xref: /linux-6.15/include/linux/mmzone.h (revision 8fdff1dc)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 	MIGRATE_ISOLATE,	/* can't allocate from here */
61 	MIGRATE_TYPES
62 };
63 
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #else
67 #  define is_migrate_cma(migratetype) false
68 #endif
69 
70 #define for_each_migratetype_order(order, type) \
71 	for (order = 0; order < MAX_ORDER; order++) \
72 		for (type = 0; type < MIGRATE_TYPES; type++)
73 
74 extern int page_group_by_mobility_disabled;
75 
76 static inline int get_pageblock_migratetype(struct page *page)
77 {
78 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
79 }
80 
81 struct free_area {
82 	struct list_head	free_list[MIGRATE_TYPES];
83 	unsigned long		nr_free;
84 };
85 
86 struct pglist_data;
87 
88 /*
89  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
90  * So add a wild amount of padding here to ensure that they fall into separate
91  * cachelines.  There are very few zone structures in the machine, so space
92  * consumption is not a concern here.
93  */
94 #if defined(CONFIG_SMP)
95 struct zone_padding {
96 	char x[0];
97 } ____cacheline_internodealigned_in_smp;
98 #define ZONE_PADDING(name)	struct zone_padding name;
99 #else
100 #define ZONE_PADDING(name)
101 #endif
102 
103 enum zone_stat_item {
104 	/* First 128 byte cacheline (assuming 64 bit words) */
105 	NR_FREE_PAGES,
106 	NR_LRU_BASE,
107 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
108 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
109 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
110 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
111 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
112 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
113 	NR_ANON_PAGES,	/* Mapped anonymous pages */
114 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
115 			   only modified from process context */
116 	NR_FILE_PAGES,
117 	NR_FILE_DIRTY,
118 	NR_WRITEBACK,
119 	NR_SLAB_RECLAIMABLE,
120 	NR_SLAB_UNRECLAIMABLE,
121 	NR_PAGETABLE,		/* used for pagetables */
122 	NR_KERNEL_STACK,
123 	/* Second 128 byte cacheline */
124 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
125 	NR_BOUNCE,
126 	NR_VMSCAN_WRITE,
127 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
128 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
129 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
130 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
131 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
132 	NR_DIRTIED,		/* page dirtyings since bootup */
133 	NR_WRITTEN,		/* page writings since bootup */
134 #ifdef CONFIG_NUMA
135 	NUMA_HIT,		/* allocated in intended node */
136 	NUMA_MISS,		/* allocated in non intended node */
137 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
138 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
139 	NUMA_LOCAL,		/* allocation from local node */
140 	NUMA_OTHER,		/* allocation from other node */
141 #endif
142 	NR_ANON_TRANSPARENT_HUGEPAGES,
143 	NR_FREE_CMA_PAGES,
144 	NR_VM_ZONE_STAT_ITEMS };
145 
146 /*
147  * We do arithmetic on the LRU lists in various places in the code,
148  * so it is important to keep the active lists LRU_ACTIVE higher in
149  * the array than the corresponding inactive lists, and to keep
150  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
151  *
152  * This has to be kept in sync with the statistics in zone_stat_item
153  * above and the descriptions in vmstat_text in mm/vmstat.c
154  */
155 #define LRU_BASE 0
156 #define LRU_ACTIVE 1
157 #define LRU_FILE 2
158 
159 enum lru_list {
160 	LRU_INACTIVE_ANON = LRU_BASE,
161 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
162 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
163 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
164 	LRU_UNEVICTABLE,
165 	NR_LRU_LISTS
166 };
167 
168 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
169 
170 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
171 
172 static inline int is_file_lru(enum lru_list lru)
173 {
174 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
175 }
176 
177 static inline int is_active_lru(enum lru_list lru)
178 {
179 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
180 }
181 
182 static inline int is_unevictable_lru(enum lru_list lru)
183 {
184 	return (lru == LRU_UNEVICTABLE);
185 }
186 
187 struct zone_reclaim_stat {
188 	/*
189 	 * The pageout code in vmscan.c keeps track of how many of the
190 	 * mem/swap backed and file backed pages are referenced.
191 	 * The higher the rotated/scanned ratio, the more valuable
192 	 * that cache is.
193 	 *
194 	 * The anon LRU stats live in [0], file LRU stats in [1]
195 	 */
196 	unsigned long		recent_rotated[2];
197 	unsigned long		recent_scanned[2];
198 };
199 
200 struct lruvec {
201 	struct list_head lists[NR_LRU_LISTS];
202 	struct zone_reclaim_stat reclaim_stat;
203 #ifdef CONFIG_MEMCG
204 	struct zone *zone;
205 #endif
206 };
207 
208 /* Mask used at gathering information at once (see memcontrol.c) */
209 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
210 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
211 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
212 
213 /* Isolate clean file */
214 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
215 /* Isolate unmapped file */
216 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
217 /* Isolate for asynchronous migration */
218 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
219 /* Isolate unevictable pages */
220 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
221 
222 /* LRU Isolation modes. */
223 typedef unsigned __bitwise__ isolate_mode_t;
224 
225 enum zone_watermarks {
226 	WMARK_MIN,
227 	WMARK_LOW,
228 	WMARK_HIGH,
229 	NR_WMARK
230 };
231 
232 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235 
236 struct per_cpu_pages {
237 	int count;		/* number of pages in the list */
238 	int high;		/* high watermark, emptying needed */
239 	int batch;		/* chunk size for buddy add/remove */
240 
241 	/* Lists of pages, one per migrate type stored on the pcp-lists */
242 	struct list_head lists[MIGRATE_PCPTYPES];
243 };
244 
245 struct per_cpu_pageset {
246 	struct per_cpu_pages pcp;
247 #ifdef CONFIG_NUMA
248 	s8 expire;
249 #endif
250 #ifdef CONFIG_SMP
251 	s8 stat_threshold;
252 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253 #endif
254 };
255 
256 #endif /* !__GENERATING_BOUNDS.H */
257 
258 enum zone_type {
259 #ifdef CONFIG_ZONE_DMA
260 	/*
261 	 * ZONE_DMA is used when there are devices that are not able
262 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 	 * carve out the portion of memory that is needed for these devices.
264 	 * The range is arch specific.
265 	 *
266 	 * Some examples
267 	 *
268 	 * Architecture		Limit
269 	 * ---------------------------
270 	 * parisc, ia64, sparc	<4G
271 	 * s390			<2G
272 	 * arm			Various
273 	 * alpha		Unlimited or 0-16MB.
274 	 *
275 	 * i386, x86_64 and multiple other arches
276 	 * 			<16M.
277 	 */
278 	ZONE_DMA,
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	/*
282 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 	 * only able to do DMA to the lower 16M but also 32 bit devices that
284 	 * can only do DMA areas below 4G.
285 	 */
286 	ZONE_DMA32,
287 #endif
288 	/*
289 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 	 * performed on pages in ZONE_NORMAL if the DMA devices support
291 	 * transfers to all addressable memory.
292 	 */
293 	ZONE_NORMAL,
294 #ifdef CONFIG_HIGHMEM
295 	/*
296 	 * A memory area that is only addressable by the kernel through
297 	 * mapping portions into its own address space. This is for example
298 	 * used by i386 to allow the kernel to address the memory beyond
299 	 * 900MB. The kernel will set up special mappings (page
300 	 * table entries on i386) for each page that the kernel needs to
301 	 * access.
302 	 */
303 	ZONE_HIGHMEM,
304 #endif
305 	ZONE_MOVABLE,
306 	__MAX_NR_ZONES
307 };
308 
309 #ifndef __GENERATING_BOUNDS_H
310 
311 /*
312  * When a memory allocation must conform to specific limitations (such
313  * as being suitable for DMA) the caller will pass in hints to the
314  * allocator in the gfp_mask, in the zone modifier bits.  These bits
315  * are used to select a priority ordered list of memory zones which
316  * match the requested limits. See gfp_zone() in include/linux/gfp.h
317  */
318 
319 #if MAX_NR_ZONES < 2
320 #define ZONES_SHIFT 0
321 #elif MAX_NR_ZONES <= 2
322 #define ZONES_SHIFT 1
323 #elif MAX_NR_ZONES <= 4
324 #define ZONES_SHIFT 2
325 #else
326 #error ZONES_SHIFT -- too many zones configured adjust calculation
327 #endif
328 
329 struct zone {
330 	/* Fields commonly accessed by the page allocator */
331 
332 	/* zone watermarks, access with *_wmark_pages(zone) macros */
333 	unsigned long watermark[NR_WMARK];
334 
335 	/*
336 	 * When free pages are below this point, additional steps are taken
337 	 * when reading the number of free pages to avoid per-cpu counter
338 	 * drift allowing watermarks to be breached
339 	 */
340 	unsigned long percpu_drift_mark;
341 
342 	/*
343 	 * We don't know if the memory that we're going to allocate will be freeable
344 	 * or/and it will be released eventually, so to avoid totally wasting several
345 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 	 * to run OOM on the lower zones despite there's tons of freeable ram
347 	 * on the higher zones). This array is recalculated at runtime if the
348 	 * sysctl_lowmem_reserve_ratio sysctl changes.
349 	 */
350 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
351 
352 	/*
353 	 * This is a per-zone reserve of pages that should not be
354 	 * considered dirtyable memory.
355 	 */
356 	unsigned long		dirty_balance_reserve;
357 
358 #ifdef CONFIG_NUMA
359 	int node;
360 	/*
361 	 * zone reclaim becomes active if more unmapped pages exist.
362 	 */
363 	unsigned long		min_unmapped_pages;
364 	unsigned long		min_slab_pages;
365 #endif
366 	struct per_cpu_pageset __percpu *pageset;
367 	/*
368 	 * free areas of different sizes
369 	 */
370 	spinlock_t		lock;
371 	int                     all_unreclaimable; /* All pages pinned */
372 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
373 	/* Set to true when the PG_migrate_skip bits should be cleared */
374 	bool			compact_blockskip_flush;
375 
376 	/* pfns where compaction scanners should start */
377 	unsigned long		compact_cached_free_pfn;
378 	unsigned long		compact_cached_migrate_pfn;
379 #endif
380 #ifdef CONFIG_MEMORY_HOTPLUG
381 	/* see spanned/present_pages for more description */
382 	seqlock_t		span_seqlock;
383 #endif
384 	struct free_area	free_area[MAX_ORDER];
385 
386 #ifndef CONFIG_SPARSEMEM
387 	/*
388 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
389 	 * In SPARSEMEM, this map is stored in struct mem_section
390 	 */
391 	unsigned long		*pageblock_flags;
392 #endif /* CONFIG_SPARSEMEM */
393 
394 #ifdef CONFIG_COMPACTION
395 	/*
396 	 * On compaction failure, 1<<compact_defer_shift compactions
397 	 * are skipped before trying again. The number attempted since
398 	 * last failure is tracked with compact_considered.
399 	 */
400 	unsigned int		compact_considered;
401 	unsigned int		compact_defer_shift;
402 	int			compact_order_failed;
403 #endif
404 
405 	ZONE_PADDING(_pad1_)
406 
407 	/* Fields commonly accessed by the page reclaim scanner */
408 	spinlock_t		lru_lock;
409 	struct lruvec		lruvec;
410 
411 	unsigned long		pages_scanned;	   /* since last reclaim */
412 	unsigned long		flags;		   /* zone flags, see below */
413 
414 	/* Zone statistics */
415 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
416 
417 	/*
418 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
419 	 * this zone's LRU.  Maintained by the pageout code.
420 	 */
421 	unsigned int inactive_ratio;
422 
423 
424 	ZONE_PADDING(_pad2_)
425 	/* Rarely used or read-mostly fields */
426 
427 	/*
428 	 * wait_table		-- the array holding the hash table
429 	 * wait_table_hash_nr_entries	-- the size of the hash table array
430 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
431 	 *
432 	 * The purpose of all these is to keep track of the people
433 	 * waiting for a page to become available and make them
434 	 * runnable again when possible. The trouble is that this
435 	 * consumes a lot of space, especially when so few things
436 	 * wait on pages at a given time. So instead of using
437 	 * per-page waitqueues, we use a waitqueue hash table.
438 	 *
439 	 * The bucket discipline is to sleep on the same queue when
440 	 * colliding and wake all in that wait queue when removing.
441 	 * When something wakes, it must check to be sure its page is
442 	 * truly available, a la thundering herd. The cost of a
443 	 * collision is great, but given the expected load of the
444 	 * table, they should be so rare as to be outweighed by the
445 	 * benefits from the saved space.
446 	 *
447 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
448 	 * primary users of these fields, and in mm/page_alloc.c
449 	 * free_area_init_core() performs the initialization of them.
450 	 */
451 	wait_queue_head_t	* wait_table;
452 	unsigned long		wait_table_hash_nr_entries;
453 	unsigned long		wait_table_bits;
454 
455 	/*
456 	 * Discontig memory support fields.
457 	 */
458 	struct pglist_data	*zone_pgdat;
459 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 	unsigned long		zone_start_pfn;
461 
462 	/*
463 	 * spanned_pages is the total pages spanned by the zone, including
464 	 * holes, which is calculated as:
465 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
466 	 *
467 	 * present_pages is physical pages existing within the zone, which
468 	 * is calculated as:
469 	 *	present_pages = spanned_pages - absent_pages(pags in holes);
470 	 *
471 	 * managed_pages is present pages managed by the buddy system, which
472 	 * is calculated as (reserved_pages includes pages allocated by the
473 	 * bootmem allocator):
474 	 *	managed_pages = present_pages - reserved_pages;
475 	 *
476 	 * So present_pages may be used by memory hotplug or memory power
477 	 * management logic to figure out unmanaged pages by checking
478 	 * (present_pages - managed_pages). And managed_pages should be used
479 	 * by page allocator and vm scanner to calculate all kinds of watermarks
480 	 * and thresholds.
481 	 *
482 	 * Locking rules:
483 	 *
484 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
485 	 * It is a seqlock because it has to be read outside of zone->lock,
486 	 * and it is done in the main allocator path.  But, it is written
487 	 * quite infrequently.
488 	 *
489 	 * The span_seq lock is declared along with zone->lock because it is
490 	 * frequently read in proximity to zone->lock.  It's good to
491 	 * give them a chance of being in the same cacheline.
492 	 *
493 	 * Write access to present_pages and managed_pages at runtime should
494 	 * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
495 	 * Any reader who can't tolerant drift of present_pages and
496 	 * managed_pages should hold memory hotplug lock to get a stable value.
497 	 */
498 	unsigned long		spanned_pages;
499 	unsigned long		present_pages;
500 	unsigned long		managed_pages;
501 
502 	/*
503 	 * rarely used fields:
504 	 */
505 	const char		*name;
506 } ____cacheline_internodealigned_in_smp;
507 
508 typedef enum {
509 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
510 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
511 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
512 					 * a congested BDI
513 					 */
514 } zone_flags_t;
515 
516 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
517 {
518 	set_bit(flag, &zone->flags);
519 }
520 
521 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
522 {
523 	return test_and_set_bit(flag, &zone->flags);
524 }
525 
526 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
527 {
528 	clear_bit(flag, &zone->flags);
529 }
530 
531 static inline int zone_is_reclaim_congested(const struct zone *zone)
532 {
533 	return test_bit(ZONE_CONGESTED, &zone->flags);
534 }
535 
536 static inline int zone_is_reclaim_locked(const struct zone *zone)
537 {
538 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
539 }
540 
541 static inline int zone_is_oom_locked(const struct zone *zone)
542 {
543 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
544 }
545 
546 /*
547  * The "priority" of VM scanning is how much of the queues we will scan in one
548  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
549  * queues ("queue_length >> 12") during an aging round.
550  */
551 #define DEF_PRIORITY 12
552 
553 /* Maximum number of zones on a zonelist */
554 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
555 
556 #ifdef CONFIG_NUMA
557 
558 /*
559  * The NUMA zonelists are doubled because we need zonelists that restrict the
560  * allocations to a single node for GFP_THISNODE.
561  *
562  * [0]	: Zonelist with fallback
563  * [1]	: No fallback (GFP_THISNODE)
564  */
565 #define MAX_ZONELISTS 2
566 
567 
568 /*
569  * We cache key information from each zonelist for smaller cache
570  * footprint when scanning for free pages in get_page_from_freelist().
571  *
572  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
573  *    up short of free memory since the last time (last_fullzone_zap)
574  *    we zero'd fullzones.
575  * 2) The array z_to_n[] maps each zone in the zonelist to its node
576  *    id, so that we can efficiently evaluate whether that node is
577  *    set in the current tasks mems_allowed.
578  *
579  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
580  * indexed by a zones offset in the zonelist zones[] array.
581  *
582  * The get_page_from_freelist() routine does two scans.  During the
583  * first scan, we skip zones whose corresponding bit in 'fullzones'
584  * is set or whose corresponding node in current->mems_allowed (which
585  * comes from cpusets) is not set.  During the second scan, we bypass
586  * this zonelist_cache, to ensure we look methodically at each zone.
587  *
588  * Once per second, we zero out (zap) fullzones, forcing us to
589  * reconsider nodes that might have regained more free memory.
590  * The field last_full_zap is the time we last zapped fullzones.
591  *
592  * This mechanism reduces the amount of time we waste repeatedly
593  * reexaming zones for free memory when they just came up low on
594  * memory momentarilly ago.
595  *
596  * The zonelist_cache struct members logically belong in struct
597  * zonelist.  However, the mempolicy zonelists constructed for
598  * MPOL_BIND are intentionally variable length (and usually much
599  * shorter).  A general purpose mechanism for handling structs with
600  * multiple variable length members is more mechanism than we want
601  * here.  We resort to some special case hackery instead.
602  *
603  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
604  * part because they are shorter), so we put the fixed length stuff
605  * at the front of the zonelist struct, ending in a variable length
606  * zones[], as is needed by MPOL_BIND.
607  *
608  * Then we put the optional zonelist cache on the end of the zonelist
609  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
610  * the fixed length portion at the front of the struct.  This pointer
611  * both enables us to find the zonelist cache, and in the case of
612  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
613  * to know that the zonelist cache is not there.
614  *
615  * The end result is that struct zonelists come in two flavors:
616  *  1) The full, fixed length version, shown below, and
617  *  2) The custom zonelists for MPOL_BIND.
618  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
619  *
620  * Even though there may be multiple CPU cores on a node modifying
621  * fullzones or last_full_zap in the same zonelist_cache at the same
622  * time, we don't lock it.  This is just hint data - if it is wrong now
623  * and then, the allocator will still function, perhaps a bit slower.
624  */
625 
626 
627 struct zonelist_cache {
628 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
629 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
630 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
631 };
632 #else
633 #define MAX_ZONELISTS 1
634 struct zonelist_cache;
635 #endif
636 
637 /*
638  * This struct contains information about a zone in a zonelist. It is stored
639  * here to avoid dereferences into large structures and lookups of tables
640  */
641 struct zoneref {
642 	struct zone *zone;	/* Pointer to actual zone */
643 	int zone_idx;		/* zone_idx(zoneref->zone) */
644 };
645 
646 /*
647  * One allocation request operates on a zonelist. A zonelist
648  * is a list of zones, the first one is the 'goal' of the
649  * allocation, the other zones are fallback zones, in decreasing
650  * priority.
651  *
652  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
653  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
654  * *
655  * To speed the reading of the zonelist, the zonerefs contain the zone index
656  * of the entry being read. Helper functions to access information given
657  * a struct zoneref are
658  *
659  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
660  * zonelist_zone_idx()	- Return the index of the zone for an entry
661  * zonelist_node_idx()	- Return the index of the node for an entry
662  */
663 struct zonelist {
664 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
665 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
666 #ifdef CONFIG_NUMA
667 	struct zonelist_cache zlcache;			     // optional ...
668 #endif
669 };
670 
671 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
672 struct node_active_region {
673 	unsigned long start_pfn;
674 	unsigned long end_pfn;
675 	int nid;
676 };
677 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
678 
679 #ifndef CONFIG_DISCONTIGMEM
680 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
681 extern struct page *mem_map;
682 #endif
683 
684 /*
685  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
686  * (mostly NUMA machines?) to denote a higher-level memory zone than the
687  * zone denotes.
688  *
689  * On NUMA machines, each NUMA node would have a pg_data_t to describe
690  * it's memory layout.
691  *
692  * Memory statistics and page replacement data structures are maintained on a
693  * per-zone basis.
694  */
695 struct bootmem_data;
696 typedef struct pglist_data {
697 	struct zone node_zones[MAX_NR_ZONES];
698 	struct zonelist node_zonelists[MAX_ZONELISTS];
699 	int nr_zones;
700 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
701 	struct page *node_mem_map;
702 #ifdef CONFIG_MEMCG
703 	struct page_cgroup *node_page_cgroup;
704 #endif
705 #endif
706 #ifndef CONFIG_NO_BOOTMEM
707 	struct bootmem_data *bdata;
708 #endif
709 #ifdef CONFIG_MEMORY_HOTPLUG
710 	/*
711 	 * Must be held any time you expect node_start_pfn, node_present_pages
712 	 * or node_spanned_pages stay constant.  Holding this will also
713 	 * guarantee that any pfn_valid() stays that way.
714 	 *
715 	 * Nests above zone->lock and zone->size_seqlock.
716 	 */
717 	spinlock_t node_size_lock;
718 #endif
719 	unsigned long node_start_pfn;
720 	unsigned long node_present_pages; /* total number of physical pages */
721 	unsigned long node_spanned_pages; /* total size of physical page
722 					     range, including holes */
723 	int node_id;
724 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
725 	wait_queue_head_t kswapd_wait;
726 	wait_queue_head_t pfmemalloc_wait;
727 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
728 	int kswapd_max_order;
729 	enum zone_type classzone_idx;
730 #ifdef CONFIG_NUMA_BALANCING
731 	/*
732 	 * Lock serializing the per destination node AutoNUMA memory
733 	 * migration rate limiting data.
734 	 */
735 	spinlock_t numabalancing_migrate_lock;
736 
737 	/* Rate limiting time interval */
738 	unsigned long numabalancing_migrate_next_window;
739 
740 	/* Number of pages migrated during the rate limiting time interval */
741 	unsigned long numabalancing_migrate_nr_pages;
742 #endif
743 } pg_data_t;
744 
745 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
746 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
747 #ifdef CONFIG_FLAT_NODE_MEM_MAP
748 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
749 #else
750 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
751 #endif
752 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
753 
754 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
755 
756 #define node_end_pfn(nid) ({\
757 	pg_data_t *__pgdat = NODE_DATA(nid);\
758 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
759 })
760 
761 #include <linux/memory_hotplug.h>
762 
763 extern struct mutex zonelists_mutex;
764 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
765 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
766 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
767 		int classzone_idx, int alloc_flags);
768 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
769 		int classzone_idx, int alloc_flags);
770 enum memmap_context {
771 	MEMMAP_EARLY,
772 	MEMMAP_HOTPLUG,
773 };
774 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
775 				     unsigned long size,
776 				     enum memmap_context context);
777 
778 extern void lruvec_init(struct lruvec *lruvec);
779 
780 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
781 {
782 #ifdef CONFIG_MEMCG
783 	return lruvec->zone;
784 #else
785 	return container_of(lruvec, struct zone, lruvec);
786 #endif
787 }
788 
789 #ifdef CONFIG_HAVE_MEMORY_PRESENT
790 void memory_present(int nid, unsigned long start, unsigned long end);
791 #else
792 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
793 #endif
794 
795 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
796 int local_memory_node(int node_id);
797 #else
798 static inline int local_memory_node(int node_id) { return node_id; };
799 #endif
800 
801 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
802 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
803 #endif
804 
805 /*
806  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
807  */
808 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
809 
810 static inline int populated_zone(struct zone *zone)
811 {
812 	return (!!zone->present_pages);
813 }
814 
815 extern int movable_zone;
816 
817 static inline int zone_movable_is_highmem(void)
818 {
819 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
820 	return movable_zone == ZONE_HIGHMEM;
821 #else
822 	return 0;
823 #endif
824 }
825 
826 static inline int is_highmem_idx(enum zone_type idx)
827 {
828 #ifdef CONFIG_HIGHMEM
829 	return (idx == ZONE_HIGHMEM ||
830 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
831 #else
832 	return 0;
833 #endif
834 }
835 
836 static inline int is_normal_idx(enum zone_type idx)
837 {
838 	return (idx == ZONE_NORMAL);
839 }
840 
841 /**
842  * is_highmem - helper function to quickly check if a struct zone is a
843  *              highmem zone or not.  This is an attempt to keep references
844  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
845  * @zone - pointer to struct zone variable
846  */
847 static inline int is_highmem(struct zone *zone)
848 {
849 #ifdef CONFIG_HIGHMEM
850 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
851 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
852 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
853 		zone_movable_is_highmem());
854 #else
855 	return 0;
856 #endif
857 }
858 
859 static inline int is_normal(struct zone *zone)
860 {
861 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
862 }
863 
864 static inline int is_dma32(struct zone *zone)
865 {
866 #ifdef CONFIG_ZONE_DMA32
867 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
868 #else
869 	return 0;
870 #endif
871 }
872 
873 static inline int is_dma(struct zone *zone)
874 {
875 #ifdef CONFIG_ZONE_DMA
876 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
877 #else
878 	return 0;
879 #endif
880 }
881 
882 /* These two functions are used to setup the per zone pages min values */
883 struct ctl_table;
884 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
885 					void __user *, size_t *, loff_t *);
886 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
887 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
890 					void __user *, size_t *, loff_t *);
891 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
892 			void __user *, size_t *, loff_t *);
893 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
894 			void __user *, size_t *, loff_t *);
895 
896 extern int numa_zonelist_order_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 extern char numa_zonelist_order[];
899 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
900 
901 #ifndef CONFIG_NEED_MULTIPLE_NODES
902 
903 extern struct pglist_data contig_page_data;
904 #define NODE_DATA(nid)		(&contig_page_data)
905 #define NODE_MEM_MAP(nid)	mem_map
906 
907 #else /* CONFIG_NEED_MULTIPLE_NODES */
908 
909 #include <asm/mmzone.h>
910 
911 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
912 
913 extern struct pglist_data *first_online_pgdat(void);
914 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
915 extern struct zone *next_zone(struct zone *zone);
916 
917 /**
918  * for_each_online_pgdat - helper macro to iterate over all online nodes
919  * @pgdat - pointer to a pg_data_t variable
920  */
921 #define for_each_online_pgdat(pgdat)			\
922 	for (pgdat = first_online_pgdat();		\
923 	     pgdat;					\
924 	     pgdat = next_online_pgdat(pgdat))
925 /**
926  * for_each_zone - helper macro to iterate over all memory zones
927  * @zone - pointer to struct zone variable
928  *
929  * The user only needs to declare the zone variable, for_each_zone
930  * fills it in.
931  */
932 #define for_each_zone(zone)			        \
933 	for (zone = (first_online_pgdat())->node_zones; \
934 	     zone;					\
935 	     zone = next_zone(zone))
936 
937 #define for_each_populated_zone(zone)		        \
938 	for (zone = (first_online_pgdat())->node_zones; \
939 	     zone;					\
940 	     zone = next_zone(zone))			\
941 		if (!populated_zone(zone))		\
942 			; /* do nothing */		\
943 		else
944 
945 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
946 {
947 	return zoneref->zone;
948 }
949 
950 static inline int zonelist_zone_idx(struct zoneref *zoneref)
951 {
952 	return zoneref->zone_idx;
953 }
954 
955 static inline int zonelist_node_idx(struct zoneref *zoneref)
956 {
957 #ifdef CONFIG_NUMA
958 	/* zone_to_nid not available in this context */
959 	return zoneref->zone->node;
960 #else
961 	return 0;
962 #endif /* CONFIG_NUMA */
963 }
964 
965 /**
966  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
967  * @z - The cursor used as a starting point for the search
968  * @highest_zoneidx - The zone index of the highest zone to return
969  * @nodes - An optional nodemask to filter the zonelist with
970  * @zone - The first suitable zone found is returned via this parameter
971  *
972  * This function returns the next zone at or below a given zone index that is
973  * within the allowed nodemask using a cursor as the starting point for the
974  * search. The zoneref returned is a cursor that represents the current zone
975  * being examined. It should be advanced by one before calling
976  * next_zones_zonelist again.
977  */
978 struct zoneref *next_zones_zonelist(struct zoneref *z,
979 					enum zone_type highest_zoneidx,
980 					nodemask_t *nodes,
981 					struct zone **zone);
982 
983 /**
984  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
985  * @zonelist - The zonelist to search for a suitable zone
986  * @highest_zoneidx - The zone index of the highest zone to return
987  * @nodes - An optional nodemask to filter the zonelist with
988  * @zone - The first suitable zone found is returned via this parameter
989  *
990  * This function returns the first zone at or below a given zone index that is
991  * within the allowed nodemask. The zoneref returned is a cursor that can be
992  * used to iterate the zonelist with next_zones_zonelist by advancing it by
993  * one before calling.
994  */
995 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
996 					enum zone_type highest_zoneidx,
997 					nodemask_t *nodes,
998 					struct zone **zone)
999 {
1000 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1001 								zone);
1002 }
1003 
1004 /**
1005  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1006  * @zone - The current zone in the iterator
1007  * @z - The current pointer within zonelist->zones being iterated
1008  * @zlist - The zonelist being iterated
1009  * @highidx - The zone index of the highest zone to return
1010  * @nodemask - Nodemask allowed by the allocator
1011  *
1012  * This iterator iterates though all zones at or below a given zone index and
1013  * within a given nodemask
1014  */
1015 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1016 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1017 		zone;							\
1018 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
1019 
1020 /**
1021  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1022  * @zone - The current zone in the iterator
1023  * @z - The current pointer within zonelist->zones being iterated
1024  * @zlist - The zonelist being iterated
1025  * @highidx - The zone index of the highest zone to return
1026  *
1027  * This iterator iterates though all zones at or below a given zone index.
1028  */
1029 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1030 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1031 
1032 #ifdef CONFIG_SPARSEMEM
1033 #include <asm/sparsemem.h>
1034 #endif
1035 
1036 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1037 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1038 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1039 {
1040 	return 0;
1041 }
1042 #endif
1043 
1044 #ifdef CONFIG_FLATMEM
1045 #define pfn_to_nid(pfn)		(0)
1046 #endif
1047 
1048 #ifdef CONFIG_SPARSEMEM
1049 
1050 /*
1051  * SECTION_SHIFT    		#bits space required to store a section #
1052  *
1053  * PA_SECTION_SHIFT		physical address to/from section number
1054  * PFN_SECTION_SHIFT		pfn to/from section number
1055  */
1056 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1057 
1058 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1059 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1060 
1061 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1062 
1063 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1064 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1065 
1066 #define SECTION_BLOCKFLAGS_BITS \
1067 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1068 
1069 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1070 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1071 #endif
1072 
1073 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1074 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1075 
1076 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1077 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1078 
1079 struct page;
1080 struct page_cgroup;
1081 struct mem_section {
1082 	/*
1083 	 * This is, logically, a pointer to an array of struct
1084 	 * pages.  However, it is stored with some other magic.
1085 	 * (see sparse.c::sparse_init_one_section())
1086 	 *
1087 	 * Additionally during early boot we encode node id of
1088 	 * the location of the section here to guide allocation.
1089 	 * (see sparse.c::memory_present())
1090 	 *
1091 	 * Making it a UL at least makes someone do a cast
1092 	 * before using it wrong.
1093 	 */
1094 	unsigned long section_mem_map;
1095 
1096 	/* See declaration of similar field in struct zone */
1097 	unsigned long *pageblock_flags;
1098 #ifdef CONFIG_MEMCG
1099 	/*
1100 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1101 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1102 	 */
1103 	struct page_cgroup *page_cgroup;
1104 	unsigned long pad;
1105 #endif
1106 };
1107 
1108 #ifdef CONFIG_SPARSEMEM_EXTREME
1109 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1110 #else
1111 #define SECTIONS_PER_ROOT	1
1112 #endif
1113 
1114 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1115 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1116 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1117 
1118 #ifdef CONFIG_SPARSEMEM_EXTREME
1119 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1120 #else
1121 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1122 #endif
1123 
1124 static inline struct mem_section *__nr_to_section(unsigned long nr)
1125 {
1126 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1127 		return NULL;
1128 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1129 }
1130 extern int __section_nr(struct mem_section* ms);
1131 extern unsigned long usemap_size(void);
1132 
1133 /*
1134  * We use the lower bits of the mem_map pointer to store
1135  * a little bit of information.  There should be at least
1136  * 3 bits here due to 32-bit alignment.
1137  */
1138 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1139 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1140 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1141 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1142 #define SECTION_NID_SHIFT	2
1143 
1144 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1145 {
1146 	unsigned long map = section->section_mem_map;
1147 	map &= SECTION_MAP_MASK;
1148 	return (struct page *)map;
1149 }
1150 
1151 static inline int present_section(struct mem_section *section)
1152 {
1153 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1154 }
1155 
1156 static inline int present_section_nr(unsigned long nr)
1157 {
1158 	return present_section(__nr_to_section(nr));
1159 }
1160 
1161 static inline int valid_section(struct mem_section *section)
1162 {
1163 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1164 }
1165 
1166 static inline int valid_section_nr(unsigned long nr)
1167 {
1168 	return valid_section(__nr_to_section(nr));
1169 }
1170 
1171 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1172 {
1173 	return __nr_to_section(pfn_to_section_nr(pfn));
1174 }
1175 
1176 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1177 static inline int pfn_valid(unsigned long pfn)
1178 {
1179 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1180 		return 0;
1181 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1182 }
1183 #endif
1184 
1185 static inline int pfn_present(unsigned long pfn)
1186 {
1187 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1188 		return 0;
1189 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1190 }
1191 
1192 /*
1193  * These are _only_ used during initialisation, therefore they
1194  * can use __initdata ...  They could have names to indicate
1195  * this restriction.
1196  */
1197 #ifdef CONFIG_NUMA
1198 #define pfn_to_nid(pfn)							\
1199 ({									\
1200 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1201 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1202 })
1203 #else
1204 #define pfn_to_nid(pfn)		(0)
1205 #endif
1206 
1207 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1208 void sparse_init(void);
1209 #else
1210 #define sparse_init()	do {} while (0)
1211 #define sparse_index_init(_sec, _nid)  do {} while (0)
1212 #endif /* CONFIG_SPARSEMEM */
1213 
1214 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1215 bool early_pfn_in_nid(unsigned long pfn, int nid);
1216 #else
1217 #define early_pfn_in_nid(pfn, nid)	(1)
1218 #endif
1219 
1220 #ifndef early_pfn_valid
1221 #define early_pfn_valid(pfn)	(1)
1222 #endif
1223 
1224 void memory_present(int nid, unsigned long start, unsigned long end);
1225 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1226 
1227 /*
1228  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1229  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1230  * pfn_valid_within() should be used in this case; we optimise this away
1231  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1232  */
1233 #ifdef CONFIG_HOLES_IN_ZONE
1234 #define pfn_valid_within(pfn) pfn_valid(pfn)
1235 #else
1236 #define pfn_valid_within(pfn) (1)
1237 #endif
1238 
1239 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1240 /*
1241  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1242  * associated with it or not. In FLATMEM, it is expected that holes always
1243  * have valid memmap as long as there is valid PFNs either side of the hole.
1244  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1245  * entire section.
1246  *
1247  * However, an ARM, and maybe other embedded architectures in the future
1248  * free memmap backing holes to save memory on the assumption the memmap is
1249  * never used. The page_zone linkages are then broken even though pfn_valid()
1250  * returns true. A walker of the full memmap must then do this additional
1251  * check to ensure the memmap they are looking at is sane by making sure
1252  * the zone and PFN linkages are still valid. This is expensive, but walkers
1253  * of the full memmap are extremely rare.
1254  */
1255 int memmap_valid_within(unsigned long pfn,
1256 					struct page *page, struct zone *zone);
1257 #else
1258 static inline int memmap_valid_within(unsigned long pfn,
1259 					struct page *page, struct zone *zone)
1260 {
1261 	return 1;
1262 }
1263 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1264 
1265 #endif /* !__GENERATING_BOUNDS.H */
1266 #endif /* !__ASSEMBLY__ */
1267 #endif /* _LINUX_MMZONE_H */
1268