xref: /linux-6.15/include/linux/mmzone.h (revision 8fc07ebe)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 #  define is_migrate_cma(migratetype) false
73 #endif
74 
75 #define for_each_migratetype_order(order, type) \
76 	for (order = 0; order < MAX_ORDER; order++) \
77 		for (type = 0; type < MIGRATE_TYPES; type++)
78 
79 extern int page_group_by_mobility_disabled;
80 
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83 
84 #define get_pageblock_migratetype(page)					\
85 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
86 			PB_migrate_end, MIGRATETYPE_MASK)
87 
88 struct free_area {
89 	struct list_head	free_list[MIGRATE_TYPES];
90 	unsigned long		nr_free;
91 };
92 
93 struct pglist_data;
94 
95 /*
96  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
97  * So add a wild amount of padding here to ensure that they fall into separate
98  * cachelines.  There are very few zone structures in the machine, so space
99  * consumption is not a concern here.
100  */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 	char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name)	struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109 
110 enum zone_stat_item {
111 	/* First 128 byte cacheline (assuming 64 bit words) */
112 	NR_FREE_PAGES,
113 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
114 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
115 	NR_ZONE_ACTIVE_ANON,
116 	NR_ZONE_INACTIVE_FILE,
117 	NR_ZONE_ACTIVE_FILE,
118 	NR_ZONE_UNEVICTABLE,
119 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
120 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
121 	NR_SLAB_RECLAIMABLE,
122 	NR_SLAB_UNRECLAIMABLE,
123 	NR_PAGETABLE,		/* used for pagetables */
124 	NR_KERNEL_STACK_KB,	/* measured in KiB */
125 	/* Second 128 byte cacheline */
126 	NR_BOUNCE,
127 #if IS_ENABLED(CONFIG_ZSMALLOC)
128 	NR_ZSPAGES,		/* allocated in zsmalloc */
129 #endif
130 #ifdef CONFIG_NUMA
131 	NUMA_HIT,		/* allocated in intended node */
132 	NUMA_MISS,		/* allocated in non intended node */
133 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
134 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
135 	NUMA_LOCAL,		/* allocation from local node */
136 	NUMA_OTHER,		/* allocation from other node */
137 #endif
138 	NR_FREE_CMA_PAGES,
139 	NR_VM_ZONE_STAT_ITEMS };
140 
141 enum node_stat_item {
142 	NR_LRU_BASE,
143 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
144 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
145 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
146 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
147 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
148 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
149 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
150 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
151 	WORKINGSET_REFAULT,
152 	WORKINGSET_ACTIVATE,
153 	WORKINGSET_NODERECLAIM,
154 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
155 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
156 			   only modified from process context */
157 	NR_FILE_PAGES,
158 	NR_FILE_DIRTY,
159 	NR_WRITEBACK,
160 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
161 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
162 	NR_SHMEM_THPS,
163 	NR_SHMEM_PMDMAPPED,
164 	NR_ANON_THPS,
165 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
166 	NR_VMSCAN_WRITE,
167 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
168 	NR_DIRTIED,		/* page dirtyings since bootup */
169 	NR_WRITTEN,		/* page writings since bootup */
170 	NR_VM_NODE_STAT_ITEMS
171 };
172 
173 /*
174  * We do arithmetic on the LRU lists in various places in the code,
175  * so it is important to keep the active lists LRU_ACTIVE higher in
176  * the array than the corresponding inactive lists, and to keep
177  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
178  *
179  * This has to be kept in sync with the statistics in zone_stat_item
180  * above and the descriptions in vmstat_text in mm/vmstat.c
181  */
182 #define LRU_BASE 0
183 #define LRU_ACTIVE 1
184 #define LRU_FILE 2
185 
186 enum lru_list {
187 	LRU_INACTIVE_ANON = LRU_BASE,
188 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
189 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
190 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
191 	LRU_UNEVICTABLE,
192 	NR_LRU_LISTS
193 };
194 
195 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
196 
197 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
198 
199 static inline int is_file_lru(enum lru_list lru)
200 {
201 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
202 }
203 
204 static inline int is_active_lru(enum lru_list lru)
205 {
206 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
207 }
208 
209 struct zone_reclaim_stat {
210 	/*
211 	 * The pageout code in vmscan.c keeps track of how many of the
212 	 * mem/swap backed and file backed pages are referenced.
213 	 * The higher the rotated/scanned ratio, the more valuable
214 	 * that cache is.
215 	 *
216 	 * The anon LRU stats live in [0], file LRU stats in [1]
217 	 */
218 	unsigned long		recent_rotated[2];
219 	unsigned long		recent_scanned[2];
220 };
221 
222 struct lruvec {
223 	struct list_head		lists[NR_LRU_LISTS];
224 	struct zone_reclaim_stat	reclaim_stat;
225 	/* Evictions & activations on the inactive file list */
226 	atomic_long_t			inactive_age;
227 #ifdef CONFIG_MEMCG
228 	struct pglist_data *pgdat;
229 #endif
230 };
231 
232 /* Mask used at gathering information at once (see memcontrol.c) */
233 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
234 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
235 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
236 
237 /* Isolate clean file */
238 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
239 /* Isolate unmapped file */
240 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
241 /* Isolate for asynchronous migration */
242 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
243 /* Isolate unevictable pages */
244 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
245 
246 /* LRU Isolation modes. */
247 typedef unsigned __bitwise__ isolate_mode_t;
248 
249 enum zone_watermarks {
250 	WMARK_MIN,
251 	WMARK_LOW,
252 	WMARK_HIGH,
253 	NR_WMARK
254 };
255 
256 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
257 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
258 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
259 
260 struct per_cpu_pages {
261 	int count;		/* number of pages in the list */
262 	int high;		/* high watermark, emptying needed */
263 	int batch;		/* chunk size for buddy add/remove */
264 
265 	/* Lists of pages, one per migrate type stored on the pcp-lists */
266 	struct list_head lists[MIGRATE_PCPTYPES];
267 };
268 
269 struct per_cpu_pageset {
270 	struct per_cpu_pages pcp;
271 #ifdef CONFIG_NUMA
272 	s8 expire;
273 #endif
274 #ifdef CONFIG_SMP
275 	s8 stat_threshold;
276 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
277 #endif
278 };
279 
280 struct per_cpu_nodestat {
281 	s8 stat_threshold;
282 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
283 };
284 
285 #endif /* !__GENERATING_BOUNDS.H */
286 
287 enum zone_type {
288 #ifdef CONFIG_ZONE_DMA
289 	/*
290 	 * ZONE_DMA is used when there are devices that are not able
291 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
292 	 * carve out the portion of memory that is needed for these devices.
293 	 * The range is arch specific.
294 	 *
295 	 * Some examples
296 	 *
297 	 * Architecture		Limit
298 	 * ---------------------------
299 	 * parisc, ia64, sparc	<4G
300 	 * s390			<2G
301 	 * arm			Various
302 	 * alpha		Unlimited or 0-16MB.
303 	 *
304 	 * i386, x86_64 and multiple other arches
305 	 * 			<16M.
306 	 */
307 	ZONE_DMA,
308 #endif
309 #ifdef CONFIG_ZONE_DMA32
310 	/*
311 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
312 	 * only able to do DMA to the lower 16M but also 32 bit devices that
313 	 * can only do DMA areas below 4G.
314 	 */
315 	ZONE_DMA32,
316 #endif
317 	/*
318 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
319 	 * performed on pages in ZONE_NORMAL if the DMA devices support
320 	 * transfers to all addressable memory.
321 	 */
322 	ZONE_NORMAL,
323 #ifdef CONFIG_HIGHMEM
324 	/*
325 	 * A memory area that is only addressable by the kernel through
326 	 * mapping portions into its own address space. This is for example
327 	 * used by i386 to allow the kernel to address the memory beyond
328 	 * 900MB. The kernel will set up special mappings (page
329 	 * table entries on i386) for each page that the kernel needs to
330 	 * access.
331 	 */
332 	ZONE_HIGHMEM,
333 #endif
334 	ZONE_MOVABLE,
335 #ifdef CONFIG_ZONE_DEVICE
336 	ZONE_DEVICE,
337 #endif
338 	__MAX_NR_ZONES
339 
340 };
341 
342 #ifndef __GENERATING_BOUNDS_H
343 
344 struct zone {
345 	/* Read-mostly fields */
346 
347 	/* zone watermarks, access with *_wmark_pages(zone) macros */
348 	unsigned long watermark[NR_WMARK];
349 
350 	unsigned long nr_reserved_highatomic;
351 
352 	/*
353 	 * We don't know if the memory that we're going to allocate will be
354 	 * freeable or/and it will be released eventually, so to avoid totally
355 	 * wasting several GB of ram we must reserve some of the lower zone
356 	 * memory (otherwise we risk to run OOM on the lower zones despite
357 	 * there being tons of freeable ram on the higher zones).  This array is
358 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
359 	 * changes.
360 	 */
361 	long lowmem_reserve[MAX_NR_ZONES];
362 
363 #ifdef CONFIG_NUMA
364 	int node;
365 #endif
366 	struct pglist_data	*zone_pgdat;
367 	struct per_cpu_pageset __percpu *pageset;
368 
369 #ifndef CONFIG_SPARSEMEM
370 	/*
371 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 	 * In SPARSEMEM, this map is stored in struct mem_section
373 	 */
374 	unsigned long		*pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376 
377 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
378 	unsigned long		zone_start_pfn;
379 
380 	/*
381 	 * spanned_pages is the total pages spanned by the zone, including
382 	 * holes, which is calculated as:
383 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
384 	 *
385 	 * present_pages is physical pages existing within the zone, which
386 	 * is calculated as:
387 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
388 	 *
389 	 * managed_pages is present pages managed by the buddy system, which
390 	 * is calculated as (reserved_pages includes pages allocated by the
391 	 * bootmem allocator):
392 	 *	managed_pages = present_pages - reserved_pages;
393 	 *
394 	 * So present_pages may be used by memory hotplug or memory power
395 	 * management logic to figure out unmanaged pages by checking
396 	 * (present_pages - managed_pages). And managed_pages should be used
397 	 * by page allocator and vm scanner to calculate all kinds of watermarks
398 	 * and thresholds.
399 	 *
400 	 * Locking rules:
401 	 *
402 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
403 	 * It is a seqlock because it has to be read outside of zone->lock,
404 	 * and it is done in the main allocator path.  But, it is written
405 	 * quite infrequently.
406 	 *
407 	 * The span_seq lock is declared along with zone->lock because it is
408 	 * frequently read in proximity to zone->lock.  It's good to
409 	 * give them a chance of being in the same cacheline.
410 	 *
411 	 * Write access to present_pages at runtime should be protected by
412 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
413 	 * present_pages should get_online_mems() to get a stable value.
414 	 *
415 	 * Read access to managed_pages should be safe because it's unsigned
416 	 * long. Write access to zone->managed_pages and totalram_pages are
417 	 * protected by managed_page_count_lock at runtime. Idealy only
418 	 * adjust_managed_page_count() should be used instead of directly
419 	 * touching zone->managed_pages and totalram_pages.
420 	 */
421 	unsigned long		managed_pages;
422 	unsigned long		spanned_pages;
423 	unsigned long		present_pages;
424 
425 	const char		*name;
426 
427 #ifdef CONFIG_MEMORY_ISOLATION
428 	/*
429 	 * Number of isolated pageblock. It is used to solve incorrect
430 	 * freepage counting problem due to racy retrieving migratetype
431 	 * of pageblock. Protected by zone->lock.
432 	 */
433 	unsigned long		nr_isolate_pageblock;
434 #endif
435 
436 #ifdef CONFIG_MEMORY_HOTPLUG
437 	/* see spanned/present_pages for more description */
438 	seqlock_t		span_seqlock;
439 #endif
440 
441 	/*
442 	 * wait_table		-- the array holding the hash table
443 	 * wait_table_hash_nr_entries	-- the size of the hash table array
444 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
445 	 *
446 	 * The purpose of all these is to keep track of the people
447 	 * waiting for a page to become available and make them
448 	 * runnable again when possible. The trouble is that this
449 	 * consumes a lot of space, especially when so few things
450 	 * wait on pages at a given time. So instead of using
451 	 * per-page waitqueues, we use a waitqueue hash table.
452 	 *
453 	 * The bucket discipline is to sleep on the same queue when
454 	 * colliding and wake all in that wait queue when removing.
455 	 * When something wakes, it must check to be sure its page is
456 	 * truly available, a la thundering herd. The cost of a
457 	 * collision is great, but given the expected load of the
458 	 * table, they should be so rare as to be outweighed by the
459 	 * benefits from the saved space.
460 	 *
461 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
462 	 * primary users of these fields, and in mm/page_alloc.c
463 	 * free_area_init_core() performs the initialization of them.
464 	 */
465 	wait_queue_head_t	*wait_table;
466 	unsigned long		wait_table_hash_nr_entries;
467 	unsigned long		wait_table_bits;
468 
469 	/* Write-intensive fields used from the page allocator */
470 	ZONE_PADDING(_pad1_)
471 
472 	/* free areas of different sizes */
473 	struct free_area	free_area[MAX_ORDER];
474 
475 	/* zone flags, see below */
476 	unsigned long		flags;
477 
478 	/* Primarily protects free_area */
479 	spinlock_t		lock;
480 
481 	/* Write-intensive fields used by compaction and vmstats. */
482 	ZONE_PADDING(_pad2_)
483 
484 	/*
485 	 * When free pages are below this point, additional steps are taken
486 	 * when reading the number of free pages to avoid per-cpu counter
487 	 * drift allowing watermarks to be breached
488 	 */
489 	unsigned long percpu_drift_mark;
490 
491 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
492 	/* pfn where compaction free scanner should start */
493 	unsigned long		compact_cached_free_pfn;
494 	/* pfn where async and sync compaction migration scanner should start */
495 	unsigned long		compact_cached_migrate_pfn[2];
496 #endif
497 
498 #ifdef CONFIG_COMPACTION
499 	/*
500 	 * On compaction failure, 1<<compact_defer_shift compactions
501 	 * are skipped before trying again. The number attempted since
502 	 * last failure is tracked with compact_considered.
503 	 */
504 	unsigned int		compact_considered;
505 	unsigned int		compact_defer_shift;
506 	int			compact_order_failed;
507 #endif
508 
509 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
510 	/* Set to true when the PG_migrate_skip bits should be cleared */
511 	bool			compact_blockskip_flush;
512 #endif
513 
514 	bool			contiguous;
515 
516 	ZONE_PADDING(_pad3_)
517 	/* Zone statistics */
518 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
519 } ____cacheline_internodealigned_in_smp;
520 
521 enum pgdat_flags {
522 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
523 					 * a congested BDI
524 					 */
525 	PGDAT_DIRTY,			/* reclaim scanning has recently found
526 					 * many dirty file pages at the tail
527 					 * of the LRU.
528 					 */
529 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
530 					 * many pages under writeback
531 					 */
532 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
533 };
534 
535 static inline unsigned long zone_end_pfn(const struct zone *zone)
536 {
537 	return zone->zone_start_pfn + zone->spanned_pages;
538 }
539 
540 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
541 {
542 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
543 }
544 
545 static inline bool zone_is_initialized(struct zone *zone)
546 {
547 	return !!zone->wait_table;
548 }
549 
550 static inline bool zone_is_empty(struct zone *zone)
551 {
552 	return zone->spanned_pages == 0;
553 }
554 
555 /*
556  * The "priority" of VM scanning is how much of the queues we will scan in one
557  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
558  * queues ("queue_length >> 12") during an aging round.
559  */
560 #define DEF_PRIORITY 12
561 
562 /* Maximum number of zones on a zonelist */
563 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
564 
565 enum {
566 	ZONELIST_FALLBACK,	/* zonelist with fallback */
567 #ifdef CONFIG_NUMA
568 	/*
569 	 * The NUMA zonelists are doubled because we need zonelists that
570 	 * restrict the allocations to a single node for __GFP_THISNODE.
571 	 */
572 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
573 #endif
574 	MAX_ZONELISTS
575 };
576 
577 /*
578  * This struct contains information about a zone in a zonelist. It is stored
579  * here to avoid dereferences into large structures and lookups of tables
580  */
581 struct zoneref {
582 	struct zone *zone;	/* Pointer to actual zone */
583 	int zone_idx;		/* zone_idx(zoneref->zone) */
584 };
585 
586 /*
587  * One allocation request operates on a zonelist. A zonelist
588  * is a list of zones, the first one is the 'goal' of the
589  * allocation, the other zones are fallback zones, in decreasing
590  * priority.
591  *
592  * To speed the reading of the zonelist, the zonerefs contain the zone index
593  * of the entry being read. Helper functions to access information given
594  * a struct zoneref are
595  *
596  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
597  * zonelist_zone_idx()	- Return the index of the zone for an entry
598  * zonelist_node_idx()	- Return the index of the node for an entry
599  */
600 struct zonelist {
601 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
602 };
603 
604 #ifndef CONFIG_DISCONTIGMEM
605 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
606 extern struct page *mem_map;
607 #endif
608 
609 /*
610  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
611  * (mostly NUMA machines?) to denote a higher-level memory zone than the
612  * zone denotes.
613  *
614  * On NUMA machines, each NUMA node would have a pg_data_t to describe
615  * it's memory layout.
616  *
617  * Memory statistics and page replacement data structures are maintained on a
618  * per-zone basis.
619  */
620 struct bootmem_data;
621 typedef struct pglist_data {
622 	struct zone node_zones[MAX_NR_ZONES];
623 	struct zonelist node_zonelists[MAX_ZONELISTS];
624 	int nr_zones;
625 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
626 	struct page *node_mem_map;
627 #ifdef CONFIG_PAGE_EXTENSION
628 	struct page_ext *node_page_ext;
629 #endif
630 #endif
631 #ifndef CONFIG_NO_BOOTMEM
632 	struct bootmem_data *bdata;
633 #endif
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 	/*
636 	 * Must be held any time you expect node_start_pfn, node_present_pages
637 	 * or node_spanned_pages stay constant.  Holding this will also
638 	 * guarantee that any pfn_valid() stays that way.
639 	 *
640 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
641 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
642 	 *
643 	 * Nests above zone->lock and zone->span_seqlock
644 	 */
645 	spinlock_t node_size_lock;
646 #endif
647 	unsigned long node_start_pfn;
648 	unsigned long node_present_pages; /* total number of physical pages */
649 	unsigned long node_spanned_pages; /* total size of physical page
650 					     range, including holes */
651 	int node_id;
652 	wait_queue_head_t kswapd_wait;
653 	wait_queue_head_t pfmemalloc_wait;
654 	struct task_struct *kswapd;	/* Protected by
655 					   mem_hotplug_begin/end() */
656 	int kswapd_order;
657 	enum zone_type kswapd_classzone_idx;
658 
659 #ifdef CONFIG_COMPACTION
660 	int kcompactd_max_order;
661 	enum zone_type kcompactd_classzone_idx;
662 	wait_queue_head_t kcompactd_wait;
663 	struct task_struct *kcompactd;
664 #endif
665 #ifdef CONFIG_NUMA_BALANCING
666 	/* Lock serializing the migrate rate limiting window */
667 	spinlock_t numabalancing_migrate_lock;
668 
669 	/* Rate limiting time interval */
670 	unsigned long numabalancing_migrate_next_window;
671 
672 	/* Number of pages migrated during the rate limiting time interval */
673 	unsigned long numabalancing_migrate_nr_pages;
674 #endif
675 	/*
676 	 * This is a per-node reserve of pages that are not available
677 	 * to userspace allocations.
678 	 */
679 	unsigned long		totalreserve_pages;
680 
681 #ifdef CONFIG_NUMA
682 	/*
683 	 * zone reclaim becomes active if more unmapped pages exist.
684 	 */
685 	unsigned long		min_unmapped_pages;
686 	unsigned long		min_slab_pages;
687 #endif /* CONFIG_NUMA */
688 
689 	/* Write-intensive fields used by page reclaim */
690 	ZONE_PADDING(_pad1_)
691 	spinlock_t		lru_lock;
692 
693 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
694 	/*
695 	 * If memory initialisation on large machines is deferred then this
696 	 * is the first PFN that needs to be initialised.
697 	 */
698 	unsigned long first_deferred_pfn;
699 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
700 
701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 	spinlock_t split_queue_lock;
703 	struct list_head split_queue;
704 	unsigned long split_queue_len;
705 #endif
706 
707 	/* Fields commonly accessed by the page reclaim scanner */
708 	struct lruvec		lruvec;
709 
710 	/*
711 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
712 	 * this node's LRU.  Maintained by the pageout code.
713 	 */
714 	unsigned int inactive_ratio;
715 
716 	unsigned long		flags;
717 
718 	ZONE_PADDING(_pad2_)
719 
720 	/* Per-node vmstats */
721 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
722 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
723 } pg_data_t;
724 
725 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
726 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
727 #ifdef CONFIG_FLAT_NODE_MEM_MAP
728 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
729 #else
730 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
731 #endif
732 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
733 
734 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
735 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
736 static inline spinlock_t *zone_lru_lock(struct zone *zone)
737 {
738 	return &zone->zone_pgdat->lru_lock;
739 }
740 
741 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
742 {
743 	return &pgdat->lruvec;
744 }
745 
746 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
747 {
748 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
749 }
750 
751 static inline bool pgdat_is_empty(pg_data_t *pgdat)
752 {
753 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
754 }
755 
756 static inline int zone_id(const struct zone *zone)
757 {
758 	struct pglist_data *pgdat = zone->zone_pgdat;
759 
760 	return zone - pgdat->node_zones;
761 }
762 
763 #ifdef CONFIG_ZONE_DEVICE
764 static inline bool is_dev_zone(const struct zone *zone)
765 {
766 	return zone_id(zone) == ZONE_DEVICE;
767 }
768 #else
769 static inline bool is_dev_zone(const struct zone *zone)
770 {
771 	return false;
772 }
773 #endif
774 
775 #include <linux/memory_hotplug.h>
776 
777 extern struct mutex zonelists_mutex;
778 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
779 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
780 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
781 			 int classzone_idx, unsigned int alloc_flags,
782 			 long free_pages);
783 bool zone_watermark_ok(struct zone *z, unsigned int order,
784 		unsigned long mark, int classzone_idx,
785 		unsigned int alloc_flags);
786 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
787 		unsigned long mark, int classzone_idx);
788 enum memmap_context {
789 	MEMMAP_EARLY,
790 	MEMMAP_HOTPLUG,
791 };
792 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
793 				     unsigned long size);
794 
795 extern void lruvec_init(struct lruvec *lruvec);
796 
797 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
798 {
799 #ifdef CONFIG_MEMCG
800 	return lruvec->pgdat;
801 #else
802 	return container_of(lruvec, struct pglist_data, lruvec);
803 #endif
804 }
805 
806 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
807 
808 #ifdef CONFIG_HAVE_MEMORY_PRESENT
809 void memory_present(int nid, unsigned long start, unsigned long end);
810 #else
811 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
812 #endif
813 
814 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
815 int local_memory_node(int node_id);
816 #else
817 static inline int local_memory_node(int node_id) { return node_id; };
818 #endif
819 
820 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
821 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
822 #endif
823 
824 /*
825  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
826  */
827 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
828 
829 static inline int populated_zone(struct zone *zone)
830 {
831 	return (!!zone->present_pages);
832 }
833 
834 extern int movable_zone;
835 
836 #ifdef CONFIG_HIGHMEM
837 static inline int zone_movable_is_highmem(void)
838 {
839 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
840 	return movable_zone == ZONE_HIGHMEM;
841 #else
842 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
843 #endif
844 }
845 #endif
846 
847 static inline int is_highmem_idx(enum zone_type idx)
848 {
849 #ifdef CONFIG_HIGHMEM
850 	return (idx == ZONE_HIGHMEM ||
851 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
852 #else
853 	return 0;
854 #endif
855 }
856 
857 /**
858  * is_highmem - helper function to quickly check if a struct zone is a
859  *              highmem zone or not.  This is an attempt to keep references
860  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
861  * @zone - pointer to struct zone variable
862  */
863 static inline int is_highmem(struct zone *zone)
864 {
865 #ifdef CONFIG_HIGHMEM
866 	return is_highmem_idx(zone_idx(zone));
867 #else
868 	return 0;
869 #endif
870 }
871 
872 /* These two functions are used to setup the per zone pages min values */
873 struct ctl_table;
874 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
875 					void __user *, size_t *, loff_t *);
876 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
877 					void __user *, size_t *, loff_t *);
878 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
879 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
880 					void __user *, size_t *, loff_t *);
881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
882 					void __user *, size_t *, loff_t *);
883 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
884 			void __user *, size_t *, loff_t *);
885 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
886 			void __user *, size_t *, loff_t *);
887 
888 extern int numa_zonelist_order_handler(struct ctl_table *, int,
889 			void __user *, size_t *, loff_t *);
890 extern char numa_zonelist_order[];
891 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
892 
893 #ifndef CONFIG_NEED_MULTIPLE_NODES
894 
895 extern struct pglist_data contig_page_data;
896 #define NODE_DATA(nid)		(&contig_page_data)
897 #define NODE_MEM_MAP(nid)	mem_map
898 
899 #else /* CONFIG_NEED_MULTIPLE_NODES */
900 
901 #include <asm/mmzone.h>
902 
903 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
904 
905 extern struct pglist_data *first_online_pgdat(void);
906 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
907 extern struct zone *next_zone(struct zone *zone);
908 
909 /**
910  * for_each_online_pgdat - helper macro to iterate over all online nodes
911  * @pgdat - pointer to a pg_data_t variable
912  */
913 #define for_each_online_pgdat(pgdat)			\
914 	for (pgdat = first_online_pgdat();		\
915 	     pgdat;					\
916 	     pgdat = next_online_pgdat(pgdat))
917 /**
918  * for_each_zone - helper macro to iterate over all memory zones
919  * @zone - pointer to struct zone variable
920  *
921  * The user only needs to declare the zone variable, for_each_zone
922  * fills it in.
923  */
924 #define for_each_zone(zone)			        \
925 	for (zone = (first_online_pgdat())->node_zones; \
926 	     zone;					\
927 	     zone = next_zone(zone))
928 
929 #define for_each_populated_zone(zone)		        \
930 	for (zone = (first_online_pgdat())->node_zones; \
931 	     zone;					\
932 	     zone = next_zone(zone))			\
933 		if (!populated_zone(zone))		\
934 			; /* do nothing */		\
935 		else
936 
937 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
938 {
939 	return zoneref->zone;
940 }
941 
942 static inline int zonelist_zone_idx(struct zoneref *zoneref)
943 {
944 	return zoneref->zone_idx;
945 }
946 
947 static inline int zonelist_node_idx(struct zoneref *zoneref)
948 {
949 #ifdef CONFIG_NUMA
950 	/* zone_to_nid not available in this context */
951 	return zoneref->zone->node;
952 #else
953 	return 0;
954 #endif /* CONFIG_NUMA */
955 }
956 
957 struct zoneref *__next_zones_zonelist(struct zoneref *z,
958 					enum zone_type highest_zoneidx,
959 					nodemask_t *nodes);
960 
961 /**
962  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
963  * @z - The cursor used as a starting point for the search
964  * @highest_zoneidx - The zone index of the highest zone to return
965  * @nodes - An optional nodemask to filter the zonelist with
966  *
967  * This function returns the next zone at or below a given zone index that is
968  * within the allowed nodemask using a cursor as the starting point for the
969  * search. The zoneref returned is a cursor that represents the current zone
970  * being examined. It should be advanced by one before calling
971  * next_zones_zonelist again.
972  */
973 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
974 					enum zone_type highest_zoneidx,
975 					nodemask_t *nodes)
976 {
977 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
978 		return z;
979 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
980 }
981 
982 /**
983  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
984  * @zonelist - The zonelist to search for a suitable zone
985  * @highest_zoneidx - The zone index of the highest zone to return
986  * @nodes - An optional nodemask to filter the zonelist with
987  * @zone - The first suitable zone found is returned via this parameter
988  *
989  * This function returns the first zone at or below a given zone index that is
990  * within the allowed nodemask. The zoneref returned is a cursor that can be
991  * used to iterate the zonelist with next_zones_zonelist by advancing it by
992  * one before calling.
993  */
994 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
995 					enum zone_type highest_zoneidx,
996 					nodemask_t *nodes)
997 {
998 	return next_zones_zonelist(zonelist->_zonerefs,
999 							highest_zoneidx, nodes);
1000 }
1001 
1002 /**
1003  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1004  * @zone - The current zone in the iterator
1005  * @z - The current pointer within zonelist->zones being iterated
1006  * @zlist - The zonelist being iterated
1007  * @highidx - The zone index of the highest zone to return
1008  * @nodemask - Nodemask allowed by the allocator
1009  *
1010  * This iterator iterates though all zones at or below a given zone index and
1011  * within a given nodemask
1012  */
1013 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1014 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1015 		zone;							\
1016 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1017 			zone = zonelist_zone(z))
1018 
1019 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1020 	for (zone = z->zone;	\
1021 		zone;							\
1022 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1023 			zone = zonelist_zone(z))
1024 
1025 
1026 /**
1027  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1028  * @zone - The current zone in the iterator
1029  * @z - The current pointer within zonelist->zones being iterated
1030  * @zlist - The zonelist being iterated
1031  * @highidx - The zone index of the highest zone to return
1032  *
1033  * This iterator iterates though all zones at or below a given zone index.
1034  */
1035 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1036 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1037 
1038 #ifdef CONFIG_SPARSEMEM
1039 #include <asm/sparsemem.h>
1040 #endif
1041 
1042 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1043 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1044 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1045 {
1046 	return 0;
1047 }
1048 #endif
1049 
1050 #ifdef CONFIG_FLATMEM
1051 #define pfn_to_nid(pfn)		(0)
1052 #endif
1053 
1054 #ifdef CONFIG_SPARSEMEM
1055 
1056 /*
1057  * SECTION_SHIFT    		#bits space required to store a section #
1058  *
1059  * PA_SECTION_SHIFT		physical address to/from section number
1060  * PFN_SECTION_SHIFT		pfn to/from section number
1061  */
1062 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1063 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1064 
1065 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1066 
1067 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1068 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1069 
1070 #define SECTION_BLOCKFLAGS_BITS \
1071 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1072 
1073 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1074 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1075 #endif
1076 
1077 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1078 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1079 
1080 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1081 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1082 
1083 struct page;
1084 struct page_ext;
1085 struct mem_section {
1086 	/*
1087 	 * This is, logically, a pointer to an array of struct
1088 	 * pages.  However, it is stored with some other magic.
1089 	 * (see sparse.c::sparse_init_one_section())
1090 	 *
1091 	 * Additionally during early boot we encode node id of
1092 	 * the location of the section here to guide allocation.
1093 	 * (see sparse.c::memory_present())
1094 	 *
1095 	 * Making it a UL at least makes someone do a cast
1096 	 * before using it wrong.
1097 	 */
1098 	unsigned long section_mem_map;
1099 
1100 	/* See declaration of similar field in struct zone */
1101 	unsigned long *pageblock_flags;
1102 #ifdef CONFIG_PAGE_EXTENSION
1103 	/*
1104 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1105 	 * section. (see page_ext.h about this.)
1106 	 */
1107 	struct page_ext *page_ext;
1108 	unsigned long pad;
1109 #endif
1110 	/*
1111 	 * WARNING: mem_section must be a power-of-2 in size for the
1112 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1113 	 */
1114 };
1115 
1116 #ifdef CONFIG_SPARSEMEM_EXTREME
1117 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1118 #else
1119 #define SECTIONS_PER_ROOT	1
1120 #endif
1121 
1122 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1123 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1124 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1125 
1126 #ifdef CONFIG_SPARSEMEM_EXTREME
1127 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1128 #else
1129 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1130 #endif
1131 
1132 static inline struct mem_section *__nr_to_section(unsigned long nr)
1133 {
1134 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1135 		return NULL;
1136 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1137 }
1138 extern int __section_nr(struct mem_section* ms);
1139 extern unsigned long usemap_size(void);
1140 
1141 /*
1142  * We use the lower bits of the mem_map pointer to store
1143  * a little bit of information.  There should be at least
1144  * 3 bits here due to 32-bit alignment.
1145  */
1146 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1147 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1148 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1149 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1150 #define SECTION_NID_SHIFT	2
1151 
1152 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1153 {
1154 	unsigned long map = section->section_mem_map;
1155 	map &= SECTION_MAP_MASK;
1156 	return (struct page *)map;
1157 }
1158 
1159 static inline int present_section(struct mem_section *section)
1160 {
1161 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1162 }
1163 
1164 static inline int present_section_nr(unsigned long nr)
1165 {
1166 	return present_section(__nr_to_section(nr));
1167 }
1168 
1169 static inline int valid_section(struct mem_section *section)
1170 {
1171 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1172 }
1173 
1174 static inline int valid_section_nr(unsigned long nr)
1175 {
1176 	return valid_section(__nr_to_section(nr));
1177 }
1178 
1179 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1180 {
1181 	return __nr_to_section(pfn_to_section_nr(pfn));
1182 }
1183 
1184 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1185 static inline int pfn_valid(unsigned long pfn)
1186 {
1187 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1188 		return 0;
1189 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1190 }
1191 #endif
1192 
1193 static inline int pfn_present(unsigned long pfn)
1194 {
1195 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1196 		return 0;
1197 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1198 }
1199 
1200 /*
1201  * These are _only_ used during initialisation, therefore they
1202  * can use __initdata ...  They could have names to indicate
1203  * this restriction.
1204  */
1205 #ifdef CONFIG_NUMA
1206 #define pfn_to_nid(pfn)							\
1207 ({									\
1208 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1209 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1210 })
1211 #else
1212 #define pfn_to_nid(pfn)		(0)
1213 #endif
1214 
1215 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1216 void sparse_init(void);
1217 #else
1218 #define sparse_init()	do {} while (0)
1219 #define sparse_index_init(_sec, _nid)  do {} while (0)
1220 #endif /* CONFIG_SPARSEMEM */
1221 
1222 /*
1223  * During memory init memblocks map pfns to nids. The search is expensive and
1224  * this caches recent lookups. The implementation of __early_pfn_to_nid
1225  * may treat start/end as pfns or sections.
1226  */
1227 struct mminit_pfnnid_cache {
1228 	unsigned long last_start;
1229 	unsigned long last_end;
1230 	int last_nid;
1231 };
1232 
1233 #ifndef early_pfn_valid
1234 #define early_pfn_valid(pfn)	(1)
1235 #endif
1236 
1237 void memory_present(int nid, unsigned long start, unsigned long end);
1238 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1239 
1240 /*
1241  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1242  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1243  * pfn_valid_within() should be used in this case; we optimise this away
1244  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1245  */
1246 #ifdef CONFIG_HOLES_IN_ZONE
1247 #define pfn_valid_within(pfn) pfn_valid(pfn)
1248 #else
1249 #define pfn_valid_within(pfn) (1)
1250 #endif
1251 
1252 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1253 /*
1254  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1255  * associated with it or not. In FLATMEM, it is expected that holes always
1256  * have valid memmap as long as there is valid PFNs either side of the hole.
1257  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1258  * entire section.
1259  *
1260  * However, an ARM, and maybe other embedded architectures in the future
1261  * free memmap backing holes to save memory on the assumption the memmap is
1262  * never used. The page_zone linkages are then broken even though pfn_valid()
1263  * returns true. A walker of the full memmap must then do this additional
1264  * check to ensure the memmap they are looking at is sane by making sure
1265  * the zone and PFN linkages are still valid. This is expensive, but walkers
1266  * of the full memmap are extremely rare.
1267  */
1268 bool memmap_valid_within(unsigned long pfn,
1269 					struct page *page, struct zone *zone);
1270 #else
1271 static inline bool memmap_valid_within(unsigned long pfn,
1272 					struct page *page, struct zone *zone)
1273 {
1274 	return true;
1275 }
1276 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1277 
1278 #endif /* !__GENERATING_BOUNDS.H */
1279 #endif /* !__ASSEMBLY__ */
1280 #endif /* _LINUX_MMZONE_H */
1281