1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 92 93 #define get_pageblock_migratetype(page) \ 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 static inline struct page *get_page_from_free_area(struct free_area *area, 102 int migratetype) 103 { 104 return list_first_entry_or_null(&area->free_list[migratetype], 105 struct page, lru); 106 } 107 108 static inline bool free_area_empty(struct free_area *area, int migratetype) 109 { 110 return list_empty(&area->free_list[migratetype]); 111 } 112 113 struct pglist_data; 114 115 /* 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 117 * So add a wild amount of padding here to ensure that they fall into separate 118 * cachelines. There are very few zone structures in the machine, so space 119 * consumption is not a concern here. 120 */ 121 #if defined(CONFIG_SMP) 122 struct zone_padding { 123 char x[0]; 124 } ____cacheline_internodealigned_in_smp; 125 #define ZONE_PADDING(name) struct zone_padding name; 126 #else 127 #define ZONE_PADDING(name) 128 #endif 129 130 #ifdef CONFIG_NUMA 131 enum numa_stat_item { 132 NUMA_HIT, /* allocated in intended node */ 133 NUMA_MISS, /* allocated in non intended node */ 134 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 136 NUMA_LOCAL, /* allocation from local node */ 137 NUMA_OTHER, /* allocation from other node */ 138 NR_VM_NUMA_STAT_ITEMS 139 }; 140 #else 141 #define NR_VM_NUMA_STAT_ITEMS 0 142 #endif 143 144 enum zone_stat_item { 145 /* First 128 byte cacheline (assuming 64 bit words) */ 146 NR_FREE_PAGES, 147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 149 NR_ZONE_ACTIVE_ANON, 150 NR_ZONE_INACTIVE_FILE, 151 NR_ZONE_ACTIVE_FILE, 152 NR_ZONE_UNEVICTABLE, 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 155 NR_PAGETABLE, /* used for pagetables */ 156 /* Second 128 byte cacheline */ 157 NR_BOUNCE, 158 #if IS_ENABLED(CONFIG_ZSMALLOC) 159 NR_ZSPAGES, /* allocated in zsmalloc */ 160 #endif 161 NR_FREE_CMA_PAGES, 162 NR_VM_ZONE_STAT_ITEMS }; 163 164 enum node_stat_item { 165 NR_LRU_BASE, 166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 167 NR_ACTIVE_ANON, /* " " " " " */ 168 NR_INACTIVE_FILE, /* " " " " " */ 169 NR_ACTIVE_FILE, /* " " " " " */ 170 NR_UNEVICTABLE, /* " " " " " */ 171 NR_SLAB_RECLAIMABLE_B, 172 NR_SLAB_UNRECLAIMABLE_B, 173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 175 WORKINGSET_NODES, 176 WORKINGSET_REFAULT_BASE, 177 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 178 WORKINGSET_REFAULT_FILE, 179 WORKINGSET_ACTIVATE_BASE, 180 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 181 WORKINGSET_ACTIVATE_FILE, 182 WORKINGSET_RESTORE_BASE, 183 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 184 WORKINGSET_RESTORE_FILE, 185 WORKINGSET_NODERECLAIM, 186 NR_ANON_MAPPED, /* Mapped anonymous pages */ 187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 188 only modified from process context */ 189 NR_FILE_PAGES, 190 NR_FILE_DIRTY, 191 NR_WRITEBACK, 192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 194 NR_SHMEM_THPS, 195 NR_SHMEM_PMDMAPPED, 196 NR_FILE_THPS, 197 NR_FILE_PMDMAPPED, 198 NR_ANON_THPS, 199 NR_VMSCAN_WRITE, 200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 201 NR_DIRTIED, /* page dirtyings since bootup */ 202 NR_WRITTEN, /* page writings since bootup */ 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 206 NR_KERNEL_STACK_KB, /* measured in KiB */ 207 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 208 NR_KERNEL_SCS_KB, /* measured in KiB */ 209 #endif 210 NR_VM_NODE_STAT_ITEMS 211 }; 212 213 /* 214 * Returns true if the value is measured in bytes (most vmstat values are 215 * measured in pages). This defines the API part, the internal representation 216 * might be different. 217 */ 218 static __always_inline bool vmstat_item_in_bytes(int idx) 219 { 220 /* 221 * Global and per-node slab counters track slab pages. 222 * It's expected that changes are multiples of PAGE_SIZE. 223 * Internally values are stored in pages. 224 * 225 * Per-memcg and per-lruvec counters track memory, consumed 226 * by individual slab objects. These counters are actually 227 * byte-precise. 228 */ 229 return (idx == NR_SLAB_RECLAIMABLE_B || 230 idx == NR_SLAB_UNRECLAIMABLE_B); 231 } 232 233 /* 234 * We do arithmetic on the LRU lists in various places in the code, 235 * so it is important to keep the active lists LRU_ACTIVE higher in 236 * the array than the corresponding inactive lists, and to keep 237 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 238 * 239 * This has to be kept in sync with the statistics in zone_stat_item 240 * above and the descriptions in vmstat_text in mm/vmstat.c 241 */ 242 #define LRU_BASE 0 243 #define LRU_ACTIVE 1 244 #define LRU_FILE 2 245 246 enum lru_list { 247 LRU_INACTIVE_ANON = LRU_BASE, 248 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 249 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 250 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 251 LRU_UNEVICTABLE, 252 NR_LRU_LISTS 253 }; 254 255 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 256 257 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 258 259 static inline bool is_file_lru(enum lru_list lru) 260 { 261 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 262 } 263 264 static inline bool is_active_lru(enum lru_list lru) 265 { 266 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 267 } 268 269 enum lruvec_flags { 270 LRUVEC_CONGESTED, /* lruvec has many dirty pages 271 * backed by a congested BDI 272 */ 273 }; 274 275 struct lruvec { 276 struct list_head lists[NR_LRU_LISTS]; 277 /* 278 * These track the cost of reclaiming one LRU - file or anon - 279 * over the other. As the observed cost of reclaiming one LRU 280 * increases, the reclaim scan balance tips toward the other. 281 */ 282 unsigned long anon_cost; 283 unsigned long file_cost; 284 /* Non-resident age, driven by LRU movement */ 285 atomic_long_t nonresident_age; 286 /* Refaults at the time of last reclaim cycle, anon=0, file=1 */ 287 unsigned long refaults[2]; 288 /* Various lruvec state flags (enum lruvec_flags) */ 289 unsigned long flags; 290 #ifdef CONFIG_MEMCG 291 struct pglist_data *pgdat; 292 #endif 293 }; 294 295 /* Isolate unmapped pages */ 296 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 297 /* Isolate for asynchronous migration */ 298 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 299 /* Isolate unevictable pages */ 300 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 301 302 /* LRU Isolation modes. */ 303 typedef unsigned __bitwise isolate_mode_t; 304 305 enum zone_watermarks { 306 WMARK_MIN, 307 WMARK_LOW, 308 WMARK_HIGH, 309 NR_WMARK 310 }; 311 312 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 313 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 314 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 315 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 316 317 struct per_cpu_pages { 318 int count; /* number of pages in the list */ 319 int high; /* high watermark, emptying needed */ 320 int batch; /* chunk size for buddy add/remove */ 321 322 /* Lists of pages, one per migrate type stored on the pcp-lists */ 323 struct list_head lists[MIGRATE_PCPTYPES]; 324 }; 325 326 struct per_cpu_pageset { 327 struct per_cpu_pages pcp; 328 #ifdef CONFIG_NUMA 329 s8 expire; 330 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 331 #endif 332 #ifdef CONFIG_SMP 333 s8 stat_threshold; 334 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 335 #endif 336 }; 337 338 struct per_cpu_nodestat { 339 s8 stat_threshold; 340 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 341 }; 342 343 #endif /* !__GENERATING_BOUNDS.H */ 344 345 enum zone_type { 346 /* 347 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 348 * to DMA to all of the addressable memory (ZONE_NORMAL). 349 * On architectures where this area covers the whole 32 bit address 350 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 351 * DMA addressing constraints. This distinction is important as a 32bit 352 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 353 * platforms may need both zones as they support peripherals with 354 * different DMA addressing limitations. 355 * 356 * Some examples: 357 * 358 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 359 * rest of the lower 4G. 360 * 361 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 362 * the specific device. 363 * 364 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 365 * lower 4G. 366 * 367 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 368 * depending on the specific device. 369 * 370 * - s390 uses ZONE_DMA fixed to the lower 2G. 371 * 372 * - ia64 and riscv only use ZONE_DMA32. 373 * 374 * - parisc uses neither. 375 */ 376 #ifdef CONFIG_ZONE_DMA 377 ZONE_DMA, 378 #endif 379 #ifdef CONFIG_ZONE_DMA32 380 ZONE_DMA32, 381 #endif 382 /* 383 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 384 * performed on pages in ZONE_NORMAL if the DMA devices support 385 * transfers to all addressable memory. 386 */ 387 ZONE_NORMAL, 388 #ifdef CONFIG_HIGHMEM 389 /* 390 * A memory area that is only addressable by the kernel through 391 * mapping portions into its own address space. This is for example 392 * used by i386 to allow the kernel to address the memory beyond 393 * 900MB. The kernel will set up special mappings (page 394 * table entries on i386) for each page that the kernel needs to 395 * access. 396 */ 397 ZONE_HIGHMEM, 398 #endif 399 /* 400 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 401 * movable pages with few exceptional cases described below. Main use 402 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 403 * likely to succeed, and to locally limit unmovable allocations - e.g., 404 * to increase the number of THP/huge pages. Notable special cases are: 405 * 406 * 1. Pinned pages: (long-term) pinning of movable pages might 407 * essentially turn such pages unmovable. Memory offlining might 408 * retry a long time. 409 * 2. memblock allocations: kernelcore/movablecore setups might create 410 * situations where ZONE_MOVABLE contains unmovable allocations 411 * after boot. Memory offlining and allocations fail early. 412 * 3. Memory holes: kernelcore/movablecore setups might create very rare 413 * situations where ZONE_MOVABLE contains memory holes after boot, 414 * for example, if we have sections that are only partially 415 * populated. Memory offlining and allocations fail early. 416 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 417 * memory offlining, such pages cannot be allocated. 418 * 5. Unmovable PG_offline pages: in paravirtualized environments, 419 * hotplugged memory blocks might only partially be managed by the 420 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 421 * parts not manged by the buddy are unmovable PG_offline pages. In 422 * some cases (virtio-mem), such pages can be skipped during 423 * memory offlining, however, cannot be moved/allocated. These 424 * techniques might use alloc_contig_range() to hide previously 425 * exposed pages from the buddy again (e.g., to implement some sort 426 * of memory unplug in virtio-mem). 427 * 428 * In general, no unmovable allocations that degrade memory offlining 429 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 430 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 431 * if has_unmovable_pages() states that there are no unmovable pages, 432 * there can be false negatives). 433 */ 434 ZONE_MOVABLE, 435 #ifdef CONFIG_ZONE_DEVICE 436 ZONE_DEVICE, 437 #endif 438 __MAX_NR_ZONES 439 440 }; 441 442 #ifndef __GENERATING_BOUNDS_H 443 444 struct zone { 445 /* Read-mostly fields */ 446 447 /* zone watermarks, access with *_wmark_pages(zone) macros */ 448 unsigned long _watermark[NR_WMARK]; 449 unsigned long watermark_boost; 450 451 unsigned long nr_reserved_highatomic; 452 453 /* 454 * We don't know if the memory that we're going to allocate will be 455 * freeable or/and it will be released eventually, so to avoid totally 456 * wasting several GB of ram we must reserve some of the lower zone 457 * memory (otherwise we risk to run OOM on the lower zones despite 458 * there being tons of freeable ram on the higher zones). This array is 459 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 460 * changes. 461 */ 462 long lowmem_reserve[MAX_NR_ZONES]; 463 464 #ifdef CONFIG_NUMA 465 int node; 466 #endif 467 struct pglist_data *zone_pgdat; 468 struct per_cpu_pageset __percpu *pageset; 469 470 #ifndef CONFIG_SPARSEMEM 471 /* 472 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 473 * In SPARSEMEM, this map is stored in struct mem_section 474 */ 475 unsigned long *pageblock_flags; 476 #endif /* CONFIG_SPARSEMEM */ 477 478 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 479 unsigned long zone_start_pfn; 480 481 /* 482 * spanned_pages is the total pages spanned by the zone, including 483 * holes, which is calculated as: 484 * spanned_pages = zone_end_pfn - zone_start_pfn; 485 * 486 * present_pages is physical pages existing within the zone, which 487 * is calculated as: 488 * present_pages = spanned_pages - absent_pages(pages in holes); 489 * 490 * managed_pages is present pages managed by the buddy system, which 491 * is calculated as (reserved_pages includes pages allocated by the 492 * bootmem allocator): 493 * managed_pages = present_pages - reserved_pages; 494 * 495 * So present_pages may be used by memory hotplug or memory power 496 * management logic to figure out unmanaged pages by checking 497 * (present_pages - managed_pages). And managed_pages should be used 498 * by page allocator and vm scanner to calculate all kinds of watermarks 499 * and thresholds. 500 * 501 * Locking rules: 502 * 503 * zone_start_pfn and spanned_pages are protected by span_seqlock. 504 * It is a seqlock because it has to be read outside of zone->lock, 505 * and it is done in the main allocator path. But, it is written 506 * quite infrequently. 507 * 508 * The span_seq lock is declared along with zone->lock because it is 509 * frequently read in proximity to zone->lock. It's good to 510 * give them a chance of being in the same cacheline. 511 * 512 * Write access to present_pages at runtime should be protected by 513 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 514 * present_pages should get_online_mems() to get a stable value. 515 */ 516 atomic_long_t managed_pages; 517 unsigned long spanned_pages; 518 unsigned long present_pages; 519 520 const char *name; 521 522 #ifdef CONFIG_MEMORY_ISOLATION 523 /* 524 * Number of isolated pageblock. It is used to solve incorrect 525 * freepage counting problem due to racy retrieving migratetype 526 * of pageblock. Protected by zone->lock. 527 */ 528 unsigned long nr_isolate_pageblock; 529 #endif 530 531 #ifdef CONFIG_MEMORY_HOTPLUG 532 /* see spanned/present_pages for more description */ 533 seqlock_t span_seqlock; 534 #endif 535 536 int initialized; 537 538 /* Write-intensive fields used from the page allocator */ 539 ZONE_PADDING(_pad1_) 540 541 /* free areas of different sizes */ 542 struct free_area free_area[MAX_ORDER]; 543 544 /* zone flags, see below */ 545 unsigned long flags; 546 547 /* Primarily protects free_area */ 548 spinlock_t lock; 549 550 /* Write-intensive fields used by compaction and vmstats. */ 551 ZONE_PADDING(_pad2_) 552 553 /* 554 * When free pages are below this point, additional steps are taken 555 * when reading the number of free pages to avoid per-cpu counter 556 * drift allowing watermarks to be breached 557 */ 558 unsigned long percpu_drift_mark; 559 560 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 561 /* pfn where compaction free scanner should start */ 562 unsigned long compact_cached_free_pfn; 563 /* pfn where async and sync compaction migration scanner should start */ 564 unsigned long compact_cached_migrate_pfn[2]; 565 unsigned long compact_init_migrate_pfn; 566 unsigned long compact_init_free_pfn; 567 #endif 568 569 #ifdef CONFIG_COMPACTION 570 /* 571 * On compaction failure, 1<<compact_defer_shift compactions 572 * are skipped before trying again. The number attempted since 573 * last failure is tracked with compact_considered. 574 * compact_order_failed is the minimum compaction failed order. 575 */ 576 unsigned int compact_considered; 577 unsigned int compact_defer_shift; 578 int compact_order_failed; 579 #endif 580 581 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 582 /* Set to true when the PG_migrate_skip bits should be cleared */ 583 bool compact_blockskip_flush; 584 #endif 585 586 bool contiguous; 587 588 ZONE_PADDING(_pad3_) 589 /* Zone statistics */ 590 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 591 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 592 } ____cacheline_internodealigned_in_smp; 593 594 enum pgdat_flags { 595 PGDAT_DIRTY, /* reclaim scanning has recently found 596 * many dirty file pages at the tail 597 * of the LRU. 598 */ 599 PGDAT_WRITEBACK, /* reclaim scanning has recently found 600 * many pages under writeback 601 */ 602 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 603 }; 604 605 enum zone_flags { 606 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 607 * Cleared when kswapd is woken. 608 */ 609 }; 610 611 static inline unsigned long zone_managed_pages(struct zone *zone) 612 { 613 return (unsigned long)atomic_long_read(&zone->managed_pages); 614 } 615 616 static inline unsigned long zone_end_pfn(const struct zone *zone) 617 { 618 return zone->zone_start_pfn + zone->spanned_pages; 619 } 620 621 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 622 { 623 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 624 } 625 626 static inline bool zone_is_initialized(struct zone *zone) 627 { 628 return zone->initialized; 629 } 630 631 static inline bool zone_is_empty(struct zone *zone) 632 { 633 return zone->spanned_pages == 0; 634 } 635 636 /* 637 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 638 * intersection with the given zone 639 */ 640 static inline bool zone_intersects(struct zone *zone, 641 unsigned long start_pfn, unsigned long nr_pages) 642 { 643 if (zone_is_empty(zone)) 644 return false; 645 if (start_pfn >= zone_end_pfn(zone) || 646 start_pfn + nr_pages <= zone->zone_start_pfn) 647 return false; 648 649 return true; 650 } 651 652 /* 653 * The "priority" of VM scanning is how much of the queues we will scan in one 654 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 655 * queues ("queue_length >> 12") during an aging round. 656 */ 657 #define DEF_PRIORITY 12 658 659 /* Maximum number of zones on a zonelist */ 660 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 661 662 enum { 663 ZONELIST_FALLBACK, /* zonelist with fallback */ 664 #ifdef CONFIG_NUMA 665 /* 666 * The NUMA zonelists are doubled because we need zonelists that 667 * restrict the allocations to a single node for __GFP_THISNODE. 668 */ 669 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 670 #endif 671 MAX_ZONELISTS 672 }; 673 674 /* 675 * This struct contains information about a zone in a zonelist. It is stored 676 * here to avoid dereferences into large structures and lookups of tables 677 */ 678 struct zoneref { 679 struct zone *zone; /* Pointer to actual zone */ 680 int zone_idx; /* zone_idx(zoneref->zone) */ 681 }; 682 683 /* 684 * One allocation request operates on a zonelist. A zonelist 685 * is a list of zones, the first one is the 'goal' of the 686 * allocation, the other zones are fallback zones, in decreasing 687 * priority. 688 * 689 * To speed the reading of the zonelist, the zonerefs contain the zone index 690 * of the entry being read. Helper functions to access information given 691 * a struct zoneref are 692 * 693 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 694 * zonelist_zone_idx() - Return the index of the zone for an entry 695 * zonelist_node_idx() - Return the index of the node for an entry 696 */ 697 struct zonelist { 698 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 699 }; 700 701 #ifndef CONFIG_DISCONTIGMEM 702 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 703 extern struct page *mem_map; 704 #endif 705 706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 707 struct deferred_split { 708 spinlock_t split_queue_lock; 709 struct list_head split_queue; 710 unsigned long split_queue_len; 711 }; 712 #endif 713 714 /* 715 * On NUMA machines, each NUMA node would have a pg_data_t to describe 716 * it's memory layout. On UMA machines there is a single pglist_data which 717 * describes the whole memory. 718 * 719 * Memory statistics and page replacement data structures are maintained on a 720 * per-zone basis. 721 */ 722 typedef struct pglist_data { 723 /* 724 * node_zones contains just the zones for THIS node. Not all of the 725 * zones may be populated, but it is the full list. It is referenced by 726 * this node's node_zonelists as well as other node's node_zonelists. 727 */ 728 struct zone node_zones[MAX_NR_ZONES]; 729 730 /* 731 * node_zonelists contains references to all zones in all nodes. 732 * Generally the first zones will be references to this node's 733 * node_zones. 734 */ 735 struct zonelist node_zonelists[MAX_ZONELISTS]; 736 737 int nr_zones; /* number of populated zones in this node */ 738 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 739 struct page *node_mem_map; 740 #ifdef CONFIG_PAGE_EXTENSION 741 struct page_ext *node_page_ext; 742 #endif 743 #endif 744 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 745 /* 746 * Must be held any time you expect node_start_pfn, 747 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 748 * Also synchronizes pgdat->first_deferred_pfn during deferred page 749 * init. 750 * 751 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 752 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 753 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 754 * 755 * Nests above zone->lock and zone->span_seqlock 756 */ 757 spinlock_t node_size_lock; 758 #endif 759 unsigned long node_start_pfn; 760 unsigned long node_present_pages; /* total number of physical pages */ 761 unsigned long node_spanned_pages; /* total size of physical page 762 range, including holes */ 763 int node_id; 764 wait_queue_head_t kswapd_wait; 765 wait_queue_head_t pfmemalloc_wait; 766 struct task_struct *kswapd; /* Protected by 767 mem_hotplug_begin/end() */ 768 int kswapd_order; 769 enum zone_type kswapd_highest_zoneidx; 770 771 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 772 773 #ifdef CONFIG_COMPACTION 774 int kcompactd_max_order; 775 enum zone_type kcompactd_highest_zoneidx; 776 wait_queue_head_t kcompactd_wait; 777 struct task_struct *kcompactd; 778 #endif 779 /* 780 * This is a per-node reserve of pages that are not available 781 * to userspace allocations. 782 */ 783 unsigned long totalreserve_pages; 784 785 #ifdef CONFIG_NUMA 786 /* 787 * node reclaim becomes active if more unmapped pages exist. 788 */ 789 unsigned long min_unmapped_pages; 790 unsigned long min_slab_pages; 791 #endif /* CONFIG_NUMA */ 792 793 /* Write-intensive fields used by page reclaim */ 794 ZONE_PADDING(_pad1_) 795 spinlock_t lru_lock; 796 797 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 798 /* 799 * If memory initialisation on large machines is deferred then this 800 * is the first PFN that needs to be initialised. 801 */ 802 unsigned long first_deferred_pfn; 803 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 804 805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 806 struct deferred_split deferred_split_queue; 807 #endif 808 809 /* Fields commonly accessed by the page reclaim scanner */ 810 811 /* 812 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 813 * 814 * Use mem_cgroup_lruvec() to look up lruvecs. 815 */ 816 struct lruvec __lruvec; 817 818 unsigned long flags; 819 820 ZONE_PADDING(_pad2_) 821 822 /* Per-node vmstats */ 823 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 824 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 825 } pg_data_t; 826 827 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 828 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 829 #ifdef CONFIG_FLAT_NODE_MEM_MAP 830 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 831 #else 832 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 833 #endif 834 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 835 836 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 837 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 838 839 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 840 { 841 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 842 } 843 844 static inline bool pgdat_is_empty(pg_data_t *pgdat) 845 { 846 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 847 } 848 849 #include <linux/memory_hotplug.h> 850 851 void build_all_zonelists(pg_data_t *pgdat); 852 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 853 enum zone_type highest_zoneidx); 854 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 855 int highest_zoneidx, unsigned int alloc_flags, 856 long free_pages); 857 bool zone_watermark_ok(struct zone *z, unsigned int order, 858 unsigned long mark, int highest_zoneidx, 859 unsigned int alloc_flags); 860 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 861 unsigned long mark, int highest_zoneidx); 862 /* 863 * Memory initialization context, use to differentiate memory added by 864 * the platform statically or via memory hotplug interface. 865 */ 866 enum meminit_context { 867 MEMINIT_EARLY, 868 MEMINIT_HOTPLUG, 869 }; 870 871 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 872 unsigned long size); 873 874 extern void lruvec_init(struct lruvec *lruvec); 875 876 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 877 { 878 #ifdef CONFIG_MEMCG 879 return lruvec->pgdat; 880 #else 881 return container_of(lruvec, struct pglist_data, __lruvec); 882 #endif 883 } 884 885 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 886 887 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 888 int local_memory_node(int node_id); 889 #else 890 static inline int local_memory_node(int node_id) { return node_id; }; 891 #endif 892 893 /* 894 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 895 */ 896 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 897 898 /* 899 * Returns true if a zone has pages managed by the buddy allocator. 900 * All the reclaim decisions have to use this function rather than 901 * populated_zone(). If the whole zone is reserved then we can easily 902 * end up with populated_zone() && !managed_zone(). 903 */ 904 static inline bool managed_zone(struct zone *zone) 905 { 906 return zone_managed_pages(zone); 907 } 908 909 /* Returns true if a zone has memory */ 910 static inline bool populated_zone(struct zone *zone) 911 { 912 return zone->present_pages; 913 } 914 915 #ifdef CONFIG_NUMA 916 static inline int zone_to_nid(struct zone *zone) 917 { 918 return zone->node; 919 } 920 921 static inline void zone_set_nid(struct zone *zone, int nid) 922 { 923 zone->node = nid; 924 } 925 #else 926 static inline int zone_to_nid(struct zone *zone) 927 { 928 return 0; 929 } 930 931 static inline void zone_set_nid(struct zone *zone, int nid) {} 932 #endif 933 934 extern int movable_zone; 935 936 #ifdef CONFIG_HIGHMEM 937 static inline int zone_movable_is_highmem(void) 938 { 939 #ifdef CONFIG_NEED_MULTIPLE_NODES 940 return movable_zone == ZONE_HIGHMEM; 941 #else 942 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 943 #endif 944 } 945 #endif 946 947 static inline int is_highmem_idx(enum zone_type idx) 948 { 949 #ifdef CONFIG_HIGHMEM 950 return (idx == ZONE_HIGHMEM || 951 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 952 #else 953 return 0; 954 #endif 955 } 956 957 /** 958 * is_highmem - helper function to quickly check if a struct zone is a 959 * highmem zone or not. This is an attempt to keep references 960 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 961 * @zone - pointer to struct zone variable 962 */ 963 static inline int is_highmem(struct zone *zone) 964 { 965 #ifdef CONFIG_HIGHMEM 966 return is_highmem_idx(zone_idx(zone)); 967 #else 968 return 0; 969 #endif 970 } 971 972 /* These two functions are used to setup the per zone pages min values */ 973 struct ctl_table; 974 975 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 976 loff_t *); 977 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 978 size_t *, loff_t *); 979 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 980 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 981 size_t *, loff_t *); 982 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 983 void *, size_t *, loff_t *); 984 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 985 void *, size_t *, loff_t *); 986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 987 void *, size_t *, loff_t *); 988 int numa_zonelist_order_handler(struct ctl_table *, int, 989 void *, size_t *, loff_t *); 990 extern int percpu_pagelist_fraction; 991 extern char numa_zonelist_order[]; 992 #define NUMA_ZONELIST_ORDER_LEN 16 993 994 #ifndef CONFIG_NEED_MULTIPLE_NODES 995 996 extern struct pglist_data contig_page_data; 997 #define NODE_DATA(nid) (&contig_page_data) 998 #define NODE_MEM_MAP(nid) mem_map 999 1000 #else /* CONFIG_NEED_MULTIPLE_NODES */ 1001 1002 #include <asm/mmzone.h> 1003 1004 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 1005 1006 extern struct pglist_data *first_online_pgdat(void); 1007 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1008 extern struct zone *next_zone(struct zone *zone); 1009 1010 /** 1011 * for_each_online_pgdat - helper macro to iterate over all online nodes 1012 * @pgdat - pointer to a pg_data_t variable 1013 */ 1014 #define for_each_online_pgdat(pgdat) \ 1015 for (pgdat = first_online_pgdat(); \ 1016 pgdat; \ 1017 pgdat = next_online_pgdat(pgdat)) 1018 /** 1019 * for_each_zone - helper macro to iterate over all memory zones 1020 * @zone - pointer to struct zone variable 1021 * 1022 * The user only needs to declare the zone variable, for_each_zone 1023 * fills it in. 1024 */ 1025 #define for_each_zone(zone) \ 1026 for (zone = (first_online_pgdat())->node_zones; \ 1027 zone; \ 1028 zone = next_zone(zone)) 1029 1030 #define for_each_populated_zone(zone) \ 1031 for (zone = (first_online_pgdat())->node_zones; \ 1032 zone; \ 1033 zone = next_zone(zone)) \ 1034 if (!populated_zone(zone)) \ 1035 ; /* do nothing */ \ 1036 else 1037 1038 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1039 { 1040 return zoneref->zone; 1041 } 1042 1043 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1044 { 1045 return zoneref->zone_idx; 1046 } 1047 1048 static inline int zonelist_node_idx(struct zoneref *zoneref) 1049 { 1050 return zone_to_nid(zoneref->zone); 1051 } 1052 1053 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1054 enum zone_type highest_zoneidx, 1055 nodemask_t *nodes); 1056 1057 /** 1058 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1059 * @z - The cursor used as a starting point for the search 1060 * @highest_zoneidx - The zone index of the highest zone to return 1061 * @nodes - An optional nodemask to filter the zonelist with 1062 * 1063 * This function returns the next zone at or below a given zone index that is 1064 * within the allowed nodemask using a cursor as the starting point for the 1065 * search. The zoneref returned is a cursor that represents the current zone 1066 * being examined. It should be advanced by one before calling 1067 * next_zones_zonelist again. 1068 */ 1069 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1070 enum zone_type highest_zoneidx, 1071 nodemask_t *nodes) 1072 { 1073 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1074 return z; 1075 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1076 } 1077 1078 /** 1079 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1080 * @zonelist - The zonelist to search for a suitable zone 1081 * @highest_zoneidx - The zone index of the highest zone to return 1082 * @nodes - An optional nodemask to filter the zonelist with 1083 * @return - Zoneref pointer for the first suitable zone found (see below) 1084 * 1085 * This function returns the first zone at or below a given zone index that is 1086 * within the allowed nodemask. The zoneref returned is a cursor that can be 1087 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1088 * one before calling. 1089 * 1090 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1091 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1092 * update due to cpuset modification. 1093 */ 1094 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1095 enum zone_type highest_zoneidx, 1096 nodemask_t *nodes) 1097 { 1098 return next_zones_zonelist(zonelist->_zonerefs, 1099 highest_zoneidx, nodes); 1100 } 1101 1102 /** 1103 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1104 * @zone - The current zone in the iterator 1105 * @z - The current pointer within zonelist->_zonerefs being iterated 1106 * @zlist - The zonelist being iterated 1107 * @highidx - The zone index of the highest zone to return 1108 * @nodemask - Nodemask allowed by the allocator 1109 * 1110 * This iterator iterates though all zones at or below a given zone index and 1111 * within a given nodemask 1112 */ 1113 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1114 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1115 zone; \ 1116 z = next_zones_zonelist(++z, highidx, nodemask), \ 1117 zone = zonelist_zone(z)) 1118 1119 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1120 for (zone = z->zone; \ 1121 zone; \ 1122 z = next_zones_zonelist(++z, highidx, nodemask), \ 1123 zone = zonelist_zone(z)) 1124 1125 1126 /** 1127 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1128 * @zone - The current zone in the iterator 1129 * @z - The current pointer within zonelist->zones being iterated 1130 * @zlist - The zonelist being iterated 1131 * @highidx - The zone index of the highest zone to return 1132 * 1133 * This iterator iterates though all zones at or below a given zone index. 1134 */ 1135 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1136 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1137 1138 #ifdef CONFIG_SPARSEMEM 1139 #include <asm/sparsemem.h> 1140 #endif 1141 1142 #ifdef CONFIG_FLATMEM 1143 #define pfn_to_nid(pfn) (0) 1144 #endif 1145 1146 #ifdef CONFIG_SPARSEMEM 1147 1148 /* 1149 * SECTION_SHIFT #bits space required to store a section # 1150 * 1151 * PA_SECTION_SHIFT physical address to/from section number 1152 * PFN_SECTION_SHIFT pfn to/from section number 1153 */ 1154 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1155 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1156 1157 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1158 1159 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1160 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1161 1162 #define SECTION_BLOCKFLAGS_BITS \ 1163 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1164 1165 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1166 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1167 #endif 1168 1169 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1170 { 1171 return pfn >> PFN_SECTION_SHIFT; 1172 } 1173 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1174 { 1175 return sec << PFN_SECTION_SHIFT; 1176 } 1177 1178 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1179 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1180 1181 #define SUBSECTION_SHIFT 21 1182 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1183 1184 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1185 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1186 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1187 1188 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1189 #error Subsection size exceeds section size 1190 #else 1191 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1192 #endif 1193 1194 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1195 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1196 1197 struct mem_section_usage { 1198 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1199 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1200 #endif 1201 /* See declaration of similar field in struct zone */ 1202 unsigned long pageblock_flags[0]; 1203 }; 1204 1205 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1206 1207 struct page; 1208 struct page_ext; 1209 struct mem_section { 1210 /* 1211 * This is, logically, a pointer to an array of struct 1212 * pages. However, it is stored with some other magic. 1213 * (see sparse.c::sparse_init_one_section()) 1214 * 1215 * Additionally during early boot we encode node id of 1216 * the location of the section here to guide allocation. 1217 * (see sparse.c::memory_present()) 1218 * 1219 * Making it a UL at least makes someone do a cast 1220 * before using it wrong. 1221 */ 1222 unsigned long section_mem_map; 1223 1224 struct mem_section_usage *usage; 1225 #ifdef CONFIG_PAGE_EXTENSION 1226 /* 1227 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1228 * section. (see page_ext.h about this.) 1229 */ 1230 struct page_ext *page_ext; 1231 unsigned long pad; 1232 #endif 1233 /* 1234 * WARNING: mem_section must be a power-of-2 in size for the 1235 * calculation and use of SECTION_ROOT_MASK to make sense. 1236 */ 1237 }; 1238 1239 #ifdef CONFIG_SPARSEMEM_EXTREME 1240 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1241 #else 1242 #define SECTIONS_PER_ROOT 1 1243 #endif 1244 1245 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1246 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1247 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1248 1249 #ifdef CONFIG_SPARSEMEM_EXTREME 1250 extern struct mem_section **mem_section; 1251 #else 1252 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1253 #endif 1254 1255 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1256 { 1257 return ms->usage->pageblock_flags; 1258 } 1259 1260 static inline struct mem_section *__nr_to_section(unsigned long nr) 1261 { 1262 #ifdef CONFIG_SPARSEMEM_EXTREME 1263 if (!mem_section) 1264 return NULL; 1265 #endif 1266 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1267 return NULL; 1268 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1269 } 1270 extern unsigned long __section_nr(struct mem_section *ms); 1271 extern size_t mem_section_usage_size(void); 1272 1273 /* 1274 * We use the lower bits of the mem_map pointer to store 1275 * a little bit of information. The pointer is calculated 1276 * as mem_map - section_nr_to_pfn(pnum). The result is 1277 * aligned to the minimum alignment of the two values: 1278 * 1. All mem_map arrays are page-aligned. 1279 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1280 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1281 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1282 * worst combination is powerpc with 256k pages, 1283 * which results in PFN_SECTION_SHIFT equal 6. 1284 * To sum it up, at least 6 bits are available. 1285 */ 1286 #define SECTION_MARKED_PRESENT (1UL<<0) 1287 #define SECTION_HAS_MEM_MAP (1UL<<1) 1288 #define SECTION_IS_ONLINE (1UL<<2) 1289 #define SECTION_IS_EARLY (1UL<<3) 1290 #define SECTION_MAP_LAST_BIT (1UL<<4) 1291 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1292 #define SECTION_NID_SHIFT 3 1293 1294 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1295 { 1296 unsigned long map = section->section_mem_map; 1297 map &= SECTION_MAP_MASK; 1298 return (struct page *)map; 1299 } 1300 1301 static inline int present_section(struct mem_section *section) 1302 { 1303 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1304 } 1305 1306 static inline int present_section_nr(unsigned long nr) 1307 { 1308 return present_section(__nr_to_section(nr)); 1309 } 1310 1311 static inline int valid_section(struct mem_section *section) 1312 { 1313 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1314 } 1315 1316 static inline int early_section(struct mem_section *section) 1317 { 1318 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1319 } 1320 1321 static inline int valid_section_nr(unsigned long nr) 1322 { 1323 return valid_section(__nr_to_section(nr)); 1324 } 1325 1326 static inline int online_section(struct mem_section *section) 1327 { 1328 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1329 } 1330 1331 static inline int online_section_nr(unsigned long nr) 1332 { 1333 return online_section(__nr_to_section(nr)); 1334 } 1335 1336 #ifdef CONFIG_MEMORY_HOTPLUG 1337 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1338 #ifdef CONFIG_MEMORY_HOTREMOVE 1339 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1340 #endif 1341 #endif 1342 1343 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1344 { 1345 return __nr_to_section(pfn_to_section_nr(pfn)); 1346 } 1347 1348 extern unsigned long __highest_present_section_nr; 1349 1350 static inline int subsection_map_index(unsigned long pfn) 1351 { 1352 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1353 } 1354 1355 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1356 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1357 { 1358 int idx = subsection_map_index(pfn); 1359 1360 return test_bit(idx, ms->usage->subsection_map); 1361 } 1362 #else 1363 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1364 { 1365 return 1; 1366 } 1367 #endif 1368 1369 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1370 static inline int pfn_valid(unsigned long pfn) 1371 { 1372 struct mem_section *ms; 1373 1374 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1375 return 0; 1376 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1377 if (!valid_section(ms)) 1378 return 0; 1379 /* 1380 * Traditionally early sections always returned pfn_valid() for 1381 * the entire section-sized span. 1382 */ 1383 return early_section(ms) || pfn_section_valid(ms, pfn); 1384 } 1385 #endif 1386 1387 static inline int pfn_in_present_section(unsigned long pfn) 1388 { 1389 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1390 return 0; 1391 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1392 } 1393 1394 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1395 { 1396 while (++section_nr <= __highest_present_section_nr) { 1397 if (present_section_nr(section_nr)) 1398 return section_nr; 1399 } 1400 1401 return -1; 1402 } 1403 1404 /* 1405 * These are _only_ used during initialisation, therefore they 1406 * can use __initdata ... They could have names to indicate 1407 * this restriction. 1408 */ 1409 #ifdef CONFIG_NUMA 1410 #define pfn_to_nid(pfn) \ 1411 ({ \ 1412 unsigned long __pfn_to_nid_pfn = (pfn); \ 1413 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1414 }) 1415 #else 1416 #define pfn_to_nid(pfn) (0) 1417 #endif 1418 1419 #define early_pfn_valid(pfn) pfn_valid(pfn) 1420 void sparse_init(void); 1421 #else 1422 #define sparse_init() do {} while (0) 1423 #define sparse_index_init(_sec, _nid) do {} while (0) 1424 #define pfn_in_present_section pfn_valid 1425 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1426 #endif /* CONFIG_SPARSEMEM */ 1427 1428 /* 1429 * During memory init memblocks map pfns to nids. The search is expensive and 1430 * this caches recent lookups. The implementation of __early_pfn_to_nid 1431 * may treat start/end as pfns or sections. 1432 */ 1433 struct mminit_pfnnid_cache { 1434 unsigned long last_start; 1435 unsigned long last_end; 1436 int last_nid; 1437 }; 1438 1439 #ifndef early_pfn_valid 1440 #define early_pfn_valid(pfn) (1) 1441 #endif 1442 1443 /* 1444 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1445 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1446 * pfn_valid_within() should be used in this case; we optimise this away 1447 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1448 */ 1449 #ifdef CONFIG_HOLES_IN_ZONE 1450 #define pfn_valid_within(pfn) pfn_valid(pfn) 1451 #else 1452 #define pfn_valid_within(pfn) (1) 1453 #endif 1454 1455 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1456 /* 1457 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1458 * associated with it or not. This means that a struct page exists for this 1459 * pfn. The caller cannot assume the page is fully initialized in general. 1460 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1461 * will ensure the struct page is fully online and initialized. Special pages 1462 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1463 * 1464 * In FLATMEM, it is expected that holes always have valid memmap as long as 1465 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1466 * that a valid section has a memmap for the entire section. 1467 * 1468 * However, an ARM, and maybe other embedded architectures in the future 1469 * free memmap backing holes to save memory on the assumption the memmap is 1470 * never used. The page_zone linkages are then broken even though pfn_valid() 1471 * returns true. A walker of the full memmap must then do this additional 1472 * check to ensure the memmap they are looking at is sane by making sure 1473 * the zone and PFN linkages are still valid. This is expensive, but walkers 1474 * of the full memmap are extremely rare. 1475 */ 1476 bool memmap_valid_within(unsigned long pfn, 1477 struct page *page, struct zone *zone); 1478 #else 1479 static inline bool memmap_valid_within(unsigned long pfn, 1480 struct page *page, struct zone *zone) 1481 { 1482 return true; 1483 } 1484 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1485 1486 #endif /* !__GENERATING_BOUNDS.H */ 1487 #endif /* !__ASSEMBLY__ */ 1488 #endif /* _LINUX_MMZONE_H */ 1489