xref: /linux-6.15/include/linux/mmzone.h (revision aff985fd)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 #  define is_migrate_cma(migratetype) false
74 #  define is_migrate_cma_page(_page) false
75 #endif
76 
77 #define for_each_migratetype_order(order, type) \
78 	for (order = 0; order < MAX_ORDER; order++) \
79 		for (type = 0; type < MIGRATE_TYPES; type++)
80 
81 extern int page_group_by_mobility_disabled;
82 
83 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85 
86 #define get_pageblock_migratetype(page)					\
87 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
88 			PB_migrate_end, MIGRATETYPE_MASK)
89 
90 struct free_area {
91 	struct list_head	free_list[MIGRATE_TYPES];
92 	unsigned long		nr_free;
93 };
94 
95 struct pglist_data;
96 
97 /*
98  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99  * So add a wild amount of padding here to ensure that they fall into separate
100  * cachelines.  There are very few zone structures in the machine, so space
101  * consumption is not a concern here.
102  */
103 #if defined(CONFIG_SMP)
104 struct zone_padding {
105 	char x[0];
106 } ____cacheline_internodealigned_in_smp;
107 #define ZONE_PADDING(name)	struct zone_padding name;
108 #else
109 #define ZONE_PADDING(name)
110 #endif
111 
112 enum zone_stat_item {
113 	/* First 128 byte cacheline (assuming 64 bit words) */
114 	NR_FREE_PAGES,
115 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 	NR_ZONE_ACTIVE_ANON,
118 	NR_ZONE_INACTIVE_FILE,
119 	NR_ZONE_ACTIVE_FILE,
120 	NR_ZONE_UNEVICTABLE,
121 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
122 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
123 	NR_SLAB_RECLAIMABLE,
124 	NR_SLAB_UNRECLAIMABLE,
125 	NR_PAGETABLE,		/* used for pagetables */
126 	NR_KERNEL_STACK_KB,	/* measured in KiB */
127 	/* Second 128 byte cacheline */
128 	NR_BOUNCE,
129 #if IS_ENABLED(CONFIG_ZSMALLOC)
130 	NR_ZSPAGES,		/* allocated in zsmalloc */
131 #endif
132 #ifdef CONFIG_NUMA
133 	NUMA_HIT,		/* allocated in intended node */
134 	NUMA_MISS,		/* allocated in non intended node */
135 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
136 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
137 	NUMA_LOCAL,		/* allocation from local node */
138 	NUMA_OTHER,		/* allocation from other node */
139 #endif
140 	NR_FREE_CMA_PAGES,
141 	NR_VM_ZONE_STAT_ITEMS };
142 
143 enum node_stat_item {
144 	NR_LRU_BASE,
145 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
147 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
148 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
149 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
150 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
151 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
152 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
153 	WORKINGSET_REFAULT,
154 	WORKINGSET_ACTIVATE,
155 	WORKINGSET_NODERECLAIM,
156 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
157 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
158 			   only modified from process context */
159 	NR_FILE_PAGES,
160 	NR_FILE_DIRTY,
161 	NR_WRITEBACK,
162 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
163 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
164 	NR_SHMEM_THPS,
165 	NR_SHMEM_PMDMAPPED,
166 	NR_ANON_THPS,
167 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
168 	NR_VMSCAN_WRITE,
169 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
170 	NR_DIRTIED,		/* page dirtyings since bootup */
171 	NR_WRITTEN,		/* page writings since bootup */
172 	NR_VM_NODE_STAT_ITEMS
173 };
174 
175 /*
176  * We do arithmetic on the LRU lists in various places in the code,
177  * so it is important to keep the active lists LRU_ACTIVE higher in
178  * the array than the corresponding inactive lists, and to keep
179  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180  *
181  * This has to be kept in sync with the statistics in zone_stat_item
182  * above and the descriptions in vmstat_text in mm/vmstat.c
183  */
184 #define LRU_BASE 0
185 #define LRU_ACTIVE 1
186 #define LRU_FILE 2
187 
188 enum lru_list {
189 	LRU_INACTIVE_ANON = LRU_BASE,
190 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
193 	LRU_UNEVICTABLE,
194 	NR_LRU_LISTS
195 };
196 
197 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
198 
199 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
200 
201 static inline int is_file_lru(enum lru_list lru)
202 {
203 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
204 }
205 
206 static inline int is_active_lru(enum lru_list lru)
207 {
208 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
209 }
210 
211 struct zone_reclaim_stat {
212 	/*
213 	 * The pageout code in vmscan.c keeps track of how many of the
214 	 * mem/swap backed and file backed pages are referenced.
215 	 * The higher the rotated/scanned ratio, the more valuable
216 	 * that cache is.
217 	 *
218 	 * The anon LRU stats live in [0], file LRU stats in [1]
219 	 */
220 	unsigned long		recent_rotated[2];
221 	unsigned long		recent_scanned[2];
222 };
223 
224 struct lruvec {
225 	struct list_head		lists[NR_LRU_LISTS];
226 	struct zone_reclaim_stat	reclaim_stat;
227 	/* Evictions & activations on the inactive file list */
228 	atomic_long_t			inactive_age;
229 #ifdef CONFIG_MEMCG
230 	struct pglist_data *pgdat;
231 #endif
232 };
233 
234 /* Mask used at gathering information at once (see memcontrol.c) */
235 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
238 
239 /* Isolate clean file */
240 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
241 /* Isolate unmapped file */
242 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
243 /* Isolate for asynchronous migration */
244 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
245 /* Isolate unevictable pages */
246 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
247 
248 /* LRU Isolation modes. */
249 typedef unsigned __bitwise isolate_mode_t;
250 
251 enum zone_watermarks {
252 	WMARK_MIN,
253 	WMARK_LOW,
254 	WMARK_HIGH,
255 	NR_WMARK
256 };
257 
258 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
259 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
260 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
261 
262 struct per_cpu_pages {
263 	int count;		/* number of pages in the list */
264 	int high;		/* high watermark, emptying needed */
265 	int batch;		/* chunk size for buddy add/remove */
266 
267 	/* Lists of pages, one per migrate type stored on the pcp-lists */
268 	struct list_head lists[MIGRATE_PCPTYPES];
269 };
270 
271 struct per_cpu_pageset {
272 	struct per_cpu_pages pcp;
273 #ifdef CONFIG_NUMA
274 	s8 expire;
275 #endif
276 #ifdef CONFIG_SMP
277 	s8 stat_threshold;
278 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
279 #endif
280 };
281 
282 struct per_cpu_nodestat {
283 	s8 stat_threshold;
284 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285 };
286 
287 #endif /* !__GENERATING_BOUNDS.H */
288 
289 enum zone_type {
290 #ifdef CONFIG_ZONE_DMA
291 	/*
292 	 * ZONE_DMA is used when there are devices that are not able
293 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
294 	 * carve out the portion of memory that is needed for these devices.
295 	 * The range is arch specific.
296 	 *
297 	 * Some examples
298 	 *
299 	 * Architecture		Limit
300 	 * ---------------------------
301 	 * parisc, ia64, sparc	<4G
302 	 * s390			<2G
303 	 * arm			Various
304 	 * alpha		Unlimited or 0-16MB.
305 	 *
306 	 * i386, x86_64 and multiple other arches
307 	 * 			<16M.
308 	 */
309 	ZONE_DMA,
310 #endif
311 #ifdef CONFIG_ZONE_DMA32
312 	/*
313 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
314 	 * only able to do DMA to the lower 16M but also 32 bit devices that
315 	 * can only do DMA areas below 4G.
316 	 */
317 	ZONE_DMA32,
318 #endif
319 	/*
320 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
321 	 * performed on pages in ZONE_NORMAL if the DMA devices support
322 	 * transfers to all addressable memory.
323 	 */
324 	ZONE_NORMAL,
325 #ifdef CONFIG_HIGHMEM
326 	/*
327 	 * A memory area that is only addressable by the kernel through
328 	 * mapping portions into its own address space. This is for example
329 	 * used by i386 to allow the kernel to address the memory beyond
330 	 * 900MB. The kernel will set up special mappings (page
331 	 * table entries on i386) for each page that the kernel needs to
332 	 * access.
333 	 */
334 	ZONE_HIGHMEM,
335 #endif
336 	ZONE_MOVABLE,
337 #ifdef CONFIG_ZONE_DEVICE
338 	ZONE_DEVICE,
339 #endif
340 	__MAX_NR_ZONES
341 
342 };
343 
344 #ifndef __GENERATING_BOUNDS_H
345 
346 struct zone {
347 	/* Read-mostly fields */
348 
349 	/* zone watermarks, access with *_wmark_pages(zone) macros */
350 	unsigned long watermark[NR_WMARK];
351 
352 	unsigned long nr_reserved_highatomic;
353 
354 	/*
355 	 * We don't know if the memory that we're going to allocate will be
356 	 * freeable or/and it will be released eventually, so to avoid totally
357 	 * wasting several GB of ram we must reserve some of the lower zone
358 	 * memory (otherwise we risk to run OOM on the lower zones despite
359 	 * there being tons of freeable ram on the higher zones).  This array is
360 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 	 * changes.
362 	 */
363 	long lowmem_reserve[MAX_NR_ZONES];
364 
365 #ifdef CONFIG_NUMA
366 	int node;
367 #endif
368 	struct pglist_data	*zone_pgdat;
369 	struct per_cpu_pageset __percpu *pageset;
370 
371 #ifndef CONFIG_SPARSEMEM
372 	/*
373 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
374 	 * In SPARSEMEM, this map is stored in struct mem_section
375 	 */
376 	unsigned long		*pageblock_flags;
377 #endif /* CONFIG_SPARSEMEM */
378 
379 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
380 	unsigned long		zone_start_pfn;
381 
382 	/*
383 	 * spanned_pages is the total pages spanned by the zone, including
384 	 * holes, which is calculated as:
385 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
386 	 *
387 	 * present_pages is physical pages existing within the zone, which
388 	 * is calculated as:
389 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
390 	 *
391 	 * managed_pages is present pages managed by the buddy system, which
392 	 * is calculated as (reserved_pages includes pages allocated by the
393 	 * bootmem allocator):
394 	 *	managed_pages = present_pages - reserved_pages;
395 	 *
396 	 * So present_pages may be used by memory hotplug or memory power
397 	 * management logic to figure out unmanaged pages by checking
398 	 * (present_pages - managed_pages). And managed_pages should be used
399 	 * by page allocator and vm scanner to calculate all kinds of watermarks
400 	 * and thresholds.
401 	 *
402 	 * Locking rules:
403 	 *
404 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
405 	 * It is a seqlock because it has to be read outside of zone->lock,
406 	 * and it is done in the main allocator path.  But, it is written
407 	 * quite infrequently.
408 	 *
409 	 * The span_seq lock is declared along with zone->lock because it is
410 	 * frequently read in proximity to zone->lock.  It's good to
411 	 * give them a chance of being in the same cacheline.
412 	 *
413 	 * Write access to present_pages at runtime should be protected by
414 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
415 	 * present_pages should get_online_mems() to get a stable value.
416 	 *
417 	 * Read access to managed_pages should be safe because it's unsigned
418 	 * long. Write access to zone->managed_pages and totalram_pages are
419 	 * protected by managed_page_count_lock at runtime. Idealy only
420 	 * adjust_managed_page_count() should be used instead of directly
421 	 * touching zone->managed_pages and totalram_pages.
422 	 */
423 	unsigned long		managed_pages;
424 	unsigned long		spanned_pages;
425 	unsigned long		present_pages;
426 
427 	const char		*name;
428 
429 #ifdef CONFIG_MEMORY_ISOLATION
430 	/*
431 	 * Number of isolated pageblock. It is used to solve incorrect
432 	 * freepage counting problem due to racy retrieving migratetype
433 	 * of pageblock. Protected by zone->lock.
434 	 */
435 	unsigned long		nr_isolate_pageblock;
436 #endif
437 
438 #ifdef CONFIG_MEMORY_HOTPLUG
439 	/* see spanned/present_pages for more description */
440 	seqlock_t		span_seqlock;
441 #endif
442 
443 	int initialized;
444 
445 	/* Write-intensive fields used from the page allocator */
446 	ZONE_PADDING(_pad1_)
447 
448 	/* free areas of different sizes */
449 	struct free_area	free_area[MAX_ORDER];
450 
451 	/* zone flags, see below */
452 	unsigned long		flags;
453 
454 	/* Primarily protects free_area */
455 	spinlock_t		lock;
456 
457 	/* Write-intensive fields used by compaction and vmstats. */
458 	ZONE_PADDING(_pad2_)
459 
460 	/*
461 	 * When free pages are below this point, additional steps are taken
462 	 * when reading the number of free pages to avoid per-cpu counter
463 	 * drift allowing watermarks to be breached
464 	 */
465 	unsigned long percpu_drift_mark;
466 
467 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
468 	/* pfn where compaction free scanner should start */
469 	unsigned long		compact_cached_free_pfn;
470 	/* pfn where async and sync compaction migration scanner should start */
471 	unsigned long		compact_cached_migrate_pfn[2];
472 #endif
473 
474 #ifdef CONFIG_COMPACTION
475 	/*
476 	 * On compaction failure, 1<<compact_defer_shift compactions
477 	 * are skipped before trying again. The number attempted since
478 	 * last failure is tracked with compact_considered.
479 	 */
480 	unsigned int		compact_considered;
481 	unsigned int		compact_defer_shift;
482 	int			compact_order_failed;
483 #endif
484 
485 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
486 	/* Set to true when the PG_migrate_skip bits should be cleared */
487 	bool			compact_blockskip_flush;
488 #endif
489 
490 	bool			contiguous;
491 
492 	ZONE_PADDING(_pad3_)
493 	/* Zone statistics */
494 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
495 } ____cacheline_internodealigned_in_smp;
496 
497 enum pgdat_flags {
498 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
499 					 * a congested BDI
500 					 */
501 	PGDAT_DIRTY,			/* reclaim scanning has recently found
502 					 * many dirty file pages at the tail
503 					 * of the LRU.
504 					 */
505 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
506 					 * many pages under writeback
507 					 */
508 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
509 };
510 
511 static inline unsigned long zone_end_pfn(const struct zone *zone)
512 {
513 	return zone->zone_start_pfn + zone->spanned_pages;
514 }
515 
516 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
517 {
518 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
519 }
520 
521 static inline bool zone_is_initialized(struct zone *zone)
522 {
523 	return zone->initialized;
524 }
525 
526 static inline bool zone_is_empty(struct zone *zone)
527 {
528 	return zone->spanned_pages == 0;
529 }
530 
531 /*
532  * The "priority" of VM scanning is how much of the queues we will scan in one
533  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
534  * queues ("queue_length >> 12") during an aging round.
535  */
536 #define DEF_PRIORITY 12
537 
538 /* Maximum number of zones on a zonelist */
539 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
540 
541 enum {
542 	ZONELIST_FALLBACK,	/* zonelist with fallback */
543 #ifdef CONFIG_NUMA
544 	/*
545 	 * The NUMA zonelists are doubled because we need zonelists that
546 	 * restrict the allocations to a single node for __GFP_THISNODE.
547 	 */
548 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
549 #endif
550 	MAX_ZONELISTS
551 };
552 
553 /*
554  * This struct contains information about a zone in a zonelist. It is stored
555  * here to avoid dereferences into large structures and lookups of tables
556  */
557 struct zoneref {
558 	struct zone *zone;	/* Pointer to actual zone */
559 	int zone_idx;		/* zone_idx(zoneref->zone) */
560 };
561 
562 /*
563  * One allocation request operates on a zonelist. A zonelist
564  * is a list of zones, the first one is the 'goal' of the
565  * allocation, the other zones are fallback zones, in decreasing
566  * priority.
567  *
568  * To speed the reading of the zonelist, the zonerefs contain the zone index
569  * of the entry being read. Helper functions to access information given
570  * a struct zoneref are
571  *
572  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
573  * zonelist_zone_idx()	- Return the index of the zone for an entry
574  * zonelist_node_idx()	- Return the index of the node for an entry
575  */
576 struct zonelist {
577 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
578 };
579 
580 #ifndef CONFIG_DISCONTIGMEM
581 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
582 extern struct page *mem_map;
583 #endif
584 
585 /*
586  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
587  * (mostly NUMA machines?) to denote a higher-level memory zone than the
588  * zone denotes.
589  *
590  * On NUMA machines, each NUMA node would have a pg_data_t to describe
591  * it's memory layout.
592  *
593  * Memory statistics and page replacement data structures are maintained on a
594  * per-zone basis.
595  */
596 struct bootmem_data;
597 typedef struct pglist_data {
598 	struct zone node_zones[MAX_NR_ZONES];
599 	struct zonelist node_zonelists[MAX_ZONELISTS];
600 	int nr_zones;
601 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
602 	struct page *node_mem_map;
603 #ifdef CONFIG_PAGE_EXTENSION
604 	struct page_ext *node_page_ext;
605 #endif
606 #endif
607 #ifndef CONFIG_NO_BOOTMEM
608 	struct bootmem_data *bdata;
609 #endif
610 #ifdef CONFIG_MEMORY_HOTPLUG
611 	/*
612 	 * Must be held any time you expect node_start_pfn, node_present_pages
613 	 * or node_spanned_pages stay constant.  Holding this will also
614 	 * guarantee that any pfn_valid() stays that way.
615 	 *
616 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
617 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
618 	 *
619 	 * Nests above zone->lock and zone->span_seqlock
620 	 */
621 	spinlock_t node_size_lock;
622 #endif
623 	unsigned long node_start_pfn;
624 	unsigned long node_present_pages; /* total number of physical pages */
625 	unsigned long node_spanned_pages; /* total size of physical page
626 					     range, including holes */
627 	int node_id;
628 	wait_queue_head_t kswapd_wait;
629 	wait_queue_head_t pfmemalloc_wait;
630 	struct task_struct *kswapd;	/* Protected by
631 					   mem_hotplug_begin/end() */
632 	int kswapd_order;
633 	enum zone_type kswapd_classzone_idx;
634 
635 #ifdef CONFIG_COMPACTION
636 	int kcompactd_max_order;
637 	enum zone_type kcompactd_classzone_idx;
638 	wait_queue_head_t kcompactd_wait;
639 	struct task_struct *kcompactd;
640 #endif
641 #ifdef CONFIG_NUMA_BALANCING
642 	/* Lock serializing the migrate rate limiting window */
643 	spinlock_t numabalancing_migrate_lock;
644 
645 	/* Rate limiting time interval */
646 	unsigned long numabalancing_migrate_next_window;
647 
648 	/* Number of pages migrated during the rate limiting time interval */
649 	unsigned long numabalancing_migrate_nr_pages;
650 #endif
651 	/*
652 	 * This is a per-node reserve of pages that are not available
653 	 * to userspace allocations.
654 	 */
655 	unsigned long		totalreserve_pages;
656 
657 #ifdef CONFIG_NUMA
658 	/*
659 	 * zone reclaim becomes active if more unmapped pages exist.
660 	 */
661 	unsigned long		min_unmapped_pages;
662 	unsigned long		min_slab_pages;
663 #endif /* CONFIG_NUMA */
664 
665 	/* Write-intensive fields used by page reclaim */
666 	ZONE_PADDING(_pad1_)
667 	spinlock_t		lru_lock;
668 
669 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
670 	/*
671 	 * If memory initialisation on large machines is deferred then this
672 	 * is the first PFN that needs to be initialised.
673 	 */
674 	unsigned long first_deferred_pfn;
675 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
676 
677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
678 	spinlock_t split_queue_lock;
679 	struct list_head split_queue;
680 	unsigned long split_queue_len;
681 #endif
682 
683 	/* Fields commonly accessed by the page reclaim scanner */
684 	struct lruvec		lruvec;
685 
686 	/*
687 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
688 	 * this node's LRU.  Maintained by the pageout code.
689 	 */
690 	unsigned int inactive_ratio;
691 
692 	unsigned long		flags;
693 
694 	ZONE_PADDING(_pad2_)
695 
696 	/* Per-node vmstats */
697 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
698 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
699 } pg_data_t;
700 
701 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
702 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
703 #ifdef CONFIG_FLAT_NODE_MEM_MAP
704 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
705 #else
706 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
707 #endif
708 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
709 
710 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
711 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
712 static inline spinlock_t *zone_lru_lock(struct zone *zone)
713 {
714 	return &zone->zone_pgdat->lru_lock;
715 }
716 
717 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
718 {
719 	return &pgdat->lruvec;
720 }
721 
722 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
723 {
724 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
725 }
726 
727 static inline bool pgdat_is_empty(pg_data_t *pgdat)
728 {
729 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
730 }
731 
732 static inline int zone_id(const struct zone *zone)
733 {
734 	struct pglist_data *pgdat = zone->zone_pgdat;
735 
736 	return zone - pgdat->node_zones;
737 }
738 
739 #ifdef CONFIG_ZONE_DEVICE
740 static inline bool is_dev_zone(const struct zone *zone)
741 {
742 	return zone_id(zone) == ZONE_DEVICE;
743 }
744 #else
745 static inline bool is_dev_zone(const struct zone *zone)
746 {
747 	return false;
748 }
749 #endif
750 
751 #include <linux/memory_hotplug.h>
752 
753 extern struct mutex zonelists_mutex;
754 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
755 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
756 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
757 			 int classzone_idx, unsigned int alloc_flags,
758 			 long free_pages);
759 bool zone_watermark_ok(struct zone *z, unsigned int order,
760 		unsigned long mark, int classzone_idx,
761 		unsigned int alloc_flags);
762 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
763 		unsigned long mark, int classzone_idx);
764 enum memmap_context {
765 	MEMMAP_EARLY,
766 	MEMMAP_HOTPLUG,
767 };
768 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
769 				     unsigned long size);
770 
771 extern void lruvec_init(struct lruvec *lruvec);
772 
773 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
774 {
775 #ifdef CONFIG_MEMCG
776 	return lruvec->pgdat;
777 #else
778 	return container_of(lruvec, struct pglist_data, lruvec);
779 #endif
780 }
781 
782 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
783 
784 #ifdef CONFIG_HAVE_MEMORY_PRESENT
785 void memory_present(int nid, unsigned long start, unsigned long end);
786 #else
787 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
788 #endif
789 
790 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
791 int local_memory_node(int node_id);
792 #else
793 static inline int local_memory_node(int node_id) { return node_id; };
794 #endif
795 
796 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
797 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
798 #endif
799 
800 /*
801  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
802  */
803 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
804 
805 /*
806  * Returns true if a zone has pages managed by the buddy allocator.
807  * All the reclaim decisions have to use this function rather than
808  * populated_zone(). If the whole zone is reserved then we can easily
809  * end up with populated_zone() && !managed_zone().
810  */
811 static inline bool managed_zone(struct zone *zone)
812 {
813 	return zone->managed_pages;
814 }
815 
816 /* Returns true if a zone has memory */
817 static inline bool populated_zone(struct zone *zone)
818 {
819 	return zone->present_pages;
820 }
821 
822 extern int movable_zone;
823 
824 #ifdef CONFIG_HIGHMEM
825 static inline int zone_movable_is_highmem(void)
826 {
827 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
828 	return movable_zone == ZONE_HIGHMEM;
829 #else
830 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
831 #endif
832 }
833 #endif
834 
835 static inline int is_highmem_idx(enum zone_type idx)
836 {
837 #ifdef CONFIG_HIGHMEM
838 	return (idx == ZONE_HIGHMEM ||
839 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
840 #else
841 	return 0;
842 #endif
843 }
844 
845 /**
846  * is_highmem - helper function to quickly check if a struct zone is a
847  *              highmem zone or not.  This is an attempt to keep references
848  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
849  * @zone - pointer to struct zone variable
850  */
851 static inline int is_highmem(struct zone *zone)
852 {
853 #ifdef CONFIG_HIGHMEM
854 	return is_highmem_idx(zone_idx(zone));
855 #else
856 	return 0;
857 #endif
858 }
859 
860 /* These two functions are used to setup the per zone pages min values */
861 struct ctl_table;
862 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
863 					void __user *, size_t *, loff_t *);
864 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
865 					void __user *, size_t *, loff_t *);
866 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
867 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
868 					void __user *, size_t *, loff_t *);
869 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
870 					void __user *, size_t *, loff_t *);
871 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
872 			void __user *, size_t *, loff_t *);
873 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
874 			void __user *, size_t *, loff_t *);
875 
876 extern int numa_zonelist_order_handler(struct ctl_table *, int,
877 			void __user *, size_t *, loff_t *);
878 extern char numa_zonelist_order[];
879 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
880 
881 #ifndef CONFIG_NEED_MULTIPLE_NODES
882 
883 extern struct pglist_data contig_page_data;
884 #define NODE_DATA(nid)		(&contig_page_data)
885 #define NODE_MEM_MAP(nid)	mem_map
886 
887 #else /* CONFIG_NEED_MULTIPLE_NODES */
888 
889 #include <asm/mmzone.h>
890 
891 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
892 
893 extern struct pglist_data *first_online_pgdat(void);
894 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
895 extern struct zone *next_zone(struct zone *zone);
896 
897 /**
898  * for_each_online_pgdat - helper macro to iterate over all online nodes
899  * @pgdat - pointer to a pg_data_t variable
900  */
901 #define for_each_online_pgdat(pgdat)			\
902 	for (pgdat = first_online_pgdat();		\
903 	     pgdat;					\
904 	     pgdat = next_online_pgdat(pgdat))
905 /**
906  * for_each_zone - helper macro to iterate over all memory zones
907  * @zone - pointer to struct zone variable
908  *
909  * The user only needs to declare the zone variable, for_each_zone
910  * fills it in.
911  */
912 #define for_each_zone(zone)			        \
913 	for (zone = (first_online_pgdat())->node_zones; \
914 	     zone;					\
915 	     zone = next_zone(zone))
916 
917 #define for_each_populated_zone(zone)		        \
918 	for (zone = (first_online_pgdat())->node_zones; \
919 	     zone;					\
920 	     zone = next_zone(zone))			\
921 		if (!populated_zone(zone))		\
922 			; /* do nothing */		\
923 		else
924 
925 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
926 {
927 	return zoneref->zone;
928 }
929 
930 static inline int zonelist_zone_idx(struct zoneref *zoneref)
931 {
932 	return zoneref->zone_idx;
933 }
934 
935 static inline int zonelist_node_idx(struct zoneref *zoneref)
936 {
937 #ifdef CONFIG_NUMA
938 	/* zone_to_nid not available in this context */
939 	return zoneref->zone->node;
940 #else
941 	return 0;
942 #endif /* CONFIG_NUMA */
943 }
944 
945 struct zoneref *__next_zones_zonelist(struct zoneref *z,
946 					enum zone_type highest_zoneidx,
947 					nodemask_t *nodes);
948 
949 /**
950  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
951  * @z - The cursor used as a starting point for the search
952  * @highest_zoneidx - The zone index of the highest zone to return
953  * @nodes - An optional nodemask to filter the zonelist with
954  *
955  * This function returns the next zone at or below a given zone index that is
956  * within the allowed nodemask using a cursor as the starting point for the
957  * search. The zoneref returned is a cursor that represents the current zone
958  * being examined. It should be advanced by one before calling
959  * next_zones_zonelist again.
960  */
961 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
962 					enum zone_type highest_zoneidx,
963 					nodemask_t *nodes)
964 {
965 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
966 		return z;
967 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
968 }
969 
970 /**
971  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
972  * @zonelist - The zonelist to search for a suitable zone
973  * @highest_zoneidx - The zone index of the highest zone to return
974  * @nodes - An optional nodemask to filter the zonelist with
975  * @zone - The first suitable zone found is returned via this parameter
976  *
977  * This function returns the first zone at or below a given zone index that is
978  * within the allowed nodemask. The zoneref returned is a cursor that can be
979  * used to iterate the zonelist with next_zones_zonelist by advancing it by
980  * one before calling.
981  */
982 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
983 					enum zone_type highest_zoneidx,
984 					nodemask_t *nodes)
985 {
986 	return next_zones_zonelist(zonelist->_zonerefs,
987 							highest_zoneidx, nodes);
988 }
989 
990 /**
991  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
992  * @zone - The current zone in the iterator
993  * @z - The current pointer within zonelist->zones being iterated
994  * @zlist - The zonelist being iterated
995  * @highidx - The zone index of the highest zone to return
996  * @nodemask - Nodemask allowed by the allocator
997  *
998  * This iterator iterates though all zones at or below a given zone index and
999  * within a given nodemask
1000  */
1001 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1002 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1003 		zone;							\
1004 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1005 			zone = zonelist_zone(z))
1006 
1007 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1008 	for (zone = z->zone;	\
1009 		zone;							\
1010 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1011 			zone = zonelist_zone(z))
1012 
1013 
1014 /**
1015  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1016  * @zone - The current zone in the iterator
1017  * @z - The current pointer within zonelist->zones being iterated
1018  * @zlist - The zonelist being iterated
1019  * @highidx - The zone index of the highest zone to return
1020  *
1021  * This iterator iterates though all zones at or below a given zone index.
1022  */
1023 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1024 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1025 
1026 #ifdef CONFIG_SPARSEMEM
1027 #include <asm/sparsemem.h>
1028 #endif
1029 
1030 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1031 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1032 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1033 {
1034 	return 0;
1035 }
1036 #endif
1037 
1038 #ifdef CONFIG_FLATMEM
1039 #define pfn_to_nid(pfn)		(0)
1040 #endif
1041 
1042 #ifdef CONFIG_SPARSEMEM
1043 
1044 /*
1045  * SECTION_SHIFT    		#bits space required to store a section #
1046  *
1047  * PA_SECTION_SHIFT		physical address to/from section number
1048  * PFN_SECTION_SHIFT		pfn to/from section number
1049  */
1050 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1051 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1052 
1053 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1054 
1055 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1056 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1057 
1058 #define SECTION_BLOCKFLAGS_BITS \
1059 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1060 
1061 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1062 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1063 #endif
1064 
1065 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1066 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1067 
1068 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1069 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1070 
1071 struct page;
1072 struct page_ext;
1073 struct mem_section {
1074 	/*
1075 	 * This is, logically, a pointer to an array of struct
1076 	 * pages.  However, it is stored with some other magic.
1077 	 * (see sparse.c::sparse_init_one_section())
1078 	 *
1079 	 * Additionally during early boot we encode node id of
1080 	 * the location of the section here to guide allocation.
1081 	 * (see sparse.c::memory_present())
1082 	 *
1083 	 * Making it a UL at least makes someone do a cast
1084 	 * before using it wrong.
1085 	 */
1086 	unsigned long section_mem_map;
1087 
1088 	/* See declaration of similar field in struct zone */
1089 	unsigned long *pageblock_flags;
1090 #ifdef CONFIG_PAGE_EXTENSION
1091 	/*
1092 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1093 	 * section. (see page_ext.h about this.)
1094 	 */
1095 	struct page_ext *page_ext;
1096 	unsigned long pad;
1097 #endif
1098 	/*
1099 	 * WARNING: mem_section must be a power-of-2 in size for the
1100 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1101 	 */
1102 };
1103 
1104 #ifdef CONFIG_SPARSEMEM_EXTREME
1105 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1106 #else
1107 #define SECTIONS_PER_ROOT	1
1108 #endif
1109 
1110 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1111 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1112 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1113 
1114 #ifdef CONFIG_SPARSEMEM_EXTREME
1115 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1116 #else
1117 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1118 #endif
1119 
1120 static inline struct mem_section *__nr_to_section(unsigned long nr)
1121 {
1122 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1123 		return NULL;
1124 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1125 }
1126 extern int __section_nr(struct mem_section* ms);
1127 extern unsigned long usemap_size(void);
1128 
1129 /*
1130  * We use the lower bits of the mem_map pointer to store
1131  * a little bit of information.  There should be at least
1132  * 3 bits here due to 32-bit alignment.
1133  */
1134 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1135 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1136 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1137 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1138 #define SECTION_NID_SHIFT	2
1139 
1140 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1141 {
1142 	unsigned long map = section->section_mem_map;
1143 	map &= SECTION_MAP_MASK;
1144 	return (struct page *)map;
1145 }
1146 
1147 static inline int present_section(struct mem_section *section)
1148 {
1149 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1150 }
1151 
1152 static inline int present_section_nr(unsigned long nr)
1153 {
1154 	return present_section(__nr_to_section(nr));
1155 }
1156 
1157 static inline int valid_section(struct mem_section *section)
1158 {
1159 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1160 }
1161 
1162 static inline int valid_section_nr(unsigned long nr)
1163 {
1164 	return valid_section(__nr_to_section(nr));
1165 }
1166 
1167 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1168 {
1169 	return __nr_to_section(pfn_to_section_nr(pfn));
1170 }
1171 
1172 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1173 static inline int pfn_valid(unsigned long pfn)
1174 {
1175 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1176 		return 0;
1177 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1178 }
1179 #endif
1180 
1181 static inline int pfn_present(unsigned long pfn)
1182 {
1183 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1184 		return 0;
1185 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1186 }
1187 
1188 /*
1189  * These are _only_ used during initialisation, therefore they
1190  * can use __initdata ...  They could have names to indicate
1191  * this restriction.
1192  */
1193 #ifdef CONFIG_NUMA
1194 #define pfn_to_nid(pfn)							\
1195 ({									\
1196 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1197 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1198 })
1199 #else
1200 #define pfn_to_nid(pfn)		(0)
1201 #endif
1202 
1203 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1204 void sparse_init(void);
1205 #else
1206 #define sparse_init()	do {} while (0)
1207 #define sparse_index_init(_sec, _nid)  do {} while (0)
1208 #endif /* CONFIG_SPARSEMEM */
1209 
1210 /*
1211  * During memory init memblocks map pfns to nids. The search is expensive and
1212  * this caches recent lookups. The implementation of __early_pfn_to_nid
1213  * may treat start/end as pfns or sections.
1214  */
1215 struct mminit_pfnnid_cache {
1216 	unsigned long last_start;
1217 	unsigned long last_end;
1218 	int last_nid;
1219 };
1220 
1221 #ifndef early_pfn_valid
1222 #define early_pfn_valid(pfn)	(1)
1223 #endif
1224 
1225 void memory_present(int nid, unsigned long start, unsigned long end);
1226 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1227 
1228 /*
1229  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1230  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1231  * pfn_valid_within() should be used in this case; we optimise this away
1232  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1233  */
1234 #ifdef CONFIG_HOLES_IN_ZONE
1235 #define pfn_valid_within(pfn) pfn_valid(pfn)
1236 #else
1237 #define pfn_valid_within(pfn) (1)
1238 #endif
1239 
1240 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1241 /*
1242  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1243  * associated with it or not. In FLATMEM, it is expected that holes always
1244  * have valid memmap as long as there is valid PFNs either side of the hole.
1245  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1246  * entire section.
1247  *
1248  * However, an ARM, and maybe other embedded architectures in the future
1249  * free memmap backing holes to save memory on the assumption the memmap is
1250  * never used. The page_zone linkages are then broken even though pfn_valid()
1251  * returns true. A walker of the full memmap must then do this additional
1252  * check to ensure the memmap they are looking at is sane by making sure
1253  * the zone and PFN linkages are still valid. This is expensive, but walkers
1254  * of the full memmap are extremely rare.
1255  */
1256 bool memmap_valid_within(unsigned long pfn,
1257 					struct page *page, struct zone *zone);
1258 #else
1259 static inline bool memmap_valid_within(unsigned long pfn,
1260 					struct page *page, struct zone *zone)
1261 {
1262 	return true;
1263 }
1264 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1265 
1266 #endif /* !__GENERATING_BOUNDS.H */
1267 #endif /* !__ASSEMBLY__ */
1268 #endif /* _LINUX_MMZONE_H */
1269