xref: /linux-6.15/include/linux/mmzone.h (revision b889fcf6)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 	MIGRATE_ISOLATE,	/* can't allocate from here */
61 	MIGRATE_TYPES
62 };
63 
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #else
67 #  define is_migrate_cma(migratetype) false
68 #endif
69 
70 #define for_each_migratetype_order(order, type) \
71 	for (order = 0; order < MAX_ORDER; order++) \
72 		for (type = 0; type < MIGRATE_TYPES; type++)
73 
74 extern int page_group_by_mobility_disabled;
75 
76 static inline int get_pageblock_migratetype(struct page *page)
77 {
78 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
79 }
80 
81 struct free_area {
82 	struct list_head	free_list[MIGRATE_TYPES];
83 	unsigned long		nr_free;
84 };
85 
86 struct pglist_data;
87 
88 /*
89  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
90  * So add a wild amount of padding here to ensure that they fall into separate
91  * cachelines.  There are very few zone structures in the machine, so space
92  * consumption is not a concern here.
93  */
94 #if defined(CONFIG_SMP)
95 struct zone_padding {
96 	char x[0];
97 } ____cacheline_internodealigned_in_smp;
98 #define ZONE_PADDING(name)	struct zone_padding name;
99 #else
100 #define ZONE_PADDING(name)
101 #endif
102 
103 enum zone_stat_item {
104 	/* First 128 byte cacheline (assuming 64 bit words) */
105 	NR_FREE_PAGES,
106 	NR_LRU_BASE,
107 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
108 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
109 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
110 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
111 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
112 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
113 	NR_ANON_PAGES,	/* Mapped anonymous pages */
114 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
115 			   only modified from process context */
116 	NR_FILE_PAGES,
117 	NR_FILE_DIRTY,
118 	NR_WRITEBACK,
119 	NR_SLAB_RECLAIMABLE,
120 	NR_SLAB_UNRECLAIMABLE,
121 	NR_PAGETABLE,		/* used for pagetables */
122 	NR_KERNEL_STACK,
123 	/* Second 128 byte cacheline */
124 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
125 	NR_BOUNCE,
126 	NR_VMSCAN_WRITE,
127 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
128 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
129 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
130 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
131 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
132 	NR_DIRTIED,		/* page dirtyings since bootup */
133 	NR_WRITTEN,		/* page writings since bootup */
134 #ifdef CONFIG_NUMA
135 	NUMA_HIT,		/* allocated in intended node */
136 	NUMA_MISS,		/* allocated in non intended node */
137 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
138 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
139 	NUMA_LOCAL,		/* allocation from local node */
140 	NUMA_OTHER,		/* allocation from other node */
141 #endif
142 	NR_ANON_TRANSPARENT_HUGEPAGES,
143 	NR_FREE_CMA_PAGES,
144 	NR_VM_ZONE_STAT_ITEMS };
145 
146 /*
147  * We do arithmetic on the LRU lists in various places in the code,
148  * so it is important to keep the active lists LRU_ACTIVE higher in
149  * the array than the corresponding inactive lists, and to keep
150  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
151  *
152  * This has to be kept in sync with the statistics in zone_stat_item
153  * above and the descriptions in vmstat_text in mm/vmstat.c
154  */
155 #define LRU_BASE 0
156 #define LRU_ACTIVE 1
157 #define LRU_FILE 2
158 
159 enum lru_list {
160 	LRU_INACTIVE_ANON = LRU_BASE,
161 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
162 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
163 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
164 	LRU_UNEVICTABLE,
165 	NR_LRU_LISTS
166 };
167 
168 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
169 
170 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
171 
172 static inline int is_file_lru(enum lru_list lru)
173 {
174 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
175 }
176 
177 static inline int is_active_lru(enum lru_list lru)
178 {
179 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
180 }
181 
182 static inline int is_unevictable_lru(enum lru_list lru)
183 {
184 	return (lru == LRU_UNEVICTABLE);
185 }
186 
187 struct zone_reclaim_stat {
188 	/*
189 	 * The pageout code in vmscan.c keeps track of how many of the
190 	 * mem/swap backed and file backed pages are referenced.
191 	 * The higher the rotated/scanned ratio, the more valuable
192 	 * that cache is.
193 	 *
194 	 * The anon LRU stats live in [0], file LRU stats in [1]
195 	 */
196 	unsigned long		recent_rotated[2];
197 	unsigned long		recent_scanned[2];
198 };
199 
200 struct lruvec {
201 	struct list_head lists[NR_LRU_LISTS];
202 	struct zone_reclaim_stat reclaim_stat;
203 #ifdef CONFIG_MEMCG
204 	struct zone *zone;
205 #endif
206 };
207 
208 /* Mask used at gathering information at once (see memcontrol.c) */
209 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
210 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
211 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
212 
213 /* Isolate clean file */
214 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
215 /* Isolate unmapped file */
216 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
217 /* Isolate for asynchronous migration */
218 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
219 /* Isolate unevictable pages */
220 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
221 
222 /* LRU Isolation modes. */
223 typedef unsigned __bitwise__ isolate_mode_t;
224 
225 enum zone_watermarks {
226 	WMARK_MIN,
227 	WMARK_LOW,
228 	WMARK_HIGH,
229 	NR_WMARK
230 };
231 
232 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235 
236 struct per_cpu_pages {
237 	int count;		/* number of pages in the list */
238 	int high;		/* high watermark, emptying needed */
239 	int batch;		/* chunk size for buddy add/remove */
240 
241 	/* Lists of pages, one per migrate type stored on the pcp-lists */
242 	struct list_head lists[MIGRATE_PCPTYPES];
243 };
244 
245 struct per_cpu_pageset {
246 	struct per_cpu_pages pcp;
247 #ifdef CONFIG_NUMA
248 	s8 expire;
249 #endif
250 #ifdef CONFIG_SMP
251 	s8 stat_threshold;
252 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253 #endif
254 };
255 
256 #endif /* !__GENERATING_BOUNDS.H */
257 
258 enum zone_type {
259 #ifdef CONFIG_ZONE_DMA
260 	/*
261 	 * ZONE_DMA is used when there are devices that are not able
262 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 	 * carve out the portion of memory that is needed for these devices.
264 	 * The range is arch specific.
265 	 *
266 	 * Some examples
267 	 *
268 	 * Architecture		Limit
269 	 * ---------------------------
270 	 * parisc, ia64, sparc	<4G
271 	 * s390			<2G
272 	 * arm			Various
273 	 * alpha		Unlimited or 0-16MB.
274 	 *
275 	 * i386, x86_64 and multiple other arches
276 	 * 			<16M.
277 	 */
278 	ZONE_DMA,
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	/*
282 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 	 * only able to do DMA to the lower 16M but also 32 bit devices that
284 	 * can only do DMA areas below 4G.
285 	 */
286 	ZONE_DMA32,
287 #endif
288 	/*
289 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 	 * performed on pages in ZONE_NORMAL if the DMA devices support
291 	 * transfers to all addressable memory.
292 	 */
293 	ZONE_NORMAL,
294 #ifdef CONFIG_HIGHMEM
295 	/*
296 	 * A memory area that is only addressable by the kernel through
297 	 * mapping portions into its own address space. This is for example
298 	 * used by i386 to allow the kernel to address the memory beyond
299 	 * 900MB. The kernel will set up special mappings (page
300 	 * table entries on i386) for each page that the kernel needs to
301 	 * access.
302 	 */
303 	ZONE_HIGHMEM,
304 #endif
305 	ZONE_MOVABLE,
306 	__MAX_NR_ZONES
307 };
308 
309 #ifndef __GENERATING_BOUNDS_H
310 
311 /*
312  * When a memory allocation must conform to specific limitations (such
313  * as being suitable for DMA) the caller will pass in hints to the
314  * allocator in the gfp_mask, in the zone modifier bits.  These bits
315  * are used to select a priority ordered list of memory zones which
316  * match the requested limits. See gfp_zone() in include/linux/gfp.h
317  */
318 
319 #if MAX_NR_ZONES < 2
320 #define ZONES_SHIFT 0
321 #elif MAX_NR_ZONES <= 2
322 #define ZONES_SHIFT 1
323 #elif MAX_NR_ZONES <= 4
324 #define ZONES_SHIFT 2
325 #else
326 #error ZONES_SHIFT -- too many zones configured adjust calculation
327 #endif
328 
329 struct zone {
330 	/* Fields commonly accessed by the page allocator */
331 
332 	/* zone watermarks, access with *_wmark_pages(zone) macros */
333 	unsigned long watermark[NR_WMARK];
334 
335 	/*
336 	 * When free pages are below this point, additional steps are taken
337 	 * when reading the number of free pages to avoid per-cpu counter
338 	 * drift allowing watermarks to be breached
339 	 */
340 	unsigned long percpu_drift_mark;
341 
342 	/*
343 	 * We don't know if the memory that we're going to allocate will be freeable
344 	 * or/and it will be released eventually, so to avoid totally wasting several
345 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 	 * to run OOM on the lower zones despite there's tons of freeable ram
347 	 * on the higher zones). This array is recalculated at runtime if the
348 	 * sysctl_lowmem_reserve_ratio sysctl changes.
349 	 */
350 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
351 
352 	/*
353 	 * This is a per-zone reserve of pages that should not be
354 	 * considered dirtyable memory.
355 	 */
356 	unsigned long		dirty_balance_reserve;
357 
358 #ifdef CONFIG_NUMA
359 	int node;
360 	/*
361 	 * zone reclaim becomes active if more unmapped pages exist.
362 	 */
363 	unsigned long		min_unmapped_pages;
364 	unsigned long		min_slab_pages;
365 #endif
366 	struct per_cpu_pageset __percpu *pageset;
367 	/*
368 	 * free areas of different sizes
369 	 */
370 	spinlock_t		lock;
371 	int                     all_unreclaimable; /* All pages pinned */
372 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
373 	/* Set to true when the PG_migrate_skip bits should be cleared */
374 	bool			compact_blockskip_flush;
375 
376 	/* pfns where compaction scanners should start */
377 	unsigned long		compact_cached_free_pfn;
378 	unsigned long		compact_cached_migrate_pfn;
379 #endif
380 #ifdef CONFIG_MEMORY_HOTPLUG
381 	/* see spanned/present_pages for more description */
382 	seqlock_t		span_seqlock;
383 #endif
384 	struct free_area	free_area[MAX_ORDER];
385 
386 #ifndef CONFIG_SPARSEMEM
387 	/*
388 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
389 	 * In SPARSEMEM, this map is stored in struct mem_section
390 	 */
391 	unsigned long		*pageblock_flags;
392 #endif /* CONFIG_SPARSEMEM */
393 
394 #ifdef CONFIG_COMPACTION
395 	/*
396 	 * On compaction failure, 1<<compact_defer_shift compactions
397 	 * are skipped before trying again. The number attempted since
398 	 * last failure is tracked with compact_considered.
399 	 */
400 	unsigned int		compact_considered;
401 	unsigned int		compact_defer_shift;
402 	int			compact_order_failed;
403 #endif
404 
405 	ZONE_PADDING(_pad1_)
406 
407 	/* Fields commonly accessed by the page reclaim scanner */
408 	spinlock_t		lru_lock;
409 	struct lruvec		lruvec;
410 
411 	unsigned long		pages_scanned;	   /* since last reclaim */
412 	unsigned long		flags;		   /* zone flags, see below */
413 
414 	/* Zone statistics */
415 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
416 
417 	/*
418 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
419 	 * this zone's LRU.  Maintained by the pageout code.
420 	 */
421 	unsigned int inactive_ratio;
422 
423 
424 	ZONE_PADDING(_pad2_)
425 	/* Rarely used or read-mostly fields */
426 
427 	/*
428 	 * wait_table		-- the array holding the hash table
429 	 * wait_table_hash_nr_entries	-- the size of the hash table array
430 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
431 	 *
432 	 * The purpose of all these is to keep track of the people
433 	 * waiting for a page to become available and make them
434 	 * runnable again when possible. The trouble is that this
435 	 * consumes a lot of space, especially when so few things
436 	 * wait on pages at a given time. So instead of using
437 	 * per-page waitqueues, we use a waitqueue hash table.
438 	 *
439 	 * The bucket discipline is to sleep on the same queue when
440 	 * colliding and wake all in that wait queue when removing.
441 	 * When something wakes, it must check to be sure its page is
442 	 * truly available, a la thundering herd. The cost of a
443 	 * collision is great, but given the expected load of the
444 	 * table, they should be so rare as to be outweighed by the
445 	 * benefits from the saved space.
446 	 *
447 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
448 	 * primary users of these fields, and in mm/page_alloc.c
449 	 * free_area_init_core() performs the initialization of them.
450 	 */
451 	wait_queue_head_t	* wait_table;
452 	unsigned long		wait_table_hash_nr_entries;
453 	unsigned long		wait_table_bits;
454 
455 	/*
456 	 * Discontig memory support fields.
457 	 */
458 	struct pglist_data	*zone_pgdat;
459 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 	unsigned long		zone_start_pfn;
461 
462 	/*
463 	 * spanned_pages is the total pages spanned by the zone, including
464 	 * holes, which is calculated as:
465 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
466 	 *
467 	 * present_pages is physical pages existing within the zone, which
468 	 * is calculated as:
469 	 *	present_pages = spanned_pages - absent_pages(pags in holes);
470 	 *
471 	 * managed_pages is present pages managed by the buddy system, which
472 	 * is calculated as (reserved_pages includes pages allocated by the
473 	 * bootmem allocator):
474 	 *	managed_pages = present_pages - reserved_pages;
475 	 *
476 	 * So present_pages may be used by memory hotplug or memory power
477 	 * management logic to figure out unmanaged pages by checking
478 	 * (present_pages - managed_pages). And managed_pages should be used
479 	 * by page allocator and vm scanner to calculate all kinds of watermarks
480 	 * and thresholds.
481 	 *
482 	 * Locking rules:
483 	 *
484 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
485 	 * It is a seqlock because it has to be read outside of zone->lock,
486 	 * and it is done in the main allocator path.  But, it is written
487 	 * quite infrequently.
488 	 *
489 	 * The span_seq lock is declared along with zone->lock because it is
490 	 * frequently read in proximity to zone->lock.  It's good to
491 	 * give them a chance of being in the same cacheline.
492 	 *
493 	 * Write access to present_pages and managed_pages at runtime should
494 	 * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
495 	 * Any reader who can't tolerant drift of present_pages and
496 	 * managed_pages should hold memory hotplug lock to get a stable value.
497 	 */
498 	unsigned long		spanned_pages;
499 	unsigned long		present_pages;
500 	unsigned long		managed_pages;
501 
502 	/*
503 	 * rarely used fields:
504 	 */
505 	const char		*name;
506 #ifdef CONFIG_MEMORY_ISOLATION
507 	/*
508 	 * the number of MIGRATE_ISOLATE *pageblock*.
509 	 * We need this for free page counting. Look at zone_watermark_ok_safe.
510 	 * It's protected by zone->lock
511 	 */
512 	int		nr_pageblock_isolate;
513 #endif
514 } ____cacheline_internodealigned_in_smp;
515 
516 typedef enum {
517 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
518 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
519 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
520 					 * a congested BDI
521 					 */
522 } zone_flags_t;
523 
524 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
525 {
526 	set_bit(flag, &zone->flags);
527 }
528 
529 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
530 {
531 	return test_and_set_bit(flag, &zone->flags);
532 }
533 
534 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
535 {
536 	clear_bit(flag, &zone->flags);
537 }
538 
539 static inline int zone_is_reclaim_congested(const struct zone *zone)
540 {
541 	return test_bit(ZONE_CONGESTED, &zone->flags);
542 }
543 
544 static inline int zone_is_reclaim_locked(const struct zone *zone)
545 {
546 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
547 }
548 
549 static inline int zone_is_oom_locked(const struct zone *zone)
550 {
551 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
552 }
553 
554 /*
555  * The "priority" of VM scanning is how much of the queues we will scan in one
556  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
557  * queues ("queue_length >> 12") during an aging round.
558  */
559 #define DEF_PRIORITY 12
560 
561 /* Maximum number of zones on a zonelist */
562 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
563 
564 #ifdef CONFIG_NUMA
565 
566 /*
567  * The NUMA zonelists are doubled because we need zonelists that restrict the
568  * allocations to a single node for GFP_THISNODE.
569  *
570  * [0]	: Zonelist with fallback
571  * [1]	: No fallback (GFP_THISNODE)
572  */
573 #define MAX_ZONELISTS 2
574 
575 
576 /*
577  * We cache key information from each zonelist for smaller cache
578  * footprint when scanning for free pages in get_page_from_freelist().
579  *
580  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
581  *    up short of free memory since the last time (last_fullzone_zap)
582  *    we zero'd fullzones.
583  * 2) The array z_to_n[] maps each zone in the zonelist to its node
584  *    id, so that we can efficiently evaluate whether that node is
585  *    set in the current tasks mems_allowed.
586  *
587  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
588  * indexed by a zones offset in the zonelist zones[] array.
589  *
590  * The get_page_from_freelist() routine does two scans.  During the
591  * first scan, we skip zones whose corresponding bit in 'fullzones'
592  * is set or whose corresponding node in current->mems_allowed (which
593  * comes from cpusets) is not set.  During the second scan, we bypass
594  * this zonelist_cache, to ensure we look methodically at each zone.
595  *
596  * Once per second, we zero out (zap) fullzones, forcing us to
597  * reconsider nodes that might have regained more free memory.
598  * The field last_full_zap is the time we last zapped fullzones.
599  *
600  * This mechanism reduces the amount of time we waste repeatedly
601  * reexaming zones for free memory when they just came up low on
602  * memory momentarilly ago.
603  *
604  * The zonelist_cache struct members logically belong in struct
605  * zonelist.  However, the mempolicy zonelists constructed for
606  * MPOL_BIND are intentionally variable length (and usually much
607  * shorter).  A general purpose mechanism for handling structs with
608  * multiple variable length members is more mechanism than we want
609  * here.  We resort to some special case hackery instead.
610  *
611  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
612  * part because they are shorter), so we put the fixed length stuff
613  * at the front of the zonelist struct, ending in a variable length
614  * zones[], as is needed by MPOL_BIND.
615  *
616  * Then we put the optional zonelist cache on the end of the zonelist
617  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
618  * the fixed length portion at the front of the struct.  This pointer
619  * both enables us to find the zonelist cache, and in the case of
620  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
621  * to know that the zonelist cache is not there.
622  *
623  * The end result is that struct zonelists come in two flavors:
624  *  1) The full, fixed length version, shown below, and
625  *  2) The custom zonelists for MPOL_BIND.
626  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
627  *
628  * Even though there may be multiple CPU cores on a node modifying
629  * fullzones or last_full_zap in the same zonelist_cache at the same
630  * time, we don't lock it.  This is just hint data - if it is wrong now
631  * and then, the allocator will still function, perhaps a bit slower.
632  */
633 
634 
635 struct zonelist_cache {
636 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
637 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
638 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
639 };
640 #else
641 #define MAX_ZONELISTS 1
642 struct zonelist_cache;
643 #endif
644 
645 /*
646  * This struct contains information about a zone in a zonelist. It is stored
647  * here to avoid dereferences into large structures and lookups of tables
648  */
649 struct zoneref {
650 	struct zone *zone;	/* Pointer to actual zone */
651 	int zone_idx;		/* zone_idx(zoneref->zone) */
652 };
653 
654 /*
655  * One allocation request operates on a zonelist. A zonelist
656  * is a list of zones, the first one is the 'goal' of the
657  * allocation, the other zones are fallback zones, in decreasing
658  * priority.
659  *
660  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
661  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
662  * *
663  * To speed the reading of the zonelist, the zonerefs contain the zone index
664  * of the entry being read. Helper functions to access information given
665  * a struct zoneref are
666  *
667  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
668  * zonelist_zone_idx()	- Return the index of the zone for an entry
669  * zonelist_node_idx()	- Return the index of the node for an entry
670  */
671 struct zonelist {
672 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
673 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
674 #ifdef CONFIG_NUMA
675 	struct zonelist_cache zlcache;			     // optional ...
676 #endif
677 };
678 
679 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
680 struct node_active_region {
681 	unsigned long start_pfn;
682 	unsigned long end_pfn;
683 	int nid;
684 };
685 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
686 
687 #ifndef CONFIG_DISCONTIGMEM
688 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
689 extern struct page *mem_map;
690 #endif
691 
692 /*
693  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
694  * (mostly NUMA machines?) to denote a higher-level memory zone than the
695  * zone denotes.
696  *
697  * On NUMA machines, each NUMA node would have a pg_data_t to describe
698  * it's memory layout.
699  *
700  * Memory statistics and page replacement data structures are maintained on a
701  * per-zone basis.
702  */
703 struct bootmem_data;
704 typedef struct pglist_data {
705 	struct zone node_zones[MAX_NR_ZONES];
706 	struct zonelist node_zonelists[MAX_ZONELISTS];
707 	int nr_zones;
708 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
709 	struct page *node_mem_map;
710 #ifdef CONFIG_MEMCG
711 	struct page_cgroup *node_page_cgroup;
712 #endif
713 #endif
714 #ifndef CONFIG_NO_BOOTMEM
715 	struct bootmem_data *bdata;
716 #endif
717 #ifdef CONFIG_MEMORY_HOTPLUG
718 	/*
719 	 * Must be held any time you expect node_start_pfn, node_present_pages
720 	 * or node_spanned_pages stay constant.  Holding this will also
721 	 * guarantee that any pfn_valid() stays that way.
722 	 *
723 	 * Nests above zone->lock and zone->size_seqlock.
724 	 */
725 	spinlock_t node_size_lock;
726 #endif
727 	unsigned long node_start_pfn;
728 	unsigned long node_present_pages; /* total number of physical pages */
729 	unsigned long node_spanned_pages; /* total size of physical page
730 					     range, including holes */
731 	int node_id;
732 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
733 	wait_queue_head_t kswapd_wait;
734 	wait_queue_head_t pfmemalloc_wait;
735 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
736 	int kswapd_max_order;
737 	enum zone_type classzone_idx;
738 #ifdef CONFIG_NUMA_BALANCING
739 	/*
740 	 * Lock serializing the per destination node AutoNUMA memory
741 	 * migration rate limiting data.
742 	 */
743 	spinlock_t numabalancing_migrate_lock;
744 
745 	/* Rate limiting time interval */
746 	unsigned long numabalancing_migrate_next_window;
747 
748 	/* Number of pages migrated during the rate limiting time interval */
749 	unsigned long numabalancing_migrate_nr_pages;
750 #endif
751 } pg_data_t;
752 
753 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
754 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
755 #ifdef CONFIG_FLAT_NODE_MEM_MAP
756 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
757 #else
758 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
759 #endif
760 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
761 
762 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
763 
764 #define node_end_pfn(nid) ({\
765 	pg_data_t *__pgdat = NODE_DATA(nid);\
766 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
767 })
768 
769 #include <linux/memory_hotplug.h>
770 
771 extern struct mutex zonelists_mutex;
772 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
773 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
774 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
775 		int classzone_idx, int alloc_flags);
776 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
777 		int classzone_idx, int alloc_flags);
778 enum memmap_context {
779 	MEMMAP_EARLY,
780 	MEMMAP_HOTPLUG,
781 };
782 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
783 				     unsigned long size,
784 				     enum memmap_context context);
785 
786 extern void lruvec_init(struct lruvec *lruvec);
787 
788 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
789 {
790 #ifdef CONFIG_MEMCG
791 	return lruvec->zone;
792 #else
793 	return container_of(lruvec, struct zone, lruvec);
794 #endif
795 }
796 
797 #ifdef CONFIG_HAVE_MEMORY_PRESENT
798 void memory_present(int nid, unsigned long start, unsigned long end);
799 #else
800 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
801 #endif
802 
803 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
804 int local_memory_node(int node_id);
805 #else
806 static inline int local_memory_node(int node_id) { return node_id; };
807 #endif
808 
809 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
810 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
811 #endif
812 
813 /*
814  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
815  */
816 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
817 
818 static inline int populated_zone(struct zone *zone)
819 {
820 	return (!!zone->present_pages);
821 }
822 
823 extern int movable_zone;
824 
825 static inline int zone_movable_is_highmem(void)
826 {
827 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
828 	return movable_zone == ZONE_HIGHMEM;
829 #else
830 	return 0;
831 #endif
832 }
833 
834 static inline int is_highmem_idx(enum zone_type idx)
835 {
836 #ifdef CONFIG_HIGHMEM
837 	return (idx == ZONE_HIGHMEM ||
838 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
839 #else
840 	return 0;
841 #endif
842 }
843 
844 static inline int is_normal_idx(enum zone_type idx)
845 {
846 	return (idx == ZONE_NORMAL);
847 }
848 
849 /**
850  * is_highmem - helper function to quickly check if a struct zone is a
851  *              highmem zone or not.  This is an attempt to keep references
852  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
853  * @zone - pointer to struct zone variable
854  */
855 static inline int is_highmem(struct zone *zone)
856 {
857 #ifdef CONFIG_HIGHMEM
858 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
859 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
860 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
861 		zone_movable_is_highmem());
862 #else
863 	return 0;
864 #endif
865 }
866 
867 static inline int is_normal(struct zone *zone)
868 {
869 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
870 }
871 
872 static inline int is_dma32(struct zone *zone)
873 {
874 #ifdef CONFIG_ZONE_DMA32
875 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
876 #else
877 	return 0;
878 #endif
879 }
880 
881 static inline int is_dma(struct zone *zone)
882 {
883 #ifdef CONFIG_ZONE_DMA
884 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
885 #else
886 	return 0;
887 #endif
888 }
889 
890 /* These two functions are used to setup the per zone pages min values */
891 struct ctl_table;
892 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
895 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
896 					void __user *, size_t *, loff_t *);
897 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
898 					void __user *, size_t *, loff_t *);
899 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
902 			void __user *, size_t *, loff_t *);
903 
904 extern int numa_zonelist_order_handler(struct ctl_table *, int,
905 			void __user *, size_t *, loff_t *);
906 extern char numa_zonelist_order[];
907 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
908 
909 #ifndef CONFIG_NEED_MULTIPLE_NODES
910 
911 extern struct pglist_data contig_page_data;
912 #define NODE_DATA(nid)		(&contig_page_data)
913 #define NODE_MEM_MAP(nid)	mem_map
914 
915 #else /* CONFIG_NEED_MULTIPLE_NODES */
916 
917 #include <asm/mmzone.h>
918 
919 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
920 
921 extern struct pglist_data *first_online_pgdat(void);
922 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
923 extern struct zone *next_zone(struct zone *zone);
924 
925 /**
926  * for_each_online_pgdat - helper macro to iterate over all online nodes
927  * @pgdat - pointer to a pg_data_t variable
928  */
929 #define for_each_online_pgdat(pgdat)			\
930 	for (pgdat = first_online_pgdat();		\
931 	     pgdat;					\
932 	     pgdat = next_online_pgdat(pgdat))
933 /**
934  * for_each_zone - helper macro to iterate over all memory zones
935  * @zone - pointer to struct zone variable
936  *
937  * The user only needs to declare the zone variable, for_each_zone
938  * fills it in.
939  */
940 #define for_each_zone(zone)			        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))
944 
945 #define for_each_populated_zone(zone)		        \
946 	for (zone = (first_online_pgdat())->node_zones; \
947 	     zone;					\
948 	     zone = next_zone(zone))			\
949 		if (!populated_zone(zone))		\
950 			; /* do nothing */		\
951 		else
952 
953 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
954 {
955 	return zoneref->zone;
956 }
957 
958 static inline int zonelist_zone_idx(struct zoneref *zoneref)
959 {
960 	return zoneref->zone_idx;
961 }
962 
963 static inline int zonelist_node_idx(struct zoneref *zoneref)
964 {
965 #ifdef CONFIG_NUMA
966 	/* zone_to_nid not available in this context */
967 	return zoneref->zone->node;
968 #else
969 	return 0;
970 #endif /* CONFIG_NUMA */
971 }
972 
973 /**
974  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
975  * @z - The cursor used as a starting point for the search
976  * @highest_zoneidx - The zone index of the highest zone to return
977  * @nodes - An optional nodemask to filter the zonelist with
978  * @zone - The first suitable zone found is returned via this parameter
979  *
980  * This function returns the next zone at or below a given zone index that is
981  * within the allowed nodemask using a cursor as the starting point for the
982  * search. The zoneref returned is a cursor that represents the current zone
983  * being examined. It should be advanced by one before calling
984  * next_zones_zonelist again.
985  */
986 struct zoneref *next_zones_zonelist(struct zoneref *z,
987 					enum zone_type highest_zoneidx,
988 					nodemask_t *nodes,
989 					struct zone **zone);
990 
991 /**
992  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
993  * @zonelist - The zonelist to search for a suitable zone
994  * @highest_zoneidx - The zone index of the highest zone to return
995  * @nodes - An optional nodemask to filter the zonelist with
996  * @zone - The first suitable zone found is returned via this parameter
997  *
998  * This function returns the first zone at or below a given zone index that is
999  * within the allowed nodemask. The zoneref returned is a cursor that can be
1000  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1001  * one before calling.
1002  */
1003 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1004 					enum zone_type highest_zoneidx,
1005 					nodemask_t *nodes,
1006 					struct zone **zone)
1007 {
1008 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1009 								zone);
1010 }
1011 
1012 /**
1013  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1014  * @zone - The current zone in the iterator
1015  * @z - The current pointer within zonelist->zones being iterated
1016  * @zlist - The zonelist being iterated
1017  * @highidx - The zone index of the highest zone to return
1018  * @nodemask - Nodemask allowed by the allocator
1019  *
1020  * This iterator iterates though all zones at or below a given zone index and
1021  * within a given nodemask
1022  */
1023 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1024 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1025 		zone;							\
1026 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1027 
1028 /**
1029  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1030  * @zone - The current zone in the iterator
1031  * @z - The current pointer within zonelist->zones being iterated
1032  * @zlist - The zonelist being iterated
1033  * @highidx - The zone index of the highest zone to return
1034  *
1035  * This iterator iterates though all zones at or below a given zone index.
1036  */
1037 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1038 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1039 
1040 #ifdef CONFIG_SPARSEMEM
1041 #include <asm/sparsemem.h>
1042 #endif
1043 
1044 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1045 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1046 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1047 {
1048 	return 0;
1049 }
1050 #endif
1051 
1052 #ifdef CONFIG_FLATMEM
1053 #define pfn_to_nid(pfn)		(0)
1054 #endif
1055 
1056 #ifdef CONFIG_SPARSEMEM
1057 
1058 /*
1059  * SECTION_SHIFT    		#bits space required to store a section #
1060  *
1061  * PA_SECTION_SHIFT		physical address to/from section number
1062  * PFN_SECTION_SHIFT		pfn to/from section number
1063  */
1064 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1065 
1066 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1067 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1068 
1069 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1070 
1071 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1072 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1073 
1074 #define SECTION_BLOCKFLAGS_BITS \
1075 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1076 
1077 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1078 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1079 #endif
1080 
1081 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1082 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1083 
1084 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1085 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1086 
1087 struct page;
1088 struct page_cgroup;
1089 struct mem_section {
1090 	/*
1091 	 * This is, logically, a pointer to an array of struct
1092 	 * pages.  However, it is stored with some other magic.
1093 	 * (see sparse.c::sparse_init_one_section())
1094 	 *
1095 	 * Additionally during early boot we encode node id of
1096 	 * the location of the section here to guide allocation.
1097 	 * (see sparse.c::memory_present())
1098 	 *
1099 	 * Making it a UL at least makes someone do a cast
1100 	 * before using it wrong.
1101 	 */
1102 	unsigned long section_mem_map;
1103 
1104 	/* See declaration of similar field in struct zone */
1105 	unsigned long *pageblock_flags;
1106 #ifdef CONFIG_MEMCG
1107 	/*
1108 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1109 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1110 	 */
1111 	struct page_cgroup *page_cgroup;
1112 	unsigned long pad;
1113 #endif
1114 };
1115 
1116 #ifdef CONFIG_SPARSEMEM_EXTREME
1117 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1118 #else
1119 #define SECTIONS_PER_ROOT	1
1120 #endif
1121 
1122 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1123 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1124 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1125 
1126 #ifdef CONFIG_SPARSEMEM_EXTREME
1127 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1128 #else
1129 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1130 #endif
1131 
1132 static inline struct mem_section *__nr_to_section(unsigned long nr)
1133 {
1134 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1135 		return NULL;
1136 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1137 }
1138 extern int __section_nr(struct mem_section* ms);
1139 extern unsigned long usemap_size(void);
1140 
1141 /*
1142  * We use the lower bits of the mem_map pointer to store
1143  * a little bit of information.  There should be at least
1144  * 3 bits here due to 32-bit alignment.
1145  */
1146 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1147 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1148 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1149 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1150 #define SECTION_NID_SHIFT	2
1151 
1152 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1153 {
1154 	unsigned long map = section->section_mem_map;
1155 	map &= SECTION_MAP_MASK;
1156 	return (struct page *)map;
1157 }
1158 
1159 static inline int present_section(struct mem_section *section)
1160 {
1161 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1162 }
1163 
1164 static inline int present_section_nr(unsigned long nr)
1165 {
1166 	return present_section(__nr_to_section(nr));
1167 }
1168 
1169 static inline int valid_section(struct mem_section *section)
1170 {
1171 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1172 }
1173 
1174 static inline int valid_section_nr(unsigned long nr)
1175 {
1176 	return valid_section(__nr_to_section(nr));
1177 }
1178 
1179 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1180 {
1181 	return __nr_to_section(pfn_to_section_nr(pfn));
1182 }
1183 
1184 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1185 static inline int pfn_valid(unsigned long pfn)
1186 {
1187 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1188 		return 0;
1189 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1190 }
1191 #endif
1192 
1193 static inline int pfn_present(unsigned long pfn)
1194 {
1195 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1196 		return 0;
1197 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1198 }
1199 
1200 /*
1201  * These are _only_ used during initialisation, therefore they
1202  * can use __initdata ...  They could have names to indicate
1203  * this restriction.
1204  */
1205 #ifdef CONFIG_NUMA
1206 #define pfn_to_nid(pfn)							\
1207 ({									\
1208 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1209 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1210 })
1211 #else
1212 #define pfn_to_nid(pfn)		(0)
1213 #endif
1214 
1215 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1216 void sparse_init(void);
1217 #else
1218 #define sparse_init()	do {} while (0)
1219 #define sparse_index_init(_sec, _nid)  do {} while (0)
1220 #endif /* CONFIG_SPARSEMEM */
1221 
1222 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1223 bool early_pfn_in_nid(unsigned long pfn, int nid);
1224 #else
1225 #define early_pfn_in_nid(pfn, nid)	(1)
1226 #endif
1227 
1228 #ifndef early_pfn_valid
1229 #define early_pfn_valid(pfn)	(1)
1230 #endif
1231 
1232 void memory_present(int nid, unsigned long start, unsigned long end);
1233 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1234 
1235 /*
1236  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1237  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1238  * pfn_valid_within() should be used in this case; we optimise this away
1239  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1240  */
1241 #ifdef CONFIG_HOLES_IN_ZONE
1242 #define pfn_valid_within(pfn) pfn_valid(pfn)
1243 #else
1244 #define pfn_valid_within(pfn) (1)
1245 #endif
1246 
1247 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1248 /*
1249  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1250  * associated with it or not. In FLATMEM, it is expected that holes always
1251  * have valid memmap as long as there is valid PFNs either side of the hole.
1252  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1253  * entire section.
1254  *
1255  * However, an ARM, and maybe other embedded architectures in the future
1256  * free memmap backing holes to save memory on the assumption the memmap is
1257  * never used. The page_zone linkages are then broken even though pfn_valid()
1258  * returns true. A walker of the full memmap must then do this additional
1259  * check to ensure the memmap they are looking at is sane by making sure
1260  * the zone and PFN linkages are still valid. This is expensive, but walkers
1261  * of the full memmap are extremely rare.
1262  */
1263 int memmap_valid_within(unsigned long pfn,
1264 					struct page *page, struct zone *zone);
1265 #else
1266 static inline int memmap_valid_within(unsigned long pfn,
1267 					struct page *page, struct zone *zone)
1268 {
1269 	return 1;
1270 }
1271 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1272 
1273 #endif /* !__GENERATING_BOUNDS.H */
1274 #endif /* !__ASSEMBLY__ */
1275 #endif /* _LINUX_MMZONE_H */
1276