xref: /linux-6.15/include/linux/mmzone.h (revision bb66fc67)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_ALLOC_BATCH,
109 	NR_LRU_BASE,
110 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
111 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
112 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
113 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
114 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
115 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
116 	NR_ANON_PAGES,	/* Mapped anonymous pages */
117 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
118 			   only modified from process context */
119 	NR_FILE_PAGES,
120 	NR_FILE_DIRTY,
121 	NR_WRITEBACK,
122 	NR_SLAB_RECLAIMABLE,
123 	NR_SLAB_UNRECLAIMABLE,
124 	NR_PAGETABLE,		/* used for pagetables */
125 	NR_KERNEL_STACK,
126 	/* Second 128 byte cacheline */
127 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
128 	NR_BOUNCE,
129 	NR_VMSCAN_WRITE,
130 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
131 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
132 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
133 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
134 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
135 	NR_DIRTIED,		/* page dirtyings since bootup */
136 	NR_WRITTEN,		/* page writings since bootup */
137 #ifdef CONFIG_NUMA
138 	NUMA_HIT,		/* allocated in intended node */
139 	NUMA_MISS,		/* allocated in non intended node */
140 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
141 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
142 	NUMA_LOCAL,		/* allocation from local node */
143 	NUMA_OTHER,		/* allocation from other node */
144 #endif
145 	WORKINGSET_REFAULT,
146 	WORKINGSET_ACTIVATE,
147 	WORKINGSET_NODERECLAIM,
148 	NR_ANON_TRANSPARENT_HUGEPAGES,
149 	NR_FREE_CMA_PAGES,
150 	NR_VM_ZONE_STAT_ITEMS };
151 
152 /*
153  * We do arithmetic on the LRU lists in various places in the code,
154  * so it is important to keep the active lists LRU_ACTIVE higher in
155  * the array than the corresponding inactive lists, and to keep
156  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
157  *
158  * This has to be kept in sync with the statistics in zone_stat_item
159  * above and the descriptions in vmstat_text in mm/vmstat.c
160  */
161 #define LRU_BASE 0
162 #define LRU_ACTIVE 1
163 #define LRU_FILE 2
164 
165 enum lru_list {
166 	LRU_INACTIVE_ANON = LRU_BASE,
167 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
168 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
169 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
170 	LRU_UNEVICTABLE,
171 	NR_LRU_LISTS
172 };
173 
174 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
175 
176 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
177 
178 static inline int is_file_lru(enum lru_list lru)
179 {
180 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
181 }
182 
183 static inline int is_active_lru(enum lru_list lru)
184 {
185 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
186 }
187 
188 static inline int is_unevictable_lru(enum lru_list lru)
189 {
190 	return (lru == LRU_UNEVICTABLE);
191 }
192 
193 struct zone_reclaim_stat {
194 	/*
195 	 * The pageout code in vmscan.c keeps track of how many of the
196 	 * mem/swap backed and file backed pages are referenced.
197 	 * The higher the rotated/scanned ratio, the more valuable
198 	 * that cache is.
199 	 *
200 	 * The anon LRU stats live in [0], file LRU stats in [1]
201 	 */
202 	unsigned long		recent_rotated[2];
203 	unsigned long		recent_scanned[2];
204 };
205 
206 struct lruvec {
207 	struct list_head lists[NR_LRU_LISTS];
208 	struct zone_reclaim_stat reclaim_stat;
209 #ifdef CONFIG_MEMCG
210 	struct zone *zone;
211 #endif
212 };
213 
214 /* Mask used at gathering information at once (see memcontrol.c) */
215 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
216 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
217 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
218 
219 /* Isolate clean file */
220 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
221 /* Isolate unmapped file */
222 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
223 /* Isolate for asynchronous migration */
224 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
225 /* Isolate unevictable pages */
226 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
227 
228 /* LRU Isolation modes. */
229 typedef unsigned __bitwise__ isolate_mode_t;
230 
231 enum zone_watermarks {
232 	WMARK_MIN,
233 	WMARK_LOW,
234 	WMARK_HIGH,
235 	NR_WMARK
236 };
237 
238 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
239 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
240 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
241 
242 struct per_cpu_pages {
243 	int count;		/* number of pages in the list */
244 	int high;		/* high watermark, emptying needed */
245 	int batch;		/* chunk size for buddy add/remove */
246 
247 	/* Lists of pages, one per migrate type stored on the pcp-lists */
248 	struct list_head lists[MIGRATE_PCPTYPES];
249 };
250 
251 struct per_cpu_pageset {
252 	struct per_cpu_pages pcp;
253 #ifdef CONFIG_NUMA
254 	s8 expire;
255 #endif
256 #ifdef CONFIG_SMP
257 	s8 stat_threshold;
258 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
259 #endif
260 };
261 
262 #endif /* !__GENERATING_BOUNDS.H */
263 
264 enum zone_type {
265 #ifdef CONFIG_ZONE_DMA
266 	/*
267 	 * ZONE_DMA is used when there are devices that are not able
268 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
269 	 * carve out the portion of memory that is needed for these devices.
270 	 * The range is arch specific.
271 	 *
272 	 * Some examples
273 	 *
274 	 * Architecture		Limit
275 	 * ---------------------------
276 	 * parisc, ia64, sparc	<4G
277 	 * s390			<2G
278 	 * arm			Various
279 	 * alpha		Unlimited or 0-16MB.
280 	 *
281 	 * i386, x86_64 and multiple other arches
282 	 * 			<16M.
283 	 */
284 	ZONE_DMA,
285 #endif
286 #ifdef CONFIG_ZONE_DMA32
287 	/*
288 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
289 	 * only able to do DMA to the lower 16M but also 32 bit devices that
290 	 * can only do DMA areas below 4G.
291 	 */
292 	ZONE_DMA32,
293 #endif
294 	/*
295 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
296 	 * performed on pages in ZONE_NORMAL if the DMA devices support
297 	 * transfers to all addressable memory.
298 	 */
299 	ZONE_NORMAL,
300 #ifdef CONFIG_HIGHMEM
301 	/*
302 	 * A memory area that is only addressable by the kernel through
303 	 * mapping portions into its own address space. This is for example
304 	 * used by i386 to allow the kernel to address the memory beyond
305 	 * 900MB. The kernel will set up special mappings (page
306 	 * table entries on i386) for each page that the kernel needs to
307 	 * access.
308 	 */
309 	ZONE_HIGHMEM,
310 #endif
311 	ZONE_MOVABLE,
312 	__MAX_NR_ZONES
313 };
314 
315 #ifndef __GENERATING_BOUNDS_H
316 
317 struct zone {
318 	/* Fields commonly accessed by the page allocator */
319 
320 	/* zone watermarks, access with *_wmark_pages(zone) macros */
321 	unsigned long watermark[NR_WMARK];
322 
323 	/*
324 	 * When free pages are below this point, additional steps are taken
325 	 * when reading the number of free pages to avoid per-cpu counter
326 	 * drift allowing watermarks to be breached
327 	 */
328 	unsigned long percpu_drift_mark;
329 
330 	/*
331 	 * We don't know if the memory that we're going to allocate will be freeable
332 	 * or/and it will be released eventually, so to avoid totally wasting several
333 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
334 	 * to run OOM on the lower zones despite there's tons of freeable ram
335 	 * on the higher zones). This array is recalculated at runtime if the
336 	 * sysctl_lowmem_reserve_ratio sysctl changes.
337 	 */
338 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
339 
340 	/*
341 	 * This is a per-zone reserve of pages that should not be
342 	 * considered dirtyable memory.
343 	 */
344 	unsigned long		dirty_balance_reserve;
345 
346 #ifdef CONFIG_NUMA
347 	int node;
348 	/*
349 	 * zone reclaim becomes active if more unmapped pages exist.
350 	 */
351 	unsigned long		min_unmapped_pages;
352 	unsigned long		min_slab_pages;
353 #endif
354 	struct per_cpu_pageset __percpu *pageset;
355 	/*
356 	 * free areas of different sizes
357 	 */
358 	spinlock_t		lock;
359 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
360 	/* Set to true when the PG_migrate_skip bits should be cleared */
361 	bool			compact_blockskip_flush;
362 
363 	/* pfns where compaction scanners should start */
364 	unsigned long		compact_cached_free_pfn;
365 	unsigned long		compact_cached_migrate_pfn;
366 #endif
367 #ifdef CONFIG_MEMORY_HOTPLUG
368 	/* see spanned/present_pages for more description */
369 	seqlock_t		span_seqlock;
370 #endif
371 	struct free_area	free_area[MAX_ORDER];
372 
373 #ifndef CONFIG_SPARSEMEM
374 	/*
375 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
376 	 * In SPARSEMEM, this map is stored in struct mem_section
377 	 */
378 	unsigned long		*pageblock_flags;
379 #endif /* CONFIG_SPARSEMEM */
380 
381 #ifdef CONFIG_COMPACTION
382 	/*
383 	 * On compaction failure, 1<<compact_defer_shift compactions
384 	 * are skipped before trying again. The number attempted since
385 	 * last failure is tracked with compact_considered.
386 	 */
387 	unsigned int		compact_considered;
388 	unsigned int		compact_defer_shift;
389 	int			compact_order_failed;
390 #endif
391 
392 	ZONE_PADDING(_pad1_)
393 
394 	/* Fields commonly accessed by the page reclaim scanner */
395 	spinlock_t		lru_lock;
396 	struct lruvec		lruvec;
397 
398 	/* Evictions & activations on the inactive file list */
399 	atomic_long_t		inactive_age;
400 
401 	unsigned long		pages_scanned;	   /* since last reclaim */
402 	unsigned long		flags;		   /* zone flags, see below */
403 
404 	/* Zone statistics */
405 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
406 
407 	/*
408 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
409 	 * this zone's LRU.  Maintained by the pageout code.
410 	 */
411 	unsigned int inactive_ratio;
412 
413 
414 	ZONE_PADDING(_pad2_)
415 	/* Rarely used or read-mostly fields */
416 
417 	/*
418 	 * wait_table		-- the array holding the hash table
419 	 * wait_table_hash_nr_entries	-- the size of the hash table array
420 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
421 	 *
422 	 * The purpose of all these is to keep track of the people
423 	 * waiting for a page to become available and make them
424 	 * runnable again when possible. The trouble is that this
425 	 * consumes a lot of space, especially when so few things
426 	 * wait on pages at a given time. So instead of using
427 	 * per-page waitqueues, we use a waitqueue hash table.
428 	 *
429 	 * The bucket discipline is to sleep on the same queue when
430 	 * colliding and wake all in that wait queue when removing.
431 	 * When something wakes, it must check to be sure its page is
432 	 * truly available, a la thundering herd. The cost of a
433 	 * collision is great, but given the expected load of the
434 	 * table, they should be so rare as to be outweighed by the
435 	 * benefits from the saved space.
436 	 *
437 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
438 	 * primary users of these fields, and in mm/page_alloc.c
439 	 * free_area_init_core() performs the initialization of them.
440 	 */
441 	wait_queue_head_t	* wait_table;
442 	unsigned long		wait_table_hash_nr_entries;
443 	unsigned long		wait_table_bits;
444 
445 	/*
446 	 * Discontig memory support fields.
447 	 */
448 	struct pglist_data	*zone_pgdat;
449 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
450 	unsigned long		zone_start_pfn;
451 
452 	/*
453 	 * spanned_pages is the total pages spanned by the zone, including
454 	 * holes, which is calculated as:
455 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
456 	 *
457 	 * present_pages is physical pages existing within the zone, which
458 	 * is calculated as:
459 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
460 	 *
461 	 * managed_pages is present pages managed by the buddy system, which
462 	 * is calculated as (reserved_pages includes pages allocated by the
463 	 * bootmem allocator):
464 	 *	managed_pages = present_pages - reserved_pages;
465 	 *
466 	 * So present_pages may be used by memory hotplug or memory power
467 	 * management logic to figure out unmanaged pages by checking
468 	 * (present_pages - managed_pages). And managed_pages should be used
469 	 * by page allocator and vm scanner to calculate all kinds of watermarks
470 	 * and thresholds.
471 	 *
472 	 * Locking rules:
473 	 *
474 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
475 	 * It is a seqlock because it has to be read outside of zone->lock,
476 	 * and it is done in the main allocator path.  But, it is written
477 	 * quite infrequently.
478 	 *
479 	 * The span_seq lock is declared along with zone->lock because it is
480 	 * frequently read in proximity to zone->lock.  It's good to
481 	 * give them a chance of being in the same cacheline.
482 	 *
483 	 * Write access to present_pages at runtime should be protected by
484 	 * lock_memory_hotplug()/unlock_memory_hotplug().  Any reader who can't
485 	 * tolerant drift of present_pages should hold memory hotplug lock to
486 	 * get a stable value.
487 	 *
488 	 * Read access to managed_pages should be safe because it's unsigned
489 	 * long. Write access to zone->managed_pages and totalram_pages are
490 	 * protected by managed_page_count_lock at runtime. Idealy only
491 	 * adjust_managed_page_count() should be used instead of directly
492 	 * touching zone->managed_pages and totalram_pages.
493 	 */
494 	unsigned long		spanned_pages;
495 	unsigned long		present_pages;
496 	unsigned long		managed_pages;
497 
498 	/*
499 	 * Number of MIGRATE_RESEVE page block. To maintain for just
500 	 * optimization. Protected by zone->lock.
501 	 */
502 	int			nr_migrate_reserve_block;
503 
504 	/*
505 	 * rarely used fields:
506 	 */
507 	const char		*name;
508 } ____cacheline_internodealigned_in_smp;
509 
510 typedef enum {
511 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
512 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
513 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
514 					 * a congested BDI
515 					 */
516 	ZONE_TAIL_LRU_DIRTY,		/* reclaim scanning has recently found
517 					 * many dirty file pages at the tail
518 					 * of the LRU.
519 					 */
520 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
521 					 * many pages under writeback
522 					 */
523 } zone_flags_t;
524 
525 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
526 {
527 	set_bit(flag, &zone->flags);
528 }
529 
530 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
531 {
532 	return test_and_set_bit(flag, &zone->flags);
533 }
534 
535 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
536 {
537 	clear_bit(flag, &zone->flags);
538 }
539 
540 static inline int zone_is_reclaim_congested(const struct zone *zone)
541 {
542 	return test_bit(ZONE_CONGESTED, &zone->flags);
543 }
544 
545 static inline int zone_is_reclaim_dirty(const struct zone *zone)
546 {
547 	return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
548 }
549 
550 static inline int zone_is_reclaim_writeback(const struct zone *zone)
551 {
552 	return test_bit(ZONE_WRITEBACK, &zone->flags);
553 }
554 
555 static inline int zone_is_reclaim_locked(const struct zone *zone)
556 {
557 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
558 }
559 
560 static inline int zone_is_oom_locked(const struct zone *zone)
561 {
562 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
563 }
564 
565 static inline unsigned long zone_end_pfn(const struct zone *zone)
566 {
567 	return zone->zone_start_pfn + zone->spanned_pages;
568 }
569 
570 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
571 {
572 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
573 }
574 
575 static inline bool zone_is_initialized(struct zone *zone)
576 {
577 	return !!zone->wait_table;
578 }
579 
580 static inline bool zone_is_empty(struct zone *zone)
581 {
582 	return zone->spanned_pages == 0;
583 }
584 
585 /*
586  * The "priority" of VM scanning is how much of the queues we will scan in one
587  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
588  * queues ("queue_length >> 12") during an aging round.
589  */
590 #define DEF_PRIORITY 12
591 
592 /* Maximum number of zones on a zonelist */
593 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
594 
595 #ifdef CONFIG_NUMA
596 
597 /*
598  * The NUMA zonelists are doubled because we need zonelists that restrict the
599  * allocations to a single node for __GFP_THISNODE.
600  *
601  * [0]	: Zonelist with fallback
602  * [1]	: No fallback (__GFP_THISNODE)
603  */
604 #define MAX_ZONELISTS 2
605 
606 
607 /*
608  * We cache key information from each zonelist for smaller cache
609  * footprint when scanning for free pages in get_page_from_freelist().
610  *
611  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
612  *    up short of free memory since the last time (last_fullzone_zap)
613  *    we zero'd fullzones.
614  * 2) The array z_to_n[] maps each zone in the zonelist to its node
615  *    id, so that we can efficiently evaluate whether that node is
616  *    set in the current tasks mems_allowed.
617  *
618  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
619  * indexed by a zones offset in the zonelist zones[] array.
620  *
621  * The get_page_from_freelist() routine does two scans.  During the
622  * first scan, we skip zones whose corresponding bit in 'fullzones'
623  * is set or whose corresponding node in current->mems_allowed (which
624  * comes from cpusets) is not set.  During the second scan, we bypass
625  * this zonelist_cache, to ensure we look methodically at each zone.
626  *
627  * Once per second, we zero out (zap) fullzones, forcing us to
628  * reconsider nodes that might have regained more free memory.
629  * The field last_full_zap is the time we last zapped fullzones.
630  *
631  * This mechanism reduces the amount of time we waste repeatedly
632  * reexaming zones for free memory when they just came up low on
633  * memory momentarilly ago.
634  *
635  * The zonelist_cache struct members logically belong in struct
636  * zonelist.  However, the mempolicy zonelists constructed for
637  * MPOL_BIND are intentionally variable length (and usually much
638  * shorter).  A general purpose mechanism for handling structs with
639  * multiple variable length members is more mechanism than we want
640  * here.  We resort to some special case hackery instead.
641  *
642  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
643  * part because they are shorter), so we put the fixed length stuff
644  * at the front of the zonelist struct, ending in a variable length
645  * zones[], as is needed by MPOL_BIND.
646  *
647  * Then we put the optional zonelist cache on the end of the zonelist
648  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
649  * the fixed length portion at the front of the struct.  This pointer
650  * both enables us to find the zonelist cache, and in the case of
651  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
652  * to know that the zonelist cache is not there.
653  *
654  * The end result is that struct zonelists come in two flavors:
655  *  1) The full, fixed length version, shown below, and
656  *  2) The custom zonelists for MPOL_BIND.
657  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
658  *
659  * Even though there may be multiple CPU cores on a node modifying
660  * fullzones or last_full_zap in the same zonelist_cache at the same
661  * time, we don't lock it.  This is just hint data - if it is wrong now
662  * and then, the allocator will still function, perhaps a bit slower.
663  */
664 
665 
666 struct zonelist_cache {
667 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
668 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
669 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
670 };
671 #else
672 #define MAX_ZONELISTS 1
673 struct zonelist_cache;
674 #endif
675 
676 /*
677  * This struct contains information about a zone in a zonelist. It is stored
678  * here to avoid dereferences into large structures and lookups of tables
679  */
680 struct zoneref {
681 	struct zone *zone;	/* Pointer to actual zone */
682 	int zone_idx;		/* zone_idx(zoneref->zone) */
683 };
684 
685 /*
686  * One allocation request operates on a zonelist. A zonelist
687  * is a list of zones, the first one is the 'goal' of the
688  * allocation, the other zones are fallback zones, in decreasing
689  * priority.
690  *
691  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
692  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
693  * *
694  * To speed the reading of the zonelist, the zonerefs contain the zone index
695  * of the entry being read. Helper functions to access information given
696  * a struct zoneref are
697  *
698  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
699  * zonelist_zone_idx()	- Return the index of the zone for an entry
700  * zonelist_node_idx()	- Return the index of the node for an entry
701  */
702 struct zonelist {
703 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
704 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
705 #ifdef CONFIG_NUMA
706 	struct zonelist_cache zlcache;			     // optional ...
707 #endif
708 };
709 
710 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
711 struct node_active_region {
712 	unsigned long start_pfn;
713 	unsigned long end_pfn;
714 	int nid;
715 };
716 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
717 
718 #ifndef CONFIG_DISCONTIGMEM
719 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
720 extern struct page *mem_map;
721 #endif
722 
723 /*
724  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
725  * (mostly NUMA machines?) to denote a higher-level memory zone than the
726  * zone denotes.
727  *
728  * On NUMA machines, each NUMA node would have a pg_data_t to describe
729  * it's memory layout.
730  *
731  * Memory statistics and page replacement data structures are maintained on a
732  * per-zone basis.
733  */
734 struct bootmem_data;
735 typedef struct pglist_data {
736 	struct zone node_zones[MAX_NR_ZONES];
737 	struct zonelist node_zonelists[MAX_ZONELISTS];
738 	int nr_zones;
739 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
740 	struct page *node_mem_map;
741 #ifdef CONFIG_MEMCG
742 	struct page_cgroup *node_page_cgroup;
743 #endif
744 #endif
745 #ifndef CONFIG_NO_BOOTMEM
746 	struct bootmem_data *bdata;
747 #endif
748 #ifdef CONFIG_MEMORY_HOTPLUG
749 	/*
750 	 * Must be held any time you expect node_start_pfn, node_present_pages
751 	 * or node_spanned_pages stay constant.  Holding this will also
752 	 * guarantee that any pfn_valid() stays that way.
753 	 *
754 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
755 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
756 	 *
757 	 * Nests above zone->lock and zone->span_seqlock
758 	 */
759 	spinlock_t node_size_lock;
760 #endif
761 	unsigned long node_start_pfn;
762 	unsigned long node_present_pages; /* total number of physical pages */
763 	unsigned long node_spanned_pages; /* total size of physical page
764 					     range, including holes */
765 	int node_id;
766 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
767 	wait_queue_head_t kswapd_wait;
768 	wait_queue_head_t pfmemalloc_wait;
769 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
770 	int kswapd_max_order;
771 	enum zone_type classzone_idx;
772 #ifdef CONFIG_NUMA_BALANCING
773 	/* Lock serializing the migrate rate limiting window */
774 	spinlock_t numabalancing_migrate_lock;
775 
776 	/* Rate limiting time interval */
777 	unsigned long numabalancing_migrate_next_window;
778 
779 	/* Number of pages migrated during the rate limiting time interval */
780 	unsigned long numabalancing_migrate_nr_pages;
781 #endif
782 } pg_data_t;
783 
784 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
785 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
786 #ifdef CONFIG_FLAT_NODE_MEM_MAP
787 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
788 #else
789 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
790 #endif
791 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
792 
793 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
794 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
795 
796 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
797 {
798 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
799 }
800 
801 static inline bool pgdat_is_empty(pg_data_t *pgdat)
802 {
803 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
804 }
805 
806 #include <linux/memory_hotplug.h>
807 
808 extern struct mutex zonelists_mutex;
809 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
810 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
811 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
812 		int classzone_idx, int alloc_flags);
813 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
814 		int classzone_idx, int alloc_flags);
815 enum memmap_context {
816 	MEMMAP_EARLY,
817 	MEMMAP_HOTPLUG,
818 };
819 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
820 				     unsigned long size,
821 				     enum memmap_context context);
822 
823 extern void lruvec_init(struct lruvec *lruvec);
824 
825 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
826 {
827 #ifdef CONFIG_MEMCG
828 	return lruvec->zone;
829 #else
830 	return container_of(lruvec, struct zone, lruvec);
831 #endif
832 }
833 
834 #ifdef CONFIG_HAVE_MEMORY_PRESENT
835 void memory_present(int nid, unsigned long start, unsigned long end);
836 #else
837 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
838 #endif
839 
840 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
841 int local_memory_node(int node_id);
842 #else
843 static inline int local_memory_node(int node_id) { return node_id; };
844 #endif
845 
846 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
847 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
848 #endif
849 
850 /*
851  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
852  */
853 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
854 
855 static inline int populated_zone(struct zone *zone)
856 {
857 	return (!!zone->present_pages);
858 }
859 
860 extern int movable_zone;
861 
862 static inline int zone_movable_is_highmem(void)
863 {
864 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
865 	return movable_zone == ZONE_HIGHMEM;
866 #else
867 	return 0;
868 #endif
869 }
870 
871 static inline int is_highmem_idx(enum zone_type idx)
872 {
873 #ifdef CONFIG_HIGHMEM
874 	return (idx == ZONE_HIGHMEM ||
875 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
876 #else
877 	return 0;
878 #endif
879 }
880 
881 /**
882  * is_highmem - helper function to quickly check if a struct zone is a
883  *              highmem zone or not.  This is an attempt to keep references
884  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
885  * @zone - pointer to struct zone variable
886  */
887 static inline int is_highmem(struct zone *zone)
888 {
889 #ifdef CONFIG_HIGHMEM
890 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
891 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
892 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
893 		zone_movable_is_highmem());
894 #else
895 	return 0;
896 #endif
897 }
898 
899 /* These two functions are used to setup the per zone pages min values */
900 struct ctl_table;
901 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
902 					void __user *, size_t *, loff_t *);
903 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
904 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
905 					void __user *, size_t *, loff_t *);
906 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
907 					void __user *, size_t *, loff_t *);
908 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
909 			void __user *, size_t *, loff_t *);
910 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
911 			void __user *, size_t *, loff_t *);
912 
913 extern int numa_zonelist_order_handler(struct ctl_table *, int,
914 			void __user *, size_t *, loff_t *);
915 extern char numa_zonelist_order[];
916 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
917 
918 #ifndef CONFIG_NEED_MULTIPLE_NODES
919 
920 extern struct pglist_data contig_page_data;
921 #define NODE_DATA(nid)		(&contig_page_data)
922 #define NODE_MEM_MAP(nid)	mem_map
923 
924 #else /* CONFIG_NEED_MULTIPLE_NODES */
925 
926 #include <asm/mmzone.h>
927 
928 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
929 
930 extern struct pglist_data *first_online_pgdat(void);
931 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
932 extern struct zone *next_zone(struct zone *zone);
933 
934 /**
935  * for_each_online_pgdat - helper macro to iterate over all online nodes
936  * @pgdat - pointer to a pg_data_t variable
937  */
938 #define for_each_online_pgdat(pgdat)			\
939 	for (pgdat = first_online_pgdat();		\
940 	     pgdat;					\
941 	     pgdat = next_online_pgdat(pgdat))
942 /**
943  * for_each_zone - helper macro to iterate over all memory zones
944  * @zone - pointer to struct zone variable
945  *
946  * The user only needs to declare the zone variable, for_each_zone
947  * fills it in.
948  */
949 #define for_each_zone(zone)			        \
950 	for (zone = (first_online_pgdat())->node_zones; \
951 	     zone;					\
952 	     zone = next_zone(zone))
953 
954 #define for_each_populated_zone(zone)		        \
955 	for (zone = (first_online_pgdat())->node_zones; \
956 	     zone;					\
957 	     zone = next_zone(zone))			\
958 		if (!populated_zone(zone))		\
959 			; /* do nothing */		\
960 		else
961 
962 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
963 {
964 	return zoneref->zone;
965 }
966 
967 static inline int zonelist_zone_idx(struct zoneref *zoneref)
968 {
969 	return zoneref->zone_idx;
970 }
971 
972 static inline int zonelist_node_idx(struct zoneref *zoneref)
973 {
974 #ifdef CONFIG_NUMA
975 	/* zone_to_nid not available in this context */
976 	return zoneref->zone->node;
977 #else
978 	return 0;
979 #endif /* CONFIG_NUMA */
980 }
981 
982 /**
983  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
984  * @z - The cursor used as a starting point for the search
985  * @highest_zoneidx - The zone index of the highest zone to return
986  * @nodes - An optional nodemask to filter the zonelist with
987  * @zone - The first suitable zone found is returned via this parameter
988  *
989  * This function returns the next zone at or below a given zone index that is
990  * within the allowed nodemask using a cursor as the starting point for the
991  * search. The zoneref returned is a cursor that represents the current zone
992  * being examined. It should be advanced by one before calling
993  * next_zones_zonelist again.
994  */
995 struct zoneref *next_zones_zonelist(struct zoneref *z,
996 					enum zone_type highest_zoneidx,
997 					nodemask_t *nodes,
998 					struct zone **zone);
999 
1000 /**
1001  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1002  * @zonelist - The zonelist to search for a suitable zone
1003  * @highest_zoneidx - The zone index of the highest zone to return
1004  * @nodes - An optional nodemask to filter the zonelist with
1005  * @zone - The first suitable zone found is returned via this parameter
1006  *
1007  * This function returns the first zone at or below a given zone index that is
1008  * within the allowed nodemask. The zoneref returned is a cursor that can be
1009  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1010  * one before calling.
1011  */
1012 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1013 					enum zone_type highest_zoneidx,
1014 					nodemask_t *nodes,
1015 					struct zone **zone)
1016 {
1017 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1018 								zone);
1019 }
1020 
1021 /**
1022  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1023  * @zone - The current zone in the iterator
1024  * @z - The current pointer within zonelist->zones being iterated
1025  * @zlist - The zonelist being iterated
1026  * @highidx - The zone index of the highest zone to return
1027  * @nodemask - Nodemask allowed by the allocator
1028  *
1029  * This iterator iterates though all zones at or below a given zone index and
1030  * within a given nodemask
1031  */
1032 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1033 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1034 		zone;							\
1035 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1036 
1037 /**
1038  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1039  * @zone - The current zone in the iterator
1040  * @z - The current pointer within zonelist->zones being iterated
1041  * @zlist - The zonelist being iterated
1042  * @highidx - The zone index of the highest zone to return
1043  *
1044  * This iterator iterates though all zones at or below a given zone index.
1045  */
1046 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1047 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1048 
1049 #ifdef CONFIG_SPARSEMEM
1050 #include <asm/sparsemem.h>
1051 #endif
1052 
1053 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1054 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1055 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1056 {
1057 	return 0;
1058 }
1059 #endif
1060 
1061 #ifdef CONFIG_FLATMEM
1062 #define pfn_to_nid(pfn)		(0)
1063 #endif
1064 
1065 #ifdef CONFIG_SPARSEMEM
1066 
1067 /*
1068  * SECTION_SHIFT    		#bits space required to store a section #
1069  *
1070  * PA_SECTION_SHIFT		physical address to/from section number
1071  * PFN_SECTION_SHIFT		pfn to/from section number
1072  */
1073 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1074 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1075 
1076 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1077 
1078 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1079 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1080 
1081 #define SECTION_BLOCKFLAGS_BITS \
1082 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1083 
1084 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1085 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1086 #endif
1087 
1088 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1089 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1090 
1091 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1092 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1093 
1094 struct page;
1095 struct page_cgroup;
1096 struct mem_section {
1097 	/*
1098 	 * This is, logically, a pointer to an array of struct
1099 	 * pages.  However, it is stored with some other magic.
1100 	 * (see sparse.c::sparse_init_one_section())
1101 	 *
1102 	 * Additionally during early boot we encode node id of
1103 	 * the location of the section here to guide allocation.
1104 	 * (see sparse.c::memory_present())
1105 	 *
1106 	 * Making it a UL at least makes someone do a cast
1107 	 * before using it wrong.
1108 	 */
1109 	unsigned long section_mem_map;
1110 
1111 	/* See declaration of similar field in struct zone */
1112 	unsigned long *pageblock_flags;
1113 #ifdef CONFIG_MEMCG
1114 	/*
1115 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1116 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1117 	 */
1118 	struct page_cgroup *page_cgroup;
1119 	unsigned long pad;
1120 #endif
1121 	/*
1122 	 * WARNING: mem_section must be a power-of-2 in size for the
1123 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1124 	 */
1125 };
1126 
1127 #ifdef CONFIG_SPARSEMEM_EXTREME
1128 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1129 #else
1130 #define SECTIONS_PER_ROOT	1
1131 #endif
1132 
1133 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1134 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1135 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1136 
1137 #ifdef CONFIG_SPARSEMEM_EXTREME
1138 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1139 #else
1140 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1141 #endif
1142 
1143 static inline struct mem_section *__nr_to_section(unsigned long nr)
1144 {
1145 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1146 		return NULL;
1147 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1148 }
1149 extern int __section_nr(struct mem_section* ms);
1150 extern unsigned long usemap_size(void);
1151 
1152 /*
1153  * We use the lower bits of the mem_map pointer to store
1154  * a little bit of information.  There should be at least
1155  * 3 bits here due to 32-bit alignment.
1156  */
1157 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1158 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1159 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1160 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1161 #define SECTION_NID_SHIFT	2
1162 
1163 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1164 {
1165 	unsigned long map = section->section_mem_map;
1166 	map &= SECTION_MAP_MASK;
1167 	return (struct page *)map;
1168 }
1169 
1170 static inline int present_section(struct mem_section *section)
1171 {
1172 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1173 }
1174 
1175 static inline int present_section_nr(unsigned long nr)
1176 {
1177 	return present_section(__nr_to_section(nr));
1178 }
1179 
1180 static inline int valid_section(struct mem_section *section)
1181 {
1182 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1183 }
1184 
1185 static inline int valid_section_nr(unsigned long nr)
1186 {
1187 	return valid_section(__nr_to_section(nr));
1188 }
1189 
1190 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1191 {
1192 	return __nr_to_section(pfn_to_section_nr(pfn));
1193 }
1194 
1195 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1196 static inline int pfn_valid(unsigned long pfn)
1197 {
1198 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1199 		return 0;
1200 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1201 }
1202 #endif
1203 
1204 static inline int pfn_present(unsigned long pfn)
1205 {
1206 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1207 		return 0;
1208 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1209 }
1210 
1211 /*
1212  * These are _only_ used during initialisation, therefore they
1213  * can use __initdata ...  They could have names to indicate
1214  * this restriction.
1215  */
1216 #ifdef CONFIG_NUMA
1217 #define pfn_to_nid(pfn)							\
1218 ({									\
1219 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1220 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1221 })
1222 #else
1223 #define pfn_to_nid(pfn)		(0)
1224 #endif
1225 
1226 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1227 void sparse_init(void);
1228 #else
1229 #define sparse_init()	do {} while (0)
1230 #define sparse_index_init(_sec, _nid)  do {} while (0)
1231 #endif /* CONFIG_SPARSEMEM */
1232 
1233 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1234 bool early_pfn_in_nid(unsigned long pfn, int nid);
1235 #else
1236 #define early_pfn_in_nid(pfn, nid)	(1)
1237 #endif
1238 
1239 #ifndef early_pfn_valid
1240 #define early_pfn_valid(pfn)	(1)
1241 #endif
1242 
1243 void memory_present(int nid, unsigned long start, unsigned long end);
1244 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1245 
1246 /*
1247  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1248  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1249  * pfn_valid_within() should be used in this case; we optimise this away
1250  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1251  */
1252 #ifdef CONFIG_HOLES_IN_ZONE
1253 #define pfn_valid_within(pfn) pfn_valid(pfn)
1254 #else
1255 #define pfn_valid_within(pfn) (1)
1256 #endif
1257 
1258 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1259 /*
1260  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1261  * associated with it or not. In FLATMEM, it is expected that holes always
1262  * have valid memmap as long as there is valid PFNs either side of the hole.
1263  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1264  * entire section.
1265  *
1266  * However, an ARM, and maybe other embedded architectures in the future
1267  * free memmap backing holes to save memory on the assumption the memmap is
1268  * never used. The page_zone linkages are then broken even though pfn_valid()
1269  * returns true. A walker of the full memmap must then do this additional
1270  * check to ensure the memmap they are looking at is sane by making sure
1271  * the zone and PFN linkages are still valid. This is expensive, but walkers
1272  * of the full memmap are extremely rare.
1273  */
1274 int memmap_valid_within(unsigned long pfn,
1275 					struct page *page, struct zone *zone);
1276 #else
1277 static inline int memmap_valid_within(unsigned long pfn,
1278 					struct page *page, struct zone *zone)
1279 {
1280 	return 1;
1281 }
1282 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1283 
1284 #endif /* !__GENERATING_BOUNDS.H */
1285 #endif /* !__ASSEMBLY__ */
1286 #endif /* _LINUX_MMZONE_H */
1287