xref: /linux-6.15/include/linux/mmzone.h (revision aeb3f462)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18 
19 /* Free memory management - zoned buddy allocator.  */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26 
27 /*
28  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29  * costly to service.  That is between allocation orders which should
30  * coelesce naturally under reasonable reclaim pressure and those which
31  * will not.
32  */
33 #define PAGE_ALLOC_COSTLY_ORDER 3
34 
35 struct free_area {
36 	struct list_head	free_list;
37 	unsigned long		nr_free;
38 };
39 
40 struct pglist_data;
41 
42 /*
43  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44  * So add a wild amount of padding here to ensure that they fall into separate
45  * cachelines.  There are very few zone structures in the machine, so space
46  * consumption is not a concern here.
47  */
48 #if defined(CONFIG_SMP)
49 struct zone_padding {
50 	char x[0];
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name)	struct zone_padding name;
53 #else
54 #define ZONE_PADDING(name)
55 #endif
56 
57 enum zone_stat_item {
58 	/* First 128 byte cacheline (assuming 64 bit words) */
59 	NR_FREE_PAGES,
60 	NR_INACTIVE,
61 	NR_ACTIVE,
62 	NR_ANON_PAGES,	/* Mapped anonymous pages */
63 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
64 			   only modified from process context */
65 	NR_FILE_PAGES,
66 	NR_FILE_DIRTY,
67 	NR_WRITEBACK,
68 	/* Second 128 byte cacheline */
69 	NR_SLAB_RECLAIMABLE,
70 	NR_SLAB_UNRECLAIMABLE,
71 	NR_PAGETABLE,		/* used for pagetables */
72 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
73 	NR_BOUNCE,
74 	NR_VMSCAN_WRITE,
75 #ifdef CONFIG_NUMA
76 	NUMA_HIT,		/* allocated in intended node */
77 	NUMA_MISS,		/* allocated in non intended node */
78 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
79 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
80 	NUMA_LOCAL,		/* allocation from local node */
81 	NUMA_OTHER,		/* allocation from other node */
82 #endif
83 	NR_VM_ZONE_STAT_ITEMS };
84 
85 struct per_cpu_pages {
86 	int count;		/* number of pages in the list */
87 	int high;		/* high watermark, emptying needed */
88 	int batch;		/* chunk size for buddy add/remove */
89 	struct list_head list;	/* the list of pages */
90 };
91 
92 struct per_cpu_pageset {
93 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
94 #ifdef CONFIG_NUMA
95 	s8 expire;
96 #endif
97 #ifdef CONFIG_SMP
98 	s8 stat_threshold;
99 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
100 #endif
101 } ____cacheline_aligned_in_smp;
102 
103 #ifdef CONFIG_NUMA
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
105 #else
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
107 #endif
108 
109 enum zone_type {
110 #ifdef CONFIG_ZONE_DMA
111 	/*
112 	 * ZONE_DMA is used when there are devices that are not able
113 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 	 * carve out the portion of memory that is needed for these devices.
115 	 * The range is arch specific.
116 	 *
117 	 * Some examples
118 	 *
119 	 * Architecture		Limit
120 	 * ---------------------------
121 	 * parisc, ia64, sparc	<4G
122 	 * s390			<2G
123 	 * arm26		<48M
124 	 * arm			Various
125 	 * alpha		Unlimited or 0-16MB.
126 	 *
127 	 * i386, x86_64 and multiple other arches
128 	 * 			<16M.
129 	 */
130 	ZONE_DMA,
131 #endif
132 #ifdef CONFIG_ZONE_DMA32
133 	/*
134 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
135 	 * only able to do DMA to the lower 16M but also 32 bit devices that
136 	 * can only do DMA areas below 4G.
137 	 */
138 	ZONE_DMA32,
139 #endif
140 	/*
141 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
142 	 * performed on pages in ZONE_NORMAL if the DMA devices support
143 	 * transfers to all addressable memory.
144 	 */
145 	ZONE_NORMAL,
146 #ifdef CONFIG_HIGHMEM
147 	/*
148 	 * A memory area that is only addressable by the kernel through
149 	 * mapping portions into its own address space. This is for example
150 	 * used by i386 to allow the kernel to address the memory beyond
151 	 * 900MB. The kernel will set up special mappings (page
152 	 * table entries on i386) for each page that the kernel needs to
153 	 * access.
154 	 */
155 	ZONE_HIGHMEM,
156 #endif
157 	ZONE_MOVABLE,
158 	MAX_NR_ZONES
159 };
160 
161 /*
162  * When a memory allocation must conform to specific limitations (such
163  * as being suitable for DMA) the caller will pass in hints to the
164  * allocator in the gfp_mask, in the zone modifier bits.  These bits
165  * are used to select a priority ordered list of memory zones which
166  * match the requested limits. See gfp_zone() in include/linux/gfp.h
167  */
168 
169 /*
170  * Count the active zones.  Note that the use of defined(X) outside
171  * #if and family is not necessarily defined so ensure we cannot use
172  * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
173  */
174 #define __ZONE_COUNT (			\
175 	  defined(CONFIG_ZONE_DMA)	\
176 	+ defined(CONFIG_ZONE_DMA32)	\
177 	+ 1				\
178 	+ defined(CONFIG_HIGHMEM)	\
179 	+ 1				\
180 )
181 #if __ZONE_COUNT < 2
182 #define ZONES_SHIFT 0
183 #elif __ZONE_COUNT <= 2
184 #define ZONES_SHIFT 1
185 #elif __ZONE_COUNT <= 4
186 #define ZONES_SHIFT 2
187 #else
188 #error ZONES_SHIFT -- too many zones configured adjust calculation
189 #endif
190 #undef __ZONE_COUNT
191 
192 struct zone {
193 	/* Fields commonly accessed by the page allocator */
194 	unsigned long		pages_min, pages_low, pages_high;
195 	/*
196 	 * We don't know if the memory that we're going to allocate will be freeable
197 	 * or/and it will be released eventually, so to avoid totally wasting several
198 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
199 	 * to run OOM on the lower zones despite there's tons of freeable ram
200 	 * on the higher zones). This array is recalculated at runtime if the
201 	 * sysctl_lowmem_reserve_ratio sysctl changes.
202 	 */
203 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
204 
205 #ifdef CONFIG_NUMA
206 	int node;
207 	/*
208 	 * zone reclaim becomes active if more unmapped pages exist.
209 	 */
210 	unsigned long		min_unmapped_pages;
211 	unsigned long		min_slab_pages;
212 	struct per_cpu_pageset	*pageset[NR_CPUS];
213 #else
214 	struct per_cpu_pageset	pageset[NR_CPUS];
215 #endif
216 	/*
217 	 * free areas of different sizes
218 	 */
219 	spinlock_t		lock;
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 	/* see spanned/present_pages for more description */
222 	seqlock_t		span_seqlock;
223 #endif
224 	struct free_area	free_area[MAX_ORDER];
225 
226 
227 	ZONE_PADDING(_pad1_)
228 
229 	/* Fields commonly accessed by the page reclaim scanner */
230 	spinlock_t		lru_lock;
231 	struct list_head	active_list;
232 	struct list_head	inactive_list;
233 	unsigned long		nr_scan_active;
234 	unsigned long		nr_scan_inactive;
235 	unsigned long		pages_scanned;	   /* since last reclaim */
236 	int			all_unreclaimable; /* All pages pinned */
237 
238 	/* A count of how many reclaimers are scanning this zone */
239 	atomic_t		reclaim_in_progress;
240 
241 	/* Zone statistics */
242 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
243 
244 	/*
245 	 * prev_priority holds the scanning priority for this zone.  It is
246 	 * defined as the scanning priority at which we achieved our reclaim
247 	 * target at the previous try_to_free_pages() or balance_pgdat()
248 	 * invokation.
249 	 *
250 	 * We use prev_priority as a measure of how much stress page reclaim is
251 	 * under - it drives the swappiness decision: whether to unmap mapped
252 	 * pages.
253 	 *
254 	 * Access to both this field is quite racy even on uniprocessor.  But
255 	 * it is expected to average out OK.
256 	 */
257 	int prev_priority;
258 
259 
260 	ZONE_PADDING(_pad2_)
261 	/* Rarely used or read-mostly fields */
262 
263 	/*
264 	 * wait_table		-- the array holding the hash table
265 	 * wait_table_hash_nr_entries	-- the size of the hash table array
266 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
267 	 *
268 	 * The purpose of all these is to keep track of the people
269 	 * waiting for a page to become available and make them
270 	 * runnable again when possible. The trouble is that this
271 	 * consumes a lot of space, especially when so few things
272 	 * wait on pages at a given time. So instead of using
273 	 * per-page waitqueues, we use a waitqueue hash table.
274 	 *
275 	 * The bucket discipline is to sleep on the same queue when
276 	 * colliding and wake all in that wait queue when removing.
277 	 * When something wakes, it must check to be sure its page is
278 	 * truly available, a la thundering herd. The cost of a
279 	 * collision is great, but given the expected load of the
280 	 * table, they should be so rare as to be outweighed by the
281 	 * benefits from the saved space.
282 	 *
283 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
284 	 * primary users of these fields, and in mm/page_alloc.c
285 	 * free_area_init_core() performs the initialization of them.
286 	 */
287 	wait_queue_head_t	* wait_table;
288 	unsigned long		wait_table_hash_nr_entries;
289 	unsigned long		wait_table_bits;
290 
291 	/*
292 	 * Discontig memory support fields.
293 	 */
294 	struct pglist_data	*zone_pgdat;
295 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
296 	unsigned long		zone_start_pfn;
297 
298 	/*
299 	 * zone_start_pfn, spanned_pages and present_pages are all
300 	 * protected by span_seqlock.  It is a seqlock because it has
301 	 * to be read outside of zone->lock, and it is done in the main
302 	 * allocator path.  But, it is written quite infrequently.
303 	 *
304 	 * The lock is declared along with zone->lock because it is
305 	 * frequently read in proximity to zone->lock.  It's good to
306 	 * give them a chance of being in the same cacheline.
307 	 */
308 	unsigned long		spanned_pages;	/* total size, including holes */
309 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
310 
311 	/*
312 	 * rarely used fields:
313 	 */
314 	const char		*name;
315 } ____cacheline_internodealigned_in_smp;
316 
317 /*
318  * The "priority" of VM scanning is how much of the queues we will scan in one
319  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
320  * queues ("queue_length >> 12") during an aging round.
321  */
322 #define DEF_PRIORITY 12
323 
324 /* Maximum number of zones on a zonelist */
325 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
326 
327 #ifdef CONFIG_NUMA
328 /*
329  * We cache key information from each zonelist for smaller cache
330  * footprint when scanning for free pages in get_page_from_freelist().
331  *
332  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
333  *    up short of free memory since the last time (last_fullzone_zap)
334  *    we zero'd fullzones.
335  * 2) The array z_to_n[] maps each zone in the zonelist to its node
336  *    id, so that we can efficiently evaluate whether that node is
337  *    set in the current tasks mems_allowed.
338  *
339  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
340  * indexed by a zones offset in the zonelist zones[] array.
341  *
342  * The get_page_from_freelist() routine does two scans.  During the
343  * first scan, we skip zones whose corresponding bit in 'fullzones'
344  * is set or whose corresponding node in current->mems_allowed (which
345  * comes from cpusets) is not set.  During the second scan, we bypass
346  * this zonelist_cache, to ensure we look methodically at each zone.
347  *
348  * Once per second, we zero out (zap) fullzones, forcing us to
349  * reconsider nodes that might have regained more free memory.
350  * The field last_full_zap is the time we last zapped fullzones.
351  *
352  * This mechanism reduces the amount of time we waste repeatedly
353  * reexaming zones for free memory when they just came up low on
354  * memory momentarilly ago.
355  *
356  * The zonelist_cache struct members logically belong in struct
357  * zonelist.  However, the mempolicy zonelists constructed for
358  * MPOL_BIND are intentionally variable length (and usually much
359  * shorter).  A general purpose mechanism for handling structs with
360  * multiple variable length members is more mechanism than we want
361  * here.  We resort to some special case hackery instead.
362  *
363  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
364  * part because they are shorter), so we put the fixed length stuff
365  * at the front of the zonelist struct, ending in a variable length
366  * zones[], as is needed by MPOL_BIND.
367  *
368  * Then we put the optional zonelist cache on the end of the zonelist
369  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
370  * the fixed length portion at the front of the struct.  This pointer
371  * both enables us to find the zonelist cache, and in the case of
372  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
373  * to know that the zonelist cache is not there.
374  *
375  * The end result is that struct zonelists come in two flavors:
376  *  1) The full, fixed length version, shown below, and
377  *  2) The custom zonelists for MPOL_BIND.
378  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
379  *
380  * Even though there may be multiple CPU cores on a node modifying
381  * fullzones or last_full_zap in the same zonelist_cache at the same
382  * time, we don't lock it.  This is just hint data - if it is wrong now
383  * and then, the allocator will still function, perhaps a bit slower.
384  */
385 
386 
387 struct zonelist_cache {
388 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
389 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
390 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
391 };
392 #else
393 struct zonelist_cache;
394 #endif
395 
396 /*
397  * One allocation request operates on a zonelist. A zonelist
398  * is a list of zones, the first one is the 'goal' of the
399  * allocation, the other zones are fallback zones, in decreasing
400  * priority.
401  *
402  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
403  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
404  */
405 
406 struct zonelist {
407 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
408 	struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
409 #ifdef CONFIG_NUMA
410 	struct zonelist_cache zlcache;			     // optional ...
411 #endif
412 };
413 
414 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
415 struct node_active_region {
416 	unsigned long start_pfn;
417 	unsigned long end_pfn;
418 	int nid;
419 };
420 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
421 
422 #ifndef CONFIG_DISCONTIGMEM
423 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
424 extern struct page *mem_map;
425 #endif
426 
427 /*
428  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
429  * (mostly NUMA machines?) to denote a higher-level memory zone than the
430  * zone denotes.
431  *
432  * On NUMA machines, each NUMA node would have a pg_data_t to describe
433  * it's memory layout.
434  *
435  * Memory statistics and page replacement data structures are maintained on a
436  * per-zone basis.
437  */
438 struct bootmem_data;
439 typedef struct pglist_data {
440 	struct zone node_zones[MAX_NR_ZONES];
441 	struct zonelist node_zonelists[MAX_NR_ZONES];
442 	int nr_zones;
443 #ifdef CONFIG_FLAT_NODE_MEM_MAP
444 	struct page *node_mem_map;
445 #endif
446 	struct bootmem_data *bdata;
447 #ifdef CONFIG_MEMORY_HOTPLUG
448 	/*
449 	 * Must be held any time you expect node_start_pfn, node_present_pages
450 	 * or node_spanned_pages stay constant.  Holding this will also
451 	 * guarantee that any pfn_valid() stays that way.
452 	 *
453 	 * Nests above zone->lock and zone->size_seqlock.
454 	 */
455 	spinlock_t node_size_lock;
456 #endif
457 	unsigned long node_start_pfn;
458 	unsigned long node_present_pages; /* total number of physical pages */
459 	unsigned long node_spanned_pages; /* total size of physical page
460 					     range, including holes */
461 	int node_id;
462 	wait_queue_head_t kswapd_wait;
463 	struct task_struct *kswapd;
464 	int kswapd_max_order;
465 } pg_data_t;
466 
467 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
468 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
469 #ifdef CONFIG_FLAT_NODE_MEM_MAP
470 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
471 #else
472 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
473 #endif
474 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
475 
476 #include <linux/memory_hotplug.h>
477 
478 void get_zone_counts(unsigned long *active, unsigned long *inactive,
479 			unsigned long *free);
480 void build_all_zonelists(void);
481 void wakeup_kswapd(struct zone *zone, int order);
482 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
483 		int classzone_idx, int alloc_flags);
484 enum memmap_context {
485 	MEMMAP_EARLY,
486 	MEMMAP_HOTPLUG,
487 };
488 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
489 				     unsigned long size,
490 				     enum memmap_context context);
491 
492 #ifdef CONFIG_HAVE_MEMORY_PRESENT
493 void memory_present(int nid, unsigned long start, unsigned long end);
494 #else
495 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
496 #endif
497 
498 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
499 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
500 #endif
501 
502 /*
503  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
504  */
505 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
506 
507 static inline int populated_zone(struct zone *zone)
508 {
509 	return (!!zone->present_pages);
510 }
511 
512 extern int movable_zone;
513 
514 static inline int zone_movable_is_highmem(void)
515 {
516 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
517 	return movable_zone == ZONE_HIGHMEM;
518 #else
519 	return 0;
520 #endif
521 }
522 
523 static inline int is_highmem_idx(enum zone_type idx)
524 {
525 #ifdef CONFIG_HIGHMEM
526 	return (idx == ZONE_HIGHMEM ||
527 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
528 #else
529 	return 0;
530 #endif
531 }
532 
533 static inline int is_normal_idx(enum zone_type idx)
534 {
535 	return (idx == ZONE_NORMAL);
536 }
537 
538 /**
539  * is_highmem - helper function to quickly check if a struct zone is a
540  *              highmem zone or not.  This is an attempt to keep references
541  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
542  * @zone - pointer to struct zone variable
543  */
544 static inline int is_highmem(struct zone *zone)
545 {
546 #ifdef CONFIG_HIGHMEM
547 	int zone_idx = zone - zone->zone_pgdat->node_zones;
548 	return zone_idx == ZONE_HIGHMEM ||
549 		(zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
550 #else
551 	return 0;
552 #endif
553 }
554 
555 static inline int is_normal(struct zone *zone)
556 {
557 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
558 }
559 
560 static inline int is_dma32(struct zone *zone)
561 {
562 #ifdef CONFIG_ZONE_DMA32
563 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
564 #else
565 	return 0;
566 #endif
567 }
568 
569 static inline int is_dma(struct zone *zone)
570 {
571 #ifdef CONFIG_ZONE_DMA
572 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
573 #else
574 	return 0;
575 #endif
576 }
577 
578 /* These two functions are used to setup the per zone pages min values */
579 struct ctl_table;
580 struct file;
581 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
582 					void __user *, size_t *, loff_t *);
583 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
584 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
585 					void __user *, size_t *, loff_t *);
586 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
587 					void __user *, size_t *, loff_t *);
588 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
589 			struct file *, void __user *, size_t *, loff_t *);
590 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
591 			struct file *, void __user *, size_t *, loff_t *);
592 
593 extern int numa_zonelist_order_handler(struct ctl_table *, int,
594 			struct file *, void __user *, size_t *, loff_t *);
595 extern char numa_zonelist_order[];
596 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
597 
598 #include <linux/topology.h>
599 /* Returns the number of the current Node. */
600 #ifndef numa_node_id
601 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
602 #endif
603 
604 #ifndef CONFIG_NEED_MULTIPLE_NODES
605 
606 extern struct pglist_data contig_page_data;
607 #define NODE_DATA(nid)		(&contig_page_data)
608 #define NODE_MEM_MAP(nid)	mem_map
609 #define MAX_NODES_SHIFT		1
610 
611 #else /* CONFIG_NEED_MULTIPLE_NODES */
612 
613 #include <asm/mmzone.h>
614 
615 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
616 
617 extern struct pglist_data *first_online_pgdat(void);
618 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
619 extern struct zone *next_zone(struct zone *zone);
620 
621 /**
622  * for_each_pgdat - helper macro to iterate over all nodes
623  * @pgdat - pointer to a pg_data_t variable
624  */
625 #define for_each_online_pgdat(pgdat)			\
626 	for (pgdat = first_online_pgdat();		\
627 	     pgdat;					\
628 	     pgdat = next_online_pgdat(pgdat))
629 /**
630  * for_each_zone - helper macro to iterate over all memory zones
631  * @zone - pointer to struct zone variable
632  *
633  * The user only needs to declare the zone variable, for_each_zone
634  * fills it in.
635  */
636 #define for_each_zone(zone)			        \
637 	for (zone = (first_online_pgdat())->node_zones; \
638 	     zone;					\
639 	     zone = next_zone(zone))
640 
641 #ifdef CONFIG_SPARSEMEM
642 #include <asm/sparsemem.h>
643 #endif
644 
645 #if BITS_PER_LONG == 32
646 /*
647  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
648  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
649  */
650 #define FLAGS_RESERVED		9
651 
652 #elif BITS_PER_LONG == 64
653 /*
654  * with 64 bit flags field, there's plenty of room.
655  */
656 #define FLAGS_RESERVED		32
657 
658 #else
659 
660 #error BITS_PER_LONG not defined
661 
662 #endif
663 
664 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
665 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
666 #define early_pfn_to_nid(nid)  (0UL)
667 #endif
668 
669 #ifdef CONFIG_FLATMEM
670 #define pfn_to_nid(pfn)		(0)
671 #endif
672 
673 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
674 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
675 
676 #ifdef CONFIG_SPARSEMEM
677 
678 /*
679  * SECTION_SHIFT    		#bits space required to store a section #
680  *
681  * PA_SECTION_SHIFT		physical address to/from section number
682  * PFN_SECTION_SHIFT		pfn to/from section number
683  */
684 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
685 
686 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
687 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
688 
689 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
690 
691 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
692 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
693 
694 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
695 #error Allocator MAX_ORDER exceeds SECTION_SIZE
696 #endif
697 
698 struct page;
699 struct mem_section {
700 	/*
701 	 * This is, logically, a pointer to an array of struct
702 	 * pages.  However, it is stored with some other magic.
703 	 * (see sparse.c::sparse_init_one_section())
704 	 *
705 	 * Additionally during early boot we encode node id of
706 	 * the location of the section here to guide allocation.
707 	 * (see sparse.c::memory_present())
708 	 *
709 	 * Making it a UL at least makes someone do a cast
710 	 * before using it wrong.
711 	 */
712 	unsigned long section_mem_map;
713 };
714 
715 #ifdef CONFIG_SPARSEMEM_EXTREME
716 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
717 #else
718 #define SECTIONS_PER_ROOT	1
719 #endif
720 
721 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
722 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
723 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
724 
725 #ifdef CONFIG_SPARSEMEM_EXTREME
726 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
727 #else
728 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
729 #endif
730 
731 static inline struct mem_section *__nr_to_section(unsigned long nr)
732 {
733 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
734 		return NULL;
735 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
736 }
737 extern int __section_nr(struct mem_section* ms);
738 
739 /*
740  * We use the lower bits of the mem_map pointer to store
741  * a little bit of information.  There should be at least
742  * 3 bits here due to 32-bit alignment.
743  */
744 #define	SECTION_MARKED_PRESENT	(1UL<<0)
745 #define SECTION_HAS_MEM_MAP	(1UL<<1)
746 #define SECTION_MAP_LAST_BIT	(1UL<<2)
747 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
748 #define SECTION_NID_SHIFT	2
749 
750 static inline struct page *__section_mem_map_addr(struct mem_section *section)
751 {
752 	unsigned long map = section->section_mem_map;
753 	map &= SECTION_MAP_MASK;
754 	return (struct page *)map;
755 }
756 
757 static inline int valid_section(struct mem_section *section)
758 {
759 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
760 }
761 
762 static inline int section_has_mem_map(struct mem_section *section)
763 {
764 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
765 }
766 
767 static inline int valid_section_nr(unsigned long nr)
768 {
769 	return valid_section(__nr_to_section(nr));
770 }
771 
772 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
773 {
774 	return __nr_to_section(pfn_to_section_nr(pfn));
775 }
776 
777 static inline int pfn_valid(unsigned long pfn)
778 {
779 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
780 		return 0;
781 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
782 }
783 
784 /*
785  * These are _only_ used during initialisation, therefore they
786  * can use __initdata ...  They could have names to indicate
787  * this restriction.
788  */
789 #ifdef CONFIG_NUMA
790 #define pfn_to_nid(pfn)							\
791 ({									\
792 	unsigned long __pfn_to_nid_pfn = (pfn);				\
793 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
794 })
795 #else
796 #define pfn_to_nid(pfn)		(0)
797 #endif
798 
799 #define early_pfn_valid(pfn)	pfn_valid(pfn)
800 void sparse_init(void);
801 #else
802 #define sparse_init()	do {} while (0)
803 #define sparse_index_init(_sec, _nid)  do {} while (0)
804 #endif /* CONFIG_SPARSEMEM */
805 
806 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
807 #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
808 #else
809 #define early_pfn_in_nid(pfn, nid)	(1)
810 #endif
811 
812 #ifndef early_pfn_valid
813 #define early_pfn_valid(pfn)	(1)
814 #endif
815 
816 void memory_present(int nid, unsigned long start, unsigned long end);
817 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
818 
819 /*
820  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
821  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
822  * pfn_valid_within() should be used in this case; we optimise this away
823  * when we have no holes within a MAX_ORDER_NR_PAGES block.
824  */
825 #ifdef CONFIG_HOLES_IN_ZONE
826 #define pfn_valid_within(pfn) pfn_valid(pfn)
827 #else
828 #define pfn_valid_within(pfn) (1)
829 #endif
830 
831 #endif /* !__ASSEMBLY__ */
832 #endif /* __KERNEL__ */
833 #endif /* _LINUX_MMZONE_H */
834