xref: /linux-6.15/include/linux/mmzone.h (revision bbb03029)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum migratetype {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 #  define is_migrate_cma(migratetype) false
74 #  define is_migrate_cma_page(_page) false
75 #endif
76 
77 static inline bool is_migrate_movable(int mt)
78 {
79 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
80 }
81 
82 #define for_each_migratetype_order(order, type) \
83 	for (order = 0; order < MAX_ORDER; order++) \
84 		for (type = 0; type < MIGRATE_TYPES; type++)
85 
86 extern int page_group_by_mobility_disabled;
87 
88 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
89 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
90 
91 #define get_pageblock_migratetype(page)					\
92 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
93 			PB_migrate_end, MIGRATETYPE_MASK)
94 
95 struct free_area {
96 	struct list_head	free_list[MIGRATE_TYPES];
97 	unsigned long		nr_free;
98 };
99 
100 struct pglist_data;
101 
102 /*
103  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
104  * So add a wild amount of padding here to ensure that they fall into separate
105  * cachelines.  There are very few zone structures in the machine, so space
106  * consumption is not a concern here.
107  */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 	char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name)	struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116 
117 enum zone_stat_item {
118 	/* First 128 byte cacheline (assuming 64 bit words) */
119 	NR_FREE_PAGES,
120 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
121 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
122 	NR_ZONE_ACTIVE_ANON,
123 	NR_ZONE_INACTIVE_FILE,
124 	NR_ZONE_ACTIVE_FILE,
125 	NR_ZONE_UNEVICTABLE,
126 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
127 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
128 	NR_PAGETABLE,		/* used for pagetables */
129 	NR_KERNEL_STACK_KB,	/* measured in KiB */
130 	/* Second 128 byte cacheline */
131 	NR_BOUNCE,
132 #if IS_ENABLED(CONFIG_ZSMALLOC)
133 	NR_ZSPAGES,		/* allocated in zsmalloc */
134 #endif
135 #ifdef CONFIG_NUMA
136 	NUMA_HIT,		/* allocated in intended node */
137 	NUMA_MISS,		/* allocated in non intended node */
138 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
139 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
140 	NUMA_LOCAL,		/* allocation from local node */
141 	NUMA_OTHER,		/* allocation from other node */
142 #endif
143 	NR_FREE_CMA_PAGES,
144 	NR_VM_ZONE_STAT_ITEMS };
145 
146 enum node_stat_item {
147 	NR_LRU_BASE,
148 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
149 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
150 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
151 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
152 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
153 	NR_SLAB_RECLAIMABLE,
154 	NR_SLAB_UNRECLAIMABLE,
155 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
156 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
157 	WORKINGSET_REFAULT,
158 	WORKINGSET_ACTIVATE,
159 	WORKINGSET_NODERECLAIM,
160 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
161 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
162 			   only modified from process context */
163 	NR_FILE_PAGES,
164 	NR_FILE_DIRTY,
165 	NR_WRITEBACK,
166 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
167 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
168 	NR_SHMEM_THPS,
169 	NR_SHMEM_PMDMAPPED,
170 	NR_ANON_THPS,
171 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
172 	NR_VMSCAN_WRITE,
173 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
174 	NR_DIRTIED,		/* page dirtyings since bootup */
175 	NR_WRITTEN,		/* page writings since bootup */
176 	NR_VM_NODE_STAT_ITEMS
177 };
178 
179 /*
180  * We do arithmetic on the LRU lists in various places in the code,
181  * so it is important to keep the active lists LRU_ACTIVE higher in
182  * the array than the corresponding inactive lists, and to keep
183  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
184  *
185  * This has to be kept in sync with the statistics in zone_stat_item
186  * above and the descriptions in vmstat_text in mm/vmstat.c
187  */
188 #define LRU_BASE 0
189 #define LRU_ACTIVE 1
190 #define LRU_FILE 2
191 
192 enum lru_list {
193 	LRU_INACTIVE_ANON = LRU_BASE,
194 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
195 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
196 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
197 	LRU_UNEVICTABLE,
198 	NR_LRU_LISTS
199 };
200 
201 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
202 
203 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
204 
205 static inline int is_file_lru(enum lru_list lru)
206 {
207 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
208 }
209 
210 static inline int is_active_lru(enum lru_list lru)
211 {
212 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
213 }
214 
215 struct zone_reclaim_stat {
216 	/*
217 	 * The pageout code in vmscan.c keeps track of how many of the
218 	 * mem/swap backed and file backed pages are referenced.
219 	 * The higher the rotated/scanned ratio, the more valuable
220 	 * that cache is.
221 	 *
222 	 * The anon LRU stats live in [0], file LRU stats in [1]
223 	 */
224 	unsigned long		recent_rotated[2];
225 	unsigned long		recent_scanned[2];
226 };
227 
228 struct lruvec {
229 	struct list_head		lists[NR_LRU_LISTS];
230 	struct zone_reclaim_stat	reclaim_stat;
231 	/* Evictions & activations on the inactive file list */
232 	atomic_long_t			inactive_age;
233 	/* Refaults at the time of last reclaim cycle */
234 	unsigned long			refaults;
235 #ifdef CONFIG_MEMCG
236 	struct pglist_data *pgdat;
237 #endif
238 };
239 
240 /* Mask used at gathering information at once (see memcontrol.c) */
241 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
242 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
243 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
244 
245 /* Isolate unmapped file */
246 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
247 /* Isolate for asynchronous migration */
248 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
249 /* Isolate unevictable pages */
250 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
251 
252 /* LRU Isolation modes. */
253 typedef unsigned __bitwise isolate_mode_t;
254 
255 enum zone_watermarks {
256 	WMARK_MIN,
257 	WMARK_LOW,
258 	WMARK_HIGH,
259 	NR_WMARK
260 };
261 
262 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
263 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
264 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
265 
266 struct per_cpu_pages {
267 	int count;		/* number of pages in the list */
268 	int high;		/* high watermark, emptying needed */
269 	int batch;		/* chunk size for buddy add/remove */
270 
271 	/* Lists of pages, one per migrate type stored on the pcp-lists */
272 	struct list_head lists[MIGRATE_PCPTYPES];
273 };
274 
275 struct per_cpu_pageset {
276 	struct per_cpu_pages pcp;
277 #ifdef CONFIG_NUMA
278 	s8 expire;
279 #endif
280 #ifdef CONFIG_SMP
281 	s8 stat_threshold;
282 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
283 #endif
284 };
285 
286 struct per_cpu_nodestat {
287 	s8 stat_threshold;
288 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
289 };
290 
291 #endif /* !__GENERATING_BOUNDS.H */
292 
293 enum zone_type {
294 #ifdef CONFIG_ZONE_DMA
295 	/*
296 	 * ZONE_DMA is used when there are devices that are not able
297 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
298 	 * carve out the portion of memory that is needed for these devices.
299 	 * The range is arch specific.
300 	 *
301 	 * Some examples
302 	 *
303 	 * Architecture		Limit
304 	 * ---------------------------
305 	 * parisc, ia64, sparc	<4G
306 	 * s390			<2G
307 	 * arm			Various
308 	 * alpha		Unlimited or 0-16MB.
309 	 *
310 	 * i386, x86_64 and multiple other arches
311 	 * 			<16M.
312 	 */
313 	ZONE_DMA,
314 #endif
315 #ifdef CONFIG_ZONE_DMA32
316 	/*
317 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
318 	 * only able to do DMA to the lower 16M but also 32 bit devices that
319 	 * can only do DMA areas below 4G.
320 	 */
321 	ZONE_DMA32,
322 #endif
323 	/*
324 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
325 	 * performed on pages in ZONE_NORMAL if the DMA devices support
326 	 * transfers to all addressable memory.
327 	 */
328 	ZONE_NORMAL,
329 #ifdef CONFIG_HIGHMEM
330 	/*
331 	 * A memory area that is only addressable by the kernel through
332 	 * mapping portions into its own address space. This is for example
333 	 * used by i386 to allow the kernel to address the memory beyond
334 	 * 900MB. The kernel will set up special mappings (page
335 	 * table entries on i386) for each page that the kernel needs to
336 	 * access.
337 	 */
338 	ZONE_HIGHMEM,
339 #endif
340 	ZONE_MOVABLE,
341 #ifdef CONFIG_ZONE_DEVICE
342 	ZONE_DEVICE,
343 #endif
344 	__MAX_NR_ZONES
345 
346 };
347 
348 #ifndef __GENERATING_BOUNDS_H
349 
350 struct zone {
351 	/* Read-mostly fields */
352 
353 	/* zone watermarks, access with *_wmark_pages(zone) macros */
354 	unsigned long watermark[NR_WMARK];
355 
356 	unsigned long nr_reserved_highatomic;
357 
358 	/*
359 	 * We don't know if the memory that we're going to allocate will be
360 	 * freeable or/and it will be released eventually, so to avoid totally
361 	 * wasting several GB of ram we must reserve some of the lower zone
362 	 * memory (otherwise we risk to run OOM on the lower zones despite
363 	 * there being tons of freeable ram on the higher zones).  This array is
364 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
365 	 * changes.
366 	 */
367 	long lowmem_reserve[MAX_NR_ZONES];
368 
369 #ifdef CONFIG_NUMA
370 	int node;
371 #endif
372 	struct pglist_data	*zone_pgdat;
373 	struct per_cpu_pageset __percpu *pageset;
374 
375 #ifndef CONFIG_SPARSEMEM
376 	/*
377 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
378 	 * In SPARSEMEM, this map is stored in struct mem_section
379 	 */
380 	unsigned long		*pageblock_flags;
381 #endif /* CONFIG_SPARSEMEM */
382 
383 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 	unsigned long		zone_start_pfn;
385 
386 	/*
387 	 * spanned_pages is the total pages spanned by the zone, including
388 	 * holes, which is calculated as:
389 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
390 	 *
391 	 * present_pages is physical pages existing within the zone, which
392 	 * is calculated as:
393 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
394 	 *
395 	 * managed_pages is present pages managed by the buddy system, which
396 	 * is calculated as (reserved_pages includes pages allocated by the
397 	 * bootmem allocator):
398 	 *	managed_pages = present_pages - reserved_pages;
399 	 *
400 	 * So present_pages may be used by memory hotplug or memory power
401 	 * management logic to figure out unmanaged pages by checking
402 	 * (present_pages - managed_pages). And managed_pages should be used
403 	 * by page allocator and vm scanner to calculate all kinds of watermarks
404 	 * and thresholds.
405 	 *
406 	 * Locking rules:
407 	 *
408 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 	 * It is a seqlock because it has to be read outside of zone->lock,
410 	 * and it is done in the main allocator path.  But, it is written
411 	 * quite infrequently.
412 	 *
413 	 * The span_seq lock is declared along with zone->lock because it is
414 	 * frequently read in proximity to zone->lock.  It's good to
415 	 * give them a chance of being in the same cacheline.
416 	 *
417 	 * Write access to present_pages at runtime should be protected by
418 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 	 * present_pages should get_online_mems() to get a stable value.
420 	 *
421 	 * Read access to managed_pages should be safe because it's unsigned
422 	 * long. Write access to zone->managed_pages and totalram_pages are
423 	 * protected by managed_page_count_lock at runtime. Idealy only
424 	 * adjust_managed_page_count() should be used instead of directly
425 	 * touching zone->managed_pages and totalram_pages.
426 	 */
427 	unsigned long		managed_pages;
428 	unsigned long		spanned_pages;
429 	unsigned long		present_pages;
430 
431 	const char		*name;
432 
433 #ifdef CONFIG_MEMORY_ISOLATION
434 	/*
435 	 * Number of isolated pageblock. It is used to solve incorrect
436 	 * freepage counting problem due to racy retrieving migratetype
437 	 * of pageblock. Protected by zone->lock.
438 	 */
439 	unsigned long		nr_isolate_pageblock;
440 #endif
441 
442 #ifdef CONFIG_MEMORY_HOTPLUG
443 	/* see spanned/present_pages for more description */
444 	seqlock_t		span_seqlock;
445 #endif
446 
447 	int initialized;
448 
449 	/* Write-intensive fields used from the page allocator */
450 	ZONE_PADDING(_pad1_)
451 
452 	/* free areas of different sizes */
453 	struct free_area	free_area[MAX_ORDER];
454 
455 	/* zone flags, see below */
456 	unsigned long		flags;
457 
458 	/* Primarily protects free_area */
459 	spinlock_t		lock;
460 
461 	/* Write-intensive fields used by compaction and vmstats. */
462 	ZONE_PADDING(_pad2_)
463 
464 	/*
465 	 * When free pages are below this point, additional steps are taken
466 	 * when reading the number of free pages to avoid per-cpu counter
467 	 * drift allowing watermarks to be breached
468 	 */
469 	unsigned long percpu_drift_mark;
470 
471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
472 	/* pfn where compaction free scanner should start */
473 	unsigned long		compact_cached_free_pfn;
474 	/* pfn where async and sync compaction migration scanner should start */
475 	unsigned long		compact_cached_migrate_pfn[2];
476 #endif
477 
478 #ifdef CONFIG_COMPACTION
479 	/*
480 	 * On compaction failure, 1<<compact_defer_shift compactions
481 	 * are skipped before trying again. The number attempted since
482 	 * last failure is tracked with compact_considered.
483 	 */
484 	unsigned int		compact_considered;
485 	unsigned int		compact_defer_shift;
486 	int			compact_order_failed;
487 #endif
488 
489 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
490 	/* Set to true when the PG_migrate_skip bits should be cleared */
491 	bool			compact_blockskip_flush;
492 #endif
493 
494 	bool			contiguous;
495 
496 	ZONE_PADDING(_pad3_)
497 	/* Zone statistics */
498 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
499 } ____cacheline_internodealigned_in_smp;
500 
501 enum pgdat_flags {
502 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
503 					 * a congested BDI
504 					 */
505 	PGDAT_DIRTY,			/* reclaim scanning has recently found
506 					 * many dirty file pages at the tail
507 					 * of the LRU.
508 					 */
509 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
510 					 * many pages under writeback
511 					 */
512 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
513 };
514 
515 static inline unsigned long zone_end_pfn(const struct zone *zone)
516 {
517 	return zone->zone_start_pfn + zone->spanned_pages;
518 }
519 
520 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
521 {
522 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
523 }
524 
525 static inline bool zone_is_initialized(struct zone *zone)
526 {
527 	return zone->initialized;
528 }
529 
530 static inline bool zone_is_empty(struct zone *zone)
531 {
532 	return zone->spanned_pages == 0;
533 }
534 
535 /*
536  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
537  * intersection with the given zone
538  */
539 static inline bool zone_intersects(struct zone *zone,
540 		unsigned long start_pfn, unsigned long nr_pages)
541 {
542 	if (zone_is_empty(zone))
543 		return false;
544 	if (start_pfn >= zone_end_pfn(zone) ||
545 	    start_pfn + nr_pages <= zone->zone_start_pfn)
546 		return false;
547 
548 	return true;
549 }
550 
551 /*
552  * The "priority" of VM scanning is how much of the queues we will scan in one
553  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
554  * queues ("queue_length >> 12") during an aging round.
555  */
556 #define DEF_PRIORITY 12
557 
558 /* Maximum number of zones on a zonelist */
559 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
560 
561 enum {
562 	ZONELIST_FALLBACK,	/* zonelist with fallback */
563 #ifdef CONFIG_NUMA
564 	/*
565 	 * The NUMA zonelists are doubled because we need zonelists that
566 	 * restrict the allocations to a single node for __GFP_THISNODE.
567 	 */
568 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
569 #endif
570 	MAX_ZONELISTS
571 };
572 
573 /*
574  * This struct contains information about a zone in a zonelist. It is stored
575  * here to avoid dereferences into large structures and lookups of tables
576  */
577 struct zoneref {
578 	struct zone *zone;	/* Pointer to actual zone */
579 	int zone_idx;		/* zone_idx(zoneref->zone) */
580 };
581 
582 /*
583  * One allocation request operates on a zonelist. A zonelist
584  * is a list of zones, the first one is the 'goal' of the
585  * allocation, the other zones are fallback zones, in decreasing
586  * priority.
587  *
588  * To speed the reading of the zonelist, the zonerefs contain the zone index
589  * of the entry being read. Helper functions to access information given
590  * a struct zoneref are
591  *
592  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
593  * zonelist_zone_idx()	- Return the index of the zone for an entry
594  * zonelist_node_idx()	- Return the index of the node for an entry
595  */
596 struct zonelist {
597 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
598 };
599 
600 #ifndef CONFIG_DISCONTIGMEM
601 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
602 extern struct page *mem_map;
603 #endif
604 
605 /*
606  * On NUMA machines, each NUMA node would have a pg_data_t to describe
607  * it's memory layout. On UMA machines there is a single pglist_data which
608  * describes the whole memory.
609  *
610  * Memory statistics and page replacement data structures are maintained on a
611  * per-zone basis.
612  */
613 struct bootmem_data;
614 typedef struct pglist_data {
615 	struct zone node_zones[MAX_NR_ZONES];
616 	struct zonelist node_zonelists[MAX_ZONELISTS];
617 	int nr_zones;
618 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
619 	struct page *node_mem_map;
620 #ifdef CONFIG_PAGE_EXTENSION
621 	struct page_ext *node_page_ext;
622 #endif
623 #endif
624 #ifndef CONFIG_NO_BOOTMEM
625 	struct bootmem_data *bdata;
626 #endif
627 #ifdef CONFIG_MEMORY_HOTPLUG
628 	/*
629 	 * Must be held any time you expect node_start_pfn, node_present_pages
630 	 * or node_spanned_pages stay constant.  Holding this will also
631 	 * guarantee that any pfn_valid() stays that way.
632 	 *
633 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
634 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
635 	 *
636 	 * Nests above zone->lock and zone->span_seqlock
637 	 */
638 	spinlock_t node_size_lock;
639 #endif
640 	unsigned long node_start_pfn;
641 	unsigned long node_present_pages; /* total number of physical pages */
642 	unsigned long node_spanned_pages; /* total size of physical page
643 					     range, including holes */
644 	int node_id;
645 	wait_queue_head_t kswapd_wait;
646 	wait_queue_head_t pfmemalloc_wait;
647 	struct task_struct *kswapd;	/* Protected by
648 					   mem_hotplug_begin/end() */
649 	int kswapd_order;
650 	enum zone_type kswapd_classzone_idx;
651 
652 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
653 
654 #ifdef CONFIG_COMPACTION
655 	int kcompactd_max_order;
656 	enum zone_type kcompactd_classzone_idx;
657 	wait_queue_head_t kcompactd_wait;
658 	struct task_struct *kcompactd;
659 #endif
660 #ifdef CONFIG_NUMA_BALANCING
661 	/* Lock serializing the migrate rate limiting window */
662 	spinlock_t numabalancing_migrate_lock;
663 
664 	/* Rate limiting time interval */
665 	unsigned long numabalancing_migrate_next_window;
666 
667 	/* Number of pages migrated during the rate limiting time interval */
668 	unsigned long numabalancing_migrate_nr_pages;
669 #endif
670 	/*
671 	 * This is a per-node reserve of pages that are not available
672 	 * to userspace allocations.
673 	 */
674 	unsigned long		totalreserve_pages;
675 
676 #ifdef CONFIG_NUMA
677 	/*
678 	 * zone reclaim becomes active if more unmapped pages exist.
679 	 */
680 	unsigned long		min_unmapped_pages;
681 	unsigned long		min_slab_pages;
682 #endif /* CONFIG_NUMA */
683 
684 	/* Write-intensive fields used by page reclaim */
685 	ZONE_PADDING(_pad1_)
686 	spinlock_t		lru_lock;
687 
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 	/*
690 	 * If memory initialisation on large machines is deferred then this
691 	 * is the first PFN that needs to be initialised.
692 	 */
693 	unsigned long first_deferred_pfn;
694 	unsigned long static_init_size;
695 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
696 
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 	spinlock_t split_queue_lock;
699 	struct list_head split_queue;
700 	unsigned long split_queue_len;
701 #endif
702 
703 	/* Fields commonly accessed by the page reclaim scanner */
704 	struct lruvec		lruvec;
705 
706 	/*
707 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
708 	 * this node's LRU.  Maintained by the pageout code.
709 	 */
710 	unsigned int inactive_ratio;
711 
712 	unsigned long		flags;
713 
714 	ZONE_PADDING(_pad2_)
715 
716 	/* Per-node vmstats */
717 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
718 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
719 } pg_data_t;
720 
721 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
722 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
723 #ifdef CONFIG_FLAT_NODE_MEM_MAP
724 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
725 #else
726 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
727 #endif
728 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
729 
730 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
731 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
732 static inline spinlock_t *zone_lru_lock(struct zone *zone)
733 {
734 	return &zone->zone_pgdat->lru_lock;
735 }
736 
737 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
738 {
739 	return &pgdat->lruvec;
740 }
741 
742 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
743 {
744 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
745 }
746 
747 static inline bool pgdat_is_empty(pg_data_t *pgdat)
748 {
749 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
750 }
751 
752 static inline int zone_id(const struct zone *zone)
753 {
754 	struct pglist_data *pgdat = zone->zone_pgdat;
755 
756 	return zone - pgdat->node_zones;
757 }
758 
759 #ifdef CONFIG_ZONE_DEVICE
760 static inline bool is_dev_zone(const struct zone *zone)
761 {
762 	return zone_id(zone) == ZONE_DEVICE;
763 }
764 #else
765 static inline bool is_dev_zone(const struct zone *zone)
766 {
767 	return false;
768 }
769 #endif
770 
771 #include <linux/memory_hotplug.h>
772 
773 extern struct mutex zonelists_mutex;
774 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
775 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
776 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
777 			 int classzone_idx, unsigned int alloc_flags,
778 			 long free_pages);
779 bool zone_watermark_ok(struct zone *z, unsigned int order,
780 		unsigned long mark, int classzone_idx,
781 		unsigned int alloc_flags);
782 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
783 		unsigned long mark, int classzone_idx);
784 enum memmap_context {
785 	MEMMAP_EARLY,
786 	MEMMAP_HOTPLUG,
787 };
788 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
789 				     unsigned long size);
790 
791 extern void lruvec_init(struct lruvec *lruvec);
792 
793 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
794 {
795 #ifdef CONFIG_MEMCG
796 	return lruvec->pgdat;
797 #else
798 	return container_of(lruvec, struct pglist_data, lruvec);
799 #endif
800 }
801 
802 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
803 
804 #ifdef CONFIG_HAVE_MEMORY_PRESENT
805 void memory_present(int nid, unsigned long start, unsigned long end);
806 #else
807 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
808 #endif
809 
810 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
811 int local_memory_node(int node_id);
812 #else
813 static inline int local_memory_node(int node_id) { return node_id; };
814 #endif
815 
816 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
817 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
818 #endif
819 
820 /*
821  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
822  */
823 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
824 
825 /*
826  * Returns true if a zone has pages managed by the buddy allocator.
827  * All the reclaim decisions have to use this function rather than
828  * populated_zone(). If the whole zone is reserved then we can easily
829  * end up with populated_zone() && !managed_zone().
830  */
831 static inline bool managed_zone(struct zone *zone)
832 {
833 	return zone->managed_pages;
834 }
835 
836 /* Returns true if a zone has memory */
837 static inline bool populated_zone(struct zone *zone)
838 {
839 	return zone->present_pages;
840 }
841 
842 extern int movable_zone;
843 
844 #ifdef CONFIG_HIGHMEM
845 static inline int zone_movable_is_highmem(void)
846 {
847 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
848 	return movable_zone == ZONE_HIGHMEM;
849 #else
850 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
851 #endif
852 }
853 #endif
854 
855 static inline int is_highmem_idx(enum zone_type idx)
856 {
857 #ifdef CONFIG_HIGHMEM
858 	return (idx == ZONE_HIGHMEM ||
859 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
860 #else
861 	return 0;
862 #endif
863 }
864 
865 /**
866  * is_highmem - helper function to quickly check if a struct zone is a
867  *              highmem zone or not.  This is an attempt to keep references
868  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
869  * @zone - pointer to struct zone variable
870  */
871 static inline int is_highmem(struct zone *zone)
872 {
873 #ifdef CONFIG_HIGHMEM
874 	return is_highmem_idx(zone_idx(zone));
875 #else
876 	return 0;
877 #endif
878 }
879 
880 /* These two functions are used to setup the per zone pages min values */
881 struct ctl_table;
882 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
883 					void __user *, size_t *, loff_t *);
884 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
885 					void __user *, size_t *, loff_t *);
886 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
890 					void __user *, size_t *, loff_t *);
891 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
892 			void __user *, size_t *, loff_t *);
893 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
894 			void __user *, size_t *, loff_t *);
895 
896 extern int numa_zonelist_order_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 extern char numa_zonelist_order[];
899 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
900 
901 #ifndef CONFIG_NEED_MULTIPLE_NODES
902 
903 extern struct pglist_data contig_page_data;
904 #define NODE_DATA(nid)		(&contig_page_data)
905 #define NODE_MEM_MAP(nid)	mem_map
906 
907 #else /* CONFIG_NEED_MULTIPLE_NODES */
908 
909 #include <asm/mmzone.h>
910 
911 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
912 
913 extern struct pglist_data *first_online_pgdat(void);
914 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
915 extern struct zone *next_zone(struct zone *zone);
916 
917 /**
918  * for_each_online_pgdat - helper macro to iterate over all online nodes
919  * @pgdat - pointer to a pg_data_t variable
920  */
921 #define for_each_online_pgdat(pgdat)			\
922 	for (pgdat = first_online_pgdat();		\
923 	     pgdat;					\
924 	     pgdat = next_online_pgdat(pgdat))
925 /**
926  * for_each_zone - helper macro to iterate over all memory zones
927  * @zone - pointer to struct zone variable
928  *
929  * The user only needs to declare the zone variable, for_each_zone
930  * fills it in.
931  */
932 #define for_each_zone(zone)			        \
933 	for (zone = (first_online_pgdat())->node_zones; \
934 	     zone;					\
935 	     zone = next_zone(zone))
936 
937 #define for_each_populated_zone(zone)		        \
938 	for (zone = (first_online_pgdat())->node_zones; \
939 	     zone;					\
940 	     zone = next_zone(zone))			\
941 		if (!populated_zone(zone))		\
942 			; /* do nothing */		\
943 		else
944 
945 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
946 {
947 	return zoneref->zone;
948 }
949 
950 static inline int zonelist_zone_idx(struct zoneref *zoneref)
951 {
952 	return zoneref->zone_idx;
953 }
954 
955 static inline int zonelist_node_idx(struct zoneref *zoneref)
956 {
957 #ifdef CONFIG_NUMA
958 	/* zone_to_nid not available in this context */
959 	return zoneref->zone->node;
960 #else
961 	return 0;
962 #endif /* CONFIG_NUMA */
963 }
964 
965 struct zoneref *__next_zones_zonelist(struct zoneref *z,
966 					enum zone_type highest_zoneidx,
967 					nodemask_t *nodes);
968 
969 /**
970  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
971  * @z - The cursor used as a starting point for the search
972  * @highest_zoneidx - The zone index of the highest zone to return
973  * @nodes - An optional nodemask to filter the zonelist with
974  *
975  * This function returns the next zone at or below a given zone index that is
976  * within the allowed nodemask using a cursor as the starting point for the
977  * search. The zoneref returned is a cursor that represents the current zone
978  * being examined. It should be advanced by one before calling
979  * next_zones_zonelist again.
980  */
981 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
982 					enum zone_type highest_zoneidx,
983 					nodemask_t *nodes)
984 {
985 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
986 		return z;
987 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
988 }
989 
990 /**
991  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
992  * @zonelist - The zonelist to search for a suitable zone
993  * @highest_zoneidx - The zone index of the highest zone to return
994  * @nodes - An optional nodemask to filter the zonelist with
995  * @return - Zoneref pointer for the first suitable zone found (see below)
996  *
997  * This function returns the first zone at or below a given zone index that is
998  * within the allowed nodemask. The zoneref returned is a cursor that can be
999  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1000  * one before calling.
1001  *
1002  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1003  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1004  * update due to cpuset modification.
1005  */
1006 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007 					enum zone_type highest_zoneidx,
1008 					nodemask_t *nodes)
1009 {
1010 	return next_zones_zonelist(zonelist->_zonerefs,
1011 							highest_zoneidx, nodes);
1012 }
1013 
1014 /**
1015  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1016  * @zone - The current zone in the iterator
1017  * @z - The current pointer within zonelist->zones being iterated
1018  * @zlist - The zonelist being iterated
1019  * @highidx - The zone index of the highest zone to return
1020  * @nodemask - Nodemask allowed by the allocator
1021  *
1022  * This iterator iterates though all zones at or below a given zone index and
1023  * within a given nodemask
1024  */
1025 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1026 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1027 		zone;							\
1028 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1029 			zone = zonelist_zone(z))
1030 
1031 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1032 	for (zone = z->zone;	\
1033 		zone;							\
1034 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1035 			zone = zonelist_zone(z))
1036 
1037 
1038 /**
1039  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1040  * @zone - The current zone in the iterator
1041  * @z - The current pointer within zonelist->zones being iterated
1042  * @zlist - The zonelist being iterated
1043  * @highidx - The zone index of the highest zone to return
1044  *
1045  * This iterator iterates though all zones at or below a given zone index.
1046  */
1047 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1048 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1049 
1050 #ifdef CONFIG_SPARSEMEM
1051 #include <asm/sparsemem.h>
1052 #endif
1053 
1054 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1055 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1056 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1057 {
1058 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1059 	return 0;
1060 }
1061 #endif
1062 
1063 #ifdef CONFIG_FLATMEM
1064 #define pfn_to_nid(pfn)		(0)
1065 #endif
1066 
1067 #ifdef CONFIG_SPARSEMEM
1068 
1069 /*
1070  * SECTION_SHIFT    		#bits space required to store a section #
1071  *
1072  * PA_SECTION_SHIFT		physical address to/from section number
1073  * PFN_SECTION_SHIFT		pfn to/from section number
1074  */
1075 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1076 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1077 
1078 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1079 
1080 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1081 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1082 
1083 #define SECTION_BLOCKFLAGS_BITS \
1084 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1085 
1086 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1087 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1088 #endif
1089 
1090 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1091 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1092 
1093 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1094 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1095 
1096 struct page;
1097 struct page_ext;
1098 struct mem_section {
1099 	/*
1100 	 * This is, logically, a pointer to an array of struct
1101 	 * pages.  However, it is stored with some other magic.
1102 	 * (see sparse.c::sparse_init_one_section())
1103 	 *
1104 	 * Additionally during early boot we encode node id of
1105 	 * the location of the section here to guide allocation.
1106 	 * (see sparse.c::memory_present())
1107 	 *
1108 	 * Making it a UL at least makes someone do a cast
1109 	 * before using it wrong.
1110 	 */
1111 	unsigned long section_mem_map;
1112 
1113 	/* See declaration of similar field in struct zone */
1114 	unsigned long *pageblock_flags;
1115 #ifdef CONFIG_PAGE_EXTENSION
1116 	/*
1117 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1118 	 * section. (see page_ext.h about this.)
1119 	 */
1120 	struct page_ext *page_ext;
1121 	unsigned long pad;
1122 #endif
1123 	/*
1124 	 * WARNING: mem_section must be a power-of-2 in size for the
1125 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1126 	 */
1127 };
1128 
1129 #ifdef CONFIG_SPARSEMEM_EXTREME
1130 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1131 #else
1132 #define SECTIONS_PER_ROOT	1
1133 #endif
1134 
1135 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1136 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1137 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1138 
1139 #ifdef CONFIG_SPARSEMEM_EXTREME
1140 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1141 #else
1142 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1143 #endif
1144 
1145 static inline struct mem_section *__nr_to_section(unsigned long nr)
1146 {
1147 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1148 		return NULL;
1149 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1150 }
1151 extern int __section_nr(struct mem_section* ms);
1152 extern unsigned long usemap_size(void);
1153 
1154 /*
1155  * We use the lower bits of the mem_map pointer to store
1156  * a little bit of information.  There should be at least
1157  * 3 bits here due to 32-bit alignment.
1158  */
1159 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1160 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1161 #define SECTION_IS_ONLINE	(1UL<<2)
1162 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1163 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1164 #define SECTION_NID_SHIFT	3
1165 
1166 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167 {
1168 	unsigned long map = section->section_mem_map;
1169 	map &= SECTION_MAP_MASK;
1170 	return (struct page *)map;
1171 }
1172 
1173 static inline int present_section(struct mem_section *section)
1174 {
1175 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176 }
1177 
1178 static inline int present_section_nr(unsigned long nr)
1179 {
1180 	return present_section(__nr_to_section(nr));
1181 }
1182 
1183 static inline int valid_section(struct mem_section *section)
1184 {
1185 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186 }
1187 
1188 static inline int valid_section_nr(unsigned long nr)
1189 {
1190 	return valid_section(__nr_to_section(nr));
1191 }
1192 
1193 static inline int online_section(struct mem_section *section)
1194 {
1195 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1196 }
1197 
1198 static inline int online_section_nr(unsigned long nr)
1199 {
1200 	return online_section(__nr_to_section(nr));
1201 }
1202 
1203 #ifdef CONFIG_MEMORY_HOTPLUG
1204 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1205 #ifdef CONFIG_MEMORY_HOTREMOVE
1206 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1207 #endif
1208 #endif
1209 
1210 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1211 {
1212 	return __nr_to_section(pfn_to_section_nr(pfn));
1213 }
1214 
1215 extern int __highest_present_section_nr;
1216 
1217 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1218 static inline int pfn_valid(unsigned long pfn)
1219 {
1220 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1221 		return 0;
1222 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1223 }
1224 #endif
1225 
1226 static inline int pfn_present(unsigned long pfn)
1227 {
1228 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1229 		return 0;
1230 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1231 }
1232 
1233 /*
1234  * These are _only_ used during initialisation, therefore they
1235  * can use __initdata ...  They could have names to indicate
1236  * this restriction.
1237  */
1238 #ifdef CONFIG_NUMA
1239 #define pfn_to_nid(pfn)							\
1240 ({									\
1241 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1242 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1243 })
1244 #else
1245 #define pfn_to_nid(pfn)		(0)
1246 #endif
1247 
1248 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1249 void sparse_init(void);
1250 #else
1251 #define sparse_init()	do {} while (0)
1252 #define sparse_index_init(_sec, _nid)  do {} while (0)
1253 #endif /* CONFIG_SPARSEMEM */
1254 
1255 /*
1256  * During memory init memblocks map pfns to nids. The search is expensive and
1257  * this caches recent lookups. The implementation of __early_pfn_to_nid
1258  * may treat start/end as pfns or sections.
1259  */
1260 struct mminit_pfnnid_cache {
1261 	unsigned long last_start;
1262 	unsigned long last_end;
1263 	int last_nid;
1264 };
1265 
1266 #ifndef early_pfn_valid
1267 #define early_pfn_valid(pfn)	(1)
1268 #endif
1269 
1270 void memory_present(int nid, unsigned long start, unsigned long end);
1271 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1272 
1273 /*
1274  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1275  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1276  * pfn_valid_within() should be used in this case; we optimise this away
1277  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1278  */
1279 #ifdef CONFIG_HOLES_IN_ZONE
1280 #define pfn_valid_within(pfn) pfn_valid(pfn)
1281 #else
1282 #define pfn_valid_within(pfn) (1)
1283 #endif
1284 
1285 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1286 /*
1287  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1288  * associated with it or not. This means that a struct page exists for this
1289  * pfn. The caller cannot assume the page is fully initialized in general.
1290  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1291  * will ensure the struct page is fully online and initialized. Special pages
1292  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1293  *
1294  * In FLATMEM, it is expected that holes always have valid memmap as long as
1295  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1296  * that a valid section has a memmap for the entire section.
1297  *
1298  * However, an ARM, and maybe other embedded architectures in the future
1299  * free memmap backing holes to save memory on the assumption the memmap is
1300  * never used. The page_zone linkages are then broken even though pfn_valid()
1301  * returns true. A walker of the full memmap must then do this additional
1302  * check to ensure the memmap they are looking at is sane by making sure
1303  * the zone and PFN linkages are still valid. This is expensive, but walkers
1304  * of the full memmap are extremely rare.
1305  */
1306 bool memmap_valid_within(unsigned long pfn,
1307 					struct page *page, struct zone *zone);
1308 #else
1309 static inline bool memmap_valid_within(unsigned long pfn,
1310 					struct page *page, struct zone *zone)
1311 {
1312 	return true;
1313 }
1314 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1315 
1316 #endif /* !__GENERATING_BOUNDS.H */
1317 #endif /* !__ASSEMBLY__ */
1318 #endif /* _LINUX_MMZONE_H */
1319