1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <generated/bounds.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 MIGRATE_ISOLATE, /* can't allocate from here */ 61 MIGRATE_TYPES 62 }; 63 64 #ifdef CONFIG_CMA 65 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 66 # define cma_wmark_pages(zone) zone->min_cma_pages 67 #else 68 # define is_migrate_cma(migratetype) false 69 # define cma_wmark_pages(zone) 0 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 static inline int get_pageblock_migratetype(struct page *page) 79 { 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81 } 82 83 struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86 }; 87 88 struct pglist_data; 89 90 /* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96 #if defined(CONFIG_SMP) 97 struct zone_padding { 98 char x[0]; 99 } ____cacheline_internodealigned_in_smp; 100 #define ZONE_PADDING(name) struct zone_padding name; 101 #else 102 #define ZONE_PADDING(name) 103 #endif 104 105 enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_LRU_BASE, 109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 110 NR_ACTIVE_ANON, /* " " " " " */ 111 NR_INACTIVE_FILE, /* " " " " " */ 112 NR_ACTIVE_FILE, /* " " " " " */ 113 NR_UNEVICTABLE, /* " " " " " */ 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 115 NR_ANON_PAGES, /* Mapped anonymous pages */ 116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 117 only modified from process context */ 118 NR_FILE_PAGES, 119 NR_FILE_DIRTY, 120 NR_WRITEBACK, 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK, 125 /* Second 128 byte cacheline */ 126 NR_UNSTABLE_NFS, /* NFS unstable pages */ 127 NR_BOUNCE, 128 NR_VMSCAN_WRITE, 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 134 NR_DIRTIED, /* page dirtyings since bootup */ 135 NR_WRITTEN, /* page writings since bootup */ 136 #ifdef CONFIG_NUMA 137 NUMA_HIT, /* allocated in intended node */ 138 NUMA_MISS, /* allocated in non intended node */ 139 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 141 NUMA_LOCAL, /* allocation from local node */ 142 NUMA_OTHER, /* allocation from other node */ 143 #endif 144 NR_ANON_TRANSPARENT_HUGEPAGES, 145 NR_VM_ZONE_STAT_ITEMS }; 146 147 /* 148 * We do arithmetic on the LRU lists in various places in the code, 149 * so it is important to keep the active lists LRU_ACTIVE higher in 150 * the array than the corresponding inactive lists, and to keep 151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 152 * 153 * This has to be kept in sync with the statistics in zone_stat_item 154 * above and the descriptions in vmstat_text in mm/vmstat.c 155 */ 156 #define LRU_BASE 0 157 #define LRU_ACTIVE 1 158 #define LRU_FILE 2 159 160 enum lru_list { 161 LRU_INACTIVE_ANON = LRU_BASE, 162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 165 LRU_UNEVICTABLE, 166 NR_LRU_LISTS 167 }; 168 169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 170 171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 172 173 static inline int is_file_lru(enum lru_list lru) 174 { 175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 176 } 177 178 static inline int is_active_lru(enum lru_list lru) 179 { 180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 181 } 182 183 static inline int is_unevictable_lru(enum lru_list lru) 184 { 185 return (lru == LRU_UNEVICTABLE); 186 } 187 188 struct lruvec { 189 struct list_head lists[NR_LRU_LISTS]; 190 }; 191 192 /* Mask used at gathering information at once (see memcontrol.c) */ 193 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 194 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 195 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 196 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 197 198 /* Isolate inactive pages */ 199 #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1) 200 /* Isolate active pages */ 201 #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2) 202 /* Isolate clean file */ 203 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4) 204 /* Isolate unmapped file */ 205 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8) 206 /* Isolate for asynchronous migration */ 207 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x10) 208 209 /* LRU Isolation modes. */ 210 typedef unsigned __bitwise__ isolate_mode_t; 211 212 enum zone_watermarks { 213 WMARK_MIN, 214 WMARK_LOW, 215 WMARK_HIGH, 216 NR_WMARK 217 }; 218 219 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 220 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 221 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 222 223 struct per_cpu_pages { 224 int count; /* number of pages in the list */ 225 int high; /* high watermark, emptying needed */ 226 int batch; /* chunk size for buddy add/remove */ 227 228 /* Lists of pages, one per migrate type stored on the pcp-lists */ 229 struct list_head lists[MIGRATE_PCPTYPES]; 230 }; 231 232 struct per_cpu_pageset { 233 struct per_cpu_pages pcp; 234 #ifdef CONFIG_NUMA 235 s8 expire; 236 #endif 237 #ifdef CONFIG_SMP 238 s8 stat_threshold; 239 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 240 #endif 241 }; 242 243 #endif /* !__GENERATING_BOUNDS.H */ 244 245 enum zone_type { 246 #ifdef CONFIG_ZONE_DMA 247 /* 248 * ZONE_DMA is used when there are devices that are not able 249 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 250 * carve out the portion of memory that is needed for these devices. 251 * The range is arch specific. 252 * 253 * Some examples 254 * 255 * Architecture Limit 256 * --------------------------- 257 * parisc, ia64, sparc <4G 258 * s390 <2G 259 * arm Various 260 * alpha Unlimited or 0-16MB. 261 * 262 * i386, x86_64 and multiple other arches 263 * <16M. 264 */ 265 ZONE_DMA, 266 #endif 267 #ifdef CONFIG_ZONE_DMA32 268 /* 269 * x86_64 needs two ZONE_DMAs because it supports devices that are 270 * only able to do DMA to the lower 16M but also 32 bit devices that 271 * can only do DMA areas below 4G. 272 */ 273 ZONE_DMA32, 274 #endif 275 /* 276 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 277 * performed on pages in ZONE_NORMAL if the DMA devices support 278 * transfers to all addressable memory. 279 */ 280 ZONE_NORMAL, 281 #ifdef CONFIG_HIGHMEM 282 /* 283 * A memory area that is only addressable by the kernel through 284 * mapping portions into its own address space. This is for example 285 * used by i386 to allow the kernel to address the memory beyond 286 * 900MB. The kernel will set up special mappings (page 287 * table entries on i386) for each page that the kernel needs to 288 * access. 289 */ 290 ZONE_HIGHMEM, 291 #endif 292 ZONE_MOVABLE, 293 __MAX_NR_ZONES 294 }; 295 296 #ifndef __GENERATING_BOUNDS_H 297 298 /* 299 * When a memory allocation must conform to specific limitations (such 300 * as being suitable for DMA) the caller will pass in hints to the 301 * allocator in the gfp_mask, in the zone modifier bits. These bits 302 * are used to select a priority ordered list of memory zones which 303 * match the requested limits. See gfp_zone() in include/linux/gfp.h 304 */ 305 306 #if MAX_NR_ZONES < 2 307 #define ZONES_SHIFT 0 308 #elif MAX_NR_ZONES <= 2 309 #define ZONES_SHIFT 1 310 #elif MAX_NR_ZONES <= 4 311 #define ZONES_SHIFT 2 312 #else 313 #error ZONES_SHIFT -- too many zones configured adjust calculation 314 #endif 315 316 struct zone_reclaim_stat { 317 /* 318 * The pageout code in vmscan.c keeps track of how many of the 319 * mem/swap backed and file backed pages are refeferenced. 320 * The higher the rotated/scanned ratio, the more valuable 321 * that cache is. 322 * 323 * The anon LRU stats live in [0], file LRU stats in [1] 324 */ 325 unsigned long recent_rotated[2]; 326 unsigned long recent_scanned[2]; 327 }; 328 329 struct zone { 330 /* Fields commonly accessed by the page allocator */ 331 332 /* zone watermarks, access with *_wmark_pages(zone) macros */ 333 unsigned long watermark[NR_WMARK]; 334 335 /* 336 * When free pages are below this point, additional steps are taken 337 * when reading the number of free pages to avoid per-cpu counter 338 * drift allowing watermarks to be breached 339 */ 340 unsigned long percpu_drift_mark; 341 342 /* 343 * We don't know if the memory that we're going to allocate will be freeable 344 * or/and it will be released eventually, so to avoid totally wasting several 345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 346 * to run OOM on the lower zones despite there's tons of freeable ram 347 * on the higher zones). This array is recalculated at runtime if the 348 * sysctl_lowmem_reserve_ratio sysctl changes. 349 */ 350 unsigned long lowmem_reserve[MAX_NR_ZONES]; 351 352 /* 353 * This is a per-zone reserve of pages that should not be 354 * considered dirtyable memory. 355 */ 356 unsigned long dirty_balance_reserve; 357 358 #ifdef CONFIG_NUMA 359 int node; 360 /* 361 * zone reclaim becomes active if more unmapped pages exist. 362 */ 363 unsigned long min_unmapped_pages; 364 unsigned long min_slab_pages; 365 #endif 366 struct per_cpu_pageset __percpu *pageset; 367 /* 368 * free areas of different sizes 369 */ 370 spinlock_t lock; 371 int all_unreclaimable; /* All pages pinned */ 372 #ifdef CONFIG_MEMORY_HOTPLUG 373 /* see spanned/present_pages for more description */ 374 seqlock_t span_seqlock; 375 #endif 376 #ifdef CONFIG_CMA 377 /* 378 * CMA needs to increase watermark levels during the allocation 379 * process to make sure that the system is not starved. 380 */ 381 unsigned long min_cma_pages; 382 #endif 383 struct free_area free_area[MAX_ORDER]; 384 385 #ifndef CONFIG_SPARSEMEM 386 /* 387 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 388 * In SPARSEMEM, this map is stored in struct mem_section 389 */ 390 unsigned long *pageblock_flags; 391 #endif /* CONFIG_SPARSEMEM */ 392 393 #ifdef CONFIG_COMPACTION 394 /* 395 * On compaction failure, 1<<compact_defer_shift compactions 396 * are skipped before trying again. The number attempted since 397 * last failure is tracked with compact_considered. 398 */ 399 unsigned int compact_considered; 400 unsigned int compact_defer_shift; 401 int compact_order_failed; 402 #endif 403 404 ZONE_PADDING(_pad1_) 405 406 /* Fields commonly accessed by the page reclaim scanner */ 407 spinlock_t lru_lock; 408 struct lruvec lruvec; 409 410 struct zone_reclaim_stat reclaim_stat; 411 412 unsigned long pages_scanned; /* since last reclaim */ 413 unsigned long flags; /* zone flags, see below */ 414 415 /* Zone statistics */ 416 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 417 418 /* 419 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 420 * this zone's LRU. Maintained by the pageout code. 421 */ 422 unsigned int inactive_ratio; 423 424 425 ZONE_PADDING(_pad2_) 426 /* Rarely used or read-mostly fields */ 427 428 /* 429 * wait_table -- the array holding the hash table 430 * wait_table_hash_nr_entries -- the size of the hash table array 431 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 432 * 433 * The purpose of all these is to keep track of the people 434 * waiting for a page to become available and make them 435 * runnable again when possible. The trouble is that this 436 * consumes a lot of space, especially when so few things 437 * wait on pages at a given time. So instead of using 438 * per-page waitqueues, we use a waitqueue hash table. 439 * 440 * The bucket discipline is to sleep on the same queue when 441 * colliding and wake all in that wait queue when removing. 442 * When something wakes, it must check to be sure its page is 443 * truly available, a la thundering herd. The cost of a 444 * collision is great, but given the expected load of the 445 * table, they should be so rare as to be outweighed by the 446 * benefits from the saved space. 447 * 448 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 449 * primary users of these fields, and in mm/page_alloc.c 450 * free_area_init_core() performs the initialization of them. 451 */ 452 wait_queue_head_t * wait_table; 453 unsigned long wait_table_hash_nr_entries; 454 unsigned long wait_table_bits; 455 456 /* 457 * Discontig memory support fields. 458 */ 459 struct pglist_data *zone_pgdat; 460 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 461 unsigned long zone_start_pfn; 462 463 /* 464 * zone_start_pfn, spanned_pages and present_pages are all 465 * protected by span_seqlock. It is a seqlock because it has 466 * to be read outside of zone->lock, and it is done in the main 467 * allocator path. But, it is written quite infrequently. 468 * 469 * The lock is declared along with zone->lock because it is 470 * frequently read in proximity to zone->lock. It's good to 471 * give them a chance of being in the same cacheline. 472 */ 473 unsigned long spanned_pages; /* total size, including holes */ 474 unsigned long present_pages; /* amount of memory (excluding holes) */ 475 476 /* 477 * rarely used fields: 478 */ 479 const char *name; 480 } ____cacheline_internodealigned_in_smp; 481 482 typedef enum { 483 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 484 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 485 ZONE_CONGESTED, /* zone has many dirty pages backed by 486 * a congested BDI 487 */ 488 } zone_flags_t; 489 490 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 491 { 492 set_bit(flag, &zone->flags); 493 } 494 495 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 496 { 497 return test_and_set_bit(flag, &zone->flags); 498 } 499 500 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 501 { 502 clear_bit(flag, &zone->flags); 503 } 504 505 static inline int zone_is_reclaim_congested(const struct zone *zone) 506 { 507 return test_bit(ZONE_CONGESTED, &zone->flags); 508 } 509 510 static inline int zone_is_reclaim_locked(const struct zone *zone) 511 { 512 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 513 } 514 515 static inline int zone_is_oom_locked(const struct zone *zone) 516 { 517 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 518 } 519 520 /* 521 * The "priority" of VM scanning is how much of the queues we will scan in one 522 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 523 * queues ("queue_length >> 12") during an aging round. 524 */ 525 #define DEF_PRIORITY 12 526 527 /* Maximum number of zones on a zonelist */ 528 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 529 530 #ifdef CONFIG_NUMA 531 532 /* 533 * The NUMA zonelists are doubled because we need zonelists that restrict the 534 * allocations to a single node for GFP_THISNODE. 535 * 536 * [0] : Zonelist with fallback 537 * [1] : No fallback (GFP_THISNODE) 538 */ 539 #define MAX_ZONELISTS 2 540 541 542 /* 543 * We cache key information from each zonelist for smaller cache 544 * footprint when scanning for free pages in get_page_from_freelist(). 545 * 546 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 547 * up short of free memory since the last time (last_fullzone_zap) 548 * we zero'd fullzones. 549 * 2) The array z_to_n[] maps each zone in the zonelist to its node 550 * id, so that we can efficiently evaluate whether that node is 551 * set in the current tasks mems_allowed. 552 * 553 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 554 * indexed by a zones offset in the zonelist zones[] array. 555 * 556 * The get_page_from_freelist() routine does two scans. During the 557 * first scan, we skip zones whose corresponding bit in 'fullzones' 558 * is set or whose corresponding node in current->mems_allowed (which 559 * comes from cpusets) is not set. During the second scan, we bypass 560 * this zonelist_cache, to ensure we look methodically at each zone. 561 * 562 * Once per second, we zero out (zap) fullzones, forcing us to 563 * reconsider nodes that might have regained more free memory. 564 * The field last_full_zap is the time we last zapped fullzones. 565 * 566 * This mechanism reduces the amount of time we waste repeatedly 567 * reexaming zones for free memory when they just came up low on 568 * memory momentarilly ago. 569 * 570 * The zonelist_cache struct members logically belong in struct 571 * zonelist. However, the mempolicy zonelists constructed for 572 * MPOL_BIND are intentionally variable length (and usually much 573 * shorter). A general purpose mechanism for handling structs with 574 * multiple variable length members is more mechanism than we want 575 * here. We resort to some special case hackery instead. 576 * 577 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 578 * part because they are shorter), so we put the fixed length stuff 579 * at the front of the zonelist struct, ending in a variable length 580 * zones[], as is needed by MPOL_BIND. 581 * 582 * Then we put the optional zonelist cache on the end of the zonelist 583 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 584 * the fixed length portion at the front of the struct. This pointer 585 * both enables us to find the zonelist cache, and in the case of 586 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 587 * to know that the zonelist cache is not there. 588 * 589 * The end result is that struct zonelists come in two flavors: 590 * 1) The full, fixed length version, shown below, and 591 * 2) The custom zonelists for MPOL_BIND. 592 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 593 * 594 * Even though there may be multiple CPU cores on a node modifying 595 * fullzones or last_full_zap in the same zonelist_cache at the same 596 * time, we don't lock it. This is just hint data - if it is wrong now 597 * and then, the allocator will still function, perhaps a bit slower. 598 */ 599 600 601 struct zonelist_cache { 602 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 603 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 604 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 605 }; 606 #else 607 #define MAX_ZONELISTS 1 608 struct zonelist_cache; 609 #endif 610 611 /* 612 * This struct contains information about a zone in a zonelist. It is stored 613 * here to avoid dereferences into large structures and lookups of tables 614 */ 615 struct zoneref { 616 struct zone *zone; /* Pointer to actual zone */ 617 int zone_idx; /* zone_idx(zoneref->zone) */ 618 }; 619 620 /* 621 * One allocation request operates on a zonelist. A zonelist 622 * is a list of zones, the first one is the 'goal' of the 623 * allocation, the other zones are fallback zones, in decreasing 624 * priority. 625 * 626 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 627 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 628 * * 629 * To speed the reading of the zonelist, the zonerefs contain the zone index 630 * of the entry being read. Helper functions to access information given 631 * a struct zoneref are 632 * 633 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 634 * zonelist_zone_idx() - Return the index of the zone for an entry 635 * zonelist_node_idx() - Return the index of the node for an entry 636 */ 637 struct zonelist { 638 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 639 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 640 #ifdef CONFIG_NUMA 641 struct zonelist_cache zlcache; // optional ... 642 #endif 643 }; 644 645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 646 struct node_active_region { 647 unsigned long start_pfn; 648 unsigned long end_pfn; 649 int nid; 650 }; 651 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 652 653 #ifndef CONFIG_DISCONTIGMEM 654 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 655 extern struct page *mem_map; 656 #endif 657 658 /* 659 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 660 * (mostly NUMA machines?) to denote a higher-level memory zone than the 661 * zone denotes. 662 * 663 * On NUMA machines, each NUMA node would have a pg_data_t to describe 664 * it's memory layout. 665 * 666 * Memory statistics and page replacement data structures are maintained on a 667 * per-zone basis. 668 */ 669 struct bootmem_data; 670 typedef struct pglist_data { 671 struct zone node_zones[MAX_NR_ZONES]; 672 struct zonelist node_zonelists[MAX_ZONELISTS]; 673 int nr_zones; 674 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 675 struct page *node_mem_map; 676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 677 struct page_cgroup *node_page_cgroup; 678 #endif 679 #endif 680 #ifndef CONFIG_NO_BOOTMEM 681 struct bootmem_data *bdata; 682 #endif 683 #ifdef CONFIG_MEMORY_HOTPLUG 684 /* 685 * Must be held any time you expect node_start_pfn, node_present_pages 686 * or node_spanned_pages stay constant. Holding this will also 687 * guarantee that any pfn_valid() stays that way. 688 * 689 * Nests above zone->lock and zone->size_seqlock. 690 */ 691 spinlock_t node_size_lock; 692 #endif 693 unsigned long node_start_pfn; 694 unsigned long node_present_pages; /* total number of physical pages */ 695 unsigned long node_spanned_pages; /* total size of physical page 696 range, including holes */ 697 int node_id; 698 wait_queue_head_t kswapd_wait; 699 struct task_struct *kswapd; 700 int kswapd_max_order; 701 enum zone_type classzone_idx; 702 } pg_data_t; 703 704 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 705 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 706 #ifdef CONFIG_FLAT_NODE_MEM_MAP 707 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 708 #else 709 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 710 #endif 711 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 712 713 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 714 715 #define node_end_pfn(nid) ({\ 716 pg_data_t *__pgdat = NODE_DATA(nid);\ 717 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 718 }) 719 720 #include <linux/memory_hotplug.h> 721 722 extern struct mutex zonelists_mutex; 723 void build_all_zonelists(void *data); 724 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 725 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 726 int classzone_idx, int alloc_flags); 727 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 728 int classzone_idx, int alloc_flags); 729 enum memmap_context { 730 MEMMAP_EARLY, 731 MEMMAP_HOTPLUG, 732 }; 733 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 734 unsigned long size, 735 enum memmap_context context); 736 737 #ifdef CONFIG_HAVE_MEMORY_PRESENT 738 void memory_present(int nid, unsigned long start, unsigned long end); 739 #else 740 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 741 #endif 742 743 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 744 int local_memory_node(int node_id); 745 #else 746 static inline int local_memory_node(int node_id) { return node_id; }; 747 #endif 748 749 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 750 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 751 #endif 752 753 /* 754 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 755 */ 756 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 757 758 static inline int populated_zone(struct zone *zone) 759 { 760 return (!!zone->present_pages); 761 } 762 763 extern int movable_zone; 764 765 static inline int zone_movable_is_highmem(void) 766 { 767 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE) 768 return movable_zone == ZONE_HIGHMEM; 769 #else 770 return 0; 771 #endif 772 } 773 774 static inline int is_highmem_idx(enum zone_type idx) 775 { 776 #ifdef CONFIG_HIGHMEM 777 return (idx == ZONE_HIGHMEM || 778 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 779 #else 780 return 0; 781 #endif 782 } 783 784 static inline int is_normal_idx(enum zone_type idx) 785 { 786 return (idx == ZONE_NORMAL); 787 } 788 789 /** 790 * is_highmem - helper function to quickly check if a struct zone is a 791 * highmem zone or not. This is an attempt to keep references 792 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 793 * @zone - pointer to struct zone variable 794 */ 795 static inline int is_highmem(struct zone *zone) 796 { 797 #ifdef CONFIG_HIGHMEM 798 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 799 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 800 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 801 zone_movable_is_highmem()); 802 #else 803 return 0; 804 #endif 805 } 806 807 static inline int is_normal(struct zone *zone) 808 { 809 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 810 } 811 812 static inline int is_dma32(struct zone *zone) 813 { 814 #ifdef CONFIG_ZONE_DMA32 815 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 816 #else 817 return 0; 818 #endif 819 } 820 821 static inline int is_dma(struct zone *zone) 822 { 823 #ifdef CONFIG_ZONE_DMA 824 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 825 #else 826 return 0; 827 #endif 828 } 829 830 /* These two functions are used to setup the per zone pages min values */ 831 struct ctl_table; 832 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 833 void __user *, size_t *, loff_t *); 834 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 835 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 836 void __user *, size_t *, loff_t *); 837 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 838 void __user *, size_t *, loff_t *); 839 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 840 void __user *, size_t *, loff_t *); 841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 842 void __user *, size_t *, loff_t *); 843 844 extern int numa_zonelist_order_handler(struct ctl_table *, int, 845 void __user *, size_t *, loff_t *); 846 extern char numa_zonelist_order[]; 847 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 848 849 #ifndef CONFIG_NEED_MULTIPLE_NODES 850 851 extern struct pglist_data contig_page_data; 852 #define NODE_DATA(nid) (&contig_page_data) 853 #define NODE_MEM_MAP(nid) mem_map 854 855 #else /* CONFIG_NEED_MULTIPLE_NODES */ 856 857 #include <asm/mmzone.h> 858 859 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 860 861 extern struct pglist_data *first_online_pgdat(void); 862 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 863 extern struct zone *next_zone(struct zone *zone); 864 865 /** 866 * for_each_online_pgdat - helper macro to iterate over all online nodes 867 * @pgdat - pointer to a pg_data_t variable 868 */ 869 #define for_each_online_pgdat(pgdat) \ 870 for (pgdat = first_online_pgdat(); \ 871 pgdat; \ 872 pgdat = next_online_pgdat(pgdat)) 873 /** 874 * for_each_zone - helper macro to iterate over all memory zones 875 * @zone - pointer to struct zone variable 876 * 877 * The user only needs to declare the zone variable, for_each_zone 878 * fills it in. 879 */ 880 #define for_each_zone(zone) \ 881 for (zone = (first_online_pgdat())->node_zones; \ 882 zone; \ 883 zone = next_zone(zone)) 884 885 #define for_each_populated_zone(zone) \ 886 for (zone = (first_online_pgdat())->node_zones; \ 887 zone; \ 888 zone = next_zone(zone)) \ 889 if (!populated_zone(zone)) \ 890 ; /* do nothing */ \ 891 else 892 893 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 894 { 895 return zoneref->zone; 896 } 897 898 static inline int zonelist_zone_idx(struct zoneref *zoneref) 899 { 900 return zoneref->zone_idx; 901 } 902 903 static inline int zonelist_node_idx(struct zoneref *zoneref) 904 { 905 #ifdef CONFIG_NUMA 906 /* zone_to_nid not available in this context */ 907 return zoneref->zone->node; 908 #else 909 return 0; 910 #endif /* CONFIG_NUMA */ 911 } 912 913 /** 914 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 915 * @z - The cursor used as a starting point for the search 916 * @highest_zoneidx - The zone index of the highest zone to return 917 * @nodes - An optional nodemask to filter the zonelist with 918 * @zone - The first suitable zone found is returned via this parameter 919 * 920 * This function returns the next zone at or below a given zone index that is 921 * within the allowed nodemask using a cursor as the starting point for the 922 * search. The zoneref returned is a cursor that represents the current zone 923 * being examined. It should be advanced by one before calling 924 * next_zones_zonelist again. 925 */ 926 struct zoneref *next_zones_zonelist(struct zoneref *z, 927 enum zone_type highest_zoneidx, 928 nodemask_t *nodes, 929 struct zone **zone); 930 931 /** 932 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 933 * @zonelist - The zonelist to search for a suitable zone 934 * @highest_zoneidx - The zone index of the highest zone to return 935 * @nodes - An optional nodemask to filter the zonelist with 936 * @zone - The first suitable zone found is returned via this parameter 937 * 938 * This function returns the first zone at or below a given zone index that is 939 * within the allowed nodemask. The zoneref returned is a cursor that can be 940 * used to iterate the zonelist with next_zones_zonelist by advancing it by 941 * one before calling. 942 */ 943 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 944 enum zone_type highest_zoneidx, 945 nodemask_t *nodes, 946 struct zone **zone) 947 { 948 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 949 zone); 950 } 951 952 /** 953 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 954 * @zone - The current zone in the iterator 955 * @z - The current pointer within zonelist->zones being iterated 956 * @zlist - The zonelist being iterated 957 * @highidx - The zone index of the highest zone to return 958 * @nodemask - Nodemask allowed by the allocator 959 * 960 * This iterator iterates though all zones at or below a given zone index and 961 * within a given nodemask 962 */ 963 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 964 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 965 zone; \ 966 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 967 968 /** 969 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 970 * @zone - The current zone in the iterator 971 * @z - The current pointer within zonelist->zones being iterated 972 * @zlist - The zonelist being iterated 973 * @highidx - The zone index of the highest zone to return 974 * 975 * This iterator iterates though all zones at or below a given zone index. 976 */ 977 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 978 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 979 980 #ifdef CONFIG_SPARSEMEM 981 #include <asm/sparsemem.h> 982 #endif 983 984 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 985 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 986 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 987 { 988 return 0; 989 } 990 #endif 991 992 #ifdef CONFIG_FLATMEM 993 #define pfn_to_nid(pfn) (0) 994 #endif 995 996 #ifdef CONFIG_SPARSEMEM 997 998 /* 999 * SECTION_SHIFT #bits space required to store a section # 1000 * 1001 * PA_SECTION_SHIFT physical address to/from section number 1002 * PFN_SECTION_SHIFT pfn to/from section number 1003 */ 1004 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 1005 1006 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1007 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1008 1009 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1010 1011 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1012 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1013 1014 #define SECTION_BLOCKFLAGS_BITS \ 1015 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1016 1017 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1018 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1019 #endif 1020 1021 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1022 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1023 1024 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1025 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1026 1027 struct page; 1028 struct page_cgroup; 1029 struct mem_section { 1030 /* 1031 * This is, logically, a pointer to an array of struct 1032 * pages. However, it is stored with some other magic. 1033 * (see sparse.c::sparse_init_one_section()) 1034 * 1035 * Additionally during early boot we encode node id of 1036 * the location of the section here to guide allocation. 1037 * (see sparse.c::memory_present()) 1038 * 1039 * Making it a UL at least makes someone do a cast 1040 * before using it wrong. 1041 */ 1042 unsigned long section_mem_map; 1043 1044 /* See declaration of similar field in struct zone */ 1045 unsigned long *pageblock_flags; 1046 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1047 /* 1048 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1049 * section. (see memcontrol.h/page_cgroup.h about this.) 1050 */ 1051 struct page_cgroup *page_cgroup; 1052 unsigned long pad; 1053 #endif 1054 }; 1055 1056 #ifdef CONFIG_SPARSEMEM_EXTREME 1057 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1058 #else 1059 #define SECTIONS_PER_ROOT 1 1060 #endif 1061 1062 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1063 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1064 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1065 1066 #ifdef CONFIG_SPARSEMEM_EXTREME 1067 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1068 #else 1069 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1070 #endif 1071 1072 static inline struct mem_section *__nr_to_section(unsigned long nr) 1073 { 1074 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1075 return NULL; 1076 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1077 } 1078 extern int __section_nr(struct mem_section* ms); 1079 extern unsigned long usemap_size(void); 1080 1081 /* 1082 * We use the lower bits of the mem_map pointer to store 1083 * a little bit of information. There should be at least 1084 * 3 bits here due to 32-bit alignment. 1085 */ 1086 #define SECTION_MARKED_PRESENT (1UL<<0) 1087 #define SECTION_HAS_MEM_MAP (1UL<<1) 1088 #define SECTION_MAP_LAST_BIT (1UL<<2) 1089 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1090 #define SECTION_NID_SHIFT 2 1091 1092 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1093 { 1094 unsigned long map = section->section_mem_map; 1095 map &= SECTION_MAP_MASK; 1096 return (struct page *)map; 1097 } 1098 1099 static inline int present_section(struct mem_section *section) 1100 { 1101 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1102 } 1103 1104 static inline int present_section_nr(unsigned long nr) 1105 { 1106 return present_section(__nr_to_section(nr)); 1107 } 1108 1109 static inline int valid_section(struct mem_section *section) 1110 { 1111 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1112 } 1113 1114 static inline int valid_section_nr(unsigned long nr) 1115 { 1116 return valid_section(__nr_to_section(nr)); 1117 } 1118 1119 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1120 { 1121 return __nr_to_section(pfn_to_section_nr(pfn)); 1122 } 1123 1124 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1125 static inline int pfn_valid(unsigned long pfn) 1126 { 1127 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1128 return 0; 1129 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1130 } 1131 #endif 1132 1133 static inline int pfn_present(unsigned long pfn) 1134 { 1135 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1136 return 0; 1137 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1138 } 1139 1140 /* 1141 * These are _only_ used during initialisation, therefore they 1142 * can use __initdata ... They could have names to indicate 1143 * this restriction. 1144 */ 1145 #ifdef CONFIG_NUMA 1146 #define pfn_to_nid(pfn) \ 1147 ({ \ 1148 unsigned long __pfn_to_nid_pfn = (pfn); \ 1149 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1150 }) 1151 #else 1152 #define pfn_to_nid(pfn) (0) 1153 #endif 1154 1155 #define early_pfn_valid(pfn) pfn_valid(pfn) 1156 void sparse_init(void); 1157 #else 1158 #define sparse_init() do {} while (0) 1159 #define sparse_index_init(_sec, _nid) do {} while (0) 1160 #endif /* CONFIG_SPARSEMEM */ 1161 1162 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1163 bool early_pfn_in_nid(unsigned long pfn, int nid); 1164 #else 1165 #define early_pfn_in_nid(pfn, nid) (1) 1166 #endif 1167 1168 #ifndef early_pfn_valid 1169 #define early_pfn_valid(pfn) (1) 1170 #endif 1171 1172 void memory_present(int nid, unsigned long start, unsigned long end); 1173 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1174 1175 /* 1176 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1177 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1178 * pfn_valid_within() should be used in this case; we optimise this away 1179 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1180 */ 1181 #ifdef CONFIG_HOLES_IN_ZONE 1182 #define pfn_valid_within(pfn) pfn_valid(pfn) 1183 #else 1184 #define pfn_valid_within(pfn) (1) 1185 #endif 1186 1187 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1188 /* 1189 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1190 * associated with it or not. In FLATMEM, it is expected that holes always 1191 * have valid memmap as long as there is valid PFNs either side of the hole. 1192 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1193 * entire section. 1194 * 1195 * However, an ARM, and maybe other embedded architectures in the future 1196 * free memmap backing holes to save memory on the assumption the memmap is 1197 * never used. The page_zone linkages are then broken even though pfn_valid() 1198 * returns true. A walker of the full memmap must then do this additional 1199 * check to ensure the memmap they are looking at is sane by making sure 1200 * the zone and PFN linkages are still valid. This is expensive, but walkers 1201 * of the full memmap are extremely rare. 1202 */ 1203 int memmap_valid_within(unsigned long pfn, 1204 struct page *page, struct zone *zone); 1205 #else 1206 static inline int memmap_valid_within(unsigned long pfn, 1207 struct page *page, struct zone *zone) 1208 { 1209 return 1; 1210 } 1211 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1212 1213 #endif /* !__GENERATING_BOUNDS.H */ 1214 #endif /* !__ASSEMBLY__ */ 1215 #endif /* _LINUX_MMZONE_H */ 1216