xref: /linux-6.15/include/linux/mmzone.h (revision b48b2c3e)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 	MIGRATE_ISOLATE,	/* can't allocate from here */
61 	MIGRATE_TYPES
62 };
63 
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #  define cma_wmark_pages(zone)	zone->min_cma_pages
67 #else
68 #  define is_migrate_cma(migratetype) false
69 #  define cma_wmark_pages(zone) 0
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_LRU_BASE,
109 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
111 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
112 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
113 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
114 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
115 	NR_ANON_PAGES,	/* Mapped anonymous pages */
116 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
117 			   only modified from process context */
118 	NR_FILE_PAGES,
119 	NR_FILE_DIRTY,
120 	NR_WRITEBACK,
121 	NR_SLAB_RECLAIMABLE,
122 	NR_SLAB_UNRECLAIMABLE,
123 	NR_PAGETABLE,		/* used for pagetables */
124 	NR_KERNEL_STACK,
125 	/* Second 128 byte cacheline */
126 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
127 	NR_BOUNCE,
128 	NR_VMSCAN_WRITE,
129 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
130 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
131 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
132 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
133 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
134 	NR_DIRTIED,		/* page dirtyings since bootup */
135 	NR_WRITTEN,		/* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 	NUMA_HIT,		/* allocated in intended node */
138 	NUMA_MISS,		/* allocated in non intended node */
139 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
140 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
141 	NUMA_LOCAL,		/* allocation from local node */
142 	NUMA_OTHER,		/* allocation from other node */
143 #endif
144 	NR_ANON_TRANSPARENT_HUGEPAGES,
145 	NR_VM_ZONE_STAT_ITEMS };
146 
147 /*
148  * We do arithmetic on the LRU lists in various places in the code,
149  * so it is important to keep the active lists LRU_ACTIVE higher in
150  * the array than the corresponding inactive lists, and to keep
151  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152  *
153  * This has to be kept in sync with the statistics in zone_stat_item
154  * above and the descriptions in vmstat_text in mm/vmstat.c
155  */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159 
160 enum lru_list {
161 	LRU_INACTIVE_ANON = LRU_BASE,
162 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165 	LRU_UNEVICTABLE,
166 	NR_LRU_LISTS
167 };
168 
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170 
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172 
173 static inline int is_file_lru(enum lru_list lru)
174 {
175 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177 
178 static inline int is_active_lru(enum lru_list lru)
179 {
180 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182 
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185 	return (lru == LRU_UNEVICTABLE);
186 }
187 
188 struct lruvec {
189 	struct list_head lists[NR_LRU_LISTS];
190 };
191 
192 /* Mask used at gathering information at once (see memcontrol.c) */
193 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
194 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
195 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
196 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
197 
198 /* Isolate inactive pages */
199 #define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
200 /* Isolate active pages */
201 #define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
202 /* Isolate clean file */
203 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
204 /* Isolate unmapped file */
205 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
206 /* Isolate for asynchronous migration */
207 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x10)
208 
209 /* LRU Isolation modes. */
210 typedef unsigned __bitwise__ isolate_mode_t;
211 
212 enum zone_watermarks {
213 	WMARK_MIN,
214 	WMARK_LOW,
215 	WMARK_HIGH,
216 	NR_WMARK
217 };
218 
219 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
220 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
221 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
222 
223 struct per_cpu_pages {
224 	int count;		/* number of pages in the list */
225 	int high;		/* high watermark, emptying needed */
226 	int batch;		/* chunk size for buddy add/remove */
227 
228 	/* Lists of pages, one per migrate type stored on the pcp-lists */
229 	struct list_head lists[MIGRATE_PCPTYPES];
230 };
231 
232 struct per_cpu_pageset {
233 	struct per_cpu_pages pcp;
234 #ifdef CONFIG_NUMA
235 	s8 expire;
236 #endif
237 #ifdef CONFIG_SMP
238 	s8 stat_threshold;
239 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
240 #endif
241 };
242 
243 #endif /* !__GENERATING_BOUNDS.H */
244 
245 enum zone_type {
246 #ifdef CONFIG_ZONE_DMA
247 	/*
248 	 * ZONE_DMA is used when there are devices that are not able
249 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
250 	 * carve out the portion of memory that is needed for these devices.
251 	 * The range is arch specific.
252 	 *
253 	 * Some examples
254 	 *
255 	 * Architecture		Limit
256 	 * ---------------------------
257 	 * parisc, ia64, sparc	<4G
258 	 * s390			<2G
259 	 * arm			Various
260 	 * alpha		Unlimited or 0-16MB.
261 	 *
262 	 * i386, x86_64 and multiple other arches
263 	 * 			<16M.
264 	 */
265 	ZONE_DMA,
266 #endif
267 #ifdef CONFIG_ZONE_DMA32
268 	/*
269 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
270 	 * only able to do DMA to the lower 16M but also 32 bit devices that
271 	 * can only do DMA areas below 4G.
272 	 */
273 	ZONE_DMA32,
274 #endif
275 	/*
276 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
277 	 * performed on pages in ZONE_NORMAL if the DMA devices support
278 	 * transfers to all addressable memory.
279 	 */
280 	ZONE_NORMAL,
281 #ifdef CONFIG_HIGHMEM
282 	/*
283 	 * A memory area that is only addressable by the kernel through
284 	 * mapping portions into its own address space. This is for example
285 	 * used by i386 to allow the kernel to address the memory beyond
286 	 * 900MB. The kernel will set up special mappings (page
287 	 * table entries on i386) for each page that the kernel needs to
288 	 * access.
289 	 */
290 	ZONE_HIGHMEM,
291 #endif
292 	ZONE_MOVABLE,
293 	__MAX_NR_ZONES
294 };
295 
296 #ifndef __GENERATING_BOUNDS_H
297 
298 /*
299  * When a memory allocation must conform to specific limitations (such
300  * as being suitable for DMA) the caller will pass in hints to the
301  * allocator in the gfp_mask, in the zone modifier bits.  These bits
302  * are used to select a priority ordered list of memory zones which
303  * match the requested limits. See gfp_zone() in include/linux/gfp.h
304  */
305 
306 #if MAX_NR_ZONES < 2
307 #define ZONES_SHIFT 0
308 #elif MAX_NR_ZONES <= 2
309 #define ZONES_SHIFT 1
310 #elif MAX_NR_ZONES <= 4
311 #define ZONES_SHIFT 2
312 #else
313 #error ZONES_SHIFT -- too many zones configured adjust calculation
314 #endif
315 
316 struct zone_reclaim_stat {
317 	/*
318 	 * The pageout code in vmscan.c keeps track of how many of the
319 	 * mem/swap backed and file backed pages are refeferenced.
320 	 * The higher the rotated/scanned ratio, the more valuable
321 	 * that cache is.
322 	 *
323 	 * The anon LRU stats live in [0], file LRU stats in [1]
324 	 */
325 	unsigned long		recent_rotated[2];
326 	unsigned long		recent_scanned[2];
327 };
328 
329 struct zone {
330 	/* Fields commonly accessed by the page allocator */
331 
332 	/* zone watermarks, access with *_wmark_pages(zone) macros */
333 	unsigned long watermark[NR_WMARK];
334 
335 	/*
336 	 * When free pages are below this point, additional steps are taken
337 	 * when reading the number of free pages to avoid per-cpu counter
338 	 * drift allowing watermarks to be breached
339 	 */
340 	unsigned long percpu_drift_mark;
341 
342 	/*
343 	 * We don't know if the memory that we're going to allocate will be freeable
344 	 * or/and it will be released eventually, so to avoid totally wasting several
345 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 	 * to run OOM on the lower zones despite there's tons of freeable ram
347 	 * on the higher zones). This array is recalculated at runtime if the
348 	 * sysctl_lowmem_reserve_ratio sysctl changes.
349 	 */
350 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
351 
352 	/*
353 	 * This is a per-zone reserve of pages that should not be
354 	 * considered dirtyable memory.
355 	 */
356 	unsigned long		dirty_balance_reserve;
357 
358 #ifdef CONFIG_NUMA
359 	int node;
360 	/*
361 	 * zone reclaim becomes active if more unmapped pages exist.
362 	 */
363 	unsigned long		min_unmapped_pages;
364 	unsigned long		min_slab_pages;
365 #endif
366 	struct per_cpu_pageset __percpu *pageset;
367 	/*
368 	 * free areas of different sizes
369 	 */
370 	spinlock_t		lock;
371 	int                     all_unreclaimable; /* All pages pinned */
372 #ifdef CONFIG_MEMORY_HOTPLUG
373 	/* see spanned/present_pages for more description */
374 	seqlock_t		span_seqlock;
375 #endif
376 #ifdef CONFIG_CMA
377 	/*
378 	 * CMA needs to increase watermark levels during the allocation
379 	 * process to make sure that the system is not starved.
380 	 */
381 	unsigned long		min_cma_pages;
382 #endif
383 	struct free_area	free_area[MAX_ORDER];
384 
385 #ifndef CONFIG_SPARSEMEM
386 	/*
387 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
388 	 * In SPARSEMEM, this map is stored in struct mem_section
389 	 */
390 	unsigned long		*pageblock_flags;
391 #endif /* CONFIG_SPARSEMEM */
392 
393 #ifdef CONFIG_COMPACTION
394 	/*
395 	 * On compaction failure, 1<<compact_defer_shift compactions
396 	 * are skipped before trying again. The number attempted since
397 	 * last failure is tracked with compact_considered.
398 	 */
399 	unsigned int		compact_considered;
400 	unsigned int		compact_defer_shift;
401 	int			compact_order_failed;
402 #endif
403 
404 	ZONE_PADDING(_pad1_)
405 
406 	/* Fields commonly accessed by the page reclaim scanner */
407 	spinlock_t		lru_lock;
408 	struct lruvec		lruvec;
409 
410 	struct zone_reclaim_stat reclaim_stat;
411 
412 	unsigned long		pages_scanned;	   /* since last reclaim */
413 	unsigned long		flags;		   /* zone flags, see below */
414 
415 	/* Zone statistics */
416 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
417 
418 	/*
419 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
420 	 * this zone's LRU.  Maintained by the pageout code.
421 	 */
422 	unsigned int inactive_ratio;
423 
424 
425 	ZONE_PADDING(_pad2_)
426 	/* Rarely used or read-mostly fields */
427 
428 	/*
429 	 * wait_table		-- the array holding the hash table
430 	 * wait_table_hash_nr_entries	-- the size of the hash table array
431 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
432 	 *
433 	 * The purpose of all these is to keep track of the people
434 	 * waiting for a page to become available and make them
435 	 * runnable again when possible. The trouble is that this
436 	 * consumes a lot of space, especially when so few things
437 	 * wait on pages at a given time. So instead of using
438 	 * per-page waitqueues, we use a waitqueue hash table.
439 	 *
440 	 * The bucket discipline is to sleep on the same queue when
441 	 * colliding and wake all in that wait queue when removing.
442 	 * When something wakes, it must check to be sure its page is
443 	 * truly available, a la thundering herd. The cost of a
444 	 * collision is great, but given the expected load of the
445 	 * table, they should be so rare as to be outweighed by the
446 	 * benefits from the saved space.
447 	 *
448 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
449 	 * primary users of these fields, and in mm/page_alloc.c
450 	 * free_area_init_core() performs the initialization of them.
451 	 */
452 	wait_queue_head_t	* wait_table;
453 	unsigned long		wait_table_hash_nr_entries;
454 	unsigned long		wait_table_bits;
455 
456 	/*
457 	 * Discontig memory support fields.
458 	 */
459 	struct pglist_data	*zone_pgdat;
460 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
461 	unsigned long		zone_start_pfn;
462 
463 	/*
464 	 * zone_start_pfn, spanned_pages and present_pages are all
465 	 * protected by span_seqlock.  It is a seqlock because it has
466 	 * to be read outside of zone->lock, and it is done in the main
467 	 * allocator path.  But, it is written quite infrequently.
468 	 *
469 	 * The lock is declared along with zone->lock because it is
470 	 * frequently read in proximity to zone->lock.  It's good to
471 	 * give them a chance of being in the same cacheline.
472 	 */
473 	unsigned long		spanned_pages;	/* total size, including holes */
474 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
475 
476 	/*
477 	 * rarely used fields:
478 	 */
479 	const char		*name;
480 } ____cacheline_internodealigned_in_smp;
481 
482 typedef enum {
483 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
484 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
485 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
486 					 * a congested BDI
487 					 */
488 } zone_flags_t;
489 
490 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
491 {
492 	set_bit(flag, &zone->flags);
493 }
494 
495 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
496 {
497 	return test_and_set_bit(flag, &zone->flags);
498 }
499 
500 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
501 {
502 	clear_bit(flag, &zone->flags);
503 }
504 
505 static inline int zone_is_reclaim_congested(const struct zone *zone)
506 {
507 	return test_bit(ZONE_CONGESTED, &zone->flags);
508 }
509 
510 static inline int zone_is_reclaim_locked(const struct zone *zone)
511 {
512 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
513 }
514 
515 static inline int zone_is_oom_locked(const struct zone *zone)
516 {
517 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
518 }
519 
520 /*
521  * The "priority" of VM scanning is how much of the queues we will scan in one
522  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
523  * queues ("queue_length >> 12") during an aging round.
524  */
525 #define DEF_PRIORITY 12
526 
527 /* Maximum number of zones on a zonelist */
528 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
529 
530 #ifdef CONFIG_NUMA
531 
532 /*
533  * The NUMA zonelists are doubled because we need zonelists that restrict the
534  * allocations to a single node for GFP_THISNODE.
535  *
536  * [0]	: Zonelist with fallback
537  * [1]	: No fallback (GFP_THISNODE)
538  */
539 #define MAX_ZONELISTS 2
540 
541 
542 /*
543  * We cache key information from each zonelist for smaller cache
544  * footprint when scanning for free pages in get_page_from_freelist().
545  *
546  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
547  *    up short of free memory since the last time (last_fullzone_zap)
548  *    we zero'd fullzones.
549  * 2) The array z_to_n[] maps each zone in the zonelist to its node
550  *    id, so that we can efficiently evaluate whether that node is
551  *    set in the current tasks mems_allowed.
552  *
553  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
554  * indexed by a zones offset in the zonelist zones[] array.
555  *
556  * The get_page_from_freelist() routine does two scans.  During the
557  * first scan, we skip zones whose corresponding bit in 'fullzones'
558  * is set or whose corresponding node in current->mems_allowed (which
559  * comes from cpusets) is not set.  During the second scan, we bypass
560  * this zonelist_cache, to ensure we look methodically at each zone.
561  *
562  * Once per second, we zero out (zap) fullzones, forcing us to
563  * reconsider nodes that might have regained more free memory.
564  * The field last_full_zap is the time we last zapped fullzones.
565  *
566  * This mechanism reduces the amount of time we waste repeatedly
567  * reexaming zones for free memory when they just came up low on
568  * memory momentarilly ago.
569  *
570  * The zonelist_cache struct members logically belong in struct
571  * zonelist.  However, the mempolicy zonelists constructed for
572  * MPOL_BIND are intentionally variable length (and usually much
573  * shorter).  A general purpose mechanism for handling structs with
574  * multiple variable length members is more mechanism than we want
575  * here.  We resort to some special case hackery instead.
576  *
577  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
578  * part because they are shorter), so we put the fixed length stuff
579  * at the front of the zonelist struct, ending in a variable length
580  * zones[], as is needed by MPOL_BIND.
581  *
582  * Then we put the optional zonelist cache on the end of the zonelist
583  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
584  * the fixed length portion at the front of the struct.  This pointer
585  * both enables us to find the zonelist cache, and in the case of
586  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
587  * to know that the zonelist cache is not there.
588  *
589  * The end result is that struct zonelists come in two flavors:
590  *  1) The full, fixed length version, shown below, and
591  *  2) The custom zonelists for MPOL_BIND.
592  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
593  *
594  * Even though there may be multiple CPU cores on a node modifying
595  * fullzones or last_full_zap in the same zonelist_cache at the same
596  * time, we don't lock it.  This is just hint data - if it is wrong now
597  * and then, the allocator will still function, perhaps a bit slower.
598  */
599 
600 
601 struct zonelist_cache {
602 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
603 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
604 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
605 };
606 #else
607 #define MAX_ZONELISTS 1
608 struct zonelist_cache;
609 #endif
610 
611 /*
612  * This struct contains information about a zone in a zonelist. It is stored
613  * here to avoid dereferences into large structures and lookups of tables
614  */
615 struct zoneref {
616 	struct zone *zone;	/* Pointer to actual zone */
617 	int zone_idx;		/* zone_idx(zoneref->zone) */
618 };
619 
620 /*
621  * One allocation request operates on a zonelist. A zonelist
622  * is a list of zones, the first one is the 'goal' of the
623  * allocation, the other zones are fallback zones, in decreasing
624  * priority.
625  *
626  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
627  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
628  * *
629  * To speed the reading of the zonelist, the zonerefs contain the zone index
630  * of the entry being read. Helper functions to access information given
631  * a struct zoneref are
632  *
633  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
634  * zonelist_zone_idx()	- Return the index of the zone for an entry
635  * zonelist_node_idx()	- Return the index of the node for an entry
636  */
637 struct zonelist {
638 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
639 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
640 #ifdef CONFIG_NUMA
641 	struct zonelist_cache zlcache;			     // optional ...
642 #endif
643 };
644 
645 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
646 struct node_active_region {
647 	unsigned long start_pfn;
648 	unsigned long end_pfn;
649 	int nid;
650 };
651 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
652 
653 #ifndef CONFIG_DISCONTIGMEM
654 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
655 extern struct page *mem_map;
656 #endif
657 
658 /*
659  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
660  * (mostly NUMA machines?) to denote a higher-level memory zone than the
661  * zone denotes.
662  *
663  * On NUMA machines, each NUMA node would have a pg_data_t to describe
664  * it's memory layout.
665  *
666  * Memory statistics and page replacement data structures are maintained on a
667  * per-zone basis.
668  */
669 struct bootmem_data;
670 typedef struct pglist_data {
671 	struct zone node_zones[MAX_NR_ZONES];
672 	struct zonelist node_zonelists[MAX_ZONELISTS];
673 	int nr_zones;
674 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
675 	struct page *node_mem_map;
676 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
677 	struct page_cgroup *node_page_cgroup;
678 #endif
679 #endif
680 #ifndef CONFIG_NO_BOOTMEM
681 	struct bootmem_data *bdata;
682 #endif
683 #ifdef CONFIG_MEMORY_HOTPLUG
684 	/*
685 	 * Must be held any time you expect node_start_pfn, node_present_pages
686 	 * or node_spanned_pages stay constant.  Holding this will also
687 	 * guarantee that any pfn_valid() stays that way.
688 	 *
689 	 * Nests above zone->lock and zone->size_seqlock.
690 	 */
691 	spinlock_t node_size_lock;
692 #endif
693 	unsigned long node_start_pfn;
694 	unsigned long node_present_pages; /* total number of physical pages */
695 	unsigned long node_spanned_pages; /* total size of physical page
696 					     range, including holes */
697 	int node_id;
698 	wait_queue_head_t kswapd_wait;
699 	struct task_struct *kswapd;
700 	int kswapd_max_order;
701 	enum zone_type classzone_idx;
702 } pg_data_t;
703 
704 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
705 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
706 #ifdef CONFIG_FLAT_NODE_MEM_MAP
707 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
708 #else
709 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
710 #endif
711 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
712 
713 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
714 
715 #define node_end_pfn(nid) ({\
716 	pg_data_t *__pgdat = NODE_DATA(nid);\
717 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
718 })
719 
720 #include <linux/memory_hotplug.h>
721 
722 extern struct mutex zonelists_mutex;
723 void build_all_zonelists(void *data);
724 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
725 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
726 		int classzone_idx, int alloc_flags);
727 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
728 		int classzone_idx, int alloc_flags);
729 enum memmap_context {
730 	MEMMAP_EARLY,
731 	MEMMAP_HOTPLUG,
732 };
733 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
734 				     unsigned long size,
735 				     enum memmap_context context);
736 
737 #ifdef CONFIG_HAVE_MEMORY_PRESENT
738 void memory_present(int nid, unsigned long start, unsigned long end);
739 #else
740 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
741 #endif
742 
743 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
744 int local_memory_node(int node_id);
745 #else
746 static inline int local_memory_node(int node_id) { return node_id; };
747 #endif
748 
749 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
750 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
751 #endif
752 
753 /*
754  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
755  */
756 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
757 
758 static inline int populated_zone(struct zone *zone)
759 {
760 	return (!!zone->present_pages);
761 }
762 
763 extern int movable_zone;
764 
765 static inline int zone_movable_is_highmem(void)
766 {
767 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
768 	return movable_zone == ZONE_HIGHMEM;
769 #else
770 	return 0;
771 #endif
772 }
773 
774 static inline int is_highmem_idx(enum zone_type idx)
775 {
776 #ifdef CONFIG_HIGHMEM
777 	return (idx == ZONE_HIGHMEM ||
778 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
779 #else
780 	return 0;
781 #endif
782 }
783 
784 static inline int is_normal_idx(enum zone_type idx)
785 {
786 	return (idx == ZONE_NORMAL);
787 }
788 
789 /**
790  * is_highmem - helper function to quickly check if a struct zone is a
791  *              highmem zone or not.  This is an attempt to keep references
792  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
793  * @zone - pointer to struct zone variable
794  */
795 static inline int is_highmem(struct zone *zone)
796 {
797 #ifdef CONFIG_HIGHMEM
798 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
799 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
800 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
801 		zone_movable_is_highmem());
802 #else
803 	return 0;
804 #endif
805 }
806 
807 static inline int is_normal(struct zone *zone)
808 {
809 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
810 }
811 
812 static inline int is_dma32(struct zone *zone)
813 {
814 #ifdef CONFIG_ZONE_DMA32
815 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
816 #else
817 	return 0;
818 #endif
819 }
820 
821 static inline int is_dma(struct zone *zone)
822 {
823 #ifdef CONFIG_ZONE_DMA
824 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
825 #else
826 	return 0;
827 #endif
828 }
829 
830 /* These two functions are used to setup the per zone pages min values */
831 struct ctl_table;
832 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
833 					void __user *, size_t *, loff_t *);
834 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
835 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
836 					void __user *, size_t *, loff_t *);
837 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
838 					void __user *, size_t *, loff_t *);
839 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
840 			void __user *, size_t *, loff_t *);
841 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
842 			void __user *, size_t *, loff_t *);
843 
844 extern int numa_zonelist_order_handler(struct ctl_table *, int,
845 			void __user *, size_t *, loff_t *);
846 extern char numa_zonelist_order[];
847 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
848 
849 #ifndef CONFIG_NEED_MULTIPLE_NODES
850 
851 extern struct pglist_data contig_page_data;
852 #define NODE_DATA(nid)		(&contig_page_data)
853 #define NODE_MEM_MAP(nid)	mem_map
854 
855 #else /* CONFIG_NEED_MULTIPLE_NODES */
856 
857 #include <asm/mmzone.h>
858 
859 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
860 
861 extern struct pglist_data *first_online_pgdat(void);
862 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
863 extern struct zone *next_zone(struct zone *zone);
864 
865 /**
866  * for_each_online_pgdat - helper macro to iterate over all online nodes
867  * @pgdat - pointer to a pg_data_t variable
868  */
869 #define for_each_online_pgdat(pgdat)			\
870 	for (pgdat = first_online_pgdat();		\
871 	     pgdat;					\
872 	     pgdat = next_online_pgdat(pgdat))
873 /**
874  * for_each_zone - helper macro to iterate over all memory zones
875  * @zone - pointer to struct zone variable
876  *
877  * The user only needs to declare the zone variable, for_each_zone
878  * fills it in.
879  */
880 #define for_each_zone(zone)			        \
881 	for (zone = (first_online_pgdat())->node_zones; \
882 	     zone;					\
883 	     zone = next_zone(zone))
884 
885 #define for_each_populated_zone(zone)		        \
886 	for (zone = (first_online_pgdat())->node_zones; \
887 	     zone;					\
888 	     zone = next_zone(zone))			\
889 		if (!populated_zone(zone))		\
890 			; /* do nothing */		\
891 		else
892 
893 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
894 {
895 	return zoneref->zone;
896 }
897 
898 static inline int zonelist_zone_idx(struct zoneref *zoneref)
899 {
900 	return zoneref->zone_idx;
901 }
902 
903 static inline int zonelist_node_idx(struct zoneref *zoneref)
904 {
905 #ifdef CONFIG_NUMA
906 	/* zone_to_nid not available in this context */
907 	return zoneref->zone->node;
908 #else
909 	return 0;
910 #endif /* CONFIG_NUMA */
911 }
912 
913 /**
914  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
915  * @z - The cursor used as a starting point for the search
916  * @highest_zoneidx - The zone index of the highest zone to return
917  * @nodes - An optional nodemask to filter the zonelist with
918  * @zone - The first suitable zone found is returned via this parameter
919  *
920  * This function returns the next zone at or below a given zone index that is
921  * within the allowed nodemask using a cursor as the starting point for the
922  * search. The zoneref returned is a cursor that represents the current zone
923  * being examined. It should be advanced by one before calling
924  * next_zones_zonelist again.
925  */
926 struct zoneref *next_zones_zonelist(struct zoneref *z,
927 					enum zone_type highest_zoneidx,
928 					nodemask_t *nodes,
929 					struct zone **zone);
930 
931 /**
932  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
933  * @zonelist - The zonelist to search for a suitable zone
934  * @highest_zoneidx - The zone index of the highest zone to return
935  * @nodes - An optional nodemask to filter the zonelist with
936  * @zone - The first suitable zone found is returned via this parameter
937  *
938  * This function returns the first zone at or below a given zone index that is
939  * within the allowed nodemask. The zoneref returned is a cursor that can be
940  * used to iterate the zonelist with next_zones_zonelist by advancing it by
941  * one before calling.
942  */
943 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
944 					enum zone_type highest_zoneidx,
945 					nodemask_t *nodes,
946 					struct zone **zone)
947 {
948 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
949 								zone);
950 }
951 
952 /**
953  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
954  * @zone - The current zone in the iterator
955  * @z - The current pointer within zonelist->zones being iterated
956  * @zlist - The zonelist being iterated
957  * @highidx - The zone index of the highest zone to return
958  * @nodemask - Nodemask allowed by the allocator
959  *
960  * This iterator iterates though all zones at or below a given zone index and
961  * within a given nodemask
962  */
963 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
964 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
965 		zone;							\
966 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
967 
968 /**
969  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
970  * @zone - The current zone in the iterator
971  * @z - The current pointer within zonelist->zones being iterated
972  * @zlist - The zonelist being iterated
973  * @highidx - The zone index of the highest zone to return
974  *
975  * This iterator iterates though all zones at or below a given zone index.
976  */
977 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
978 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
979 
980 #ifdef CONFIG_SPARSEMEM
981 #include <asm/sparsemem.h>
982 #endif
983 
984 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
985 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
987 {
988 	return 0;
989 }
990 #endif
991 
992 #ifdef CONFIG_FLATMEM
993 #define pfn_to_nid(pfn)		(0)
994 #endif
995 
996 #ifdef CONFIG_SPARSEMEM
997 
998 /*
999  * SECTION_SHIFT    		#bits space required to store a section #
1000  *
1001  * PA_SECTION_SHIFT		physical address to/from section number
1002  * PFN_SECTION_SHIFT		pfn to/from section number
1003  */
1004 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1005 
1006 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1007 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1008 
1009 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1010 
1011 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1012 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1013 
1014 #define SECTION_BLOCKFLAGS_BITS \
1015 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1016 
1017 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1018 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1019 #endif
1020 
1021 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1022 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1023 
1024 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1025 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1026 
1027 struct page;
1028 struct page_cgroup;
1029 struct mem_section {
1030 	/*
1031 	 * This is, logically, a pointer to an array of struct
1032 	 * pages.  However, it is stored with some other magic.
1033 	 * (see sparse.c::sparse_init_one_section())
1034 	 *
1035 	 * Additionally during early boot we encode node id of
1036 	 * the location of the section here to guide allocation.
1037 	 * (see sparse.c::memory_present())
1038 	 *
1039 	 * Making it a UL at least makes someone do a cast
1040 	 * before using it wrong.
1041 	 */
1042 	unsigned long section_mem_map;
1043 
1044 	/* See declaration of similar field in struct zone */
1045 	unsigned long *pageblock_flags;
1046 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1047 	/*
1048 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1049 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1050 	 */
1051 	struct page_cgroup *page_cgroup;
1052 	unsigned long pad;
1053 #endif
1054 };
1055 
1056 #ifdef CONFIG_SPARSEMEM_EXTREME
1057 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1058 #else
1059 #define SECTIONS_PER_ROOT	1
1060 #endif
1061 
1062 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1063 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1064 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1065 
1066 #ifdef CONFIG_SPARSEMEM_EXTREME
1067 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1068 #else
1069 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1070 #endif
1071 
1072 static inline struct mem_section *__nr_to_section(unsigned long nr)
1073 {
1074 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1075 		return NULL;
1076 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1077 }
1078 extern int __section_nr(struct mem_section* ms);
1079 extern unsigned long usemap_size(void);
1080 
1081 /*
1082  * We use the lower bits of the mem_map pointer to store
1083  * a little bit of information.  There should be at least
1084  * 3 bits here due to 32-bit alignment.
1085  */
1086 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1087 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1088 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1089 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1090 #define SECTION_NID_SHIFT	2
1091 
1092 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1093 {
1094 	unsigned long map = section->section_mem_map;
1095 	map &= SECTION_MAP_MASK;
1096 	return (struct page *)map;
1097 }
1098 
1099 static inline int present_section(struct mem_section *section)
1100 {
1101 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1102 }
1103 
1104 static inline int present_section_nr(unsigned long nr)
1105 {
1106 	return present_section(__nr_to_section(nr));
1107 }
1108 
1109 static inline int valid_section(struct mem_section *section)
1110 {
1111 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1112 }
1113 
1114 static inline int valid_section_nr(unsigned long nr)
1115 {
1116 	return valid_section(__nr_to_section(nr));
1117 }
1118 
1119 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1120 {
1121 	return __nr_to_section(pfn_to_section_nr(pfn));
1122 }
1123 
1124 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1125 static inline int pfn_valid(unsigned long pfn)
1126 {
1127 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1128 		return 0;
1129 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1130 }
1131 #endif
1132 
1133 static inline int pfn_present(unsigned long pfn)
1134 {
1135 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1136 		return 0;
1137 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1138 }
1139 
1140 /*
1141  * These are _only_ used during initialisation, therefore they
1142  * can use __initdata ...  They could have names to indicate
1143  * this restriction.
1144  */
1145 #ifdef CONFIG_NUMA
1146 #define pfn_to_nid(pfn)							\
1147 ({									\
1148 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1149 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1150 })
1151 #else
1152 #define pfn_to_nid(pfn)		(0)
1153 #endif
1154 
1155 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1156 void sparse_init(void);
1157 #else
1158 #define sparse_init()	do {} while (0)
1159 #define sparse_index_init(_sec, _nid)  do {} while (0)
1160 #endif /* CONFIG_SPARSEMEM */
1161 
1162 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1163 bool early_pfn_in_nid(unsigned long pfn, int nid);
1164 #else
1165 #define early_pfn_in_nid(pfn, nid)	(1)
1166 #endif
1167 
1168 #ifndef early_pfn_valid
1169 #define early_pfn_valid(pfn)	(1)
1170 #endif
1171 
1172 void memory_present(int nid, unsigned long start, unsigned long end);
1173 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1174 
1175 /*
1176  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1177  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1178  * pfn_valid_within() should be used in this case; we optimise this away
1179  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1180  */
1181 #ifdef CONFIG_HOLES_IN_ZONE
1182 #define pfn_valid_within(pfn) pfn_valid(pfn)
1183 #else
1184 #define pfn_valid_within(pfn) (1)
1185 #endif
1186 
1187 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1188 /*
1189  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1190  * associated with it or not. In FLATMEM, it is expected that holes always
1191  * have valid memmap as long as there is valid PFNs either side of the hole.
1192  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1193  * entire section.
1194  *
1195  * However, an ARM, and maybe other embedded architectures in the future
1196  * free memmap backing holes to save memory on the assumption the memmap is
1197  * never used. The page_zone linkages are then broken even though pfn_valid()
1198  * returns true. A walker of the full memmap must then do this additional
1199  * check to ensure the memmap they are looking at is sane by making sure
1200  * the zone and PFN linkages are still valid. This is expensive, but walkers
1201  * of the full memmap are extremely rare.
1202  */
1203 int memmap_valid_within(unsigned long pfn,
1204 					struct page *page, struct zone *zone);
1205 #else
1206 static inline int memmap_valid_within(unsigned long pfn,
1207 					struct page *page, struct zone *zone)
1208 {
1209 	return 1;
1210 }
1211 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1212 
1213 #endif /* !__GENERATING_BOUNDS.H */
1214 #endif /* !__ASSEMBLY__ */
1215 #endif /* _LINUX_MMZONE_H */
1216