_ENABLED(CONFIG_ZSMALLOC)
159 	NR_ZSPAGES,		/* allocated in zsmalloc */
160 #endif
161 	NR_FREE_CMA_PAGES,
162 	NR_VM_ZONE_STAT_ITEMS };
163 
164 enum node_stat_item {
165 	NR_LRU_BASE,
166 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
168 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
169 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
170 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
171 	NR_SLAB_RECLAIMABLE_B,
172 	NR_SLAB_UNRECLAIMABLE_B,
173 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
174 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
175 	WORKINGSET_NODES,
176 	WORKINGSET_REFAULT_BASE,
177 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
178 	WORKINGSET_REFAULT_FILE,
179 	WORKINGSET_ACTIVATE_BASE,
180 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
181 	WORKINGSET_ACTIVATE_FILE,
182 	WORKINGSET_RESTORE_BASE,
183 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
184 	WORKINGSET_RESTORE_FILE,
185 	WORKINGSET_NODERECLAIM,
186 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
187 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
188 			   only modified from process context */
189 	NR_FILE_PAGES,
190 	NR_FILE_DIRTY,
191 	NR_WRITEBACK,
192 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
193 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
194 	NR_SHMEM_THPS,
195 	NR_SHMEM_PMDMAPPED,
196 	NR_FILE_THPS,
197 	NR_FILE_PMDMAPPED,
198 	NR_ANON_THPS,
199 	NR_VMSCAN_WRITE,
200 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
201 	NR_DIRTIED,		/* page dirtyings since bootup */
202 	NR_WRITTEN,		/* page writings since bootup */
203 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
204 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
205 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
206 	NR_KERNEL_STACK_KB,	/* measured in KiB */
207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
208 	NR_KERNEL_SCS_KB,	/* measured in KiB */
209 #endif
210 	NR_VM_NODE_STAT_ITEMS
211 };
212 
213 /*
214  * Returns true if the value is measured in bytes (most vmstat values are
215  * measured in pages). This defines the API part, the internal representation
216  * might be different.
217  */
218 static __always_inline bool vmstat_item_in_bytes(int idx)
219 {
220 	/*
221 	 * Global and per-node slab counters track slab pages.
222 	 * It's expected that changes are multiples of PAGE_SIZE.
223 	 * Internally values are stored in pages.
224 	 *
225 	 * Per-memcg and per-lruvec counters track memory, consumed
226 	 * by individual slab objects. These counters are actually
227 	 * byte-precise.
228 	 */
229 	return (idx == NR_SLAB_RECLAIMABLE_B ||
230 		idx == NR_SLAB_UNRECLAIMABLE_B);
231 }
232 
233 /*
234  * We do arithmetic on the LRU lists in various places in the code,
235  * so it is important to keep the active lists LRU_ACTIVE higher in
236  * the array than the corresponding inactive lists, and to keep
237  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
238  *
239  * This has to be kept in sync with the statistics in zone_stat_item
240  * above and the descriptions in vmstat_text in mm/vmstat.c
241  */
242 #define LRU_BASE 0
243 #define LRU_ACTIVE 1
244 #define LRU_FILE 2
245 
246 enum lru_list {
247 	LRU_INACTIVE_ANON = LRU_BASE,
248 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
249 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
250 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
251 	LRU_UNEVICTABLE,
252 	NR_LRU_LISTS
253 };
254 
255 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
256 
257 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
258 
259 static inline bool is_file_lru(enum lru_list lru)
260 {
261 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
262 }
263 
264 static inline bool is_active_lru(enum lru_list lru)
265 {
266 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
267 }
268 
269 enum lruvec_flags {
270 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
271 					 * backed by a congested BDI
272 					 */
273 };
274 
275 struct lruvec {
276 	struct list_head		lists[NR_LRU_LISTS];
277 	/*
278 	 * These track the cost of reclaiming one LRU - file or anon -
279 	 * over the other. As the observed cost of reclaiming one LRU
280 	 * increases, the reclaim scan balance tips toward the other.
281 	 */
282 	unsigned long			anon_cost;
283 	unsigned long			file_cost;
284 	/* Non-resident age, driven by LRU movement */
285 	atomic_long_t			nonresident_age;
286 	/* Refaults at the time of last reclaim cycle, anon=0, file=1 */
287 	unsigned long			refaults[2];
288 	/* Various lruvec state flags (enum lruvec_flags) */
289 	unsigned long			flags;
290 #ifdef CONFIG_MEMCG
291 	struct pglist_data *pgdat;
292 #endif
293 };
294 
295 /* Isolate unmapped pages */
296 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
297 /* Isolate for asynchronous migration */
298 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
299 /* Isolate unevictable pages */
300 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
301 
302 /* LRU Isolation modes. */
303 typedef unsigned __bitwise isolate_mode_t;
304 
305 enum zone_watermarks {
306 	WMARK_MIN,
307 	WMARK_LOW,
308 	WMARK_HIGH,
309 	NR_WMARK
310 };
311 
312 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
313 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
314 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
315 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
316 
317 struct per_cpu_pages {
318 	int count;		/* number of pages in the list */
319 	int high;		/* high watermark, emptying needed */
320 	int batch;		/* chunk size for buddy add/remove */
321 
322 	/* Lists of pages, one per migrate type stored on the pcp-lists */
323 	struct list_head lists[MIGRATE_PCPTYPES];
324 };
325 
326 struct per_cpu_pageset {
327 	struct per_cpu_pages pcp;
328 #ifdef CONFIG_NUMA
329 	s8 expire;
330 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
331 #endif
332 #ifdef CONFIG_SMP
333 	s8 stat_threshold;
334 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
335 #endif
336 };
337 
338 struct per_cpu_nodestat {
339 	s8 stat_threshold;
340 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
341 };
342 
343 #endif /* !__GENERATING_BOUNDS.H */
344 
345 enum zone_type {
346 	/*
347 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
348 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
349 	 * On architectures where this area covers the whole 32 bit address
350 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
351 	 * DMA addressing constraints. This distinction is important as a 32bit
352 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
353 	 * platforms may need both zones as they support peripherals with
354 	 * different DMA addressing limitations.
355 	 *
356 	 * Some examples:
357 	 *
358 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
359 	 *    rest of the lower 4G.
360 	 *
361 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
362 	 *    the specific device.
363 	 *
364 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
365 	 *    lower 4G.
366 	 *
367 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
368 	 *    depending on the specific device.
369 	 *
370 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
371 	 *
372 	 *  - ia64 and riscv only use ZONE_DMA32.
373 	 *
374 	 *  - parisc uses neither.
375 	 */
376 #ifdef CONFIG_ZONE_DMA
377 	ZONE_DMA,
378 #endif
379 #ifdef CONFIG_ZONE_DMA32
380 	ZONE_DMA32,
381 #endif
382 	/*
383 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
384 	 * performed on pages in ZONE_NORMAL if the DMA devices support
385 	 * transfers to all addressable memory.
386 	 */
387 	ZONE_NORMAL,
388 #ifdef CONFIG_HIGHMEM
389 	/*
390 	 * A memory area that is only addressable by the kernel through
391 	 * mapping portions into its own address space. This is for example
392 	 * used by i386 to allow the kernel to address the memory beyond
393 	 * 900MB. The kernel will set up special mappings (page
394 	 * table entries on i386) for each page that the kernel needs to
395 	 * access.
396 	 */
397 	ZONE_HIGHMEM,
398 #endif
399 	/*
400 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
401 	 * movable pages with few exceptional cases described below. Main use
402 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
403 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
404 	 * to increase the number of THP/huge pages. Notable special cases are:
405 	 *
406 	 * 1. Pinned pages: (long-term) pinning of movable pages might
407 	 *    essentially turn such pages unmovable. Memory offlining might
408 	 *    retry a long time.
409 	 * 2. memblock allocations: kernelcore/movablecore setups might create
410 	 *    situations where ZONE_MOVABLE contains unmovable allocations
411 	 *    after boot. Memory offlining and allocations fail early.
412 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
413 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
414 	 *    for example, if we have sections that are only partially
415 	 *    populated. Memory offlining and allocations fail early.
416 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
417 	 *    memory offlining, such pages cannot be allocated.
418 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
419 	 *    hotplugged memory blocks might only partially be managed by the
420 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
421 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
422 	 *    some cases (virtio-mem), such pages can be skipped during
423 	 *    memory offlining, however, cannot be moved/allocated. These
424 	 *    techniques might use alloc_contig_range() to hide previously
425 	 *    exposed pages from the buddy again (e.g., to implement some sort
426 	 *    of memory unplug in virtio-mem).
427 	 *
428 	 * In general, no unmovable allocations that degrade memory offlining
429 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
430 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
431 	 * if has_unmovable_pages() states that there are no unmovable pages,
432 	 * there can be false negatives).
433 	 */
434 	ZONE_MOVABLE,
435 #ifdef CONFIG_ZONE_DEVICE
436 	ZONE_DEVICE,
437 #endif
438 	__MAX_NR_ZONES
439 
440 };
441 
442 #ifndef __GENERATING_BOUNDS_H
443 
444 struct zone {
445 	/* Read-mostly fields */
446 
447 	/* zone watermarks, access with *_wmark_pages(zone) macros */
448 	unsigned long _watermark[NR_WMARK];
449 	unsigned long watermark_boost;
450 
451 	unsigned long nr_reserved_highatomic;
452 
453 	/*
454 	 * We don't know if the memory that we're going to allocate will be
455 	 * freeable or/and it will be released eventually, so to avoid totally
456 	 * wasting several GB of ram we must reserve some of the lower zone
457 	 * memory (otherwise we risk to run OOM on the lower zones despite
458 	 * there being tons of freeable ram on the higher zones).  This array is
459 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
460 	 * changes.
461 	 */
462 	long lowmem_reserve[MAX_NR_ZONES];
463 
464 #ifdef CONFIG_NUMA
465 	int node;
466 #endif
467 	struct pglist_data	*zone_pgdat;
468 	struct per_cpu_pageset __percpu *pageset;
469 
470 #ifndef CONFIG_SPARSEMEM
471 	/*
472 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
473 	 * In SPARSEMEM, this map is stored in struct mem_section
474 	 */
475 	unsigned long		*pageblock_flags;
476 #endif /* CONFIG_SPARSEMEM */
477 
478 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
479 	unsigned long		zone_start_pfn;
480 
481 	/*
482 	 * spanned_pages is the total pages spanned by the zone, including
483 	 * holes, which is calculated as:
484 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
485 	 *
486 	 * present_pages is physical pages existing within the zone, which
487 	 * is calculated as:
488 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
489 	 *
490 	 * managed_pages is present pages managed by the buddy system, which
491 	 * is calculated as (reserved_pages includes pages allocated by the
492 	 * bootmem allocator):
493 	 *	managed_pages = present_pages - reserved_pages;
494 	 *
495 	 * So present_pages may be used by memory hotplug or memory power
496 	 * management logic to figure out unmanaged pages by checking
497 	 * (present_pages - managed_pages). And managed_pages should be used
498 	 * by page allocator and vm scanner to calculate all kinds of watermarks
499 	 * and thresholds.
500 	 *
501 	 * Locking rules:
502 	 *
503 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
504 	 * It is a seqlock because it has to be read outside of zone->lock,
505 	 * and it is done in the main allocator path.  But, it is written
506 	 * quite infrequently.
507 	 *
508 	 * The span_seq lock is declared along with zone->lock because it is
509 	 * frequently read in proximity to zone->lock.  It's good to
510 	 * give them a chance of being in the same cacheline.
511 	 *
512 	 * Write access to present_pages at runtime should be protected by
513 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
514 	 * present_pages should get_online_mems() to get a stable value.
515 	 */
516 	atomic_long_t		managed_pages;
517 	unsigned long		spanned_pages;
518 	unsigned long		present_pages;
519 
520 	const char		*name;
521 
522 #ifdef CONFIG_MEMORY_ISOLATION
523 	/*
524 	 * Number of isolated pageblock. It is used to solve incorrect
525 	 * freepage counting problem due to racy retrieving migratetype
526 	 * of pageblock. Protected by zone->lock.
527 	 */
528 	unsigned long		nr_isolate_pageblock;
529 #endif
530 
531 #ifdef CONFIG_MEMORY_HOTPLUG
532 	/* see spanned/present_pages for more description */
533 	seqlock_t		span_seqlock;
534 #endif
535 
536 	int initialized;
537 
538 	/* Write-intensive fields used from the page allocator */
539 	ZONE_PADDING(_pad1_)
540 
541 	/* free areas of different sizes */
542 	struct free_area	free_area[MAX_ORDER];
543 
544 	/* zone flags, see below */
545 	unsigned long		flags;
546 
547 	/* Primarily protects free_area */
548 	spinlock_t		lock;
549 
550 	/* Write-intensive fields used by compaction and vmstats. */
551 	ZONE_PADDING(_pad2_)
552 
553 	/*
554 	 * When free pages are below this point, additional steps are taken
555 	 * when reading the number of free pages to avoid per-cpu counter
556 	 * drift allowing watermarks to be breached
557 	 */
558 	unsigned long percpu_drift_mark;
559 
560 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
561 	/* pfn where compaction free scanner should start */
562 	unsigned long		compact_cached_free_pfn;
563 	/* pfn where async and sync compaction migration scanner should start */
564 	unsigned long		compact_cached_migrate_pfn[2];
565 	unsigned long		compact_init_migrate_pfn;
566 	unsigned long		compact_init_free_pfn;
567 #endif
568 
569 #ifdef CONFIG_COMPACTION
570 	/*
571 	 * On compaction failure, 1<<compact_defer_shift compactions
572 	 * are skipped before trying again. The number attempted since
573 	 * last failure is tracked with compact_considered.
574 	 * compact_order_failed is the minimum compaction failed order.
575 	 */
576 	unsigned int		compact_considered;
577 	unsigned int		compact_defer_shift;
578 	int			compact_order_failed;
579 #endif
580 
581 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
582 	/* Set to true when the PG_migrate_skip bits should be cleared */
583 	bool			compact_blockskip_flush;
584 #endif
585 
586 	bool			contiguous;
587 
588 	ZONE_PADDING(_pad3_)
589 	/* Zone statistics */
590 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
591 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
592 } ____cacheline_internodealigned_in_smp;
593 
594 enum pgdat_flags {
595 	PGDAT_DIRTY,			/* reclaim scanning has recently found
596 					 * many dirty file pages at the tail
597 					 * of the LRU.
598 					 */
599 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
600 					 * many pages under writeback
601 					 */
602 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
603 };
604 
605 enum zone_flags {
606 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
607 					 * Cleared when kswapd is woken.
608 					 */
609 };
610 
611 static inline unsigned long zone_managed_pages(struct zone *zone)
612 {
613 	return (unsigned long)atomic_long_read(&zone->managed_pages);
614 }
615 
616 static inline unsigned long zone_end_pfn(const struct zone *zone)
617 {
618 	return zone->zone_start_pfn + zone->spanned_pages;
619 }
620 
621 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
622 {
623 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
624 }
625 
626 static inline bool zone_is_initialized(struct zone *zone)
627 {
628 	return zone->initialized;
629 }
630 
631 static inline bool zone_is_empty(struct zone *zone)
632 {
633 	return zone->spanned_pages == 0;
634 }
635 
636 /*
637  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
638  * intersection with the given zone
639  */
640 static inline bool zone_intersects(struct zone *zone,
641 		unsigned long start_pfn, unsigned long nr_pages)
642 {
643 	if (zone_is_empty(zone))
644 		return false;
645 	if (start_pfn >= zone_end_pfn(zone) ||
646 	    start_pfn + nr_pages <= zone->zone_start_pfn)
647 		return false;
648 
649 	return true;
650 }
651 
652 /*
653  * The "priority" of VM scanning is how much of the queues we will scan in one
654  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
655  * queues ("queue_length >> 12") during an aging round.
656  */
657 #define DEF_PRIORITY 12
658 
659 /* Maximum number of zones on a zonelist */
660 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
661 
662 enum {
663 	ZONELIST_FALLBACK,	/* zonelist with fallback */
664 #ifdef CONFIG_NUMA
665 	/*
666 	 * The NUMA zonelists are doubled because we need zonelists that
667 	 * restrict the allocations to a single node for __GFP_THISNODE.
668 	 */
669 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
670 #endif
671 	MAX_ZONELISTS
672 };
673 
674 /*
675  * This struct contains information about a zone in a zonelist. It is stored
676  * here to avoid dereferences into large structures and lookups of tables
677  */
678 struct zoneref {
679 	struct zone *zone;	/* Pointer to actual zone */
680 	int zone_idx;		/* zone_idx(zoneref->zone) */
681 };
682 
683 /*
684  * One allocation request operates on a zonelist. A zonelist
685  * is a list of zones, the first one is the 'goal' of the
686  * allocation, the other zones are fallback zones, in decreasing
687  * priority.
688  *
689  * To speed the reading of the zonelist, the zonerefs contain the zone index
690  * of the entry being read. Helper functions to access information given
691  * a struct zoneref are
692  *
693  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
694  * zonelist_zone_idx()	- Return the index of the zone for an entry
695  * zonelist_node_idx()	- Return the index of the node for an entry
696  */
697 struct zonelist {
698 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
699 };
700 
701 #ifndef CONFIG_DISCONTIGMEM
702 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
703 extern struct page *mem_map;
704 #endif
705 
706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 struct deferred_split {
708 	spinlock_t split_queue_lock;
709 	struct list_head split_queue;
710 	unsigned long split_queue_len;
711 };
712 #endif
713 
714 /*
715  * On NUMA machines, each NUMA node would have a pg_data_t to describe
716  * it's memory layout. On UMA machines there is a single pglist_data which
717  * describes the whole memory.
718  *
719  * Memory statistics and page replacement data structures are maintained on a
720  * per-zone basis.
721  */
722 typedef struct pglist_data {
723 	/*
724 	 * node_zones contains just the zones for THIS node. Not all of the
725 	 * zones may be populated, but it is the full list. It is referenced by
726 	 * this node's node_zonelists as well as other node's node_zonelists.
727 	 */
728 	struct zone node_zones[MAX_NR_ZONES];
729 
730 	/*
731 	 * node_zonelists contains references to all zones in all nodes.
732 	 * Generally the first zones will be references to this node's
733 	 * node_zones.
734 	 */
735 	struct zonelist node_zonelists[MAX_ZONELISTS];
736 
737 	int nr_zones; /* number of populated zones in this node */
738 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
739 	struct page *node_mem_map;
740 #ifdef CONFIG_PAGE_EXTENSION
741 	struct page_ext *node_page_ext;
742 #endif
743 #endif
744 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
745 	/*
746 	 * Must be held any time you expect node_start_pfn,
747 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
748 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
749 	 * init.
750 	 *
751 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
752 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
753 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
754 	 *
755 	 * Nests above zone->lock and zone->span_seqlock
756 	 */
757 	spinlock_t node_size_lock;
758 #endif
759 	unsigned long node_start_pfn;
760 	unsigned long node_present_pages; /* total number of physical pages */
761 	unsigned long node_spanned_pages; /* total size of physical page
762 					     range, including holes */
763 	int node_id;
764 	wait_queue_head_t kswapd_wait;
765 	wait_queue_head_t pfmemalloc_wait;
766 	struct task_struct *kswapd;	/* Protected by
767 					   mem_hotplug_begin/end() */
768 	int kswapd_order;
769 	enum zone_type kswapd_highest_zoneidx;
770 
771 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
772 
773 #ifdef CONFIG_COMPACTION
774 	int kcompactd_max_order;
775 	enum zone_type kcompactd_highest_zoneidx;
776 	wait_queue_head_t kcompactd_wait;
777 	struct task_struct *kcompactd;
778 #endif
779 	/*
780 	 * This is a per-node reserve of pages that are not available
781 	 * to userspace allocations.
782 	 */
783 	unsigned long		totalreserve_pages;
784 
785 #ifdef CONFIG_NUMA
786 	/*
787 	 * node reclaim becomes active if more unmapped pages exist.
788 	 */
789 	unsigned long		min_unmapped_pages;
790 	unsigned long		min_slab_pages;
791 #endif /* CONFIG_NUMA */
792 
793 	/* Write-intensive fields used by page reclaim */
794 	ZONE_PADDING(_pad1_)
795 	spinlock_t		lru_lock;
796 
797 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
798 	/*
799 	 * If memory initialisation on large machines is deferred then this
800 	 * is the first PFN that needs to be initialised.
801 	 */
802 	unsigned long first_deferred_pfn;
803 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
804 
805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
806 	struct deferred_split deferred_split_queue;
807 #endif
808 
809 	/* Fields commonly accessed by the page reclaim scanner */
810 
811 	/*
812 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
813 	 *
814 	 * Use mem_cgroup_lruvec() to look up lruvecs.
815 	 */
816 	struct lruvec		__lruvec;
817 
818 	unsigned long		flags;
819 
820 	ZONE_PADDING(_pad2_)
821 
822 	/* Per-node vmstats */
823 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
824 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
825 } pg_data_t;
826 
827 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
828 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
829 #ifdef CONFIG_FLAT_NODE_MEM_MAP
830 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
831 #else
832 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
833 #endif
834 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
835 
836 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
837 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
838 
839 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
840 {
841 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
842 }
843 
844 static inline bool pgdat_is_empty(pg_data_t *pgdat)
845 {
846 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
847 }
848 
849 #include <linux/memory_hotplug.h>
850 
851 void build_all_zonelists(pg_data_t *pgdat);
852 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
853 		   enum zone_type highest_zoneidx);
854 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
855 			 int highest_zoneidx, unsigned int alloc_flags,
856 			 long free_pages);
857 bool zone_watermark_ok(struct zone *z, unsigned int order,
858 		unsigned long mark, int highest_zoneidx,
859 		unsigned int alloc_flags);
860 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
861 		unsigned long mark, int highest_zoneidx);
862 /*
863  * Memory initialization context, use to differentiate memory added by
864  * the platform statically or via memory hotplug interface.
865  */
866 enum meminit_context {
867 	MEMINIT_EARLY,
868 	MEMINIT_HOTPLUG,
869 };
870 
871 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
872 				     unsigned long size);
873 
874 extern void lruvec_init(struct lruvec *lruvec);
875 
876 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
877 {
878 #ifdef CONFIG_MEMCG
879 	return lruvec->pgdat;
880 #else
881 	return container_of(lruvec, struct pglist_data, __lruvec);
882 #endif
883 }
884 
885 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
886 
887 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
888 int local_memory_node(int node_id);
889 #else
890 static inline int local_memory_node(int node_id) { return node_id; };
891 #endif
892 
893 /*
894  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
895  */
896 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
897 
898 /*
899  * Returns true if a zone has pages managed by the buddy allocator.
900  * All the reclaim decisions have to use this function rather than
901  * populated_zone(). If the whole zone is reserved then we can easily
902  * end up with populated_zone() && !managed_zone().
903  */
904 static inline bool managed_zone(struct zone *zone)
905 {
906 	return zone_managed_pages(zone);
907 }
908 
909 /* Returns true if a zone has memory */
910 static inline bool populated_zone(struct zone *zone)
911 {
912 	return zone->present_pages;
913 }
914 
915 #ifdef CONFIG_NUMA
916 static inline int zone_to_nid(struct zone *zone)
917 {
918 	return zone->node;
919 }
920 
921 static inline void zone_set_nid(struct zone *zone, int nid)
922 {
923 	zone->node = nid;
924 }
925 #else
926 static inline int zone_to_nid(struct zone *zone)
927 {
928 	return 0;
929 }
930 
931 static inline void zone_set_nid(struct zone *zone, int nid) {}
932 #endif
933 
934 extern int movable_zone;
935 
936 #ifdef CONFIG_HIGHMEM
937 static inline int zone_movable_is_highmem(void)
938 {
939 #ifdef CONFIG_NEED_MULTIPLE_NODES
940 	return movable_zone == ZONE_HIGHMEM;
941 #else
942 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
943 #endif
944 }
945 #endif
946 
947 static inline int is_highmem_idx(enum zone_type idx)
948 {
949 #ifdef CONFIG_HIGHMEM
950 	return (idx == ZONE_HIGHMEM ||
951 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
952 #else
953 	return 0;
954 #endif
955 }
956 
957 /**
958  * is_highmem - helper function to quickly check if a struct zone is a
959  *              highmem zone or not.  This is an attempt to keep references
960  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
961  * @zone - pointer to struct zone variable
962  */
963 static inline int is_highmem(struct zone *zone)
964 {
965 #ifdef CONFIG_HIGHMEM
966 	return is_highmem_idx(zone_idx(zone));
967 #else
968 	return 0;
969 #endif
970 }
971 
972 /* These two functions are used to setup the per zone pages min values */
973 struct ctl_table;
974 
975 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
976 		loff_t *);
977 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
978 		size_t *, loff_t *);
979 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
980 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
981 		size_t *, loff_t *);
982 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
983 		void *, size_t *, loff_t *);
984 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
985 		void *, size_t *, loff_t *);
986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
987 		void *, size_t *, loff_t *);
988 int numa_zonelist_order_handler(struct ctl_table *, int,
989 		void *, size_t *, loff_t *);
990 extern int percpu_pagelist_fraction;
991 extern char numa_zonelist_order[];
992 #define NUMA_ZONELIST_ORDER_LEN	16
993 
994 #ifndef CONFIG_NEED_MULTIPLE_NODES
995 
996 extern struct pglist_data contig_page_data;
997 #define NODE_DATA(nid)		(&contig_page_data)
998 #define NODE_MEM_MAP(nid)	mem_map
999 
1000 #else /* CONFIG_NEED_MULTIPLE_NODES */
1001 
1002 #include <asm/mmzone.h>
1003 
1004 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1005 
1006 extern struct pglist_data *first_online_pgdat(void);
1007 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1008 extern struct zone *next_zone(struct zone *zone);
1009 
1010 /**
1011  * for_each_online_pgdat - helper macro to iterate over all online nodes
1012  * @pgdat - pointer to a pg_data_t variable
1013  */
1014 #define for_each_online_pgdat(pgdat)			\
1015 	for (pgdat = first_online_pgdat();		\
1016 	     pgdat;					\
1017 	     pgdat = next_online_pgdat(pgdat))
1018 /**
1019  * for_each_zone - helper macro to iterate over all memory zones
1020  * @zone - pointer to struct zone variable
1021  *
1022  * The user only needs to declare the zone variable, for_each_zone
1023  * fills it in.
1024  */
1025 #define for_each_zone(zone)			        \
1026 	for (zone = (first_online_pgdat())->node_zones; \
1027 	     zone;					\
1028 	     zone = next_zone(zone))
1029 
1030 #define for_each_populated_zone(zone)		        \
1031 	for (zone = (first_online_pgdat())->node_zones; \
1032 	     zone;					\
1033 	     zone = next_zone(zone))			\
1034 		if (!populated_zone(zone))		\
1035 			; /* do nothing */		\
1036 		else
1037 
1038 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1039 {
1040 	return zoneref->zone;
1041 }
1042 
1043 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1044 {
1045 	return zoneref->zone_idx;
1046 }
1047 
1048 static inline int zonelist_node_idx(struct zoneref *zoneref)
1049 {
1050 	return zone_to_nid(zoneref->zone);
1051 }
1052 
1053 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1054 					enum zone_type highest_zoneidx,
1055 					nodemask_t *nodes);
1056 
1057 /**
1058  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1059  * @z - The cursor used as a starting point for the search
1060  * @highest_zoneidx - The zone index of the highest zone to return
1061  * @nodes - An optional nodemask to filter the zonelist with
1062  *
1063  * This function returns the next zone at or below a given zone index that is
1064  * within the allowed nodemask using a cursor as the starting point for the
1065  * search. The zoneref returned is a cursor that represents the current zone
1066  * being examined. It should be advanced by one before calling
1067  * next_zones_zonelist again.
1068  */
1069 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1070 					enum zone_type highest_zoneidx,
1071 					nodemask_t *nodes)
1072 {
1073 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1074 		return z;
1075 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1076 }
1077 
1078 /**
1079  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1080  * @zonelist - The zonelist to search for a suitable zone
1081  * @highest_zoneidx - The zone index of the highest zone to return
1082  * @nodes - An optional nodemask to filter the zonelist with
1083  * @return - Zoneref pointer for the first suitable zone found (see below)
1084  *
1085  * This function returns the first zone at or below a given zone index that is
1086  * within the allowed nodemask. The zoneref returned is a cursor that can be
1087  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1088  * one before calling.
1089  *
1090  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1091  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1092  * update due to cpuset modification.
1093  */
1094 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1095 					enum zone_type highest_zoneidx,
1096 					nodemask_t *nodes)
1097 {
1098 	return next_zones_zonelist(zonelist->_zonerefs,
1099 							highest_zoneidx, nodes);
1100 }
1101 
1102 /**
1103  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1104  * @zone - The current zone in the iterator
1105  * @z - The current pointer within zonelist->_zonerefs being iterated
1106  * @zlist - The zonelist being iterated
1107  * @highidx - The zone index of the highest zone to return
1108  * @nodemask - Nodemask allowed by the allocator
1109  *
1110  * This iterator iterates though all zones at or below a given zone index and
1111  * within a given nodemask
1112  */
1113 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1114 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1115 		zone;							\
1116 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1117 			zone = zonelist_zone(z))
1118 
1119 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1120 	for (zone = z->zone;	\
1121 		zone;							\
1122 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1123 			zone = zonelist_zone(z))
1124 
1125 
1126 /**
1127  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1128  * @zone - The current zone in the iterator
1129  * @z - The current pointer within zonelist->zones being iterated
1130  * @zlist - The zonelist being iterated
1131  * @highidx - The zone index of the highest zone to return
1132  *
1133  * This iterator iterates though all zones at or below a given zone index.
1134  */
1135 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1136 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1137 
1138 #ifdef CONFIG_SPARSEMEM
1139 #include <asm/sparsemem.h>
1140 #endif
1141 
1142 #ifdef CONFIG_FLATMEM
1143 #define pfn_to_nid(pfn)		(0)
1144 #endif
1145 
1146 #ifdef CONFIG_SPARSEMEM
1147 
1148 /*
1149  * SECTION_SHIFT    		#bits space required to store a section #
1150  *
1151  * PA_SECTION_SHIFT		physical address to/from section number
1152  * PFN_SECTION_SHIFT		pfn to/from section number
1153  */
1154 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1155 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1156 
1157 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1158 
1159 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1160 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1161 
1162 #define SECTION_BLOCKFLAGS_BITS \
1163 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1164 
1165 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1166 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1167 #endif
1168 
1169 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1170 {
1171 	return pfn >> PFN_SECTION_SHIFT;
1172 }
1173 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1174 {
1175 	return sec << PFN_SECTION_SHIFT;
1176 }
1177 
1178 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1179 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1180 
1181 #define SUBSECTION_SHIFT 21
1182 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1183 
1184 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1185 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1186 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1187 
1188 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1189 #error Subsection size exceeds section size
1190 #else
1191 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1192 #endif
1193 
1194 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1195 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1196 
1197 struct mem_section_usage {
1198 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1199 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1200 #endif
1201 	/* See declaration of similar field in struct zone */
1202 	unsigned long pageblock_flags[0];
1203 };
1204 
1205 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1206 
1207 struct page;
1208 struct page_ext;
1209 struct mem_section {
1210 	/*
1211 	 * This is, logically, a pointer to an array of struct
1212 	 * pages.  However, it is stored with some other magic.
1213 	 * (see sparse.c::sparse_init_one_section())
1214 	 *
1215 	 * Additionally during early boot we encode node id of
1216 	 * the location of the section here to guide allocation.
1217 	 * (see sparse.c::memory_present())
1218 	 *
1219 	 * Making it a UL at least makes someone do a cast
1220 	 * before using it wrong.
1221 	 */
1222 	unsigned long section_mem_map;
1223 
1224 	struct mem_section_usage *usage;
1225 #ifdef CONFIG_PAGE_EXTENSION
1226 	/*
1227 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1228 	 * section. (see page_ext.h about this.)
1229 	 */
1230 	struct page_ext *page_ext;
1231 	unsigned long pad;
1232 #endif
1233 	/*
1234 	 * WARNING: mem_section must be a power-of-2 in size for the
1235 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1236 	 */
1237 };
1238 
1239 #ifdef CONFIG_SPARSEMEM_EXTREME
1240 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1241 #else
1242 #define SECTIONS_PER_ROOT	1
1243 #endif
1244 
1245 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1246 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1247 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1248 
1249 #ifdef CONFIG_SPARSEMEM_EXTREME
1250 extern struct mem_section **mem_section;
1251 #else
1252 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1253 #endif
1254 
1255 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1256 {
1257 	return ms->usage->pageblock_flags;
1258 }
1259 
1260 static inline struct mem_section *__nr_to_section(unsigned long nr)
1261 {
1262 #ifdef CONFIG_SPARSEMEM_EXTREME
1263 	if (!mem_section)
1264 		return NULL;
1265 #endif
1266 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1267 		return NULL;
1268 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1269 }
1270 extern unsigned long __section_nr(struct mem_section *ms);
1271 extern size_t mem_section_usage_size(void);
1272 
1273 /*
1274  * We use the lower bits of the mem_map pointer to store
1275  * a little bit of information.  The pointer is calculated
1276  * as mem_map - section_nr_to_pfn(pnum).  The result is
1277  * aligned to the minimum alignment of the two values:
1278  *   1. All mem_map arrays are page-aligned.
1279  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1280  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1281  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1282  *      worst combination is powerpc with 256k pages,
1283  *      which results in PFN_SECTION_SHIFT equal 6.
1284  * To sum it up, at least 6 bits are available.
1285  */
1286 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1287 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1288 #define SECTION_IS_ONLINE	(1UL<<2)
1289 #define SECTION_IS_EARLY	(1UL<<3)
1290 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1291 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1292 #define SECTION_NID_SHIFT	3
1293 
1294 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1295 {
1296 	unsigned long map = section->section_mem_map;
1297 	map &= SECTION_MAP_MASK;
1298 	return (struct page *)map;
1299 }
1300 
1301 static inline int present_section(struct mem_section *section)
1302 {
1303 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1304 }
1305 
1306 static inline int present_section_nr(unsigned long nr)
1307 {
1308 	return present_section(__nr_to_section(nr));
1309 }
1310 
1311 static inline int valid_section(struct mem_section *section)
1312 {
1313 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1314 }
1315 
1316 static inline int early_section(struct mem_section *section)
1317 {
1318 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1319 }
1320 
1321 static inline int valid_section_nr(unsigned long nr)
1322 {
1323 	return valid_section(__nr_to_section(nr));
1324 }
1325 
1326 static inline int online_section(struct mem_section *section)
1327 {
1328 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1329 }
1330 
1331 static inline int online_section_nr(unsigned long nr)
1332 {
1333 	return online_section(__nr_to_section(nr));
1334 }
1335 
1336 #ifdef CONFIG_MEMORY_HOTPLUG
1337 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1338 #ifdef CONFIG_MEMORY_HOTREMOVE
1339 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1340 #endif
1341 #endif
1342 
1343 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1344 {
1345 	return __nr_to_section(pfn_to_section_nr(pfn));
1346 }
1347 
1348 extern unsigned long __highest_present_section_nr;
1349 
1350 static inline int subsection_map_index(unsigned long pfn)
1351 {
1352 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1353 }
1354 
1355 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1356 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1357 {
1358 	int idx = subsection_map_index(pfn);
1359 
1360 	return test_bit(idx, ms->usage->subsection_map);
1361 }
1362 #else
1363 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1364 {
1365 	return 1;
1366 }
1367 #endif
1368 
1369 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1370 static inline int pfn_valid(unsigned long pfn)
1371 {
1372 	struct mem_section *ms;
1373 
1374 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1375 		return 0;
1376 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1377 	if (!valid_section(ms))
1378 		return 0;
1379 	/*
1380 	 * Traditionally early sections always returned pfn_valid() for
1381 	 * the entire section-sized span.
1382 	 */
1383 	return early_section(ms) || pfn_section_valid(ms, pfn);
1384 }
1385 #endif
1386 
1387 static inline int pfn_in_present_section(unsigned long pfn)
1388 {
1389 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1390 		return 0;
1391 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1392 }
1393 
1394 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1395 {
1396 	while (++section_nr <= __highest_present_section_nr) {
1397 		if (present_section_nr(section_nr))
1398 			return section_nr;
1399 	}
1400 
1401 	return -1;
1402 }
1403 
1404 /*
1405  * These are _only_ used during initialisation, therefore they
1406  * can use __initdata ...  They could have names to indicate
1407  * this restriction.
1408  */
1409 #ifdef CONFIG_NUMA
1410 #define pfn_to_nid(pfn)							\
1411 ({									\
1412 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1413 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1414 })
1415 #else
1416 #define pfn_to_nid(pfn)		(0)
1417 #endif
1418 
1419 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1420 void sparse_init(void);
1421 #else
1422 #define sparse_init()	do {} while (0)
1423 #define sparse_index_init(_sec, _nid)  do {} while (0)
1424 #define pfn_in_present_section pfn_valid
1425 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1426 #endif /* CONFIG_SPARSEMEM */
1427 
1428 /*
1429  * During memory init memblocks map pfns to nids. The search is expensive and
1430  * this caches recent lookups. The implementation of __early_pfn_to_nid
1431  * may treat start/end as pfns or sections.
1432  */
1433 struct mminit_pfnnid_cache {
1434 	unsigned long last_start;
1435 	unsigned long last_end;
1436 	int last_nid;
1437 };
1438 
1439 #ifndef early_pfn_valid
1440 #define early_pfn_valid(pfn)	(1)
1441 #endif
1442 
1443 /*
1444  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1445  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1446  * pfn_valid_within() should be used in this case; we optimise this away
1447  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1448  */
1449 #ifdef CONFIG_HOLES_IN_ZONE
1450 #define pfn_valid_within(pfn) pfn_valid(pfn)
1451 #else
1452 #define pfn_valid_within(pfn) (1)
1453 #endif
1454 
1455 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1456 /*
1457  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1458  * associated with it or not. This means that a struct page exists for this
1459  * pfn. The caller cannot assume the page is fully initialized in general.
1460  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1461  * will ensure the struct page is fully online and initialized. Special pages
1462  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1463  *
1464  * In FLATMEM, it is expected that holes always have valid memmap as long as
1465  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1466  * that a valid section has a memmap for the entire section.
1467  *
1468  * However, an ARM, and maybe other embedded architectures in the future
1469  * free memmap backing holes to save memory on the assumption the memmap is
1470  * never used. The page_zone linkages are then broken even though pfn_valid()
1471  * returns true. A walker of the full memmap must then do this additional
1472  * check to ensure the memmap they are looking at is sane by making sure
1473  * the zone and PFN linkages are still valid. This is expensive, but walkers
1474  * of the full memmap are extremely rare.
1475  */
1476 bool memmap_valid_within(unsigned long pfn,
1477 					struct page *page, struct zone *zone);
1478 #else
1479 static inline bool memmap_valid_within(unsigned long pfn,
1480 					struct page *page, struct zone *zone)
1481 {
1482 	return true;
1483 }
1484 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1485 
1486 #endif /* !__GENERATING_BOUNDS.H */
1487 #endif /* !__ASSEMBLY__ */
1488 #endif /* _LINUX_MMZONE_H */
1489