1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <linux/local_lock.h> 24 #include <asm/page.h> 25 26 /* Free memory management - zoned buddy allocator. */ 27 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 28 #define MAX_ORDER 11 29 #else 30 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 31 #endif 32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34 /* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40 #define PAGE_ALLOC_COSTLY_ORDER 3 41 42 enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48 #ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. 58 */ 59 MIGRATE_CMA, 60 #endif 61 #ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63 #endif 64 MIGRATE_TYPES 65 }; 66 67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68 extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70 #ifdef CONFIG_CMA 71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73 #else 74 # define is_migrate_cma(migratetype) false 75 # define is_migrate_cma_page(_page) false 76 #endif 77 78 static inline bool is_migrate_movable(int mt) 79 { 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81 } 82 83 /* 84 * Check whether a migratetype can be merged with another migratetype. 85 * 86 * It is only mergeable when it can fall back to other migratetypes for 87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 88 */ 89 static inline bool migratetype_is_mergeable(int mt) 90 { 91 return mt < MIGRATE_PCPTYPES; 92 } 93 94 #define for_each_migratetype_order(order, type) \ 95 for (order = 0; order < MAX_ORDER; order++) \ 96 for (type = 0; type < MIGRATE_TYPES; type++) 97 98 extern int page_group_by_mobility_disabled; 99 100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 101 102 #define get_pageblock_migratetype(page) \ 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 104 105 struct free_area { 106 struct list_head free_list[MIGRATE_TYPES]; 107 unsigned long nr_free; 108 }; 109 110 static inline struct page *get_page_from_free_area(struct free_area *area, 111 int migratetype) 112 { 113 return list_first_entry_or_null(&area->free_list[migratetype], 114 struct page, lru); 115 } 116 117 static inline bool free_area_empty(struct free_area *area, int migratetype) 118 { 119 return list_empty(&area->free_list[migratetype]); 120 } 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 NR_VM_ZONE_STAT_ITEMS }; 156 157 enum node_stat_item { 158 NR_LRU_BASE, 159 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 160 NR_ACTIVE_ANON, /* " " " " " */ 161 NR_INACTIVE_FILE, /* " " " " " */ 162 NR_ACTIVE_FILE, /* " " " " " */ 163 NR_UNEVICTABLE, /* " " " " " */ 164 NR_SLAB_RECLAIMABLE_B, 165 NR_SLAB_UNRECLAIMABLE_B, 166 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 167 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 168 WORKINGSET_NODES, 169 WORKINGSET_REFAULT_BASE, 170 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_FILE, 172 WORKINGSET_ACTIVATE_BASE, 173 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_FILE, 175 WORKINGSET_RESTORE_BASE, 176 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_FILE, 178 WORKINGSET_NODERECLAIM, 179 NR_ANON_MAPPED, /* Mapped anonymous pages */ 180 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 181 only modified from process context */ 182 NR_FILE_PAGES, 183 NR_FILE_DIRTY, 184 NR_WRITEBACK, 185 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 186 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 187 NR_SHMEM_THPS, 188 NR_SHMEM_PMDMAPPED, 189 NR_FILE_THPS, 190 NR_FILE_PMDMAPPED, 191 NR_ANON_THPS, 192 NR_VMSCAN_WRITE, 193 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 194 NR_DIRTIED, /* page dirtyings since bootup */ 195 NR_WRITTEN, /* page writings since bootup */ 196 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 200 NR_KERNEL_STACK_KB, /* measured in KiB */ 201 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 202 NR_KERNEL_SCS_KB, /* measured in KiB */ 203 #endif 204 NR_PAGETABLE, /* used for pagetables */ 205 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 206 #ifdef CONFIG_SWAP 207 NR_SWAPCACHE, 208 #endif 209 #ifdef CONFIG_NUMA_BALANCING 210 PGPROMOTE_SUCCESS, /* promote successfully */ 211 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 212 #endif 213 NR_VM_NODE_STAT_ITEMS 214 }; 215 216 /* 217 * Returns true if the item should be printed in THPs (/proc/vmstat 218 * currently prints number of anon, file and shmem THPs. But the item 219 * is charged in pages). 220 */ 221 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 222 { 223 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 224 return false; 225 226 return item == NR_ANON_THPS || 227 item == NR_FILE_THPS || 228 item == NR_SHMEM_THPS || 229 item == NR_SHMEM_PMDMAPPED || 230 item == NR_FILE_PMDMAPPED; 231 } 232 233 /* 234 * Returns true if the value is measured in bytes (most vmstat values are 235 * measured in pages). This defines the API part, the internal representation 236 * might be different. 237 */ 238 static __always_inline bool vmstat_item_in_bytes(int idx) 239 { 240 /* 241 * Global and per-node slab counters track slab pages. 242 * It's expected that changes are multiples of PAGE_SIZE. 243 * Internally values are stored in pages. 244 * 245 * Per-memcg and per-lruvec counters track memory, consumed 246 * by individual slab objects. These counters are actually 247 * byte-precise. 248 */ 249 return (idx == NR_SLAB_RECLAIMABLE_B || 250 idx == NR_SLAB_UNRECLAIMABLE_B); 251 } 252 253 /* 254 * We do arithmetic on the LRU lists in various places in the code, 255 * so it is important to keep the active lists LRU_ACTIVE higher in 256 * the array than the corresponding inactive lists, and to keep 257 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 258 * 259 * This has to be kept in sync with the statistics in zone_stat_item 260 * above and the descriptions in vmstat_text in mm/vmstat.c 261 */ 262 #define LRU_BASE 0 263 #define LRU_ACTIVE 1 264 #define LRU_FILE 2 265 266 enum lru_list { 267 LRU_INACTIVE_ANON = LRU_BASE, 268 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 269 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 270 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 271 LRU_UNEVICTABLE, 272 NR_LRU_LISTS 273 }; 274 275 enum vmscan_throttle_state { 276 VMSCAN_THROTTLE_WRITEBACK, 277 VMSCAN_THROTTLE_ISOLATED, 278 VMSCAN_THROTTLE_NOPROGRESS, 279 VMSCAN_THROTTLE_CONGESTED, 280 NR_VMSCAN_THROTTLE, 281 }; 282 283 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 284 285 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 286 287 static inline bool is_file_lru(enum lru_list lru) 288 { 289 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 290 } 291 292 static inline bool is_active_lru(enum lru_list lru) 293 { 294 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 295 } 296 297 #define WORKINGSET_ANON 0 298 #define WORKINGSET_FILE 1 299 #define ANON_AND_FILE 2 300 301 enum lruvec_flags { 302 LRUVEC_CONGESTED, /* lruvec has many dirty pages 303 * backed by a congested BDI 304 */ 305 }; 306 307 #endif /* !__GENERATING_BOUNDS_H */ 308 309 /* 310 * Evictable pages are divided into multiple generations. The youngest and the 311 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 312 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 313 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 314 * corresponding generation. The gen counter in folio->flags stores gen+1 while 315 * a page is on one of lrugen->lists[]. Otherwise it stores 0. 316 * 317 * A page is added to the youngest generation on faulting. The aging needs to 318 * check the accessed bit at least twice before handing this page over to the 319 * eviction. The first check takes care of the accessed bit set on the initial 320 * fault; the second check makes sure this page hasn't been used since then. 321 * This process, AKA second chance, requires a minimum of two generations, 322 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 323 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 324 * rest of generations, if they exist, are considered inactive. See 325 * lru_gen_is_active(). 326 * 327 * PG_active is always cleared while a page is on one of lrugen->lists[] so that 328 * the aging needs not to worry about it. And it's set again when a page 329 * considered active is isolated for non-reclaiming purposes, e.g., migration. 330 * See lru_gen_add_folio() and lru_gen_del_folio(). 331 * 332 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 333 * number of categories of the active/inactive LRU when keeping track of 334 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 335 * in folio->flags. 336 */ 337 #define MIN_NR_GENS 2U 338 #define MAX_NR_GENS 4U 339 340 /* 341 * Each generation is divided into multiple tiers. A page accessed N times 342 * through file descriptors is in tier order_base_2(N). A page in the first tier 343 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 344 * tables or read ahead. A page in any other tier (N>1) is marked by 345 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 346 * supported without using additional bits in folio->flags. 347 * 348 * In contrast to moving across generations which requires the LRU lock, moving 349 * across tiers only involves atomic operations on folio->flags and therefore 350 * has a negligible cost in the buffered access path. In the eviction path, 351 * comparisons of refaulted/(evicted+protected) from the first tier and the 352 * rest infer whether pages accessed multiple times through file descriptors 353 * are statistically hot and thus worth protecting. 354 * 355 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 356 * number of categories of the active/inactive LRU when keeping track of 357 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 358 * folio->flags. 359 */ 360 #define MAX_NR_TIERS 4U 361 362 #ifndef __GENERATING_BOUNDS_H 363 364 struct lruvec; 365 struct page_vma_mapped_walk; 366 367 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 368 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 369 370 #ifdef CONFIG_LRU_GEN 371 372 enum { 373 LRU_GEN_ANON, 374 LRU_GEN_FILE, 375 }; 376 377 enum { 378 LRU_GEN_CORE, 379 LRU_GEN_MM_WALK, 380 LRU_GEN_NONLEAF_YOUNG, 381 NR_LRU_GEN_CAPS 382 }; 383 384 #define MIN_LRU_BATCH BITS_PER_LONG 385 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 386 387 /* whether to keep historical stats from evicted generations */ 388 #ifdef CONFIG_LRU_GEN_STATS 389 #define NR_HIST_GENS MAX_NR_GENS 390 #else 391 #define NR_HIST_GENS 1U 392 #endif 393 394 /* 395 * The youngest generation number is stored in max_seq for both anon and file 396 * types as they are aged on an equal footing. The oldest generation numbers are 397 * stored in min_seq[] separately for anon and file types as clean file pages 398 * can be evicted regardless of swap constraints. 399 * 400 * Normally anon and file min_seq are in sync. But if swapping is constrained, 401 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 402 * min_seq behind. 403 * 404 * The number of pages in each generation is eventually consistent and therefore 405 * can be transiently negative when reset_batch_size() is pending. 406 */ 407 struct lru_gen_struct { 408 /* the aging increments the youngest generation number */ 409 unsigned long max_seq; 410 /* the eviction increments the oldest generation numbers */ 411 unsigned long min_seq[ANON_AND_FILE]; 412 /* the birth time of each generation in jiffies */ 413 unsigned long timestamps[MAX_NR_GENS]; 414 /* the multi-gen LRU lists, lazily sorted on eviction */ 415 struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 416 /* the multi-gen LRU sizes, eventually consistent */ 417 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 418 /* the exponential moving average of refaulted */ 419 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 420 /* the exponential moving average of evicted+protected */ 421 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 422 /* the first tier doesn't need protection, hence the minus one */ 423 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 424 /* can be modified without holding the LRU lock */ 425 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 426 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 427 /* whether the multi-gen LRU is enabled */ 428 bool enabled; 429 }; 430 431 enum { 432 MM_LEAF_TOTAL, /* total leaf entries */ 433 MM_LEAF_OLD, /* old leaf entries */ 434 MM_LEAF_YOUNG, /* young leaf entries */ 435 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 436 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 437 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 438 NR_MM_STATS 439 }; 440 441 /* double-buffering Bloom filters */ 442 #define NR_BLOOM_FILTERS 2 443 444 struct lru_gen_mm_state { 445 /* set to max_seq after each iteration */ 446 unsigned long seq; 447 /* where the current iteration continues (inclusive) */ 448 struct list_head *head; 449 /* where the last iteration ended (exclusive) */ 450 struct list_head *tail; 451 /* to wait for the last page table walker to finish */ 452 struct wait_queue_head wait; 453 /* Bloom filters flip after each iteration */ 454 unsigned long *filters[NR_BLOOM_FILTERS]; 455 /* the mm stats for debugging */ 456 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 457 /* the number of concurrent page table walkers */ 458 int nr_walkers; 459 }; 460 461 struct lru_gen_mm_walk { 462 /* the lruvec under reclaim */ 463 struct lruvec *lruvec; 464 /* unstable max_seq from lru_gen_struct */ 465 unsigned long max_seq; 466 /* the next address within an mm to scan */ 467 unsigned long next_addr; 468 /* to batch promoted pages */ 469 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 470 /* to batch the mm stats */ 471 int mm_stats[NR_MM_STATS]; 472 /* total batched items */ 473 int batched; 474 bool can_swap; 475 bool force_scan; 476 }; 477 478 void lru_gen_init_lruvec(struct lruvec *lruvec); 479 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 480 481 #ifdef CONFIG_MEMCG 482 void lru_gen_init_memcg(struct mem_cgroup *memcg); 483 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 484 #endif 485 486 #else /* !CONFIG_LRU_GEN */ 487 488 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 489 { 490 } 491 492 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 493 { 494 } 495 496 #ifdef CONFIG_MEMCG 497 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 498 { 499 } 500 501 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 502 { 503 } 504 #endif 505 506 #endif /* CONFIG_LRU_GEN */ 507 508 struct lruvec { 509 struct list_head lists[NR_LRU_LISTS]; 510 /* per lruvec lru_lock for memcg */ 511 spinlock_t lru_lock; 512 /* 513 * These track the cost of reclaiming one LRU - file or anon - 514 * over the other. As the observed cost of reclaiming one LRU 515 * increases, the reclaim scan balance tips toward the other. 516 */ 517 unsigned long anon_cost; 518 unsigned long file_cost; 519 /* Non-resident age, driven by LRU movement */ 520 atomic_long_t nonresident_age; 521 /* Refaults at the time of last reclaim cycle */ 522 unsigned long refaults[ANON_AND_FILE]; 523 /* Various lruvec state flags (enum lruvec_flags) */ 524 unsigned long flags; 525 #ifdef CONFIG_LRU_GEN 526 /* evictable pages divided into generations */ 527 struct lru_gen_struct lrugen; 528 /* to concurrently iterate lru_gen_mm_list */ 529 struct lru_gen_mm_state mm_state; 530 #endif 531 #ifdef CONFIG_MEMCG 532 struct pglist_data *pgdat; 533 #endif 534 }; 535 536 /* Isolate unmapped pages */ 537 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 538 /* Isolate for asynchronous migration */ 539 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 540 /* Isolate unevictable pages */ 541 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 542 543 /* LRU Isolation modes. */ 544 typedef unsigned __bitwise isolate_mode_t; 545 546 enum zone_watermarks { 547 WMARK_MIN, 548 WMARK_LOW, 549 WMARK_HIGH, 550 WMARK_PROMO, 551 NR_WMARK 552 }; 553 554 /* 555 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 556 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 557 * it should not contribute to serious fragmentation causing THP allocation 558 * failures. 559 */ 560 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 561 #define NR_PCP_THP 1 562 #else 563 #define NR_PCP_THP 0 564 #endif 565 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 566 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 567 568 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 569 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 570 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 571 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 572 573 /* Fields and list protected by pagesets local_lock in page_alloc.c */ 574 struct per_cpu_pages { 575 spinlock_t lock; /* Protects lists field */ 576 int count; /* number of pages in the list */ 577 int high; /* high watermark, emptying needed */ 578 int batch; /* chunk size for buddy add/remove */ 579 short free_factor; /* batch scaling factor during free */ 580 #ifdef CONFIG_NUMA 581 short expire; /* When 0, remote pagesets are drained */ 582 #endif 583 584 /* Lists of pages, one per migrate type stored on the pcp-lists */ 585 struct list_head lists[NR_PCP_LISTS]; 586 } ____cacheline_aligned_in_smp; 587 588 struct per_cpu_zonestat { 589 #ifdef CONFIG_SMP 590 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 591 s8 stat_threshold; 592 #endif 593 #ifdef CONFIG_NUMA 594 /* 595 * Low priority inaccurate counters that are only folded 596 * on demand. Use a large type to avoid the overhead of 597 * folding during refresh_cpu_vm_stats. 598 */ 599 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 600 #endif 601 }; 602 603 struct per_cpu_nodestat { 604 s8 stat_threshold; 605 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 606 }; 607 608 #endif /* !__GENERATING_BOUNDS.H */ 609 610 enum zone_type { 611 /* 612 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 613 * to DMA to all of the addressable memory (ZONE_NORMAL). 614 * On architectures where this area covers the whole 32 bit address 615 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 616 * DMA addressing constraints. This distinction is important as a 32bit 617 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 618 * platforms may need both zones as they support peripherals with 619 * different DMA addressing limitations. 620 */ 621 #ifdef CONFIG_ZONE_DMA 622 ZONE_DMA, 623 #endif 624 #ifdef CONFIG_ZONE_DMA32 625 ZONE_DMA32, 626 #endif 627 /* 628 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 629 * performed on pages in ZONE_NORMAL if the DMA devices support 630 * transfers to all addressable memory. 631 */ 632 ZONE_NORMAL, 633 #ifdef CONFIG_HIGHMEM 634 /* 635 * A memory area that is only addressable by the kernel through 636 * mapping portions into its own address space. This is for example 637 * used by i386 to allow the kernel to address the memory beyond 638 * 900MB. The kernel will set up special mappings (page 639 * table entries on i386) for each page that the kernel needs to 640 * access. 641 */ 642 ZONE_HIGHMEM, 643 #endif 644 /* 645 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 646 * movable pages with few exceptional cases described below. Main use 647 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 648 * likely to succeed, and to locally limit unmovable allocations - e.g., 649 * to increase the number of THP/huge pages. Notable special cases are: 650 * 651 * 1. Pinned pages: (long-term) pinning of movable pages might 652 * essentially turn such pages unmovable. Therefore, we do not allow 653 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 654 * faulted, they come from the right zone right away. However, it is 655 * still possible that address space already has pages in 656 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 657 * touches that memory before pinning). In such case we migrate them 658 * to a different zone. When migration fails - pinning fails. 659 * 2. memblock allocations: kernelcore/movablecore setups might create 660 * situations where ZONE_MOVABLE contains unmovable allocations 661 * after boot. Memory offlining and allocations fail early. 662 * 3. Memory holes: kernelcore/movablecore setups might create very rare 663 * situations where ZONE_MOVABLE contains memory holes after boot, 664 * for example, if we have sections that are only partially 665 * populated. Memory offlining and allocations fail early. 666 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 667 * memory offlining, such pages cannot be allocated. 668 * 5. Unmovable PG_offline pages: in paravirtualized environments, 669 * hotplugged memory blocks might only partially be managed by the 670 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 671 * parts not manged by the buddy are unmovable PG_offline pages. In 672 * some cases (virtio-mem), such pages can be skipped during 673 * memory offlining, however, cannot be moved/allocated. These 674 * techniques might use alloc_contig_range() to hide previously 675 * exposed pages from the buddy again (e.g., to implement some sort 676 * of memory unplug in virtio-mem). 677 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 678 * situations where ZERO_PAGE(0) which is allocated differently 679 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 680 * cannot be migrated. 681 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 682 * memory to the MOVABLE zone, the vmemmap pages are also placed in 683 * such zone. Such pages cannot be really moved around as they are 684 * self-stored in the range, but they are treated as movable when 685 * the range they describe is about to be offlined. 686 * 687 * In general, no unmovable allocations that degrade memory offlining 688 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 689 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 690 * if has_unmovable_pages() states that there are no unmovable pages, 691 * there can be false negatives). 692 */ 693 ZONE_MOVABLE, 694 #ifdef CONFIG_ZONE_DEVICE 695 ZONE_DEVICE, 696 #endif 697 __MAX_NR_ZONES 698 699 }; 700 701 #ifndef __GENERATING_BOUNDS_H 702 703 #define ASYNC_AND_SYNC 2 704 705 struct zone { 706 /* Read-mostly fields */ 707 708 /* zone watermarks, access with *_wmark_pages(zone) macros */ 709 unsigned long _watermark[NR_WMARK]; 710 unsigned long watermark_boost; 711 712 unsigned long nr_reserved_highatomic; 713 714 /* 715 * We don't know if the memory that we're going to allocate will be 716 * freeable or/and it will be released eventually, so to avoid totally 717 * wasting several GB of ram we must reserve some of the lower zone 718 * memory (otherwise we risk to run OOM on the lower zones despite 719 * there being tons of freeable ram on the higher zones). This array is 720 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 721 * changes. 722 */ 723 long lowmem_reserve[MAX_NR_ZONES]; 724 725 #ifdef CONFIG_NUMA 726 int node; 727 #endif 728 struct pglist_data *zone_pgdat; 729 struct per_cpu_pages __percpu *per_cpu_pageset; 730 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 731 /* 732 * the high and batch values are copied to individual pagesets for 733 * faster access 734 */ 735 int pageset_high; 736 int pageset_batch; 737 738 #ifndef CONFIG_SPARSEMEM 739 /* 740 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 741 * In SPARSEMEM, this map is stored in struct mem_section 742 */ 743 unsigned long *pageblock_flags; 744 #endif /* CONFIG_SPARSEMEM */ 745 746 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 747 unsigned long zone_start_pfn; 748 749 /* 750 * spanned_pages is the total pages spanned by the zone, including 751 * holes, which is calculated as: 752 * spanned_pages = zone_end_pfn - zone_start_pfn; 753 * 754 * present_pages is physical pages existing within the zone, which 755 * is calculated as: 756 * present_pages = spanned_pages - absent_pages(pages in holes); 757 * 758 * present_early_pages is present pages existing within the zone 759 * located on memory available since early boot, excluding hotplugged 760 * memory. 761 * 762 * managed_pages is present pages managed by the buddy system, which 763 * is calculated as (reserved_pages includes pages allocated by the 764 * bootmem allocator): 765 * managed_pages = present_pages - reserved_pages; 766 * 767 * cma pages is present pages that are assigned for CMA use 768 * (MIGRATE_CMA). 769 * 770 * So present_pages may be used by memory hotplug or memory power 771 * management logic to figure out unmanaged pages by checking 772 * (present_pages - managed_pages). And managed_pages should be used 773 * by page allocator and vm scanner to calculate all kinds of watermarks 774 * and thresholds. 775 * 776 * Locking rules: 777 * 778 * zone_start_pfn and spanned_pages are protected by span_seqlock. 779 * It is a seqlock because it has to be read outside of zone->lock, 780 * and it is done in the main allocator path. But, it is written 781 * quite infrequently. 782 * 783 * The span_seq lock is declared along with zone->lock because it is 784 * frequently read in proximity to zone->lock. It's good to 785 * give them a chance of being in the same cacheline. 786 * 787 * Write access to present_pages at runtime should be protected by 788 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 789 * present_pages should use get_online_mems() to get a stable value. 790 */ 791 atomic_long_t managed_pages; 792 unsigned long spanned_pages; 793 unsigned long present_pages; 794 #if defined(CONFIG_MEMORY_HOTPLUG) 795 unsigned long present_early_pages; 796 #endif 797 #ifdef CONFIG_CMA 798 unsigned long cma_pages; 799 #endif 800 801 const char *name; 802 803 #ifdef CONFIG_MEMORY_ISOLATION 804 /* 805 * Number of isolated pageblock. It is used to solve incorrect 806 * freepage counting problem due to racy retrieving migratetype 807 * of pageblock. Protected by zone->lock. 808 */ 809 unsigned long nr_isolate_pageblock; 810 #endif 811 812 #ifdef CONFIG_MEMORY_HOTPLUG 813 /* see spanned/present_pages for more description */ 814 seqlock_t span_seqlock; 815 #endif 816 817 int initialized; 818 819 /* Write-intensive fields used from the page allocator */ 820 CACHELINE_PADDING(_pad1_); 821 822 /* free areas of different sizes */ 823 struct free_area free_area[MAX_ORDER]; 824 825 /* zone flags, see below */ 826 unsigned long flags; 827 828 /* Primarily protects free_area */ 829 spinlock_t lock; 830 831 /* Write-intensive fields used by compaction and vmstats. */ 832 CACHELINE_PADDING(_pad2_); 833 834 /* 835 * When free pages are below this point, additional steps are taken 836 * when reading the number of free pages to avoid per-cpu counter 837 * drift allowing watermarks to be breached 838 */ 839 unsigned long percpu_drift_mark; 840 841 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 842 /* pfn where compaction free scanner should start */ 843 unsigned long compact_cached_free_pfn; 844 /* pfn where compaction migration scanner should start */ 845 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 846 unsigned long compact_init_migrate_pfn; 847 unsigned long compact_init_free_pfn; 848 #endif 849 850 #ifdef CONFIG_COMPACTION 851 /* 852 * On compaction failure, 1<<compact_defer_shift compactions 853 * are skipped before trying again. The number attempted since 854 * last failure is tracked with compact_considered. 855 * compact_order_failed is the minimum compaction failed order. 856 */ 857 unsigned int compact_considered; 858 unsigned int compact_defer_shift; 859 int compact_order_failed; 860 #endif 861 862 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 863 /* Set to true when the PG_migrate_skip bits should be cleared */ 864 bool compact_blockskip_flush; 865 #endif 866 867 bool contiguous; 868 869 CACHELINE_PADDING(_pad3_); 870 /* Zone statistics */ 871 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 872 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 873 } ____cacheline_internodealigned_in_smp; 874 875 enum pgdat_flags { 876 PGDAT_DIRTY, /* reclaim scanning has recently found 877 * many dirty file pages at the tail 878 * of the LRU. 879 */ 880 PGDAT_WRITEBACK, /* reclaim scanning has recently found 881 * many pages under writeback 882 */ 883 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 884 }; 885 886 enum zone_flags { 887 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 888 * Cleared when kswapd is woken. 889 */ 890 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 891 }; 892 893 static inline unsigned long zone_managed_pages(struct zone *zone) 894 { 895 return (unsigned long)atomic_long_read(&zone->managed_pages); 896 } 897 898 static inline unsigned long zone_cma_pages(struct zone *zone) 899 { 900 #ifdef CONFIG_CMA 901 return zone->cma_pages; 902 #else 903 return 0; 904 #endif 905 } 906 907 static inline unsigned long zone_end_pfn(const struct zone *zone) 908 { 909 return zone->zone_start_pfn + zone->spanned_pages; 910 } 911 912 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 913 { 914 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 915 } 916 917 static inline bool zone_is_initialized(struct zone *zone) 918 { 919 return zone->initialized; 920 } 921 922 static inline bool zone_is_empty(struct zone *zone) 923 { 924 return zone->spanned_pages == 0; 925 } 926 927 #ifndef BUILD_VDSO32_64 928 /* 929 * The zone field is never updated after free_area_init_core() 930 * sets it, so none of the operations on it need to be atomic. 931 */ 932 933 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 934 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 935 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 936 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 937 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 938 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 939 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 940 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 941 942 /* 943 * Define the bit shifts to access each section. For non-existent 944 * sections we define the shift as 0; that plus a 0 mask ensures 945 * the compiler will optimise away reference to them. 946 */ 947 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 948 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 949 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 950 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 951 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 952 953 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 954 #ifdef NODE_NOT_IN_PAGE_FLAGS 955 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 956 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 957 SECTIONS_PGOFF : ZONES_PGOFF) 958 #else 959 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 960 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 961 NODES_PGOFF : ZONES_PGOFF) 962 #endif 963 964 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 965 966 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 967 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 968 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 969 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 970 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 971 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 972 973 static inline enum zone_type page_zonenum(const struct page *page) 974 { 975 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 976 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 977 } 978 979 static inline enum zone_type folio_zonenum(const struct folio *folio) 980 { 981 return page_zonenum(&folio->page); 982 } 983 984 #ifdef CONFIG_ZONE_DEVICE 985 static inline bool is_zone_device_page(const struct page *page) 986 { 987 return page_zonenum(page) == ZONE_DEVICE; 988 } 989 extern void memmap_init_zone_device(struct zone *, unsigned long, 990 unsigned long, struct dev_pagemap *); 991 #else 992 static inline bool is_zone_device_page(const struct page *page) 993 { 994 return false; 995 } 996 #endif 997 998 static inline bool folio_is_zone_device(const struct folio *folio) 999 { 1000 return is_zone_device_page(&folio->page); 1001 } 1002 1003 static inline bool is_zone_movable_page(const struct page *page) 1004 { 1005 return page_zonenum(page) == ZONE_MOVABLE; 1006 } 1007 #endif 1008 1009 /* 1010 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1011 * intersection with the given zone 1012 */ 1013 static inline bool zone_intersects(struct zone *zone, 1014 unsigned long start_pfn, unsigned long nr_pages) 1015 { 1016 if (zone_is_empty(zone)) 1017 return false; 1018 if (start_pfn >= zone_end_pfn(zone) || 1019 start_pfn + nr_pages <= zone->zone_start_pfn) 1020 return false; 1021 1022 return true; 1023 } 1024 1025 /* 1026 * The "priority" of VM scanning is how much of the queues we will scan in one 1027 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1028 * queues ("queue_length >> 12") during an aging round. 1029 */ 1030 #define DEF_PRIORITY 12 1031 1032 /* Maximum number of zones on a zonelist */ 1033 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1034 1035 enum { 1036 ZONELIST_FALLBACK, /* zonelist with fallback */ 1037 #ifdef CONFIG_NUMA 1038 /* 1039 * The NUMA zonelists are doubled because we need zonelists that 1040 * restrict the allocations to a single node for __GFP_THISNODE. 1041 */ 1042 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1043 #endif 1044 MAX_ZONELISTS 1045 }; 1046 1047 /* 1048 * This struct contains information about a zone in a zonelist. It is stored 1049 * here to avoid dereferences into large structures and lookups of tables 1050 */ 1051 struct zoneref { 1052 struct zone *zone; /* Pointer to actual zone */ 1053 int zone_idx; /* zone_idx(zoneref->zone) */ 1054 }; 1055 1056 /* 1057 * One allocation request operates on a zonelist. A zonelist 1058 * is a list of zones, the first one is the 'goal' of the 1059 * allocation, the other zones are fallback zones, in decreasing 1060 * priority. 1061 * 1062 * To speed the reading of the zonelist, the zonerefs contain the zone index 1063 * of the entry being read. Helper functions to access information given 1064 * a struct zoneref are 1065 * 1066 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1067 * zonelist_zone_idx() - Return the index of the zone for an entry 1068 * zonelist_node_idx() - Return the index of the node for an entry 1069 */ 1070 struct zonelist { 1071 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1072 }; 1073 1074 /* 1075 * The array of struct pages for flatmem. 1076 * It must be declared for SPARSEMEM as well because there are configurations 1077 * that rely on that. 1078 */ 1079 extern struct page *mem_map; 1080 1081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1082 struct deferred_split { 1083 spinlock_t split_queue_lock; 1084 struct list_head split_queue; 1085 unsigned long split_queue_len; 1086 }; 1087 #endif 1088 1089 /* 1090 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1091 * it's memory layout. On UMA machines there is a single pglist_data which 1092 * describes the whole memory. 1093 * 1094 * Memory statistics and page replacement data structures are maintained on a 1095 * per-zone basis. 1096 */ 1097 typedef struct pglist_data { 1098 /* 1099 * node_zones contains just the zones for THIS node. Not all of the 1100 * zones may be populated, but it is the full list. It is referenced by 1101 * this node's node_zonelists as well as other node's node_zonelists. 1102 */ 1103 struct zone node_zones[MAX_NR_ZONES]; 1104 1105 /* 1106 * node_zonelists contains references to all zones in all nodes. 1107 * Generally the first zones will be references to this node's 1108 * node_zones. 1109 */ 1110 struct zonelist node_zonelists[MAX_ZONELISTS]; 1111 1112 int nr_zones; /* number of populated zones in this node */ 1113 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1114 struct page *node_mem_map; 1115 #ifdef CONFIG_PAGE_EXTENSION 1116 struct page_ext *node_page_ext; 1117 #endif 1118 #endif 1119 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1120 /* 1121 * Must be held any time you expect node_start_pfn, 1122 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1123 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1124 * init. 1125 * 1126 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1127 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1128 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1129 * 1130 * Nests above zone->lock and zone->span_seqlock 1131 */ 1132 spinlock_t node_size_lock; 1133 #endif 1134 unsigned long node_start_pfn; 1135 unsigned long node_present_pages; /* total number of physical pages */ 1136 unsigned long node_spanned_pages; /* total size of physical page 1137 range, including holes */ 1138 int node_id; 1139 wait_queue_head_t kswapd_wait; 1140 wait_queue_head_t pfmemalloc_wait; 1141 1142 /* workqueues for throttling reclaim for different reasons. */ 1143 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1144 1145 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1146 unsigned long nr_reclaim_start; /* nr pages written while throttled 1147 * when throttling started. */ 1148 #ifdef CONFIG_MEMORY_HOTPLUG 1149 struct mutex kswapd_lock; 1150 #endif 1151 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1152 int kswapd_order; 1153 enum zone_type kswapd_highest_zoneidx; 1154 1155 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1156 1157 #ifdef CONFIG_COMPACTION 1158 int kcompactd_max_order; 1159 enum zone_type kcompactd_highest_zoneidx; 1160 wait_queue_head_t kcompactd_wait; 1161 struct task_struct *kcompactd; 1162 bool proactive_compact_trigger; 1163 #endif 1164 /* 1165 * This is a per-node reserve of pages that are not available 1166 * to userspace allocations. 1167 */ 1168 unsigned long totalreserve_pages; 1169 1170 #ifdef CONFIG_NUMA 1171 /* 1172 * node reclaim becomes active if more unmapped pages exist. 1173 */ 1174 unsigned long min_unmapped_pages; 1175 unsigned long min_slab_pages; 1176 #endif /* CONFIG_NUMA */ 1177 1178 /* Write-intensive fields used by page reclaim */ 1179 CACHELINE_PADDING(_pad1_); 1180 1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1182 /* 1183 * If memory initialisation on large machines is deferred then this 1184 * is the first PFN that needs to be initialised. 1185 */ 1186 unsigned long first_deferred_pfn; 1187 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1188 1189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1190 struct deferred_split deferred_split_queue; 1191 #endif 1192 1193 #ifdef CONFIG_NUMA_BALANCING 1194 /* start time in ms of current promote rate limit period */ 1195 unsigned int nbp_rl_start; 1196 /* number of promote candidate pages at start time of current rate limit period */ 1197 unsigned long nbp_rl_nr_cand; 1198 /* promote threshold in ms */ 1199 unsigned int nbp_threshold; 1200 /* start time in ms of current promote threshold adjustment period */ 1201 unsigned int nbp_th_start; 1202 /* 1203 * number of promote candidate pages at stat time of current promote 1204 * threshold adjustment period 1205 */ 1206 unsigned long nbp_th_nr_cand; 1207 #endif 1208 /* Fields commonly accessed by the page reclaim scanner */ 1209 1210 /* 1211 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1212 * 1213 * Use mem_cgroup_lruvec() to look up lruvecs. 1214 */ 1215 struct lruvec __lruvec; 1216 1217 unsigned long flags; 1218 1219 #ifdef CONFIG_LRU_GEN 1220 /* kswap mm walk data */ 1221 struct lru_gen_mm_walk mm_walk; 1222 #endif 1223 1224 CACHELINE_PADDING(_pad2_); 1225 1226 /* Per-node vmstats */ 1227 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1228 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1229 #ifdef CONFIG_NUMA 1230 struct memory_tier __rcu *memtier; 1231 #endif 1232 } pg_data_t; 1233 1234 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1235 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1236 1237 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1238 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1239 1240 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1241 { 1242 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1243 } 1244 1245 #include <linux/memory_hotplug.h> 1246 1247 void build_all_zonelists(pg_data_t *pgdat); 1248 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1249 enum zone_type highest_zoneidx); 1250 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1251 int highest_zoneidx, unsigned int alloc_flags, 1252 long free_pages); 1253 bool zone_watermark_ok(struct zone *z, unsigned int order, 1254 unsigned long mark, int highest_zoneidx, 1255 unsigned int alloc_flags); 1256 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1257 unsigned long mark, int highest_zoneidx); 1258 /* 1259 * Memory initialization context, use to differentiate memory added by 1260 * the platform statically or via memory hotplug interface. 1261 */ 1262 enum meminit_context { 1263 MEMINIT_EARLY, 1264 MEMINIT_HOTPLUG, 1265 }; 1266 1267 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1268 unsigned long size); 1269 1270 extern void lruvec_init(struct lruvec *lruvec); 1271 1272 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1273 { 1274 #ifdef CONFIG_MEMCG 1275 return lruvec->pgdat; 1276 #else 1277 return container_of(lruvec, struct pglist_data, __lruvec); 1278 #endif 1279 } 1280 1281 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1282 int local_memory_node(int node_id); 1283 #else 1284 static inline int local_memory_node(int node_id) { return node_id; }; 1285 #endif 1286 1287 /* 1288 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1289 */ 1290 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1291 1292 #ifdef CONFIG_ZONE_DEVICE 1293 static inline bool zone_is_zone_device(struct zone *zone) 1294 { 1295 return zone_idx(zone) == ZONE_DEVICE; 1296 } 1297 #else 1298 static inline bool zone_is_zone_device(struct zone *zone) 1299 { 1300 return false; 1301 } 1302 #endif 1303 1304 /* 1305 * Returns true if a zone has pages managed by the buddy allocator. 1306 * All the reclaim decisions have to use this function rather than 1307 * populated_zone(). If the whole zone is reserved then we can easily 1308 * end up with populated_zone() && !managed_zone(). 1309 */ 1310 static inline bool managed_zone(struct zone *zone) 1311 { 1312 return zone_managed_pages(zone); 1313 } 1314 1315 /* Returns true if a zone has memory */ 1316 static inline bool populated_zone(struct zone *zone) 1317 { 1318 return zone->present_pages; 1319 } 1320 1321 #ifdef CONFIG_NUMA 1322 static inline int zone_to_nid(struct zone *zone) 1323 { 1324 return zone->node; 1325 } 1326 1327 static inline void zone_set_nid(struct zone *zone, int nid) 1328 { 1329 zone->node = nid; 1330 } 1331 #else 1332 static inline int zone_to_nid(struct zone *zone) 1333 { 1334 return 0; 1335 } 1336 1337 static inline void zone_set_nid(struct zone *zone, int nid) {} 1338 #endif 1339 1340 extern int movable_zone; 1341 1342 static inline int is_highmem_idx(enum zone_type idx) 1343 { 1344 #ifdef CONFIG_HIGHMEM 1345 return (idx == ZONE_HIGHMEM || 1346 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1347 #else 1348 return 0; 1349 #endif 1350 } 1351 1352 /** 1353 * is_highmem - helper function to quickly check if a struct zone is a 1354 * highmem zone or not. This is an attempt to keep references 1355 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1356 * @zone: pointer to struct zone variable 1357 * Return: 1 for a highmem zone, 0 otherwise 1358 */ 1359 static inline int is_highmem(struct zone *zone) 1360 { 1361 return is_highmem_idx(zone_idx(zone)); 1362 } 1363 1364 #ifdef CONFIG_ZONE_DMA 1365 bool has_managed_dma(void); 1366 #else 1367 static inline bool has_managed_dma(void) 1368 { 1369 return false; 1370 } 1371 #endif 1372 1373 /* These two functions are used to setup the per zone pages min values */ 1374 struct ctl_table; 1375 1376 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1377 loff_t *); 1378 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1379 size_t *, loff_t *); 1380 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1381 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1382 size_t *, loff_t *); 1383 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1384 void *, size_t *, loff_t *); 1385 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1386 void *, size_t *, loff_t *); 1387 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1388 void *, size_t *, loff_t *); 1389 int numa_zonelist_order_handler(struct ctl_table *, int, 1390 void *, size_t *, loff_t *); 1391 extern int percpu_pagelist_high_fraction; 1392 extern char numa_zonelist_order[]; 1393 #define NUMA_ZONELIST_ORDER_LEN 16 1394 1395 #ifndef CONFIG_NUMA 1396 1397 extern struct pglist_data contig_page_data; 1398 static inline struct pglist_data *NODE_DATA(int nid) 1399 { 1400 return &contig_page_data; 1401 } 1402 1403 #else /* CONFIG_NUMA */ 1404 1405 #include <asm/mmzone.h> 1406 1407 #endif /* !CONFIG_NUMA */ 1408 1409 extern struct pglist_data *first_online_pgdat(void); 1410 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1411 extern struct zone *next_zone(struct zone *zone); 1412 1413 /** 1414 * for_each_online_pgdat - helper macro to iterate over all online nodes 1415 * @pgdat: pointer to a pg_data_t variable 1416 */ 1417 #define for_each_online_pgdat(pgdat) \ 1418 for (pgdat = first_online_pgdat(); \ 1419 pgdat; \ 1420 pgdat = next_online_pgdat(pgdat)) 1421 /** 1422 * for_each_zone - helper macro to iterate over all memory zones 1423 * @zone: pointer to struct zone variable 1424 * 1425 * The user only needs to declare the zone variable, for_each_zone 1426 * fills it in. 1427 */ 1428 #define for_each_zone(zone) \ 1429 for (zone = (first_online_pgdat())->node_zones; \ 1430 zone; \ 1431 zone = next_zone(zone)) 1432 1433 #define for_each_populated_zone(zone) \ 1434 for (zone = (first_online_pgdat())->node_zones; \ 1435 zone; \ 1436 zone = next_zone(zone)) \ 1437 if (!populated_zone(zone)) \ 1438 ; /* do nothing */ \ 1439 else 1440 1441 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1442 { 1443 return zoneref->zone; 1444 } 1445 1446 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1447 { 1448 return zoneref->zone_idx; 1449 } 1450 1451 static inline int zonelist_node_idx(struct zoneref *zoneref) 1452 { 1453 return zone_to_nid(zoneref->zone); 1454 } 1455 1456 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1457 enum zone_type highest_zoneidx, 1458 nodemask_t *nodes); 1459 1460 /** 1461 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1462 * @z: The cursor used as a starting point for the search 1463 * @highest_zoneidx: The zone index of the highest zone to return 1464 * @nodes: An optional nodemask to filter the zonelist with 1465 * 1466 * This function returns the next zone at or below a given zone index that is 1467 * within the allowed nodemask using a cursor as the starting point for the 1468 * search. The zoneref returned is a cursor that represents the current zone 1469 * being examined. It should be advanced by one before calling 1470 * next_zones_zonelist again. 1471 * 1472 * Return: the next zone at or below highest_zoneidx within the allowed 1473 * nodemask using a cursor within a zonelist as a starting point 1474 */ 1475 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1476 enum zone_type highest_zoneidx, 1477 nodemask_t *nodes) 1478 { 1479 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1480 return z; 1481 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1482 } 1483 1484 /** 1485 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1486 * @zonelist: The zonelist to search for a suitable zone 1487 * @highest_zoneidx: The zone index of the highest zone to return 1488 * @nodes: An optional nodemask to filter the zonelist with 1489 * 1490 * This function returns the first zone at or below a given zone index that is 1491 * within the allowed nodemask. The zoneref returned is a cursor that can be 1492 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1493 * one before calling. 1494 * 1495 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1496 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1497 * update due to cpuset modification. 1498 * 1499 * Return: Zoneref pointer for the first suitable zone found 1500 */ 1501 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1502 enum zone_type highest_zoneidx, 1503 nodemask_t *nodes) 1504 { 1505 return next_zones_zonelist(zonelist->_zonerefs, 1506 highest_zoneidx, nodes); 1507 } 1508 1509 /** 1510 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1511 * @zone: The current zone in the iterator 1512 * @z: The current pointer within zonelist->_zonerefs being iterated 1513 * @zlist: The zonelist being iterated 1514 * @highidx: The zone index of the highest zone to return 1515 * @nodemask: Nodemask allowed by the allocator 1516 * 1517 * This iterator iterates though all zones at or below a given zone index and 1518 * within a given nodemask 1519 */ 1520 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1521 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1522 zone; \ 1523 z = next_zones_zonelist(++z, highidx, nodemask), \ 1524 zone = zonelist_zone(z)) 1525 1526 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1527 for (zone = z->zone; \ 1528 zone; \ 1529 z = next_zones_zonelist(++z, highidx, nodemask), \ 1530 zone = zonelist_zone(z)) 1531 1532 1533 /** 1534 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1535 * @zone: The current zone in the iterator 1536 * @z: The current pointer within zonelist->zones being iterated 1537 * @zlist: The zonelist being iterated 1538 * @highidx: The zone index of the highest zone to return 1539 * 1540 * This iterator iterates though all zones at or below a given zone index. 1541 */ 1542 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1543 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1544 1545 /* Whether the 'nodes' are all movable nodes */ 1546 static inline bool movable_only_nodes(nodemask_t *nodes) 1547 { 1548 struct zonelist *zonelist; 1549 struct zoneref *z; 1550 int nid; 1551 1552 if (nodes_empty(*nodes)) 1553 return false; 1554 1555 /* 1556 * We can chose arbitrary node from the nodemask to get a 1557 * zonelist as they are interlinked. We just need to find 1558 * at least one zone that can satisfy kernel allocations. 1559 */ 1560 nid = first_node(*nodes); 1561 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1562 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1563 return (!z->zone) ? true : false; 1564 } 1565 1566 1567 #ifdef CONFIG_SPARSEMEM 1568 #include <asm/sparsemem.h> 1569 #endif 1570 1571 #ifdef CONFIG_FLATMEM 1572 #define pfn_to_nid(pfn) (0) 1573 #endif 1574 1575 #ifdef CONFIG_SPARSEMEM 1576 1577 /* 1578 * PA_SECTION_SHIFT physical address to/from section number 1579 * PFN_SECTION_SHIFT pfn to/from section number 1580 */ 1581 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1582 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1583 1584 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1585 1586 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1587 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1588 1589 #define SECTION_BLOCKFLAGS_BITS \ 1590 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1591 1592 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1593 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1594 #endif 1595 1596 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1597 { 1598 return pfn >> PFN_SECTION_SHIFT; 1599 } 1600 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1601 { 1602 return sec << PFN_SECTION_SHIFT; 1603 } 1604 1605 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1606 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1607 1608 #define SUBSECTION_SHIFT 21 1609 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1610 1611 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1612 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1613 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1614 1615 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1616 #error Subsection size exceeds section size 1617 #else 1618 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1619 #endif 1620 1621 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1622 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1623 1624 struct mem_section_usage { 1625 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1626 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1627 #endif 1628 /* See declaration of similar field in struct zone */ 1629 unsigned long pageblock_flags[0]; 1630 }; 1631 1632 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1633 1634 struct page; 1635 struct page_ext; 1636 struct mem_section { 1637 /* 1638 * This is, logically, a pointer to an array of struct 1639 * pages. However, it is stored with some other magic. 1640 * (see sparse.c::sparse_init_one_section()) 1641 * 1642 * Additionally during early boot we encode node id of 1643 * the location of the section here to guide allocation. 1644 * (see sparse.c::memory_present()) 1645 * 1646 * Making it a UL at least makes someone do a cast 1647 * before using it wrong. 1648 */ 1649 unsigned long section_mem_map; 1650 1651 struct mem_section_usage *usage; 1652 #ifdef CONFIG_PAGE_EXTENSION 1653 /* 1654 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1655 * section. (see page_ext.h about this.) 1656 */ 1657 struct page_ext *page_ext; 1658 unsigned long pad; 1659 #endif 1660 /* 1661 * WARNING: mem_section must be a power-of-2 in size for the 1662 * calculation and use of SECTION_ROOT_MASK to make sense. 1663 */ 1664 }; 1665 1666 #ifdef CONFIG_SPARSEMEM_EXTREME 1667 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1668 #else 1669 #define SECTIONS_PER_ROOT 1 1670 #endif 1671 1672 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1673 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1674 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1675 1676 #ifdef CONFIG_SPARSEMEM_EXTREME 1677 extern struct mem_section **mem_section; 1678 #else 1679 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1680 #endif 1681 1682 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1683 { 1684 return ms->usage->pageblock_flags; 1685 } 1686 1687 static inline struct mem_section *__nr_to_section(unsigned long nr) 1688 { 1689 unsigned long root = SECTION_NR_TO_ROOT(nr); 1690 1691 if (unlikely(root >= NR_SECTION_ROOTS)) 1692 return NULL; 1693 1694 #ifdef CONFIG_SPARSEMEM_EXTREME 1695 if (!mem_section || !mem_section[root]) 1696 return NULL; 1697 #endif 1698 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1699 } 1700 extern size_t mem_section_usage_size(void); 1701 1702 /* 1703 * We use the lower bits of the mem_map pointer to store 1704 * a little bit of information. The pointer is calculated 1705 * as mem_map - section_nr_to_pfn(pnum). The result is 1706 * aligned to the minimum alignment of the two values: 1707 * 1. All mem_map arrays are page-aligned. 1708 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1709 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1710 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1711 * worst combination is powerpc with 256k pages, 1712 * which results in PFN_SECTION_SHIFT equal 6. 1713 * To sum it up, at least 6 bits are available on all architectures. 1714 * However, we can exceed 6 bits on some other architectures except 1715 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1716 * with the worst case of 64K pages on arm64) if we make sure the 1717 * exceeded bit is not applicable to powerpc. 1718 */ 1719 enum { 1720 SECTION_MARKED_PRESENT_BIT, 1721 SECTION_HAS_MEM_MAP_BIT, 1722 SECTION_IS_ONLINE_BIT, 1723 SECTION_IS_EARLY_BIT, 1724 #ifdef CONFIG_ZONE_DEVICE 1725 SECTION_TAINT_ZONE_DEVICE_BIT, 1726 #endif 1727 SECTION_MAP_LAST_BIT, 1728 }; 1729 1730 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1731 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1732 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1733 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1734 #ifdef CONFIG_ZONE_DEVICE 1735 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1736 #endif 1737 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1738 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1739 1740 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1741 { 1742 unsigned long map = section->section_mem_map; 1743 map &= SECTION_MAP_MASK; 1744 return (struct page *)map; 1745 } 1746 1747 static inline int present_section(struct mem_section *section) 1748 { 1749 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1750 } 1751 1752 static inline int present_section_nr(unsigned long nr) 1753 { 1754 return present_section(__nr_to_section(nr)); 1755 } 1756 1757 static inline int valid_section(struct mem_section *section) 1758 { 1759 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1760 } 1761 1762 static inline int early_section(struct mem_section *section) 1763 { 1764 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1765 } 1766 1767 static inline int valid_section_nr(unsigned long nr) 1768 { 1769 return valid_section(__nr_to_section(nr)); 1770 } 1771 1772 static inline int online_section(struct mem_section *section) 1773 { 1774 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1775 } 1776 1777 #ifdef CONFIG_ZONE_DEVICE 1778 static inline int online_device_section(struct mem_section *section) 1779 { 1780 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1781 1782 return section && ((section->section_mem_map & flags) == flags); 1783 } 1784 #else 1785 static inline int online_device_section(struct mem_section *section) 1786 { 1787 return 0; 1788 } 1789 #endif 1790 1791 static inline int online_section_nr(unsigned long nr) 1792 { 1793 return online_section(__nr_to_section(nr)); 1794 } 1795 1796 #ifdef CONFIG_MEMORY_HOTPLUG 1797 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1798 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1799 #endif 1800 1801 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1802 { 1803 return __nr_to_section(pfn_to_section_nr(pfn)); 1804 } 1805 1806 extern unsigned long __highest_present_section_nr; 1807 1808 static inline int subsection_map_index(unsigned long pfn) 1809 { 1810 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1811 } 1812 1813 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1814 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1815 { 1816 int idx = subsection_map_index(pfn); 1817 1818 return test_bit(idx, ms->usage->subsection_map); 1819 } 1820 #else 1821 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1822 { 1823 return 1; 1824 } 1825 #endif 1826 1827 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1828 /** 1829 * pfn_valid - check if there is a valid memory map entry for a PFN 1830 * @pfn: the page frame number to check 1831 * 1832 * Check if there is a valid memory map entry aka struct page for the @pfn. 1833 * Note, that availability of the memory map entry does not imply that 1834 * there is actual usable memory at that @pfn. The struct page may 1835 * represent a hole or an unusable page frame. 1836 * 1837 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1838 */ 1839 static inline int pfn_valid(unsigned long pfn) 1840 { 1841 struct mem_section *ms; 1842 1843 /* 1844 * Ensure the upper PAGE_SHIFT bits are clear in the 1845 * pfn. Else it might lead to false positives when 1846 * some of the upper bits are set, but the lower bits 1847 * match a valid pfn. 1848 */ 1849 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1850 return 0; 1851 1852 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1853 return 0; 1854 ms = __pfn_to_section(pfn); 1855 if (!valid_section(ms)) 1856 return 0; 1857 /* 1858 * Traditionally early sections always returned pfn_valid() for 1859 * the entire section-sized span. 1860 */ 1861 return early_section(ms) || pfn_section_valid(ms, pfn); 1862 } 1863 #endif 1864 1865 static inline int pfn_in_present_section(unsigned long pfn) 1866 { 1867 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1868 return 0; 1869 return present_section(__pfn_to_section(pfn)); 1870 } 1871 1872 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1873 { 1874 while (++section_nr <= __highest_present_section_nr) { 1875 if (present_section_nr(section_nr)) 1876 return section_nr; 1877 } 1878 1879 return -1; 1880 } 1881 1882 /* 1883 * These are _only_ used during initialisation, therefore they 1884 * can use __initdata ... They could have names to indicate 1885 * this restriction. 1886 */ 1887 #ifdef CONFIG_NUMA 1888 #define pfn_to_nid(pfn) \ 1889 ({ \ 1890 unsigned long __pfn_to_nid_pfn = (pfn); \ 1891 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1892 }) 1893 #else 1894 #define pfn_to_nid(pfn) (0) 1895 #endif 1896 1897 void sparse_init(void); 1898 #else 1899 #define sparse_init() do {} while (0) 1900 #define sparse_index_init(_sec, _nid) do {} while (0) 1901 #define pfn_in_present_section pfn_valid 1902 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1903 #endif /* CONFIG_SPARSEMEM */ 1904 1905 #endif /* !__GENERATING_BOUNDS.H */ 1906 #endif /* !__ASSEMBLY__ */ 1907 #endif /* _LINUX_MMZONE_H */ 1908