1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifdef __KERNEL__ 5 #ifndef __ASSEMBLY__ 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/cache.h> 11 #include <linux/threads.h> 12 #include <linux/numa.h> 13 #include <linux/init.h> 14 #include <linux/seqlock.h> 15 #include <linux/nodemask.h> 16 #include <asm/atomic.h> 17 #include <asm/page.h> 18 19 /* Free memory management - zoned buddy allocator. */ 20 #ifndef CONFIG_FORCE_MAX_ZONEORDER 21 #define MAX_ORDER 11 22 #else 23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 24 #endif 25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 26 27 /* 28 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 29 * costly to service. That is between allocation orders which should 30 * coelesce naturally under reasonable reclaim pressure and those which 31 * will not. 32 */ 33 #define PAGE_ALLOC_COSTLY_ORDER 3 34 35 struct free_area { 36 struct list_head free_list; 37 unsigned long nr_free; 38 }; 39 40 struct pglist_data; 41 42 /* 43 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 44 * So add a wild amount of padding here to ensure that they fall into separate 45 * cachelines. There are very few zone structures in the machine, so space 46 * consumption is not a concern here. 47 */ 48 #if defined(CONFIG_SMP) 49 struct zone_padding { 50 char x[0]; 51 } ____cacheline_internodealigned_in_smp; 52 #define ZONE_PADDING(name) struct zone_padding name; 53 #else 54 #define ZONE_PADDING(name) 55 #endif 56 57 enum zone_stat_item { 58 /* First 128 byte cacheline (assuming 64 bit words) */ 59 NR_FREE_PAGES, 60 NR_INACTIVE, 61 NR_ACTIVE, 62 NR_ANON_PAGES, /* Mapped anonymous pages */ 63 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 64 only modified from process context */ 65 NR_FILE_PAGES, 66 NR_FILE_DIRTY, 67 NR_WRITEBACK, 68 /* Second 128 byte cacheline */ 69 NR_SLAB_RECLAIMABLE, 70 NR_SLAB_UNRECLAIMABLE, 71 NR_PAGETABLE, /* used for pagetables */ 72 NR_UNSTABLE_NFS, /* NFS unstable pages */ 73 NR_BOUNCE, 74 NR_VMSCAN_WRITE, 75 #ifdef CONFIG_NUMA 76 NUMA_HIT, /* allocated in intended node */ 77 NUMA_MISS, /* allocated in non intended node */ 78 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 79 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 80 NUMA_LOCAL, /* allocation from local node */ 81 NUMA_OTHER, /* allocation from other node */ 82 #endif 83 NR_VM_ZONE_STAT_ITEMS }; 84 85 struct per_cpu_pages { 86 int count; /* number of pages in the list */ 87 int high; /* high watermark, emptying needed */ 88 int batch; /* chunk size for buddy add/remove */ 89 struct list_head list; /* the list of pages */ 90 }; 91 92 struct per_cpu_pageset { 93 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 94 #ifdef CONFIG_NUMA 95 s8 expire; 96 #endif 97 #ifdef CONFIG_SMP 98 s8 stat_threshold; 99 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 100 #endif 101 } ____cacheline_aligned_in_smp; 102 103 #ifdef CONFIG_NUMA 104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 105 #else 106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 107 #endif 108 109 enum zone_type { 110 #ifdef CONFIG_ZONE_DMA 111 /* 112 * ZONE_DMA is used when there are devices that are not able 113 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 114 * carve out the portion of memory that is needed for these devices. 115 * The range is arch specific. 116 * 117 * Some examples 118 * 119 * Architecture Limit 120 * --------------------------- 121 * parisc, ia64, sparc <4G 122 * s390 <2G 123 * arm26 <48M 124 * arm Various 125 * alpha Unlimited or 0-16MB. 126 * 127 * i386, x86_64 and multiple other arches 128 * <16M. 129 */ 130 ZONE_DMA, 131 #endif 132 #ifdef CONFIG_ZONE_DMA32 133 /* 134 * x86_64 needs two ZONE_DMAs because it supports devices that are 135 * only able to do DMA to the lower 16M but also 32 bit devices that 136 * can only do DMA areas below 4G. 137 */ 138 ZONE_DMA32, 139 #endif 140 /* 141 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 142 * performed on pages in ZONE_NORMAL if the DMA devices support 143 * transfers to all addressable memory. 144 */ 145 ZONE_NORMAL, 146 #ifdef CONFIG_HIGHMEM 147 /* 148 * A memory area that is only addressable by the kernel through 149 * mapping portions into its own address space. This is for example 150 * used by i386 to allow the kernel to address the memory beyond 151 * 900MB. The kernel will set up special mappings (page 152 * table entries on i386) for each page that the kernel needs to 153 * access. 154 */ 155 ZONE_HIGHMEM, 156 #endif 157 ZONE_MOVABLE, 158 MAX_NR_ZONES 159 }; 160 161 /* 162 * When a memory allocation must conform to specific limitations (such 163 * as being suitable for DMA) the caller will pass in hints to the 164 * allocator in the gfp_mask, in the zone modifier bits. These bits 165 * are used to select a priority ordered list of memory zones which 166 * match the requested limits. See gfp_zone() in include/linux/gfp.h 167 */ 168 169 /* 170 * Count the active zones. Note that the use of defined(X) outside 171 * #if and family is not necessarily defined so ensure we cannot use 172 * it later. Use __ZONE_COUNT to work out how many shift bits we need. 173 */ 174 #define __ZONE_COUNT ( \ 175 defined(CONFIG_ZONE_DMA) \ 176 + defined(CONFIG_ZONE_DMA32) \ 177 + 1 \ 178 + defined(CONFIG_HIGHMEM) \ 179 + 1 \ 180 ) 181 #if __ZONE_COUNT < 2 182 #define ZONES_SHIFT 0 183 #elif __ZONE_COUNT <= 2 184 #define ZONES_SHIFT 1 185 #elif __ZONE_COUNT <= 4 186 #define ZONES_SHIFT 2 187 #else 188 #error ZONES_SHIFT -- too many zones configured adjust calculation 189 #endif 190 #undef __ZONE_COUNT 191 192 struct zone { 193 /* Fields commonly accessed by the page allocator */ 194 unsigned long pages_min, pages_low, pages_high; 195 /* 196 * We don't know if the memory that we're going to allocate will be freeable 197 * or/and it will be released eventually, so to avoid totally wasting several 198 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 199 * to run OOM on the lower zones despite there's tons of freeable ram 200 * on the higher zones). This array is recalculated at runtime if the 201 * sysctl_lowmem_reserve_ratio sysctl changes. 202 */ 203 unsigned long lowmem_reserve[MAX_NR_ZONES]; 204 205 #ifdef CONFIG_NUMA 206 int node; 207 /* 208 * zone reclaim becomes active if more unmapped pages exist. 209 */ 210 unsigned long min_unmapped_pages; 211 unsigned long min_slab_pages; 212 struct per_cpu_pageset *pageset[NR_CPUS]; 213 #else 214 struct per_cpu_pageset pageset[NR_CPUS]; 215 #endif 216 /* 217 * free areas of different sizes 218 */ 219 spinlock_t lock; 220 #ifdef CONFIG_MEMORY_HOTPLUG 221 /* see spanned/present_pages for more description */ 222 seqlock_t span_seqlock; 223 #endif 224 struct free_area free_area[MAX_ORDER]; 225 226 227 ZONE_PADDING(_pad1_) 228 229 /* Fields commonly accessed by the page reclaim scanner */ 230 spinlock_t lru_lock; 231 struct list_head active_list; 232 struct list_head inactive_list; 233 unsigned long nr_scan_active; 234 unsigned long nr_scan_inactive; 235 unsigned long pages_scanned; /* since last reclaim */ 236 int all_unreclaimable; /* All pages pinned */ 237 238 /* A count of how many reclaimers are scanning this zone */ 239 atomic_t reclaim_in_progress; 240 241 /* Zone statistics */ 242 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 243 244 /* 245 * prev_priority holds the scanning priority for this zone. It is 246 * defined as the scanning priority at which we achieved our reclaim 247 * target at the previous try_to_free_pages() or balance_pgdat() 248 * invokation. 249 * 250 * We use prev_priority as a measure of how much stress page reclaim is 251 * under - it drives the swappiness decision: whether to unmap mapped 252 * pages. 253 * 254 * Access to both this field is quite racy even on uniprocessor. But 255 * it is expected to average out OK. 256 */ 257 int prev_priority; 258 259 260 ZONE_PADDING(_pad2_) 261 /* Rarely used or read-mostly fields */ 262 263 /* 264 * wait_table -- the array holding the hash table 265 * wait_table_hash_nr_entries -- the size of the hash table array 266 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 267 * 268 * The purpose of all these is to keep track of the people 269 * waiting for a page to become available and make them 270 * runnable again when possible. The trouble is that this 271 * consumes a lot of space, especially when so few things 272 * wait on pages at a given time. So instead of using 273 * per-page waitqueues, we use a waitqueue hash table. 274 * 275 * The bucket discipline is to sleep on the same queue when 276 * colliding and wake all in that wait queue when removing. 277 * When something wakes, it must check to be sure its page is 278 * truly available, a la thundering herd. The cost of a 279 * collision is great, but given the expected load of the 280 * table, they should be so rare as to be outweighed by the 281 * benefits from the saved space. 282 * 283 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 284 * primary users of these fields, and in mm/page_alloc.c 285 * free_area_init_core() performs the initialization of them. 286 */ 287 wait_queue_head_t * wait_table; 288 unsigned long wait_table_hash_nr_entries; 289 unsigned long wait_table_bits; 290 291 /* 292 * Discontig memory support fields. 293 */ 294 struct pglist_data *zone_pgdat; 295 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 296 unsigned long zone_start_pfn; 297 298 /* 299 * zone_start_pfn, spanned_pages and present_pages are all 300 * protected by span_seqlock. It is a seqlock because it has 301 * to be read outside of zone->lock, and it is done in the main 302 * allocator path. But, it is written quite infrequently. 303 * 304 * The lock is declared along with zone->lock because it is 305 * frequently read in proximity to zone->lock. It's good to 306 * give them a chance of being in the same cacheline. 307 */ 308 unsigned long spanned_pages; /* total size, including holes */ 309 unsigned long present_pages; /* amount of memory (excluding holes) */ 310 311 /* 312 * rarely used fields: 313 */ 314 const char *name; 315 } ____cacheline_internodealigned_in_smp; 316 317 /* 318 * The "priority" of VM scanning is how much of the queues we will scan in one 319 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 320 * queues ("queue_length >> 12") during an aging round. 321 */ 322 #define DEF_PRIORITY 12 323 324 /* Maximum number of zones on a zonelist */ 325 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 326 327 #ifdef CONFIG_NUMA 328 /* 329 * We cache key information from each zonelist for smaller cache 330 * footprint when scanning for free pages in get_page_from_freelist(). 331 * 332 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 333 * up short of free memory since the last time (last_fullzone_zap) 334 * we zero'd fullzones. 335 * 2) The array z_to_n[] maps each zone in the zonelist to its node 336 * id, so that we can efficiently evaluate whether that node is 337 * set in the current tasks mems_allowed. 338 * 339 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 340 * indexed by a zones offset in the zonelist zones[] array. 341 * 342 * The get_page_from_freelist() routine does two scans. During the 343 * first scan, we skip zones whose corresponding bit in 'fullzones' 344 * is set or whose corresponding node in current->mems_allowed (which 345 * comes from cpusets) is not set. During the second scan, we bypass 346 * this zonelist_cache, to ensure we look methodically at each zone. 347 * 348 * Once per second, we zero out (zap) fullzones, forcing us to 349 * reconsider nodes that might have regained more free memory. 350 * The field last_full_zap is the time we last zapped fullzones. 351 * 352 * This mechanism reduces the amount of time we waste repeatedly 353 * reexaming zones for free memory when they just came up low on 354 * memory momentarilly ago. 355 * 356 * The zonelist_cache struct members logically belong in struct 357 * zonelist. However, the mempolicy zonelists constructed for 358 * MPOL_BIND are intentionally variable length (and usually much 359 * shorter). A general purpose mechanism for handling structs with 360 * multiple variable length members is more mechanism than we want 361 * here. We resort to some special case hackery instead. 362 * 363 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 364 * part because they are shorter), so we put the fixed length stuff 365 * at the front of the zonelist struct, ending in a variable length 366 * zones[], as is needed by MPOL_BIND. 367 * 368 * Then we put the optional zonelist cache on the end of the zonelist 369 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 370 * the fixed length portion at the front of the struct. This pointer 371 * both enables us to find the zonelist cache, and in the case of 372 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 373 * to know that the zonelist cache is not there. 374 * 375 * The end result is that struct zonelists come in two flavors: 376 * 1) The full, fixed length version, shown below, and 377 * 2) The custom zonelists for MPOL_BIND. 378 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 379 * 380 * Even though there may be multiple CPU cores on a node modifying 381 * fullzones or last_full_zap in the same zonelist_cache at the same 382 * time, we don't lock it. This is just hint data - if it is wrong now 383 * and then, the allocator will still function, perhaps a bit slower. 384 */ 385 386 387 struct zonelist_cache { 388 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 389 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 390 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 391 }; 392 #else 393 struct zonelist_cache; 394 #endif 395 396 /* 397 * One allocation request operates on a zonelist. A zonelist 398 * is a list of zones, the first one is the 'goal' of the 399 * allocation, the other zones are fallback zones, in decreasing 400 * priority. 401 * 402 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 403 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 404 */ 405 406 struct zonelist { 407 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 408 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited 409 #ifdef CONFIG_NUMA 410 struct zonelist_cache zlcache; // optional ... 411 #endif 412 }; 413 414 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 415 struct node_active_region { 416 unsigned long start_pfn; 417 unsigned long end_pfn; 418 int nid; 419 }; 420 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 421 422 #ifndef CONFIG_DISCONTIGMEM 423 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 424 extern struct page *mem_map; 425 #endif 426 427 /* 428 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 429 * (mostly NUMA machines?) to denote a higher-level memory zone than the 430 * zone denotes. 431 * 432 * On NUMA machines, each NUMA node would have a pg_data_t to describe 433 * it's memory layout. 434 * 435 * Memory statistics and page replacement data structures are maintained on a 436 * per-zone basis. 437 */ 438 struct bootmem_data; 439 typedef struct pglist_data { 440 struct zone node_zones[MAX_NR_ZONES]; 441 struct zonelist node_zonelists[MAX_NR_ZONES]; 442 int nr_zones; 443 #ifdef CONFIG_FLAT_NODE_MEM_MAP 444 struct page *node_mem_map; 445 #endif 446 struct bootmem_data *bdata; 447 #ifdef CONFIG_MEMORY_HOTPLUG 448 /* 449 * Must be held any time you expect node_start_pfn, node_present_pages 450 * or node_spanned_pages stay constant. Holding this will also 451 * guarantee that any pfn_valid() stays that way. 452 * 453 * Nests above zone->lock and zone->size_seqlock. 454 */ 455 spinlock_t node_size_lock; 456 #endif 457 unsigned long node_start_pfn; 458 unsigned long node_present_pages; /* total number of physical pages */ 459 unsigned long node_spanned_pages; /* total size of physical page 460 range, including holes */ 461 int node_id; 462 wait_queue_head_t kswapd_wait; 463 struct task_struct *kswapd; 464 int kswapd_max_order; 465 } pg_data_t; 466 467 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 468 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 469 #ifdef CONFIG_FLAT_NODE_MEM_MAP 470 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 471 #else 472 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 473 #endif 474 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 475 476 #include <linux/memory_hotplug.h> 477 478 void get_zone_counts(unsigned long *active, unsigned long *inactive, 479 unsigned long *free); 480 void build_all_zonelists(void); 481 void wakeup_kswapd(struct zone *zone, int order); 482 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 483 int classzone_idx, int alloc_flags); 484 enum memmap_context { 485 MEMMAP_EARLY, 486 MEMMAP_HOTPLUG, 487 }; 488 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 489 unsigned long size, 490 enum memmap_context context); 491 492 #ifdef CONFIG_HAVE_MEMORY_PRESENT 493 void memory_present(int nid, unsigned long start, unsigned long end); 494 #else 495 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 496 #endif 497 498 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 499 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 500 #endif 501 502 /* 503 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 504 */ 505 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 506 507 static inline int populated_zone(struct zone *zone) 508 { 509 return (!!zone->present_pages); 510 } 511 512 extern int movable_zone; 513 514 static inline int zone_movable_is_highmem(void) 515 { 516 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 517 return movable_zone == ZONE_HIGHMEM; 518 #else 519 return 0; 520 #endif 521 } 522 523 static inline int is_highmem_idx(enum zone_type idx) 524 { 525 #ifdef CONFIG_HIGHMEM 526 return (idx == ZONE_HIGHMEM || 527 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 528 #else 529 return 0; 530 #endif 531 } 532 533 static inline int is_normal_idx(enum zone_type idx) 534 { 535 return (idx == ZONE_NORMAL); 536 } 537 538 /** 539 * is_highmem - helper function to quickly check if a struct zone is a 540 * highmem zone or not. This is an attempt to keep references 541 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 542 * @zone - pointer to struct zone variable 543 */ 544 static inline int is_highmem(struct zone *zone) 545 { 546 #ifdef CONFIG_HIGHMEM 547 int zone_idx = zone - zone->zone_pgdat->node_zones; 548 return zone_idx == ZONE_HIGHMEM || 549 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem()); 550 #else 551 return 0; 552 #endif 553 } 554 555 static inline int is_normal(struct zone *zone) 556 { 557 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 558 } 559 560 static inline int is_dma32(struct zone *zone) 561 { 562 #ifdef CONFIG_ZONE_DMA32 563 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 564 #else 565 return 0; 566 #endif 567 } 568 569 static inline int is_dma(struct zone *zone) 570 { 571 #ifdef CONFIG_ZONE_DMA 572 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 573 #else 574 return 0; 575 #endif 576 } 577 578 /* These two functions are used to setup the per zone pages min values */ 579 struct ctl_table; 580 struct file; 581 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 582 void __user *, size_t *, loff_t *); 583 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 584 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 585 void __user *, size_t *, loff_t *); 586 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 587 void __user *, size_t *, loff_t *); 588 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 589 struct file *, void __user *, size_t *, loff_t *); 590 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 591 struct file *, void __user *, size_t *, loff_t *); 592 593 extern int numa_zonelist_order_handler(struct ctl_table *, int, 594 struct file *, void __user *, size_t *, loff_t *); 595 extern char numa_zonelist_order[]; 596 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 597 598 #include <linux/topology.h> 599 /* Returns the number of the current Node. */ 600 #ifndef numa_node_id 601 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 602 #endif 603 604 #ifndef CONFIG_NEED_MULTIPLE_NODES 605 606 extern struct pglist_data contig_page_data; 607 #define NODE_DATA(nid) (&contig_page_data) 608 #define NODE_MEM_MAP(nid) mem_map 609 #define MAX_NODES_SHIFT 1 610 611 #else /* CONFIG_NEED_MULTIPLE_NODES */ 612 613 #include <asm/mmzone.h> 614 615 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 616 617 extern struct pglist_data *first_online_pgdat(void); 618 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 619 extern struct zone *next_zone(struct zone *zone); 620 621 /** 622 * for_each_pgdat - helper macro to iterate over all nodes 623 * @pgdat - pointer to a pg_data_t variable 624 */ 625 #define for_each_online_pgdat(pgdat) \ 626 for (pgdat = first_online_pgdat(); \ 627 pgdat; \ 628 pgdat = next_online_pgdat(pgdat)) 629 /** 630 * for_each_zone - helper macro to iterate over all memory zones 631 * @zone - pointer to struct zone variable 632 * 633 * The user only needs to declare the zone variable, for_each_zone 634 * fills it in. 635 */ 636 #define for_each_zone(zone) \ 637 for (zone = (first_online_pgdat())->node_zones; \ 638 zone; \ 639 zone = next_zone(zone)) 640 641 #ifdef CONFIG_SPARSEMEM 642 #include <asm/sparsemem.h> 643 #endif 644 645 #if BITS_PER_LONG == 32 646 /* 647 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 648 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 649 */ 650 #define FLAGS_RESERVED 9 651 652 #elif BITS_PER_LONG == 64 653 /* 654 * with 64 bit flags field, there's plenty of room. 655 */ 656 #define FLAGS_RESERVED 32 657 658 #else 659 660 #error BITS_PER_LONG not defined 661 662 #endif 663 664 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 665 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 666 #define early_pfn_to_nid(nid) (0UL) 667 #endif 668 669 #ifdef CONFIG_FLATMEM 670 #define pfn_to_nid(pfn) (0) 671 #endif 672 673 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 674 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 675 676 #ifdef CONFIG_SPARSEMEM 677 678 /* 679 * SECTION_SHIFT #bits space required to store a section # 680 * 681 * PA_SECTION_SHIFT physical address to/from section number 682 * PFN_SECTION_SHIFT pfn to/from section number 683 */ 684 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 685 686 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 687 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 688 689 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 690 691 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 692 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 693 694 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 695 #error Allocator MAX_ORDER exceeds SECTION_SIZE 696 #endif 697 698 struct page; 699 struct mem_section { 700 /* 701 * This is, logically, a pointer to an array of struct 702 * pages. However, it is stored with some other magic. 703 * (see sparse.c::sparse_init_one_section()) 704 * 705 * Additionally during early boot we encode node id of 706 * the location of the section here to guide allocation. 707 * (see sparse.c::memory_present()) 708 * 709 * Making it a UL at least makes someone do a cast 710 * before using it wrong. 711 */ 712 unsigned long section_mem_map; 713 }; 714 715 #ifdef CONFIG_SPARSEMEM_EXTREME 716 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 717 #else 718 #define SECTIONS_PER_ROOT 1 719 #endif 720 721 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 722 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 723 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 724 725 #ifdef CONFIG_SPARSEMEM_EXTREME 726 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 727 #else 728 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 729 #endif 730 731 static inline struct mem_section *__nr_to_section(unsigned long nr) 732 { 733 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 734 return NULL; 735 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 736 } 737 extern int __section_nr(struct mem_section* ms); 738 739 /* 740 * We use the lower bits of the mem_map pointer to store 741 * a little bit of information. There should be at least 742 * 3 bits here due to 32-bit alignment. 743 */ 744 #define SECTION_MARKED_PRESENT (1UL<<0) 745 #define SECTION_HAS_MEM_MAP (1UL<<1) 746 #define SECTION_MAP_LAST_BIT (1UL<<2) 747 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 748 #define SECTION_NID_SHIFT 2 749 750 static inline struct page *__section_mem_map_addr(struct mem_section *section) 751 { 752 unsigned long map = section->section_mem_map; 753 map &= SECTION_MAP_MASK; 754 return (struct page *)map; 755 } 756 757 static inline int valid_section(struct mem_section *section) 758 { 759 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 760 } 761 762 static inline int section_has_mem_map(struct mem_section *section) 763 { 764 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 765 } 766 767 static inline int valid_section_nr(unsigned long nr) 768 { 769 return valid_section(__nr_to_section(nr)); 770 } 771 772 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 773 { 774 return __nr_to_section(pfn_to_section_nr(pfn)); 775 } 776 777 static inline int pfn_valid(unsigned long pfn) 778 { 779 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 780 return 0; 781 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 782 } 783 784 /* 785 * These are _only_ used during initialisation, therefore they 786 * can use __initdata ... They could have names to indicate 787 * this restriction. 788 */ 789 #ifdef CONFIG_NUMA 790 #define pfn_to_nid(pfn) \ 791 ({ \ 792 unsigned long __pfn_to_nid_pfn = (pfn); \ 793 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 794 }) 795 #else 796 #define pfn_to_nid(pfn) (0) 797 #endif 798 799 #define early_pfn_valid(pfn) pfn_valid(pfn) 800 void sparse_init(void); 801 #else 802 #define sparse_init() do {} while (0) 803 #define sparse_index_init(_sec, _nid) do {} while (0) 804 #endif /* CONFIG_SPARSEMEM */ 805 806 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 807 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 808 #else 809 #define early_pfn_in_nid(pfn, nid) (1) 810 #endif 811 812 #ifndef early_pfn_valid 813 #define early_pfn_valid(pfn) (1) 814 #endif 815 816 void memory_present(int nid, unsigned long start, unsigned long end); 817 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 818 819 /* 820 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 821 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 822 * pfn_valid_within() should be used in this case; we optimise this away 823 * when we have no holes within a MAX_ORDER_NR_PAGES block. 824 */ 825 #ifdef CONFIG_HOLES_IN_ZONE 826 #define pfn_valid_within(pfn) pfn_valid(pfn) 827 #else 828 #define pfn_valid_within(pfn) (1) 829 #endif 830 831 #endif /* !__ASSEMBLY__ */ 832 #endif /* __KERNEL__ */ 833 #endif /* _LINUX_MMZONE_H */ 834