1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 67 extern char * const migratetype_names[MIGRATE_TYPES]; 68 69 #ifdef CONFIG_CMA 70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 71 #else 72 # define is_migrate_cma(migratetype) false 73 #endif 74 75 #define for_each_migratetype_order(order, type) \ 76 for (order = 0; order < MAX_ORDER; order++) \ 77 for (type = 0; type < MIGRATE_TYPES; type++) 78 79 extern int page_group_by_mobility_disabled; 80 81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 83 84 #define get_pageblock_migratetype(page) \ 85 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 86 PB_migrate_end, MIGRATETYPE_MASK) 87 88 struct free_area { 89 struct list_head free_list[MIGRATE_TYPES]; 90 unsigned long nr_free; 91 }; 92 93 struct pglist_data; 94 95 /* 96 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 97 * So add a wild amount of padding here to ensure that they fall into separate 98 * cachelines. There are very few zone structures in the machine, so space 99 * consumption is not a concern here. 100 */ 101 #if defined(CONFIG_SMP) 102 struct zone_padding { 103 char x[0]; 104 } ____cacheline_internodealigned_in_smp; 105 #define ZONE_PADDING(name) struct zone_padding name; 106 #else 107 #define ZONE_PADDING(name) 108 #endif 109 110 enum zone_stat_item { 111 /* First 128 byte cacheline (assuming 64 bit words) */ 112 NR_FREE_PAGES, 113 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 114 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 115 NR_ZONE_ACTIVE_ANON, 116 NR_ZONE_INACTIVE_FILE, 117 NR_ZONE_ACTIVE_FILE, 118 NR_ZONE_UNEVICTABLE, 119 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK_KB, /* measured in KiB */ 125 /* Second 128 byte cacheline */ 126 NR_BOUNCE, 127 #if IS_ENABLED(CONFIG_ZSMALLOC) 128 NR_ZSPAGES, /* allocated in zsmalloc */ 129 #endif 130 #ifdef CONFIG_NUMA 131 NUMA_HIT, /* allocated in intended node */ 132 NUMA_MISS, /* allocated in non intended node */ 133 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 135 NUMA_LOCAL, /* allocation from local node */ 136 NUMA_OTHER, /* allocation from other node */ 137 #endif 138 NR_FREE_CMA_PAGES, 139 NR_VM_ZONE_STAT_ITEMS }; 140 141 enum node_stat_item { 142 NR_LRU_BASE, 143 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 144 NR_ACTIVE_ANON, /* " " " " " */ 145 NR_INACTIVE_FILE, /* " " " " " */ 146 NR_ACTIVE_FILE, /* " " " " " */ 147 NR_UNEVICTABLE, /* " " " " " */ 148 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 149 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 150 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 151 WORKINGSET_REFAULT, 152 WORKINGSET_ACTIVATE, 153 WORKINGSET_NODERECLAIM, 154 NR_ANON_MAPPED, /* Mapped anonymous pages */ 155 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 156 only modified from process context */ 157 NR_FILE_PAGES, 158 NR_FILE_DIRTY, 159 NR_WRITEBACK, 160 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 161 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 162 NR_SHMEM_THPS, 163 NR_SHMEM_PMDMAPPED, 164 NR_ANON_THPS, 165 NR_UNSTABLE_NFS, /* NFS unstable pages */ 166 NR_VMSCAN_WRITE, 167 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 168 NR_DIRTIED, /* page dirtyings since bootup */ 169 NR_WRITTEN, /* page writings since bootup */ 170 NR_VM_NODE_STAT_ITEMS 171 }; 172 173 /* 174 * We do arithmetic on the LRU lists in various places in the code, 175 * so it is important to keep the active lists LRU_ACTIVE higher in 176 * the array than the corresponding inactive lists, and to keep 177 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 178 * 179 * This has to be kept in sync with the statistics in zone_stat_item 180 * above and the descriptions in vmstat_text in mm/vmstat.c 181 */ 182 #define LRU_BASE 0 183 #define LRU_ACTIVE 1 184 #define LRU_FILE 2 185 186 enum lru_list { 187 LRU_INACTIVE_ANON = LRU_BASE, 188 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 189 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 190 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 191 LRU_UNEVICTABLE, 192 NR_LRU_LISTS 193 }; 194 195 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 196 197 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 198 199 static inline int is_file_lru(enum lru_list lru) 200 { 201 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 202 } 203 204 static inline int is_active_lru(enum lru_list lru) 205 { 206 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 207 } 208 209 struct zone_reclaim_stat { 210 /* 211 * The pageout code in vmscan.c keeps track of how many of the 212 * mem/swap backed and file backed pages are referenced. 213 * The higher the rotated/scanned ratio, the more valuable 214 * that cache is. 215 * 216 * The anon LRU stats live in [0], file LRU stats in [1] 217 */ 218 unsigned long recent_rotated[2]; 219 unsigned long recent_scanned[2]; 220 }; 221 222 struct lruvec { 223 struct list_head lists[NR_LRU_LISTS]; 224 struct zone_reclaim_stat reclaim_stat; 225 /* Evictions & activations on the inactive file list */ 226 atomic_long_t inactive_age; 227 #ifdef CONFIG_MEMCG 228 struct pglist_data *pgdat; 229 #endif 230 }; 231 232 /* Mask used at gathering information at once (see memcontrol.c) */ 233 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 234 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 235 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 236 237 /* Isolate clean file */ 238 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 239 /* Isolate unmapped file */ 240 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 241 /* Isolate for asynchronous migration */ 242 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 243 /* Isolate unevictable pages */ 244 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 245 246 /* LRU Isolation modes. */ 247 typedef unsigned __bitwise__ isolate_mode_t; 248 249 enum zone_watermarks { 250 WMARK_MIN, 251 WMARK_LOW, 252 WMARK_HIGH, 253 NR_WMARK 254 }; 255 256 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 257 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 258 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 259 260 struct per_cpu_pages { 261 int count; /* number of pages in the list */ 262 int high; /* high watermark, emptying needed */ 263 int batch; /* chunk size for buddy add/remove */ 264 265 /* Lists of pages, one per migrate type stored on the pcp-lists */ 266 struct list_head lists[MIGRATE_PCPTYPES]; 267 }; 268 269 struct per_cpu_pageset { 270 struct per_cpu_pages pcp; 271 #ifdef CONFIG_NUMA 272 s8 expire; 273 #endif 274 #ifdef CONFIG_SMP 275 s8 stat_threshold; 276 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 277 #endif 278 }; 279 280 struct per_cpu_nodestat { 281 s8 stat_threshold; 282 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 283 }; 284 285 #endif /* !__GENERATING_BOUNDS.H */ 286 287 enum zone_type { 288 #ifdef CONFIG_ZONE_DMA 289 /* 290 * ZONE_DMA is used when there are devices that are not able 291 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 292 * carve out the portion of memory that is needed for these devices. 293 * The range is arch specific. 294 * 295 * Some examples 296 * 297 * Architecture Limit 298 * --------------------------- 299 * parisc, ia64, sparc <4G 300 * s390 <2G 301 * arm Various 302 * alpha Unlimited or 0-16MB. 303 * 304 * i386, x86_64 and multiple other arches 305 * <16M. 306 */ 307 ZONE_DMA, 308 #endif 309 #ifdef CONFIG_ZONE_DMA32 310 /* 311 * x86_64 needs two ZONE_DMAs because it supports devices that are 312 * only able to do DMA to the lower 16M but also 32 bit devices that 313 * can only do DMA areas below 4G. 314 */ 315 ZONE_DMA32, 316 #endif 317 /* 318 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 319 * performed on pages in ZONE_NORMAL if the DMA devices support 320 * transfers to all addressable memory. 321 */ 322 ZONE_NORMAL, 323 #ifdef CONFIG_HIGHMEM 324 /* 325 * A memory area that is only addressable by the kernel through 326 * mapping portions into its own address space. This is for example 327 * used by i386 to allow the kernel to address the memory beyond 328 * 900MB. The kernel will set up special mappings (page 329 * table entries on i386) for each page that the kernel needs to 330 * access. 331 */ 332 ZONE_HIGHMEM, 333 #endif 334 ZONE_MOVABLE, 335 #ifdef CONFIG_ZONE_DEVICE 336 ZONE_DEVICE, 337 #endif 338 __MAX_NR_ZONES 339 340 }; 341 342 #ifndef __GENERATING_BOUNDS_H 343 344 struct zone { 345 /* Read-mostly fields */ 346 347 /* zone watermarks, access with *_wmark_pages(zone) macros */ 348 unsigned long watermark[NR_WMARK]; 349 350 unsigned long nr_reserved_highatomic; 351 352 /* 353 * We don't know if the memory that we're going to allocate will be 354 * freeable or/and it will be released eventually, so to avoid totally 355 * wasting several GB of ram we must reserve some of the lower zone 356 * memory (otherwise we risk to run OOM on the lower zones despite 357 * there being tons of freeable ram on the higher zones). This array is 358 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 359 * changes. 360 */ 361 long lowmem_reserve[MAX_NR_ZONES]; 362 363 #ifdef CONFIG_NUMA 364 int node; 365 #endif 366 struct pglist_data *zone_pgdat; 367 struct per_cpu_pageset __percpu *pageset; 368 369 #ifndef CONFIG_SPARSEMEM 370 /* 371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 372 * In SPARSEMEM, this map is stored in struct mem_section 373 */ 374 unsigned long *pageblock_flags; 375 #endif /* CONFIG_SPARSEMEM */ 376 377 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 378 unsigned long zone_start_pfn; 379 380 /* 381 * spanned_pages is the total pages spanned by the zone, including 382 * holes, which is calculated as: 383 * spanned_pages = zone_end_pfn - zone_start_pfn; 384 * 385 * present_pages is physical pages existing within the zone, which 386 * is calculated as: 387 * present_pages = spanned_pages - absent_pages(pages in holes); 388 * 389 * managed_pages is present pages managed by the buddy system, which 390 * is calculated as (reserved_pages includes pages allocated by the 391 * bootmem allocator): 392 * managed_pages = present_pages - reserved_pages; 393 * 394 * So present_pages may be used by memory hotplug or memory power 395 * management logic to figure out unmanaged pages by checking 396 * (present_pages - managed_pages). And managed_pages should be used 397 * by page allocator and vm scanner to calculate all kinds of watermarks 398 * and thresholds. 399 * 400 * Locking rules: 401 * 402 * zone_start_pfn and spanned_pages are protected by span_seqlock. 403 * It is a seqlock because it has to be read outside of zone->lock, 404 * and it is done in the main allocator path. But, it is written 405 * quite infrequently. 406 * 407 * The span_seq lock is declared along with zone->lock because it is 408 * frequently read in proximity to zone->lock. It's good to 409 * give them a chance of being in the same cacheline. 410 * 411 * Write access to present_pages at runtime should be protected by 412 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 413 * present_pages should get_online_mems() to get a stable value. 414 * 415 * Read access to managed_pages should be safe because it's unsigned 416 * long. Write access to zone->managed_pages and totalram_pages are 417 * protected by managed_page_count_lock at runtime. Idealy only 418 * adjust_managed_page_count() should be used instead of directly 419 * touching zone->managed_pages and totalram_pages. 420 */ 421 unsigned long managed_pages; 422 unsigned long spanned_pages; 423 unsigned long present_pages; 424 425 const char *name; 426 427 #ifdef CONFIG_MEMORY_ISOLATION 428 /* 429 * Number of isolated pageblock. It is used to solve incorrect 430 * freepage counting problem due to racy retrieving migratetype 431 * of pageblock. Protected by zone->lock. 432 */ 433 unsigned long nr_isolate_pageblock; 434 #endif 435 436 #ifdef CONFIG_MEMORY_HOTPLUG 437 /* see spanned/present_pages for more description */ 438 seqlock_t span_seqlock; 439 #endif 440 441 /* 442 * wait_table -- the array holding the hash table 443 * wait_table_hash_nr_entries -- the size of the hash table array 444 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 445 * 446 * The purpose of all these is to keep track of the people 447 * waiting for a page to become available and make them 448 * runnable again when possible. The trouble is that this 449 * consumes a lot of space, especially when so few things 450 * wait on pages at a given time. So instead of using 451 * per-page waitqueues, we use a waitqueue hash table. 452 * 453 * The bucket discipline is to sleep on the same queue when 454 * colliding and wake all in that wait queue when removing. 455 * When something wakes, it must check to be sure its page is 456 * truly available, a la thundering herd. The cost of a 457 * collision is great, but given the expected load of the 458 * table, they should be so rare as to be outweighed by the 459 * benefits from the saved space. 460 * 461 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 462 * primary users of these fields, and in mm/page_alloc.c 463 * free_area_init_core() performs the initialization of them. 464 */ 465 wait_queue_head_t *wait_table; 466 unsigned long wait_table_hash_nr_entries; 467 unsigned long wait_table_bits; 468 469 /* Write-intensive fields used from the page allocator */ 470 ZONE_PADDING(_pad1_) 471 472 /* free areas of different sizes */ 473 struct free_area free_area[MAX_ORDER]; 474 475 /* zone flags, see below */ 476 unsigned long flags; 477 478 /* Primarily protects free_area */ 479 spinlock_t lock; 480 481 /* Write-intensive fields used by compaction and vmstats. */ 482 ZONE_PADDING(_pad2_) 483 484 /* 485 * When free pages are below this point, additional steps are taken 486 * when reading the number of free pages to avoid per-cpu counter 487 * drift allowing watermarks to be breached 488 */ 489 unsigned long percpu_drift_mark; 490 491 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 492 /* pfn where compaction free scanner should start */ 493 unsigned long compact_cached_free_pfn; 494 /* pfn where async and sync compaction migration scanner should start */ 495 unsigned long compact_cached_migrate_pfn[2]; 496 #endif 497 498 #ifdef CONFIG_COMPACTION 499 /* 500 * On compaction failure, 1<<compact_defer_shift compactions 501 * are skipped before trying again. The number attempted since 502 * last failure is tracked with compact_considered. 503 */ 504 unsigned int compact_considered; 505 unsigned int compact_defer_shift; 506 int compact_order_failed; 507 #endif 508 509 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 510 /* Set to true when the PG_migrate_skip bits should be cleared */ 511 bool compact_blockskip_flush; 512 #endif 513 514 bool contiguous; 515 516 ZONE_PADDING(_pad3_) 517 /* Zone statistics */ 518 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 519 } ____cacheline_internodealigned_in_smp; 520 521 enum pgdat_flags { 522 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 523 * a congested BDI 524 */ 525 PGDAT_DIRTY, /* reclaim scanning has recently found 526 * many dirty file pages at the tail 527 * of the LRU. 528 */ 529 PGDAT_WRITEBACK, /* reclaim scanning has recently found 530 * many pages under writeback 531 */ 532 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 533 }; 534 535 static inline unsigned long zone_end_pfn(const struct zone *zone) 536 { 537 return zone->zone_start_pfn + zone->spanned_pages; 538 } 539 540 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 541 { 542 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 543 } 544 545 static inline bool zone_is_initialized(struct zone *zone) 546 { 547 return !!zone->wait_table; 548 } 549 550 static inline bool zone_is_empty(struct zone *zone) 551 { 552 return zone->spanned_pages == 0; 553 } 554 555 /* 556 * The "priority" of VM scanning is how much of the queues we will scan in one 557 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 558 * queues ("queue_length >> 12") during an aging round. 559 */ 560 #define DEF_PRIORITY 12 561 562 /* Maximum number of zones on a zonelist */ 563 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 564 565 enum { 566 ZONELIST_FALLBACK, /* zonelist with fallback */ 567 #ifdef CONFIG_NUMA 568 /* 569 * The NUMA zonelists are doubled because we need zonelists that 570 * restrict the allocations to a single node for __GFP_THISNODE. 571 */ 572 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 573 #endif 574 MAX_ZONELISTS 575 }; 576 577 /* 578 * This struct contains information about a zone in a zonelist. It is stored 579 * here to avoid dereferences into large structures and lookups of tables 580 */ 581 struct zoneref { 582 struct zone *zone; /* Pointer to actual zone */ 583 int zone_idx; /* zone_idx(zoneref->zone) */ 584 }; 585 586 /* 587 * One allocation request operates on a zonelist. A zonelist 588 * is a list of zones, the first one is the 'goal' of the 589 * allocation, the other zones are fallback zones, in decreasing 590 * priority. 591 * 592 * To speed the reading of the zonelist, the zonerefs contain the zone index 593 * of the entry being read. Helper functions to access information given 594 * a struct zoneref are 595 * 596 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 597 * zonelist_zone_idx() - Return the index of the zone for an entry 598 * zonelist_node_idx() - Return the index of the node for an entry 599 */ 600 struct zonelist { 601 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 602 }; 603 604 #ifndef CONFIG_DISCONTIGMEM 605 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 606 extern struct page *mem_map; 607 #endif 608 609 /* 610 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 611 * (mostly NUMA machines?) to denote a higher-level memory zone than the 612 * zone denotes. 613 * 614 * On NUMA machines, each NUMA node would have a pg_data_t to describe 615 * it's memory layout. 616 * 617 * Memory statistics and page replacement data structures are maintained on a 618 * per-zone basis. 619 */ 620 struct bootmem_data; 621 typedef struct pglist_data { 622 struct zone node_zones[MAX_NR_ZONES]; 623 struct zonelist node_zonelists[MAX_ZONELISTS]; 624 int nr_zones; 625 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 626 struct page *node_mem_map; 627 #ifdef CONFIG_PAGE_EXTENSION 628 struct page_ext *node_page_ext; 629 #endif 630 #endif 631 #ifndef CONFIG_NO_BOOTMEM 632 struct bootmem_data *bdata; 633 #endif 634 #ifdef CONFIG_MEMORY_HOTPLUG 635 /* 636 * Must be held any time you expect node_start_pfn, node_present_pages 637 * or node_spanned_pages stay constant. Holding this will also 638 * guarantee that any pfn_valid() stays that way. 639 * 640 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 641 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 642 * 643 * Nests above zone->lock and zone->span_seqlock 644 */ 645 spinlock_t node_size_lock; 646 #endif 647 unsigned long node_start_pfn; 648 unsigned long node_present_pages; /* total number of physical pages */ 649 unsigned long node_spanned_pages; /* total size of physical page 650 range, including holes */ 651 int node_id; 652 wait_queue_head_t kswapd_wait; 653 wait_queue_head_t pfmemalloc_wait; 654 struct task_struct *kswapd; /* Protected by 655 mem_hotplug_begin/end() */ 656 int kswapd_order; 657 enum zone_type kswapd_classzone_idx; 658 659 #ifdef CONFIG_COMPACTION 660 int kcompactd_max_order; 661 enum zone_type kcompactd_classzone_idx; 662 wait_queue_head_t kcompactd_wait; 663 struct task_struct *kcompactd; 664 #endif 665 #ifdef CONFIG_NUMA_BALANCING 666 /* Lock serializing the migrate rate limiting window */ 667 spinlock_t numabalancing_migrate_lock; 668 669 /* Rate limiting time interval */ 670 unsigned long numabalancing_migrate_next_window; 671 672 /* Number of pages migrated during the rate limiting time interval */ 673 unsigned long numabalancing_migrate_nr_pages; 674 #endif 675 /* 676 * This is a per-node reserve of pages that are not available 677 * to userspace allocations. 678 */ 679 unsigned long totalreserve_pages; 680 681 #ifdef CONFIG_NUMA 682 /* 683 * zone reclaim becomes active if more unmapped pages exist. 684 */ 685 unsigned long min_unmapped_pages; 686 unsigned long min_slab_pages; 687 #endif /* CONFIG_NUMA */ 688 689 /* Write-intensive fields used by page reclaim */ 690 ZONE_PADDING(_pad1_) 691 spinlock_t lru_lock; 692 693 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 694 /* 695 * If memory initialisation on large machines is deferred then this 696 * is the first PFN that needs to be initialised. 697 */ 698 unsigned long first_deferred_pfn; 699 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 700 701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 702 spinlock_t split_queue_lock; 703 struct list_head split_queue; 704 unsigned long split_queue_len; 705 #endif 706 707 /* Fields commonly accessed by the page reclaim scanner */ 708 struct lruvec lruvec; 709 710 /* 711 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 712 * this node's LRU. Maintained by the pageout code. 713 */ 714 unsigned int inactive_ratio; 715 716 unsigned long flags; 717 718 ZONE_PADDING(_pad2_) 719 720 /* Per-node vmstats */ 721 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 722 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 723 } pg_data_t; 724 725 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 726 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 727 #ifdef CONFIG_FLAT_NODE_MEM_MAP 728 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 729 #else 730 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 731 #endif 732 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 733 734 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 735 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 736 static inline spinlock_t *zone_lru_lock(struct zone *zone) 737 { 738 return &zone->zone_pgdat->lru_lock; 739 } 740 741 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 742 { 743 return &pgdat->lruvec; 744 } 745 746 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 747 { 748 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 749 } 750 751 static inline bool pgdat_is_empty(pg_data_t *pgdat) 752 { 753 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 754 } 755 756 static inline int zone_id(const struct zone *zone) 757 { 758 struct pglist_data *pgdat = zone->zone_pgdat; 759 760 return zone - pgdat->node_zones; 761 } 762 763 #ifdef CONFIG_ZONE_DEVICE 764 static inline bool is_dev_zone(const struct zone *zone) 765 { 766 return zone_id(zone) == ZONE_DEVICE; 767 } 768 #else 769 static inline bool is_dev_zone(const struct zone *zone) 770 { 771 return false; 772 } 773 #endif 774 775 #include <linux/memory_hotplug.h> 776 777 extern struct mutex zonelists_mutex; 778 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 779 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 780 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 781 int classzone_idx, unsigned int alloc_flags, 782 long free_pages); 783 bool zone_watermark_ok(struct zone *z, unsigned int order, 784 unsigned long mark, int classzone_idx, 785 unsigned int alloc_flags); 786 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 787 unsigned long mark, int classzone_idx); 788 enum memmap_context { 789 MEMMAP_EARLY, 790 MEMMAP_HOTPLUG, 791 }; 792 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 793 unsigned long size); 794 795 extern void lruvec_init(struct lruvec *lruvec); 796 797 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 798 { 799 #ifdef CONFIG_MEMCG 800 return lruvec->pgdat; 801 #else 802 return container_of(lruvec, struct pglist_data, lruvec); 803 #endif 804 } 805 806 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru); 807 808 #ifdef CONFIG_HAVE_MEMORY_PRESENT 809 void memory_present(int nid, unsigned long start, unsigned long end); 810 #else 811 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 812 #endif 813 814 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 815 int local_memory_node(int node_id); 816 #else 817 static inline int local_memory_node(int node_id) { return node_id; }; 818 #endif 819 820 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 821 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 822 #endif 823 824 /* 825 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 826 */ 827 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 828 829 static inline int populated_zone(struct zone *zone) 830 { 831 return (!!zone->present_pages); 832 } 833 834 extern int movable_zone; 835 836 #ifdef CONFIG_HIGHMEM 837 static inline int zone_movable_is_highmem(void) 838 { 839 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 840 return movable_zone == ZONE_HIGHMEM; 841 #else 842 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 843 #endif 844 } 845 #endif 846 847 static inline int is_highmem_idx(enum zone_type idx) 848 { 849 #ifdef CONFIG_HIGHMEM 850 return (idx == ZONE_HIGHMEM || 851 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 852 #else 853 return 0; 854 #endif 855 } 856 857 /** 858 * is_highmem - helper function to quickly check if a struct zone is a 859 * highmem zone or not. This is an attempt to keep references 860 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 861 * @zone - pointer to struct zone variable 862 */ 863 static inline int is_highmem(struct zone *zone) 864 { 865 #ifdef CONFIG_HIGHMEM 866 return is_highmem_idx(zone_idx(zone)); 867 #else 868 return 0; 869 #endif 870 } 871 872 /* These two functions are used to setup the per zone pages min values */ 873 struct ctl_table; 874 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 875 void __user *, size_t *, loff_t *); 876 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 877 void __user *, size_t *, loff_t *); 878 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 879 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 880 void __user *, size_t *, loff_t *); 881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 882 void __user *, size_t *, loff_t *); 883 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 884 void __user *, size_t *, loff_t *); 885 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 886 void __user *, size_t *, loff_t *); 887 888 extern int numa_zonelist_order_handler(struct ctl_table *, int, 889 void __user *, size_t *, loff_t *); 890 extern char numa_zonelist_order[]; 891 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 892 893 #ifndef CONFIG_NEED_MULTIPLE_NODES 894 895 extern struct pglist_data contig_page_data; 896 #define NODE_DATA(nid) (&contig_page_data) 897 #define NODE_MEM_MAP(nid) mem_map 898 899 #else /* CONFIG_NEED_MULTIPLE_NODES */ 900 901 #include <asm/mmzone.h> 902 903 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 904 905 extern struct pglist_data *first_online_pgdat(void); 906 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 907 extern struct zone *next_zone(struct zone *zone); 908 909 /** 910 * for_each_online_pgdat - helper macro to iterate over all online nodes 911 * @pgdat - pointer to a pg_data_t variable 912 */ 913 #define for_each_online_pgdat(pgdat) \ 914 for (pgdat = first_online_pgdat(); \ 915 pgdat; \ 916 pgdat = next_online_pgdat(pgdat)) 917 /** 918 * for_each_zone - helper macro to iterate over all memory zones 919 * @zone - pointer to struct zone variable 920 * 921 * The user only needs to declare the zone variable, for_each_zone 922 * fills it in. 923 */ 924 #define for_each_zone(zone) \ 925 for (zone = (first_online_pgdat())->node_zones; \ 926 zone; \ 927 zone = next_zone(zone)) 928 929 #define for_each_populated_zone(zone) \ 930 for (zone = (first_online_pgdat())->node_zones; \ 931 zone; \ 932 zone = next_zone(zone)) \ 933 if (!populated_zone(zone)) \ 934 ; /* do nothing */ \ 935 else 936 937 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 938 { 939 return zoneref->zone; 940 } 941 942 static inline int zonelist_zone_idx(struct zoneref *zoneref) 943 { 944 return zoneref->zone_idx; 945 } 946 947 static inline int zonelist_node_idx(struct zoneref *zoneref) 948 { 949 #ifdef CONFIG_NUMA 950 /* zone_to_nid not available in this context */ 951 return zoneref->zone->node; 952 #else 953 return 0; 954 #endif /* CONFIG_NUMA */ 955 } 956 957 struct zoneref *__next_zones_zonelist(struct zoneref *z, 958 enum zone_type highest_zoneidx, 959 nodemask_t *nodes); 960 961 /** 962 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 963 * @z - The cursor used as a starting point for the search 964 * @highest_zoneidx - The zone index of the highest zone to return 965 * @nodes - An optional nodemask to filter the zonelist with 966 * 967 * This function returns the next zone at or below a given zone index that is 968 * within the allowed nodemask using a cursor as the starting point for the 969 * search. The zoneref returned is a cursor that represents the current zone 970 * being examined. It should be advanced by one before calling 971 * next_zones_zonelist again. 972 */ 973 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 974 enum zone_type highest_zoneidx, 975 nodemask_t *nodes) 976 { 977 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 978 return z; 979 return __next_zones_zonelist(z, highest_zoneidx, nodes); 980 } 981 982 /** 983 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 984 * @zonelist - The zonelist to search for a suitable zone 985 * @highest_zoneidx - The zone index of the highest zone to return 986 * @nodes - An optional nodemask to filter the zonelist with 987 * @zone - The first suitable zone found is returned via this parameter 988 * 989 * This function returns the first zone at or below a given zone index that is 990 * within the allowed nodemask. The zoneref returned is a cursor that can be 991 * used to iterate the zonelist with next_zones_zonelist by advancing it by 992 * one before calling. 993 */ 994 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 995 enum zone_type highest_zoneidx, 996 nodemask_t *nodes) 997 { 998 return next_zones_zonelist(zonelist->_zonerefs, 999 highest_zoneidx, nodes); 1000 } 1001 1002 /** 1003 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1004 * @zone - The current zone in the iterator 1005 * @z - The current pointer within zonelist->zones being iterated 1006 * @zlist - The zonelist being iterated 1007 * @highidx - The zone index of the highest zone to return 1008 * @nodemask - Nodemask allowed by the allocator 1009 * 1010 * This iterator iterates though all zones at or below a given zone index and 1011 * within a given nodemask 1012 */ 1013 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1014 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1015 zone; \ 1016 z = next_zones_zonelist(++z, highidx, nodemask), \ 1017 zone = zonelist_zone(z)) 1018 1019 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1020 for (zone = z->zone; \ 1021 zone; \ 1022 z = next_zones_zonelist(++z, highidx, nodemask), \ 1023 zone = zonelist_zone(z)) 1024 1025 1026 /** 1027 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1028 * @zone - The current zone in the iterator 1029 * @z - The current pointer within zonelist->zones being iterated 1030 * @zlist - The zonelist being iterated 1031 * @highidx - The zone index of the highest zone to return 1032 * 1033 * This iterator iterates though all zones at or below a given zone index. 1034 */ 1035 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1036 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1037 1038 #ifdef CONFIG_SPARSEMEM 1039 #include <asm/sparsemem.h> 1040 #endif 1041 1042 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1043 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1044 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1045 { 1046 return 0; 1047 } 1048 #endif 1049 1050 #ifdef CONFIG_FLATMEM 1051 #define pfn_to_nid(pfn) (0) 1052 #endif 1053 1054 #ifdef CONFIG_SPARSEMEM 1055 1056 /* 1057 * SECTION_SHIFT #bits space required to store a section # 1058 * 1059 * PA_SECTION_SHIFT physical address to/from section number 1060 * PFN_SECTION_SHIFT pfn to/from section number 1061 */ 1062 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1063 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1064 1065 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1066 1067 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1068 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1069 1070 #define SECTION_BLOCKFLAGS_BITS \ 1071 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1072 1073 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1074 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1075 #endif 1076 1077 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1078 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1079 1080 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1081 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1082 1083 struct page; 1084 struct page_ext; 1085 struct mem_section { 1086 /* 1087 * This is, logically, a pointer to an array of struct 1088 * pages. However, it is stored with some other magic. 1089 * (see sparse.c::sparse_init_one_section()) 1090 * 1091 * Additionally during early boot we encode node id of 1092 * the location of the section here to guide allocation. 1093 * (see sparse.c::memory_present()) 1094 * 1095 * Making it a UL at least makes someone do a cast 1096 * before using it wrong. 1097 */ 1098 unsigned long section_mem_map; 1099 1100 /* See declaration of similar field in struct zone */ 1101 unsigned long *pageblock_flags; 1102 #ifdef CONFIG_PAGE_EXTENSION 1103 /* 1104 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1105 * section. (see page_ext.h about this.) 1106 */ 1107 struct page_ext *page_ext; 1108 unsigned long pad; 1109 #endif 1110 /* 1111 * WARNING: mem_section must be a power-of-2 in size for the 1112 * calculation and use of SECTION_ROOT_MASK to make sense. 1113 */ 1114 }; 1115 1116 #ifdef CONFIG_SPARSEMEM_EXTREME 1117 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1118 #else 1119 #define SECTIONS_PER_ROOT 1 1120 #endif 1121 1122 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1123 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1124 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1125 1126 #ifdef CONFIG_SPARSEMEM_EXTREME 1127 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1128 #else 1129 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1130 #endif 1131 1132 static inline struct mem_section *__nr_to_section(unsigned long nr) 1133 { 1134 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1135 return NULL; 1136 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1137 } 1138 extern int __section_nr(struct mem_section* ms); 1139 extern unsigned long usemap_size(void); 1140 1141 /* 1142 * We use the lower bits of the mem_map pointer to store 1143 * a little bit of information. There should be at least 1144 * 3 bits here due to 32-bit alignment. 1145 */ 1146 #define SECTION_MARKED_PRESENT (1UL<<0) 1147 #define SECTION_HAS_MEM_MAP (1UL<<1) 1148 #define SECTION_MAP_LAST_BIT (1UL<<2) 1149 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1150 #define SECTION_NID_SHIFT 2 1151 1152 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1153 { 1154 unsigned long map = section->section_mem_map; 1155 map &= SECTION_MAP_MASK; 1156 return (struct page *)map; 1157 } 1158 1159 static inline int present_section(struct mem_section *section) 1160 { 1161 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1162 } 1163 1164 static inline int present_section_nr(unsigned long nr) 1165 { 1166 return present_section(__nr_to_section(nr)); 1167 } 1168 1169 static inline int valid_section(struct mem_section *section) 1170 { 1171 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1172 } 1173 1174 static inline int valid_section_nr(unsigned long nr) 1175 { 1176 return valid_section(__nr_to_section(nr)); 1177 } 1178 1179 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1180 { 1181 return __nr_to_section(pfn_to_section_nr(pfn)); 1182 } 1183 1184 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1185 static inline int pfn_valid(unsigned long pfn) 1186 { 1187 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1188 return 0; 1189 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1190 } 1191 #endif 1192 1193 static inline int pfn_present(unsigned long pfn) 1194 { 1195 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1196 return 0; 1197 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1198 } 1199 1200 /* 1201 * These are _only_ used during initialisation, therefore they 1202 * can use __initdata ... They could have names to indicate 1203 * this restriction. 1204 */ 1205 #ifdef CONFIG_NUMA 1206 #define pfn_to_nid(pfn) \ 1207 ({ \ 1208 unsigned long __pfn_to_nid_pfn = (pfn); \ 1209 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1210 }) 1211 #else 1212 #define pfn_to_nid(pfn) (0) 1213 #endif 1214 1215 #define early_pfn_valid(pfn) pfn_valid(pfn) 1216 void sparse_init(void); 1217 #else 1218 #define sparse_init() do {} while (0) 1219 #define sparse_index_init(_sec, _nid) do {} while (0) 1220 #endif /* CONFIG_SPARSEMEM */ 1221 1222 /* 1223 * During memory init memblocks map pfns to nids. The search is expensive and 1224 * this caches recent lookups. The implementation of __early_pfn_to_nid 1225 * may treat start/end as pfns or sections. 1226 */ 1227 struct mminit_pfnnid_cache { 1228 unsigned long last_start; 1229 unsigned long last_end; 1230 int last_nid; 1231 }; 1232 1233 #ifndef early_pfn_valid 1234 #define early_pfn_valid(pfn) (1) 1235 #endif 1236 1237 void memory_present(int nid, unsigned long start, unsigned long end); 1238 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1239 1240 /* 1241 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1242 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1243 * pfn_valid_within() should be used in this case; we optimise this away 1244 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1245 */ 1246 #ifdef CONFIG_HOLES_IN_ZONE 1247 #define pfn_valid_within(pfn) pfn_valid(pfn) 1248 #else 1249 #define pfn_valid_within(pfn) (1) 1250 #endif 1251 1252 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1253 /* 1254 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1255 * associated with it or not. In FLATMEM, it is expected that holes always 1256 * have valid memmap as long as there is valid PFNs either side of the hole. 1257 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1258 * entire section. 1259 * 1260 * However, an ARM, and maybe other embedded architectures in the future 1261 * free memmap backing holes to save memory on the assumption the memmap is 1262 * never used. The page_zone linkages are then broken even though pfn_valid() 1263 * returns true. A walker of the full memmap must then do this additional 1264 * check to ensure the memmap they are looking at is sane by making sure 1265 * the zone and PFN linkages are still valid. This is expensive, but walkers 1266 * of the full memmap are extremely rare. 1267 */ 1268 bool memmap_valid_within(unsigned long pfn, 1269 struct page *page, struct zone *zone); 1270 #else 1271 static inline bool memmap_valid_within(unsigned long pfn, 1272 struct page *page, struct zone *zone) 1273 { 1274 return true; 1275 } 1276 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1277 1278 #endif /* !__GENERATING_BOUNDS.H */ 1279 #endif /* !__ASSEMBLY__ */ 1280 #endif /* _LINUX_MMZONE_H */ 1281