xref: /linux-6.15/include/linux/mmzone.h (revision 9d54c8a3)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_ALLOC_BATCH,
109 	NR_LRU_BASE,
110 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
111 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
112 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
113 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
114 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
115 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
116 	NR_ANON_PAGES,	/* Mapped anonymous pages */
117 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
118 			   only modified from process context */
119 	NR_FILE_PAGES,
120 	NR_FILE_DIRTY,
121 	NR_WRITEBACK,
122 	NR_SLAB_RECLAIMABLE,
123 	NR_SLAB_UNRECLAIMABLE,
124 	NR_PAGETABLE,		/* used for pagetables */
125 	NR_KERNEL_STACK,
126 	/* Second 128 byte cacheline */
127 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
128 	NR_BOUNCE,
129 	NR_VMSCAN_WRITE,
130 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
131 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
132 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
133 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
134 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
135 	NR_DIRTIED,		/* page dirtyings since bootup */
136 	NR_WRITTEN,		/* page writings since bootup */
137 #ifdef CONFIG_NUMA
138 	NUMA_HIT,		/* allocated in intended node */
139 	NUMA_MISS,		/* allocated in non intended node */
140 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
141 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
142 	NUMA_LOCAL,		/* allocation from local node */
143 	NUMA_OTHER,		/* allocation from other node */
144 #endif
145 	NR_ANON_TRANSPARENT_HUGEPAGES,
146 	NR_FREE_CMA_PAGES,
147 	NR_VM_ZONE_STAT_ITEMS };
148 
149 /*
150  * We do arithmetic on the LRU lists in various places in the code,
151  * so it is important to keep the active lists LRU_ACTIVE higher in
152  * the array than the corresponding inactive lists, and to keep
153  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
154  *
155  * This has to be kept in sync with the statistics in zone_stat_item
156  * above and the descriptions in vmstat_text in mm/vmstat.c
157  */
158 #define LRU_BASE 0
159 #define LRU_ACTIVE 1
160 #define LRU_FILE 2
161 
162 enum lru_list {
163 	LRU_INACTIVE_ANON = LRU_BASE,
164 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
165 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
166 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
167 	LRU_UNEVICTABLE,
168 	NR_LRU_LISTS
169 };
170 
171 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
172 
173 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
174 
175 static inline int is_file_lru(enum lru_list lru)
176 {
177 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
178 }
179 
180 static inline int is_active_lru(enum lru_list lru)
181 {
182 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
183 }
184 
185 static inline int is_unevictable_lru(enum lru_list lru)
186 {
187 	return (lru == LRU_UNEVICTABLE);
188 }
189 
190 struct zone_reclaim_stat {
191 	/*
192 	 * The pageout code in vmscan.c keeps track of how many of the
193 	 * mem/swap backed and file backed pages are referenced.
194 	 * The higher the rotated/scanned ratio, the more valuable
195 	 * that cache is.
196 	 *
197 	 * The anon LRU stats live in [0], file LRU stats in [1]
198 	 */
199 	unsigned long		recent_rotated[2];
200 	unsigned long		recent_scanned[2];
201 };
202 
203 struct lruvec {
204 	struct list_head lists[NR_LRU_LISTS];
205 	struct zone_reclaim_stat reclaim_stat;
206 #ifdef CONFIG_MEMCG
207 	struct zone *zone;
208 #endif
209 };
210 
211 /* Mask used at gathering information at once (see memcontrol.c) */
212 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
213 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
214 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
215 
216 /* Isolate clean file */
217 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
218 /* Isolate unmapped file */
219 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
220 /* Isolate for asynchronous migration */
221 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
222 /* Isolate unevictable pages */
223 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
224 
225 /* LRU Isolation modes. */
226 typedef unsigned __bitwise__ isolate_mode_t;
227 
228 enum zone_watermarks {
229 	WMARK_MIN,
230 	WMARK_LOW,
231 	WMARK_HIGH,
232 	NR_WMARK
233 };
234 
235 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
236 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
237 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
238 
239 struct per_cpu_pages {
240 	int count;		/* number of pages in the list */
241 	int high;		/* high watermark, emptying needed */
242 	int batch;		/* chunk size for buddy add/remove */
243 
244 	/* Lists of pages, one per migrate type stored on the pcp-lists */
245 	struct list_head lists[MIGRATE_PCPTYPES];
246 };
247 
248 struct per_cpu_pageset {
249 	struct per_cpu_pages pcp;
250 #ifdef CONFIG_NUMA
251 	s8 expire;
252 #endif
253 #ifdef CONFIG_SMP
254 	s8 stat_threshold;
255 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
256 #endif
257 };
258 
259 #endif /* !__GENERATING_BOUNDS.H */
260 
261 enum zone_type {
262 #ifdef CONFIG_ZONE_DMA
263 	/*
264 	 * ZONE_DMA is used when there are devices that are not able
265 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
266 	 * carve out the portion of memory that is needed for these devices.
267 	 * The range is arch specific.
268 	 *
269 	 * Some examples
270 	 *
271 	 * Architecture		Limit
272 	 * ---------------------------
273 	 * parisc, ia64, sparc	<4G
274 	 * s390			<2G
275 	 * arm			Various
276 	 * alpha		Unlimited or 0-16MB.
277 	 *
278 	 * i386, x86_64 and multiple other arches
279 	 * 			<16M.
280 	 */
281 	ZONE_DMA,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 	/*
285 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
286 	 * only able to do DMA to the lower 16M but also 32 bit devices that
287 	 * can only do DMA areas below 4G.
288 	 */
289 	ZONE_DMA32,
290 #endif
291 	/*
292 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
293 	 * performed on pages in ZONE_NORMAL if the DMA devices support
294 	 * transfers to all addressable memory.
295 	 */
296 	ZONE_NORMAL,
297 #ifdef CONFIG_HIGHMEM
298 	/*
299 	 * A memory area that is only addressable by the kernel through
300 	 * mapping portions into its own address space. This is for example
301 	 * used by i386 to allow the kernel to address the memory beyond
302 	 * 900MB. The kernel will set up special mappings (page
303 	 * table entries on i386) for each page that the kernel needs to
304 	 * access.
305 	 */
306 	ZONE_HIGHMEM,
307 #endif
308 	ZONE_MOVABLE,
309 	__MAX_NR_ZONES
310 };
311 
312 #ifndef __GENERATING_BOUNDS_H
313 
314 struct zone {
315 	/* Fields commonly accessed by the page allocator */
316 
317 	/* zone watermarks, access with *_wmark_pages(zone) macros */
318 	unsigned long watermark[NR_WMARK];
319 
320 	/*
321 	 * When free pages are below this point, additional steps are taken
322 	 * when reading the number of free pages to avoid per-cpu counter
323 	 * drift allowing watermarks to be breached
324 	 */
325 	unsigned long percpu_drift_mark;
326 
327 	/*
328 	 * We don't know if the memory that we're going to allocate will be freeable
329 	 * or/and it will be released eventually, so to avoid totally wasting several
330 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
331 	 * to run OOM on the lower zones despite there's tons of freeable ram
332 	 * on the higher zones). This array is recalculated at runtime if the
333 	 * sysctl_lowmem_reserve_ratio sysctl changes.
334 	 */
335 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
336 
337 	/*
338 	 * This is a per-zone reserve of pages that should not be
339 	 * considered dirtyable memory.
340 	 */
341 	unsigned long		dirty_balance_reserve;
342 
343 #ifdef CONFIG_NUMA
344 	int node;
345 	/*
346 	 * zone reclaim becomes active if more unmapped pages exist.
347 	 */
348 	unsigned long		min_unmapped_pages;
349 	unsigned long		min_slab_pages;
350 #endif
351 	struct per_cpu_pageset __percpu *pageset;
352 	/*
353 	 * free areas of different sizes
354 	 */
355 	spinlock_t		lock;
356 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
357 	/* Set to true when the PG_migrate_skip bits should be cleared */
358 	bool			compact_blockskip_flush;
359 
360 	/* pfns where compaction scanners should start */
361 	unsigned long		compact_cached_free_pfn;
362 	unsigned long		compact_cached_migrate_pfn;
363 #endif
364 #ifdef CONFIG_MEMORY_HOTPLUG
365 	/* see spanned/present_pages for more description */
366 	seqlock_t		span_seqlock;
367 #endif
368 	struct free_area	free_area[MAX_ORDER];
369 
370 #ifndef CONFIG_SPARSEMEM
371 	/*
372 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
373 	 * In SPARSEMEM, this map is stored in struct mem_section
374 	 */
375 	unsigned long		*pageblock_flags;
376 #endif /* CONFIG_SPARSEMEM */
377 
378 #ifdef CONFIG_COMPACTION
379 	/*
380 	 * On compaction failure, 1<<compact_defer_shift compactions
381 	 * are skipped before trying again. The number attempted since
382 	 * last failure is tracked with compact_considered.
383 	 */
384 	unsigned int		compact_considered;
385 	unsigned int		compact_defer_shift;
386 	int			compact_order_failed;
387 #endif
388 
389 	ZONE_PADDING(_pad1_)
390 
391 	/* Fields commonly accessed by the page reclaim scanner */
392 	spinlock_t		lru_lock;
393 	struct lruvec		lruvec;
394 
395 	unsigned long		pages_scanned;	   /* since last reclaim */
396 	unsigned long		flags;		   /* zone flags, see below */
397 
398 	/* Zone statistics */
399 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
400 
401 	/*
402 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
403 	 * this zone's LRU.  Maintained by the pageout code.
404 	 */
405 	unsigned int inactive_ratio;
406 
407 
408 	ZONE_PADDING(_pad2_)
409 	/* Rarely used or read-mostly fields */
410 
411 	/*
412 	 * wait_table		-- the array holding the hash table
413 	 * wait_table_hash_nr_entries	-- the size of the hash table array
414 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
415 	 *
416 	 * The purpose of all these is to keep track of the people
417 	 * waiting for a page to become available and make them
418 	 * runnable again when possible. The trouble is that this
419 	 * consumes a lot of space, especially when so few things
420 	 * wait on pages at a given time. So instead of using
421 	 * per-page waitqueues, we use a waitqueue hash table.
422 	 *
423 	 * The bucket discipline is to sleep on the same queue when
424 	 * colliding and wake all in that wait queue when removing.
425 	 * When something wakes, it must check to be sure its page is
426 	 * truly available, a la thundering herd. The cost of a
427 	 * collision is great, but given the expected load of the
428 	 * table, they should be so rare as to be outweighed by the
429 	 * benefits from the saved space.
430 	 *
431 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
432 	 * primary users of these fields, and in mm/page_alloc.c
433 	 * free_area_init_core() performs the initialization of them.
434 	 */
435 	wait_queue_head_t	* wait_table;
436 	unsigned long		wait_table_hash_nr_entries;
437 	unsigned long		wait_table_bits;
438 
439 	/*
440 	 * Discontig memory support fields.
441 	 */
442 	struct pglist_data	*zone_pgdat;
443 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 	unsigned long		zone_start_pfn;
445 
446 	/*
447 	 * spanned_pages is the total pages spanned by the zone, including
448 	 * holes, which is calculated as:
449 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
450 	 *
451 	 * present_pages is physical pages existing within the zone, which
452 	 * is calculated as:
453 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
454 	 *
455 	 * managed_pages is present pages managed by the buddy system, which
456 	 * is calculated as (reserved_pages includes pages allocated by the
457 	 * bootmem allocator):
458 	 *	managed_pages = present_pages - reserved_pages;
459 	 *
460 	 * So present_pages may be used by memory hotplug or memory power
461 	 * management logic to figure out unmanaged pages by checking
462 	 * (present_pages - managed_pages). And managed_pages should be used
463 	 * by page allocator and vm scanner to calculate all kinds of watermarks
464 	 * and thresholds.
465 	 *
466 	 * Locking rules:
467 	 *
468 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 	 * It is a seqlock because it has to be read outside of zone->lock,
470 	 * and it is done in the main allocator path.  But, it is written
471 	 * quite infrequently.
472 	 *
473 	 * The span_seq lock is declared along with zone->lock because it is
474 	 * frequently read in proximity to zone->lock.  It's good to
475 	 * give them a chance of being in the same cacheline.
476 	 *
477 	 * Write access to present_pages at runtime should be protected by
478 	 * lock_memory_hotplug()/unlock_memory_hotplug().  Any reader who can't
479 	 * tolerant drift of present_pages should hold memory hotplug lock to
480 	 * get a stable value.
481 	 *
482 	 * Read access to managed_pages should be safe because it's unsigned
483 	 * long. Write access to zone->managed_pages and totalram_pages are
484 	 * protected by managed_page_count_lock at runtime. Idealy only
485 	 * adjust_managed_page_count() should be used instead of directly
486 	 * touching zone->managed_pages and totalram_pages.
487 	 */
488 	unsigned long		spanned_pages;
489 	unsigned long		present_pages;
490 	unsigned long		managed_pages;
491 
492 	/*
493 	 * Number of MIGRATE_RESEVE page block. To maintain for just
494 	 * optimization. Protected by zone->lock.
495 	 */
496 	int			nr_migrate_reserve_block;
497 
498 	/*
499 	 * rarely used fields:
500 	 */
501 	const char		*name;
502 } ____cacheline_internodealigned_in_smp;
503 
504 typedef enum {
505 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
506 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
507 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
508 					 * a congested BDI
509 					 */
510 	ZONE_TAIL_LRU_DIRTY,		/* reclaim scanning has recently found
511 					 * many dirty file pages at the tail
512 					 * of the LRU.
513 					 */
514 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
515 					 * many pages under writeback
516 					 */
517 } zone_flags_t;
518 
519 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
520 {
521 	set_bit(flag, &zone->flags);
522 }
523 
524 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
525 {
526 	return test_and_set_bit(flag, &zone->flags);
527 }
528 
529 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
530 {
531 	clear_bit(flag, &zone->flags);
532 }
533 
534 static inline int zone_is_reclaim_congested(const struct zone *zone)
535 {
536 	return test_bit(ZONE_CONGESTED, &zone->flags);
537 }
538 
539 static inline int zone_is_reclaim_dirty(const struct zone *zone)
540 {
541 	return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
542 }
543 
544 static inline int zone_is_reclaim_writeback(const struct zone *zone)
545 {
546 	return test_bit(ZONE_WRITEBACK, &zone->flags);
547 }
548 
549 static inline int zone_is_reclaim_locked(const struct zone *zone)
550 {
551 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
552 }
553 
554 static inline int zone_is_oom_locked(const struct zone *zone)
555 {
556 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
557 }
558 
559 static inline unsigned long zone_end_pfn(const struct zone *zone)
560 {
561 	return zone->zone_start_pfn + zone->spanned_pages;
562 }
563 
564 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
565 {
566 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
567 }
568 
569 static inline bool zone_is_initialized(struct zone *zone)
570 {
571 	return !!zone->wait_table;
572 }
573 
574 static inline bool zone_is_empty(struct zone *zone)
575 {
576 	return zone->spanned_pages == 0;
577 }
578 
579 /*
580  * The "priority" of VM scanning is how much of the queues we will scan in one
581  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
582  * queues ("queue_length >> 12") during an aging round.
583  */
584 #define DEF_PRIORITY 12
585 
586 /* Maximum number of zones on a zonelist */
587 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
588 
589 #ifdef CONFIG_NUMA
590 
591 /*
592  * The NUMA zonelists are doubled because we need zonelists that restrict the
593  * allocations to a single node for GFP_THISNODE.
594  *
595  * [0]	: Zonelist with fallback
596  * [1]	: No fallback (GFP_THISNODE)
597  */
598 #define MAX_ZONELISTS 2
599 
600 
601 /*
602  * We cache key information from each zonelist for smaller cache
603  * footprint when scanning for free pages in get_page_from_freelist().
604  *
605  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
606  *    up short of free memory since the last time (last_fullzone_zap)
607  *    we zero'd fullzones.
608  * 2) The array z_to_n[] maps each zone in the zonelist to its node
609  *    id, so that we can efficiently evaluate whether that node is
610  *    set in the current tasks mems_allowed.
611  *
612  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
613  * indexed by a zones offset in the zonelist zones[] array.
614  *
615  * The get_page_from_freelist() routine does two scans.  During the
616  * first scan, we skip zones whose corresponding bit in 'fullzones'
617  * is set or whose corresponding node in current->mems_allowed (which
618  * comes from cpusets) is not set.  During the second scan, we bypass
619  * this zonelist_cache, to ensure we look methodically at each zone.
620  *
621  * Once per second, we zero out (zap) fullzones, forcing us to
622  * reconsider nodes that might have regained more free memory.
623  * The field last_full_zap is the time we last zapped fullzones.
624  *
625  * This mechanism reduces the amount of time we waste repeatedly
626  * reexaming zones for free memory when they just came up low on
627  * memory momentarilly ago.
628  *
629  * The zonelist_cache struct members logically belong in struct
630  * zonelist.  However, the mempolicy zonelists constructed for
631  * MPOL_BIND are intentionally variable length (and usually much
632  * shorter).  A general purpose mechanism for handling structs with
633  * multiple variable length members is more mechanism than we want
634  * here.  We resort to some special case hackery instead.
635  *
636  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
637  * part because they are shorter), so we put the fixed length stuff
638  * at the front of the zonelist struct, ending in a variable length
639  * zones[], as is needed by MPOL_BIND.
640  *
641  * Then we put the optional zonelist cache on the end of the zonelist
642  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
643  * the fixed length portion at the front of the struct.  This pointer
644  * both enables us to find the zonelist cache, and in the case of
645  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
646  * to know that the zonelist cache is not there.
647  *
648  * The end result is that struct zonelists come in two flavors:
649  *  1) The full, fixed length version, shown below, and
650  *  2) The custom zonelists for MPOL_BIND.
651  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
652  *
653  * Even though there may be multiple CPU cores on a node modifying
654  * fullzones or last_full_zap in the same zonelist_cache at the same
655  * time, we don't lock it.  This is just hint data - if it is wrong now
656  * and then, the allocator will still function, perhaps a bit slower.
657  */
658 
659 
660 struct zonelist_cache {
661 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
662 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
663 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
664 };
665 #else
666 #define MAX_ZONELISTS 1
667 struct zonelist_cache;
668 #endif
669 
670 /*
671  * This struct contains information about a zone in a zonelist. It is stored
672  * here to avoid dereferences into large structures and lookups of tables
673  */
674 struct zoneref {
675 	struct zone *zone;	/* Pointer to actual zone */
676 	int zone_idx;		/* zone_idx(zoneref->zone) */
677 };
678 
679 /*
680  * One allocation request operates on a zonelist. A zonelist
681  * is a list of zones, the first one is the 'goal' of the
682  * allocation, the other zones are fallback zones, in decreasing
683  * priority.
684  *
685  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
686  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
687  * *
688  * To speed the reading of the zonelist, the zonerefs contain the zone index
689  * of the entry being read. Helper functions to access information given
690  * a struct zoneref are
691  *
692  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
693  * zonelist_zone_idx()	- Return the index of the zone for an entry
694  * zonelist_node_idx()	- Return the index of the node for an entry
695  */
696 struct zonelist {
697 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
698 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
699 #ifdef CONFIG_NUMA
700 	struct zonelist_cache zlcache;			     // optional ...
701 #endif
702 };
703 
704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
705 struct node_active_region {
706 	unsigned long start_pfn;
707 	unsigned long end_pfn;
708 	int nid;
709 };
710 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
711 
712 #ifndef CONFIG_DISCONTIGMEM
713 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
714 extern struct page *mem_map;
715 #endif
716 
717 /*
718  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
719  * (mostly NUMA machines?) to denote a higher-level memory zone than the
720  * zone denotes.
721  *
722  * On NUMA machines, each NUMA node would have a pg_data_t to describe
723  * it's memory layout.
724  *
725  * Memory statistics and page replacement data structures are maintained on a
726  * per-zone basis.
727  */
728 struct bootmem_data;
729 typedef struct pglist_data {
730 	struct zone node_zones[MAX_NR_ZONES];
731 	struct zonelist node_zonelists[MAX_ZONELISTS];
732 	int nr_zones;
733 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
734 	struct page *node_mem_map;
735 #ifdef CONFIG_MEMCG
736 	struct page_cgroup *node_page_cgroup;
737 #endif
738 #endif
739 #ifndef CONFIG_NO_BOOTMEM
740 	struct bootmem_data *bdata;
741 #endif
742 #ifdef CONFIG_MEMORY_HOTPLUG
743 	/*
744 	 * Must be held any time you expect node_start_pfn, node_present_pages
745 	 * or node_spanned_pages stay constant.  Holding this will also
746 	 * guarantee that any pfn_valid() stays that way.
747 	 *
748 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
749 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
750 	 *
751 	 * Nests above zone->lock and zone->span_seqlock
752 	 */
753 	spinlock_t node_size_lock;
754 #endif
755 	unsigned long node_start_pfn;
756 	unsigned long node_present_pages; /* total number of physical pages */
757 	unsigned long node_spanned_pages; /* total size of physical page
758 					     range, including holes */
759 	int node_id;
760 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
761 	wait_queue_head_t kswapd_wait;
762 	wait_queue_head_t pfmemalloc_wait;
763 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
764 	int kswapd_max_order;
765 	enum zone_type classzone_idx;
766 #ifdef CONFIG_NUMA_BALANCING
767 	/* Lock serializing the migrate rate limiting window */
768 	spinlock_t numabalancing_migrate_lock;
769 
770 	/* Rate limiting time interval */
771 	unsigned long numabalancing_migrate_next_window;
772 
773 	/* Number of pages migrated during the rate limiting time interval */
774 	unsigned long numabalancing_migrate_nr_pages;
775 #endif
776 } pg_data_t;
777 
778 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
779 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
780 #ifdef CONFIG_FLAT_NODE_MEM_MAP
781 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
782 #else
783 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
784 #endif
785 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
786 
787 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
788 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
789 
790 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
791 {
792 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
793 }
794 
795 static inline bool pgdat_is_empty(pg_data_t *pgdat)
796 {
797 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
798 }
799 
800 #include <linux/memory_hotplug.h>
801 
802 extern struct mutex zonelists_mutex;
803 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
804 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
805 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
806 		int classzone_idx, int alloc_flags);
807 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
808 		int classzone_idx, int alloc_flags);
809 enum memmap_context {
810 	MEMMAP_EARLY,
811 	MEMMAP_HOTPLUG,
812 };
813 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
814 				     unsigned long size,
815 				     enum memmap_context context);
816 
817 extern void lruvec_init(struct lruvec *lruvec);
818 
819 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
820 {
821 #ifdef CONFIG_MEMCG
822 	return lruvec->zone;
823 #else
824 	return container_of(lruvec, struct zone, lruvec);
825 #endif
826 }
827 
828 #ifdef CONFIG_HAVE_MEMORY_PRESENT
829 void memory_present(int nid, unsigned long start, unsigned long end);
830 #else
831 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
832 #endif
833 
834 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
835 int local_memory_node(int node_id);
836 #else
837 static inline int local_memory_node(int node_id) { return node_id; };
838 #endif
839 
840 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
841 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
842 #endif
843 
844 /*
845  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
846  */
847 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
848 
849 static inline int populated_zone(struct zone *zone)
850 {
851 	return (!!zone->present_pages);
852 }
853 
854 extern int movable_zone;
855 
856 static inline int zone_movable_is_highmem(void)
857 {
858 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
859 	return movable_zone == ZONE_HIGHMEM;
860 #else
861 	return 0;
862 #endif
863 }
864 
865 static inline int is_highmem_idx(enum zone_type idx)
866 {
867 #ifdef CONFIG_HIGHMEM
868 	return (idx == ZONE_HIGHMEM ||
869 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
870 #else
871 	return 0;
872 #endif
873 }
874 
875 /**
876  * is_highmem - helper function to quickly check if a struct zone is a
877  *              highmem zone or not.  This is an attempt to keep references
878  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
879  * @zone - pointer to struct zone variable
880  */
881 static inline int is_highmem(struct zone *zone)
882 {
883 #ifdef CONFIG_HIGHMEM
884 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
885 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
886 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
887 		zone_movable_is_highmem());
888 #else
889 	return 0;
890 #endif
891 }
892 
893 /* These two functions are used to setup the per zone pages min values */
894 struct ctl_table;
895 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
896 					void __user *, size_t *, loff_t *);
897 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
898 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
899 					void __user *, size_t *, loff_t *);
900 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
901 					void __user *, size_t *, loff_t *);
902 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
903 			void __user *, size_t *, loff_t *);
904 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
905 			void __user *, size_t *, loff_t *);
906 
907 extern int numa_zonelist_order_handler(struct ctl_table *, int,
908 			void __user *, size_t *, loff_t *);
909 extern char numa_zonelist_order[];
910 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
911 
912 #ifndef CONFIG_NEED_MULTIPLE_NODES
913 
914 extern struct pglist_data contig_page_data;
915 #define NODE_DATA(nid)		(&contig_page_data)
916 #define NODE_MEM_MAP(nid)	mem_map
917 
918 #else /* CONFIG_NEED_MULTIPLE_NODES */
919 
920 #include <asm/mmzone.h>
921 
922 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
923 
924 extern struct pglist_data *first_online_pgdat(void);
925 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
926 extern struct zone *next_zone(struct zone *zone);
927 
928 /**
929  * for_each_online_pgdat - helper macro to iterate over all online nodes
930  * @pgdat - pointer to a pg_data_t variable
931  */
932 #define for_each_online_pgdat(pgdat)			\
933 	for (pgdat = first_online_pgdat();		\
934 	     pgdat;					\
935 	     pgdat = next_online_pgdat(pgdat))
936 /**
937  * for_each_zone - helper macro to iterate over all memory zones
938  * @zone - pointer to struct zone variable
939  *
940  * The user only needs to declare the zone variable, for_each_zone
941  * fills it in.
942  */
943 #define for_each_zone(zone)			        \
944 	for (zone = (first_online_pgdat())->node_zones; \
945 	     zone;					\
946 	     zone = next_zone(zone))
947 
948 #define for_each_populated_zone(zone)		        \
949 	for (zone = (first_online_pgdat())->node_zones; \
950 	     zone;					\
951 	     zone = next_zone(zone))			\
952 		if (!populated_zone(zone))		\
953 			; /* do nothing */		\
954 		else
955 
956 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
957 {
958 	return zoneref->zone;
959 }
960 
961 static inline int zonelist_zone_idx(struct zoneref *zoneref)
962 {
963 	return zoneref->zone_idx;
964 }
965 
966 static inline int zonelist_node_idx(struct zoneref *zoneref)
967 {
968 #ifdef CONFIG_NUMA
969 	/* zone_to_nid not available in this context */
970 	return zoneref->zone->node;
971 #else
972 	return 0;
973 #endif /* CONFIG_NUMA */
974 }
975 
976 /**
977  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
978  * @z - The cursor used as a starting point for the search
979  * @highest_zoneidx - The zone index of the highest zone to return
980  * @nodes - An optional nodemask to filter the zonelist with
981  * @zone - The first suitable zone found is returned via this parameter
982  *
983  * This function returns the next zone at or below a given zone index that is
984  * within the allowed nodemask using a cursor as the starting point for the
985  * search. The zoneref returned is a cursor that represents the current zone
986  * being examined. It should be advanced by one before calling
987  * next_zones_zonelist again.
988  */
989 struct zoneref *next_zones_zonelist(struct zoneref *z,
990 					enum zone_type highest_zoneidx,
991 					nodemask_t *nodes,
992 					struct zone **zone);
993 
994 /**
995  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
996  * @zonelist - The zonelist to search for a suitable zone
997  * @highest_zoneidx - The zone index of the highest zone to return
998  * @nodes - An optional nodemask to filter the zonelist with
999  * @zone - The first suitable zone found is returned via this parameter
1000  *
1001  * This function returns the first zone at or below a given zone index that is
1002  * within the allowed nodemask. The zoneref returned is a cursor that can be
1003  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1004  * one before calling.
1005  */
1006 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007 					enum zone_type highest_zoneidx,
1008 					nodemask_t *nodes,
1009 					struct zone **zone)
1010 {
1011 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1012 								zone);
1013 }
1014 
1015 /**
1016  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1017  * @zone - The current zone in the iterator
1018  * @z - The current pointer within zonelist->zones being iterated
1019  * @zlist - The zonelist being iterated
1020  * @highidx - The zone index of the highest zone to return
1021  * @nodemask - Nodemask allowed by the allocator
1022  *
1023  * This iterator iterates though all zones at or below a given zone index and
1024  * within a given nodemask
1025  */
1026 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1027 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1028 		zone;							\
1029 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1030 
1031 /**
1032  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1033  * @zone - The current zone in the iterator
1034  * @z - The current pointer within zonelist->zones being iterated
1035  * @zlist - The zonelist being iterated
1036  * @highidx - The zone index of the highest zone to return
1037  *
1038  * This iterator iterates though all zones at or below a given zone index.
1039  */
1040 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1041 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1042 
1043 #ifdef CONFIG_SPARSEMEM
1044 #include <asm/sparsemem.h>
1045 #endif
1046 
1047 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1048 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1049 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1050 {
1051 	return 0;
1052 }
1053 #endif
1054 
1055 #ifdef CONFIG_FLATMEM
1056 #define pfn_to_nid(pfn)		(0)
1057 #endif
1058 
1059 #ifdef CONFIG_SPARSEMEM
1060 
1061 /*
1062  * SECTION_SHIFT    		#bits space required to store a section #
1063  *
1064  * PA_SECTION_SHIFT		physical address to/from section number
1065  * PFN_SECTION_SHIFT		pfn to/from section number
1066  */
1067 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1068 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1069 
1070 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1071 
1072 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1073 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1074 
1075 #define SECTION_BLOCKFLAGS_BITS \
1076 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1077 
1078 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1079 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1080 #endif
1081 
1082 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1083 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1084 
1085 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1086 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1087 
1088 struct page;
1089 struct page_cgroup;
1090 struct mem_section {
1091 	/*
1092 	 * This is, logically, a pointer to an array of struct
1093 	 * pages.  However, it is stored with some other magic.
1094 	 * (see sparse.c::sparse_init_one_section())
1095 	 *
1096 	 * Additionally during early boot we encode node id of
1097 	 * the location of the section here to guide allocation.
1098 	 * (see sparse.c::memory_present())
1099 	 *
1100 	 * Making it a UL at least makes someone do a cast
1101 	 * before using it wrong.
1102 	 */
1103 	unsigned long section_mem_map;
1104 
1105 	/* See declaration of similar field in struct zone */
1106 	unsigned long *pageblock_flags;
1107 #ifdef CONFIG_MEMCG
1108 	/*
1109 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1110 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1111 	 */
1112 	struct page_cgroup *page_cgroup;
1113 	unsigned long pad;
1114 #endif
1115 	/*
1116 	 * WARNING: mem_section must be a power-of-2 in size for the
1117 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1118 	 */
1119 };
1120 
1121 #ifdef CONFIG_SPARSEMEM_EXTREME
1122 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1123 #else
1124 #define SECTIONS_PER_ROOT	1
1125 #endif
1126 
1127 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1128 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1129 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1130 
1131 #ifdef CONFIG_SPARSEMEM_EXTREME
1132 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1133 #else
1134 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1135 #endif
1136 
1137 static inline struct mem_section *__nr_to_section(unsigned long nr)
1138 {
1139 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1140 		return NULL;
1141 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1142 }
1143 extern int __section_nr(struct mem_section* ms);
1144 extern unsigned long usemap_size(void);
1145 
1146 /*
1147  * We use the lower bits of the mem_map pointer to store
1148  * a little bit of information.  There should be at least
1149  * 3 bits here due to 32-bit alignment.
1150  */
1151 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1152 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1153 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1154 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1155 #define SECTION_NID_SHIFT	2
1156 
1157 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1158 {
1159 	unsigned long map = section->section_mem_map;
1160 	map &= SECTION_MAP_MASK;
1161 	return (struct page *)map;
1162 }
1163 
1164 static inline int present_section(struct mem_section *section)
1165 {
1166 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1167 }
1168 
1169 static inline int present_section_nr(unsigned long nr)
1170 {
1171 	return present_section(__nr_to_section(nr));
1172 }
1173 
1174 static inline int valid_section(struct mem_section *section)
1175 {
1176 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1177 }
1178 
1179 static inline int valid_section_nr(unsigned long nr)
1180 {
1181 	return valid_section(__nr_to_section(nr));
1182 }
1183 
1184 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1185 {
1186 	return __nr_to_section(pfn_to_section_nr(pfn));
1187 }
1188 
1189 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1190 static inline int pfn_valid(unsigned long pfn)
1191 {
1192 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1193 		return 0;
1194 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1195 }
1196 #endif
1197 
1198 static inline int pfn_present(unsigned long pfn)
1199 {
1200 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1201 		return 0;
1202 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1203 }
1204 
1205 /*
1206  * These are _only_ used during initialisation, therefore they
1207  * can use __initdata ...  They could have names to indicate
1208  * this restriction.
1209  */
1210 #ifdef CONFIG_NUMA
1211 #define pfn_to_nid(pfn)							\
1212 ({									\
1213 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1214 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1215 })
1216 #else
1217 #define pfn_to_nid(pfn)		(0)
1218 #endif
1219 
1220 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1221 void sparse_init(void);
1222 #else
1223 #define sparse_init()	do {} while (0)
1224 #define sparse_index_init(_sec, _nid)  do {} while (0)
1225 #endif /* CONFIG_SPARSEMEM */
1226 
1227 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1228 bool early_pfn_in_nid(unsigned long pfn, int nid);
1229 #else
1230 #define early_pfn_in_nid(pfn, nid)	(1)
1231 #endif
1232 
1233 #ifndef early_pfn_valid
1234 #define early_pfn_valid(pfn)	(1)
1235 #endif
1236 
1237 void memory_present(int nid, unsigned long start, unsigned long end);
1238 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1239 
1240 /*
1241  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1242  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1243  * pfn_valid_within() should be used in this case; we optimise this away
1244  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1245  */
1246 #ifdef CONFIG_HOLES_IN_ZONE
1247 #define pfn_valid_within(pfn) pfn_valid(pfn)
1248 #else
1249 #define pfn_valid_within(pfn) (1)
1250 #endif
1251 
1252 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1253 /*
1254  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1255  * associated with it or not. In FLATMEM, it is expected that holes always
1256  * have valid memmap as long as there is valid PFNs either side of the hole.
1257  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1258  * entire section.
1259  *
1260  * However, an ARM, and maybe other embedded architectures in the future
1261  * free memmap backing holes to save memory on the assumption the memmap is
1262  * never used. The page_zone linkages are then broken even though pfn_valid()
1263  * returns true. A walker of the full memmap must then do this additional
1264  * check to ensure the memmap they are looking at is sane by making sure
1265  * the zone and PFN linkages are still valid. This is expensive, but walkers
1266  * of the full memmap are extremely rare.
1267  */
1268 int memmap_valid_within(unsigned long pfn,
1269 					struct page *page, struct zone *zone);
1270 #else
1271 static inline int memmap_valid_within(unsigned long pfn,
1272 					struct page *page, struct zone *zone)
1273 {
1274 	return 1;
1275 }
1276 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1277 
1278 #endif /* !__GENERATING_BOUNDS.H */
1279 #endif /* !__ASSEMBLY__ */
1280 #endif /* _LINUX_MMZONE_H */
1281