xref: /linux-6.15/include/linux/mmzone.h (revision 86effd0d)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72 #else
73 #  define is_migrate_cma(migratetype) false
74 #  define is_migrate_cma_page(_page) false
75 #endif
76 
77 #define for_each_migratetype_order(order, type) \
78 	for (order = 0; order < MAX_ORDER; order++) \
79 		for (type = 0; type < MIGRATE_TYPES; type++)
80 
81 extern int page_group_by_mobility_disabled;
82 
83 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85 
86 #define get_pageblock_migratetype(page)					\
87 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
88 			PB_migrate_end, MIGRATETYPE_MASK)
89 
90 struct free_area {
91 	struct list_head	free_list[MIGRATE_TYPES];
92 	unsigned long		nr_free;
93 };
94 
95 struct pglist_data;
96 
97 /*
98  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99  * So add a wild amount of padding here to ensure that they fall into separate
100  * cachelines.  There are very few zone structures in the machine, so space
101  * consumption is not a concern here.
102  */
103 #if defined(CONFIG_SMP)
104 struct zone_padding {
105 	char x[0];
106 } ____cacheline_internodealigned_in_smp;
107 #define ZONE_PADDING(name)	struct zone_padding name;
108 #else
109 #define ZONE_PADDING(name)
110 #endif
111 
112 enum zone_stat_item {
113 	/* First 128 byte cacheline (assuming 64 bit words) */
114 	NR_FREE_PAGES,
115 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 	NR_ZONE_ACTIVE_ANON,
118 	NR_ZONE_INACTIVE_FILE,
119 	NR_ZONE_ACTIVE_FILE,
120 	NR_ZONE_UNEVICTABLE,
121 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
122 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
123 	NR_SLAB_RECLAIMABLE,
124 	NR_SLAB_UNRECLAIMABLE,
125 	NR_PAGETABLE,		/* used for pagetables */
126 	NR_KERNEL_STACK_KB,	/* measured in KiB */
127 	/* Second 128 byte cacheline */
128 	NR_BOUNCE,
129 #if IS_ENABLED(CONFIG_ZSMALLOC)
130 	NR_ZSPAGES,		/* allocated in zsmalloc */
131 #endif
132 #ifdef CONFIG_NUMA
133 	NUMA_HIT,		/* allocated in intended node */
134 	NUMA_MISS,		/* allocated in non intended node */
135 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
136 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
137 	NUMA_LOCAL,		/* allocation from local node */
138 	NUMA_OTHER,		/* allocation from other node */
139 #endif
140 	NR_FREE_CMA_PAGES,
141 	NR_VM_ZONE_STAT_ITEMS };
142 
143 enum node_stat_item {
144 	NR_LRU_BASE,
145 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
147 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
148 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
149 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
150 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
151 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
152 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
153 	WORKINGSET_REFAULT,
154 	WORKINGSET_ACTIVATE,
155 	WORKINGSET_NODERECLAIM,
156 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
157 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
158 			   only modified from process context */
159 	NR_FILE_PAGES,
160 	NR_FILE_DIRTY,
161 	NR_WRITEBACK,
162 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
163 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
164 	NR_SHMEM_THPS,
165 	NR_SHMEM_PMDMAPPED,
166 	NR_ANON_THPS,
167 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
168 	NR_VMSCAN_WRITE,
169 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
170 	NR_DIRTIED,		/* page dirtyings since bootup */
171 	NR_WRITTEN,		/* page writings since bootup */
172 	NR_VM_NODE_STAT_ITEMS
173 };
174 
175 /*
176  * We do arithmetic on the LRU lists in various places in the code,
177  * so it is important to keep the active lists LRU_ACTIVE higher in
178  * the array than the corresponding inactive lists, and to keep
179  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180  *
181  * This has to be kept in sync with the statistics in zone_stat_item
182  * above and the descriptions in vmstat_text in mm/vmstat.c
183  */
184 #define LRU_BASE 0
185 #define LRU_ACTIVE 1
186 #define LRU_FILE 2
187 
188 enum lru_list {
189 	LRU_INACTIVE_ANON = LRU_BASE,
190 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
193 	LRU_UNEVICTABLE,
194 	NR_LRU_LISTS
195 };
196 
197 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
198 
199 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
200 
201 static inline int is_file_lru(enum lru_list lru)
202 {
203 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
204 }
205 
206 static inline int is_active_lru(enum lru_list lru)
207 {
208 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
209 }
210 
211 struct zone_reclaim_stat {
212 	/*
213 	 * The pageout code in vmscan.c keeps track of how many of the
214 	 * mem/swap backed and file backed pages are referenced.
215 	 * The higher the rotated/scanned ratio, the more valuable
216 	 * that cache is.
217 	 *
218 	 * The anon LRU stats live in [0], file LRU stats in [1]
219 	 */
220 	unsigned long		recent_rotated[2];
221 	unsigned long		recent_scanned[2];
222 };
223 
224 struct lruvec {
225 	struct list_head		lists[NR_LRU_LISTS];
226 	struct zone_reclaim_stat	reclaim_stat;
227 	/* Evictions & activations on the inactive file list */
228 	atomic_long_t			inactive_age;
229 #ifdef CONFIG_MEMCG
230 	struct pglist_data *pgdat;
231 #endif
232 };
233 
234 /* Mask used at gathering information at once (see memcontrol.c) */
235 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
238 
239 /* Isolate clean file */
240 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
241 /* Isolate unmapped file */
242 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
243 /* Isolate for asynchronous migration */
244 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
245 /* Isolate unevictable pages */
246 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
247 
248 /* LRU Isolation modes. */
249 typedef unsigned __bitwise__ isolate_mode_t;
250 
251 enum zone_watermarks {
252 	WMARK_MIN,
253 	WMARK_LOW,
254 	WMARK_HIGH,
255 	NR_WMARK
256 };
257 
258 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
259 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
260 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
261 
262 struct per_cpu_pages {
263 	int count;		/* number of pages in the list */
264 	int high;		/* high watermark, emptying needed */
265 	int batch;		/* chunk size for buddy add/remove */
266 
267 	/* Lists of pages, one per migrate type stored on the pcp-lists */
268 	struct list_head lists[MIGRATE_PCPTYPES];
269 };
270 
271 struct per_cpu_pageset {
272 	struct per_cpu_pages pcp;
273 #ifdef CONFIG_NUMA
274 	s8 expire;
275 #endif
276 #ifdef CONFIG_SMP
277 	s8 stat_threshold;
278 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
279 #endif
280 };
281 
282 struct per_cpu_nodestat {
283 	s8 stat_threshold;
284 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
285 };
286 
287 #endif /* !__GENERATING_BOUNDS.H */
288 
289 enum zone_type {
290 #ifdef CONFIG_ZONE_DMA
291 	/*
292 	 * ZONE_DMA is used when there are devices that are not able
293 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
294 	 * carve out the portion of memory that is needed for these devices.
295 	 * The range is arch specific.
296 	 *
297 	 * Some examples
298 	 *
299 	 * Architecture		Limit
300 	 * ---------------------------
301 	 * parisc, ia64, sparc	<4G
302 	 * s390			<2G
303 	 * arm			Various
304 	 * alpha		Unlimited or 0-16MB.
305 	 *
306 	 * i386, x86_64 and multiple other arches
307 	 * 			<16M.
308 	 */
309 	ZONE_DMA,
310 #endif
311 #ifdef CONFIG_ZONE_DMA32
312 	/*
313 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
314 	 * only able to do DMA to the lower 16M but also 32 bit devices that
315 	 * can only do DMA areas below 4G.
316 	 */
317 	ZONE_DMA32,
318 #endif
319 	/*
320 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
321 	 * performed on pages in ZONE_NORMAL if the DMA devices support
322 	 * transfers to all addressable memory.
323 	 */
324 	ZONE_NORMAL,
325 #ifdef CONFIG_HIGHMEM
326 	/*
327 	 * A memory area that is only addressable by the kernel through
328 	 * mapping portions into its own address space. This is for example
329 	 * used by i386 to allow the kernel to address the memory beyond
330 	 * 900MB. The kernel will set up special mappings (page
331 	 * table entries on i386) for each page that the kernel needs to
332 	 * access.
333 	 */
334 	ZONE_HIGHMEM,
335 #endif
336 	ZONE_MOVABLE,
337 #ifdef CONFIG_ZONE_DEVICE
338 	ZONE_DEVICE,
339 #endif
340 	__MAX_NR_ZONES
341 
342 };
343 
344 #ifndef __GENERATING_BOUNDS_H
345 
346 struct zone {
347 	/* Read-mostly fields */
348 
349 	/* zone watermarks, access with *_wmark_pages(zone) macros */
350 	unsigned long watermark[NR_WMARK];
351 
352 	unsigned long nr_reserved_highatomic;
353 
354 	/*
355 	 * We don't know if the memory that we're going to allocate will be
356 	 * freeable or/and it will be released eventually, so to avoid totally
357 	 * wasting several GB of ram we must reserve some of the lower zone
358 	 * memory (otherwise we risk to run OOM on the lower zones despite
359 	 * there being tons of freeable ram on the higher zones).  This array is
360 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
361 	 * changes.
362 	 */
363 	long lowmem_reserve[MAX_NR_ZONES];
364 
365 #ifdef CONFIG_NUMA
366 	int node;
367 #endif
368 	struct pglist_data	*zone_pgdat;
369 	struct per_cpu_pageset __percpu *pageset;
370 
371 #ifndef CONFIG_SPARSEMEM
372 	/*
373 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
374 	 * In SPARSEMEM, this map is stored in struct mem_section
375 	 */
376 	unsigned long		*pageblock_flags;
377 #endif /* CONFIG_SPARSEMEM */
378 
379 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
380 	unsigned long		zone_start_pfn;
381 
382 	/*
383 	 * spanned_pages is the total pages spanned by the zone, including
384 	 * holes, which is calculated as:
385 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
386 	 *
387 	 * present_pages is physical pages existing within the zone, which
388 	 * is calculated as:
389 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
390 	 *
391 	 * managed_pages is present pages managed by the buddy system, which
392 	 * is calculated as (reserved_pages includes pages allocated by the
393 	 * bootmem allocator):
394 	 *	managed_pages = present_pages - reserved_pages;
395 	 *
396 	 * So present_pages may be used by memory hotplug or memory power
397 	 * management logic to figure out unmanaged pages by checking
398 	 * (present_pages - managed_pages). And managed_pages should be used
399 	 * by page allocator and vm scanner to calculate all kinds of watermarks
400 	 * and thresholds.
401 	 *
402 	 * Locking rules:
403 	 *
404 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
405 	 * It is a seqlock because it has to be read outside of zone->lock,
406 	 * and it is done in the main allocator path.  But, it is written
407 	 * quite infrequently.
408 	 *
409 	 * The span_seq lock is declared along with zone->lock because it is
410 	 * frequently read in proximity to zone->lock.  It's good to
411 	 * give them a chance of being in the same cacheline.
412 	 *
413 	 * Write access to present_pages at runtime should be protected by
414 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
415 	 * present_pages should get_online_mems() to get a stable value.
416 	 *
417 	 * Read access to managed_pages should be safe because it's unsigned
418 	 * long. Write access to zone->managed_pages and totalram_pages are
419 	 * protected by managed_page_count_lock at runtime. Idealy only
420 	 * adjust_managed_page_count() should be used instead of directly
421 	 * touching zone->managed_pages and totalram_pages.
422 	 */
423 	unsigned long		managed_pages;
424 	unsigned long		spanned_pages;
425 	unsigned long		present_pages;
426 
427 	const char		*name;
428 
429 #ifdef CONFIG_MEMORY_ISOLATION
430 	/*
431 	 * Number of isolated pageblock. It is used to solve incorrect
432 	 * freepage counting problem due to racy retrieving migratetype
433 	 * of pageblock. Protected by zone->lock.
434 	 */
435 	unsigned long		nr_isolate_pageblock;
436 #endif
437 
438 #ifdef CONFIG_MEMORY_HOTPLUG
439 	/* see spanned/present_pages for more description */
440 	seqlock_t		span_seqlock;
441 #endif
442 
443 	/*
444 	 * wait_table		-- the array holding the hash table
445 	 * wait_table_hash_nr_entries	-- the size of the hash table array
446 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
447 	 *
448 	 * The purpose of all these is to keep track of the people
449 	 * waiting for a page to become available and make them
450 	 * runnable again when possible. The trouble is that this
451 	 * consumes a lot of space, especially when so few things
452 	 * wait on pages at a given time. So instead of using
453 	 * per-page waitqueues, we use a waitqueue hash table.
454 	 *
455 	 * The bucket discipline is to sleep on the same queue when
456 	 * colliding and wake all in that wait queue when removing.
457 	 * When something wakes, it must check to be sure its page is
458 	 * truly available, a la thundering herd. The cost of a
459 	 * collision is great, but given the expected load of the
460 	 * table, they should be so rare as to be outweighed by the
461 	 * benefits from the saved space.
462 	 *
463 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
464 	 * primary users of these fields, and in mm/page_alloc.c
465 	 * free_area_init_core() performs the initialization of them.
466 	 */
467 	wait_queue_head_t	*wait_table;
468 	unsigned long		wait_table_hash_nr_entries;
469 	unsigned long		wait_table_bits;
470 
471 	/* Write-intensive fields used from the page allocator */
472 	ZONE_PADDING(_pad1_)
473 
474 	/* free areas of different sizes */
475 	struct free_area	free_area[MAX_ORDER];
476 
477 	/* zone flags, see below */
478 	unsigned long		flags;
479 
480 	/* Primarily protects free_area */
481 	spinlock_t		lock;
482 
483 	/* Write-intensive fields used by compaction and vmstats. */
484 	ZONE_PADDING(_pad2_)
485 
486 	/*
487 	 * When free pages are below this point, additional steps are taken
488 	 * when reading the number of free pages to avoid per-cpu counter
489 	 * drift allowing watermarks to be breached
490 	 */
491 	unsigned long percpu_drift_mark;
492 
493 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
494 	/* pfn where compaction free scanner should start */
495 	unsigned long		compact_cached_free_pfn;
496 	/* pfn where async and sync compaction migration scanner should start */
497 	unsigned long		compact_cached_migrate_pfn[2];
498 #endif
499 
500 #ifdef CONFIG_COMPACTION
501 	/*
502 	 * On compaction failure, 1<<compact_defer_shift compactions
503 	 * are skipped before trying again. The number attempted since
504 	 * last failure is tracked with compact_considered.
505 	 */
506 	unsigned int		compact_considered;
507 	unsigned int		compact_defer_shift;
508 	int			compact_order_failed;
509 #endif
510 
511 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
512 	/* Set to true when the PG_migrate_skip bits should be cleared */
513 	bool			compact_blockskip_flush;
514 #endif
515 
516 	bool			contiguous;
517 
518 	ZONE_PADDING(_pad3_)
519 	/* Zone statistics */
520 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
521 } ____cacheline_internodealigned_in_smp;
522 
523 enum pgdat_flags {
524 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
525 					 * a congested BDI
526 					 */
527 	PGDAT_DIRTY,			/* reclaim scanning has recently found
528 					 * many dirty file pages at the tail
529 					 * of the LRU.
530 					 */
531 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
532 					 * many pages under writeback
533 					 */
534 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
535 };
536 
537 static inline unsigned long zone_end_pfn(const struct zone *zone)
538 {
539 	return zone->zone_start_pfn + zone->spanned_pages;
540 }
541 
542 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
543 {
544 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
545 }
546 
547 static inline bool zone_is_initialized(struct zone *zone)
548 {
549 	return !!zone->wait_table;
550 }
551 
552 static inline bool zone_is_empty(struct zone *zone)
553 {
554 	return zone->spanned_pages == 0;
555 }
556 
557 /*
558  * The "priority" of VM scanning is how much of the queues we will scan in one
559  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
560  * queues ("queue_length >> 12") during an aging round.
561  */
562 #define DEF_PRIORITY 12
563 
564 /* Maximum number of zones on a zonelist */
565 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
566 
567 enum {
568 	ZONELIST_FALLBACK,	/* zonelist with fallback */
569 #ifdef CONFIG_NUMA
570 	/*
571 	 * The NUMA zonelists are doubled because we need zonelists that
572 	 * restrict the allocations to a single node for __GFP_THISNODE.
573 	 */
574 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
575 #endif
576 	MAX_ZONELISTS
577 };
578 
579 /*
580  * This struct contains information about a zone in a zonelist. It is stored
581  * here to avoid dereferences into large structures and lookups of tables
582  */
583 struct zoneref {
584 	struct zone *zone;	/* Pointer to actual zone */
585 	int zone_idx;		/* zone_idx(zoneref->zone) */
586 };
587 
588 /*
589  * One allocation request operates on a zonelist. A zonelist
590  * is a list of zones, the first one is the 'goal' of the
591  * allocation, the other zones are fallback zones, in decreasing
592  * priority.
593  *
594  * To speed the reading of the zonelist, the zonerefs contain the zone index
595  * of the entry being read. Helper functions to access information given
596  * a struct zoneref are
597  *
598  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
599  * zonelist_zone_idx()	- Return the index of the zone for an entry
600  * zonelist_node_idx()	- Return the index of the node for an entry
601  */
602 struct zonelist {
603 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
604 };
605 
606 #ifndef CONFIG_DISCONTIGMEM
607 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
608 extern struct page *mem_map;
609 #endif
610 
611 /*
612  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
613  * (mostly NUMA machines?) to denote a higher-level memory zone than the
614  * zone denotes.
615  *
616  * On NUMA machines, each NUMA node would have a pg_data_t to describe
617  * it's memory layout.
618  *
619  * Memory statistics and page replacement data structures are maintained on a
620  * per-zone basis.
621  */
622 struct bootmem_data;
623 typedef struct pglist_data {
624 	struct zone node_zones[MAX_NR_ZONES];
625 	struct zonelist node_zonelists[MAX_ZONELISTS];
626 	int nr_zones;
627 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
628 	struct page *node_mem_map;
629 #ifdef CONFIG_PAGE_EXTENSION
630 	struct page_ext *node_page_ext;
631 #endif
632 #endif
633 #ifndef CONFIG_NO_BOOTMEM
634 	struct bootmem_data *bdata;
635 #endif
636 #ifdef CONFIG_MEMORY_HOTPLUG
637 	/*
638 	 * Must be held any time you expect node_start_pfn, node_present_pages
639 	 * or node_spanned_pages stay constant.  Holding this will also
640 	 * guarantee that any pfn_valid() stays that way.
641 	 *
642 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
644 	 *
645 	 * Nests above zone->lock and zone->span_seqlock
646 	 */
647 	spinlock_t node_size_lock;
648 #endif
649 	unsigned long node_start_pfn;
650 	unsigned long node_present_pages; /* total number of physical pages */
651 	unsigned long node_spanned_pages; /* total size of physical page
652 					     range, including holes */
653 	int node_id;
654 	wait_queue_head_t kswapd_wait;
655 	wait_queue_head_t pfmemalloc_wait;
656 	struct task_struct *kswapd;	/* Protected by
657 					   mem_hotplug_begin/end() */
658 	int kswapd_order;
659 	enum zone_type kswapd_classzone_idx;
660 
661 #ifdef CONFIG_COMPACTION
662 	int kcompactd_max_order;
663 	enum zone_type kcompactd_classzone_idx;
664 	wait_queue_head_t kcompactd_wait;
665 	struct task_struct *kcompactd;
666 #endif
667 #ifdef CONFIG_NUMA_BALANCING
668 	/* Lock serializing the migrate rate limiting window */
669 	spinlock_t numabalancing_migrate_lock;
670 
671 	/* Rate limiting time interval */
672 	unsigned long numabalancing_migrate_next_window;
673 
674 	/* Number of pages migrated during the rate limiting time interval */
675 	unsigned long numabalancing_migrate_nr_pages;
676 #endif
677 	/*
678 	 * This is a per-node reserve of pages that are not available
679 	 * to userspace allocations.
680 	 */
681 	unsigned long		totalreserve_pages;
682 
683 #ifdef CONFIG_NUMA
684 	/*
685 	 * zone reclaim becomes active if more unmapped pages exist.
686 	 */
687 	unsigned long		min_unmapped_pages;
688 	unsigned long		min_slab_pages;
689 #endif /* CONFIG_NUMA */
690 
691 	/* Write-intensive fields used by page reclaim */
692 	ZONE_PADDING(_pad1_)
693 	spinlock_t		lru_lock;
694 
695 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
696 	/*
697 	 * If memory initialisation on large machines is deferred then this
698 	 * is the first PFN that needs to be initialised.
699 	 */
700 	unsigned long first_deferred_pfn;
701 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
702 
703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
704 	spinlock_t split_queue_lock;
705 	struct list_head split_queue;
706 	unsigned long split_queue_len;
707 #endif
708 
709 	/* Fields commonly accessed by the page reclaim scanner */
710 	struct lruvec		lruvec;
711 
712 	/*
713 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
714 	 * this node's LRU.  Maintained by the pageout code.
715 	 */
716 	unsigned int inactive_ratio;
717 
718 	unsigned long		flags;
719 
720 	ZONE_PADDING(_pad2_)
721 
722 	/* Per-node vmstats */
723 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
724 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
725 } pg_data_t;
726 
727 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
728 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
729 #ifdef CONFIG_FLAT_NODE_MEM_MAP
730 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
731 #else
732 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
733 #endif
734 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
735 
736 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
737 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
738 static inline spinlock_t *zone_lru_lock(struct zone *zone)
739 {
740 	return &zone->zone_pgdat->lru_lock;
741 }
742 
743 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
744 {
745 	return &pgdat->lruvec;
746 }
747 
748 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
749 {
750 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
751 }
752 
753 static inline bool pgdat_is_empty(pg_data_t *pgdat)
754 {
755 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
756 }
757 
758 static inline int zone_id(const struct zone *zone)
759 {
760 	struct pglist_data *pgdat = zone->zone_pgdat;
761 
762 	return zone - pgdat->node_zones;
763 }
764 
765 #ifdef CONFIG_ZONE_DEVICE
766 static inline bool is_dev_zone(const struct zone *zone)
767 {
768 	return zone_id(zone) == ZONE_DEVICE;
769 }
770 #else
771 static inline bool is_dev_zone(const struct zone *zone)
772 {
773 	return false;
774 }
775 #endif
776 
777 #include <linux/memory_hotplug.h>
778 
779 extern struct mutex zonelists_mutex;
780 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
781 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
782 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
783 			 int classzone_idx, unsigned int alloc_flags,
784 			 long free_pages);
785 bool zone_watermark_ok(struct zone *z, unsigned int order,
786 		unsigned long mark, int classzone_idx,
787 		unsigned int alloc_flags);
788 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
789 		unsigned long mark, int classzone_idx);
790 enum memmap_context {
791 	MEMMAP_EARLY,
792 	MEMMAP_HOTPLUG,
793 };
794 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
795 				     unsigned long size);
796 
797 extern void lruvec_init(struct lruvec *lruvec);
798 
799 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
800 {
801 #ifdef CONFIG_MEMCG
802 	return lruvec->pgdat;
803 #else
804 	return container_of(lruvec, struct pglist_data, lruvec);
805 #endif
806 }
807 
808 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
809 
810 #ifdef CONFIG_HAVE_MEMORY_PRESENT
811 void memory_present(int nid, unsigned long start, unsigned long end);
812 #else
813 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
814 #endif
815 
816 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
817 int local_memory_node(int node_id);
818 #else
819 static inline int local_memory_node(int node_id) { return node_id; };
820 #endif
821 
822 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
823 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
824 #endif
825 
826 /*
827  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
828  */
829 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
830 
831 /*
832  * Returns true if a zone has pages managed by the buddy allocator.
833  * All the reclaim decisions have to use this function rather than
834  * populated_zone(). If the whole zone is reserved then we can easily
835  * end up with populated_zone() && !managed_zone().
836  */
837 static inline bool managed_zone(struct zone *zone)
838 {
839 	return zone->managed_pages;
840 }
841 
842 /* Returns true if a zone has memory */
843 static inline bool populated_zone(struct zone *zone)
844 {
845 	return zone->present_pages;
846 }
847 
848 extern int movable_zone;
849 
850 #ifdef CONFIG_HIGHMEM
851 static inline int zone_movable_is_highmem(void)
852 {
853 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
854 	return movable_zone == ZONE_HIGHMEM;
855 #else
856 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
857 #endif
858 }
859 #endif
860 
861 static inline int is_highmem_idx(enum zone_type idx)
862 {
863 #ifdef CONFIG_HIGHMEM
864 	return (idx == ZONE_HIGHMEM ||
865 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
866 #else
867 	return 0;
868 #endif
869 }
870 
871 /**
872  * is_highmem - helper function to quickly check if a struct zone is a
873  *              highmem zone or not.  This is an attempt to keep references
874  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
875  * @zone - pointer to struct zone variable
876  */
877 static inline int is_highmem(struct zone *zone)
878 {
879 #ifdef CONFIG_HIGHMEM
880 	return is_highmem_idx(zone_idx(zone));
881 #else
882 	return 0;
883 #endif
884 }
885 
886 /* These two functions are used to setup the per zone pages min values */
887 struct ctl_table;
888 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
889 					void __user *, size_t *, loff_t *);
890 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
891 					void __user *, size_t *, loff_t *);
892 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
893 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
894 					void __user *, size_t *, loff_t *);
895 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
896 					void __user *, size_t *, loff_t *);
897 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
898 			void __user *, size_t *, loff_t *);
899 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 
902 extern int numa_zonelist_order_handler(struct ctl_table *, int,
903 			void __user *, size_t *, loff_t *);
904 extern char numa_zonelist_order[];
905 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
906 
907 #ifndef CONFIG_NEED_MULTIPLE_NODES
908 
909 extern struct pglist_data contig_page_data;
910 #define NODE_DATA(nid)		(&contig_page_data)
911 #define NODE_MEM_MAP(nid)	mem_map
912 
913 #else /* CONFIG_NEED_MULTIPLE_NODES */
914 
915 #include <asm/mmzone.h>
916 
917 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
918 
919 extern struct pglist_data *first_online_pgdat(void);
920 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
921 extern struct zone *next_zone(struct zone *zone);
922 
923 /**
924  * for_each_online_pgdat - helper macro to iterate over all online nodes
925  * @pgdat - pointer to a pg_data_t variable
926  */
927 #define for_each_online_pgdat(pgdat)			\
928 	for (pgdat = first_online_pgdat();		\
929 	     pgdat;					\
930 	     pgdat = next_online_pgdat(pgdat))
931 /**
932  * for_each_zone - helper macro to iterate over all memory zones
933  * @zone - pointer to struct zone variable
934  *
935  * The user only needs to declare the zone variable, for_each_zone
936  * fills it in.
937  */
938 #define for_each_zone(zone)			        \
939 	for (zone = (first_online_pgdat())->node_zones; \
940 	     zone;					\
941 	     zone = next_zone(zone))
942 
943 #define for_each_populated_zone(zone)		        \
944 	for (zone = (first_online_pgdat())->node_zones; \
945 	     zone;					\
946 	     zone = next_zone(zone))			\
947 		if (!populated_zone(zone))		\
948 			; /* do nothing */		\
949 		else
950 
951 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
952 {
953 	return zoneref->zone;
954 }
955 
956 static inline int zonelist_zone_idx(struct zoneref *zoneref)
957 {
958 	return zoneref->zone_idx;
959 }
960 
961 static inline int zonelist_node_idx(struct zoneref *zoneref)
962 {
963 #ifdef CONFIG_NUMA
964 	/* zone_to_nid not available in this context */
965 	return zoneref->zone->node;
966 #else
967 	return 0;
968 #endif /* CONFIG_NUMA */
969 }
970 
971 struct zoneref *__next_zones_zonelist(struct zoneref *z,
972 					enum zone_type highest_zoneidx,
973 					nodemask_t *nodes);
974 
975 /**
976  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
977  * @z - The cursor used as a starting point for the search
978  * @highest_zoneidx - The zone index of the highest zone to return
979  * @nodes - An optional nodemask to filter the zonelist with
980  *
981  * This function returns the next zone at or below a given zone index that is
982  * within the allowed nodemask using a cursor as the starting point for the
983  * search. The zoneref returned is a cursor that represents the current zone
984  * being examined. It should be advanced by one before calling
985  * next_zones_zonelist again.
986  */
987 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
988 					enum zone_type highest_zoneidx,
989 					nodemask_t *nodes)
990 {
991 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
992 		return z;
993 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
994 }
995 
996 /**
997  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
998  * @zonelist - The zonelist to search for a suitable zone
999  * @highest_zoneidx - The zone index of the highest zone to return
1000  * @nodes - An optional nodemask to filter the zonelist with
1001  * @zone - The first suitable zone found is returned via this parameter
1002  *
1003  * This function returns the first zone at or below a given zone index that is
1004  * within the allowed nodemask. The zoneref returned is a cursor that can be
1005  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1006  * one before calling.
1007  */
1008 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1009 					enum zone_type highest_zoneidx,
1010 					nodemask_t *nodes)
1011 {
1012 	return next_zones_zonelist(zonelist->_zonerefs,
1013 							highest_zoneidx, nodes);
1014 }
1015 
1016 /**
1017  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1018  * @zone - The current zone in the iterator
1019  * @z - The current pointer within zonelist->zones being iterated
1020  * @zlist - The zonelist being iterated
1021  * @highidx - The zone index of the highest zone to return
1022  * @nodemask - Nodemask allowed by the allocator
1023  *
1024  * This iterator iterates though all zones at or below a given zone index and
1025  * within a given nodemask
1026  */
1027 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1028 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1029 		zone;							\
1030 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1031 			zone = zonelist_zone(z))
1032 
1033 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034 	for (zone = z->zone;	\
1035 		zone;							\
1036 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1037 			zone = zonelist_zone(z))
1038 
1039 
1040 /**
1041  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1042  * @zone - The current zone in the iterator
1043  * @z - The current pointer within zonelist->zones being iterated
1044  * @zlist - The zonelist being iterated
1045  * @highidx - The zone index of the highest zone to return
1046  *
1047  * This iterator iterates though all zones at or below a given zone index.
1048  */
1049 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1050 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1051 
1052 #ifdef CONFIG_SPARSEMEM
1053 #include <asm/sparsemem.h>
1054 #endif
1055 
1056 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1057 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1058 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1059 {
1060 	return 0;
1061 }
1062 #endif
1063 
1064 #ifdef CONFIG_FLATMEM
1065 #define pfn_to_nid(pfn)		(0)
1066 #endif
1067 
1068 #ifdef CONFIG_SPARSEMEM
1069 
1070 /*
1071  * SECTION_SHIFT    		#bits space required to store a section #
1072  *
1073  * PA_SECTION_SHIFT		physical address to/from section number
1074  * PFN_SECTION_SHIFT		pfn to/from section number
1075  */
1076 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1077 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1078 
1079 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1080 
1081 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1082 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1083 
1084 #define SECTION_BLOCKFLAGS_BITS \
1085 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1086 
1087 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1088 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1089 #endif
1090 
1091 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1092 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1093 
1094 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1095 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1096 
1097 struct page;
1098 struct page_ext;
1099 struct mem_section {
1100 	/*
1101 	 * This is, logically, a pointer to an array of struct
1102 	 * pages.  However, it is stored with some other magic.
1103 	 * (see sparse.c::sparse_init_one_section())
1104 	 *
1105 	 * Additionally during early boot we encode node id of
1106 	 * the location of the section here to guide allocation.
1107 	 * (see sparse.c::memory_present())
1108 	 *
1109 	 * Making it a UL at least makes someone do a cast
1110 	 * before using it wrong.
1111 	 */
1112 	unsigned long section_mem_map;
1113 
1114 	/* See declaration of similar field in struct zone */
1115 	unsigned long *pageblock_flags;
1116 #ifdef CONFIG_PAGE_EXTENSION
1117 	/*
1118 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1119 	 * section. (see page_ext.h about this.)
1120 	 */
1121 	struct page_ext *page_ext;
1122 	unsigned long pad;
1123 #endif
1124 	/*
1125 	 * WARNING: mem_section must be a power-of-2 in size for the
1126 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1127 	 */
1128 };
1129 
1130 #ifdef CONFIG_SPARSEMEM_EXTREME
1131 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1132 #else
1133 #define SECTIONS_PER_ROOT	1
1134 #endif
1135 
1136 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1137 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1138 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1139 
1140 #ifdef CONFIG_SPARSEMEM_EXTREME
1141 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1142 #else
1143 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1144 #endif
1145 
1146 static inline struct mem_section *__nr_to_section(unsigned long nr)
1147 {
1148 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1149 		return NULL;
1150 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1151 }
1152 extern int __section_nr(struct mem_section* ms);
1153 extern unsigned long usemap_size(void);
1154 
1155 /*
1156  * We use the lower bits of the mem_map pointer to store
1157  * a little bit of information.  There should be at least
1158  * 3 bits here due to 32-bit alignment.
1159  */
1160 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1161 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1162 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1163 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1164 #define SECTION_NID_SHIFT	2
1165 
1166 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167 {
1168 	unsigned long map = section->section_mem_map;
1169 	map &= SECTION_MAP_MASK;
1170 	return (struct page *)map;
1171 }
1172 
1173 static inline int present_section(struct mem_section *section)
1174 {
1175 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176 }
1177 
1178 static inline int present_section_nr(unsigned long nr)
1179 {
1180 	return present_section(__nr_to_section(nr));
1181 }
1182 
1183 static inline int valid_section(struct mem_section *section)
1184 {
1185 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186 }
1187 
1188 static inline int valid_section_nr(unsigned long nr)
1189 {
1190 	return valid_section(__nr_to_section(nr));
1191 }
1192 
1193 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1194 {
1195 	return __nr_to_section(pfn_to_section_nr(pfn));
1196 }
1197 
1198 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1199 static inline int pfn_valid(unsigned long pfn)
1200 {
1201 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1202 		return 0;
1203 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1204 }
1205 #endif
1206 
1207 static inline int pfn_present(unsigned long pfn)
1208 {
1209 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1210 		return 0;
1211 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1212 }
1213 
1214 /*
1215  * These are _only_ used during initialisation, therefore they
1216  * can use __initdata ...  They could have names to indicate
1217  * this restriction.
1218  */
1219 #ifdef CONFIG_NUMA
1220 #define pfn_to_nid(pfn)							\
1221 ({									\
1222 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1223 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1224 })
1225 #else
1226 #define pfn_to_nid(pfn)		(0)
1227 #endif
1228 
1229 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1230 void sparse_init(void);
1231 #else
1232 #define sparse_init()	do {} while (0)
1233 #define sparse_index_init(_sec, _nid)  do {} while (0)
1234 #endif /* CONFIG_SPARSEMEM */
1235 
1236 /*
1237  * During memory init memblocks map pfns to nids. The search is expensive and
1238  * this caches recent lookups. The implementation of __early_pfn_to_nid
1239  * may treat start/end as pfns or sections.
1240  */
1241 struct mminit_pfnnid_cache {
1242 	unsigned long last_start;
1243 	unsigned long last_end;
1244 	int last_nid;
1245 };
1246 
1247 #ifndef early_pfn_valid
1248 #define early_pfn_valid(pfn)	(1)
1249 #endif
1250 
1251 void memory_present(int nid, unsigned long start, unsigned long end);
1252 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1253 
1254 /*
1255  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1256  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1257  * pfn_valid_within() should be used in this case; we optimise this away
1258  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1259  */
1260 #ifdef CONFIG_HOLES_IN_ZONE
1261 #define pfn_valid_within(pfn) pfn_valid(pfn)
1262 #else
1263 #define pfn_valid_within(pfn) (1)
1264 #endif
1265 
1266 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1267 /*
1268  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1269  * associated with it or not. In FLATMEM, it is expected that holes always
1270  * have valid memmap as long as there is valid PFNs either side of the hole.
1271  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1272  * entire section.
1273  *
1274  * However, an ARM, and maybe other embedded architectures in the future
1275  * free memmap backing holes to save memory on the assumption the memmap is
1276  * never used. The page_zone linkages are then broken even though pfn_valid()
1277  * returns true. A walker of the full memmap must then do this additional
1278  * check to ensure the memmap they are looking at is sane by making sure
1279  * the zone and PFN linkages are still valid. This is expensive, but walkers
1280  * of the full memmap are extremely rare.
1281  */
1282 bool memmap_valid_within(unsigned long pfn,
1283 					struct page *page, struct zone *zone);
1284 #else
1285 static inline bool memmap_valid_within(unsigned long pfn,
1286 					struct page *page, struct zone *zone)
1287 {
1288 	return true;
1289 }
1290 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1291 
1292 #endif /* !__GENERATING_BOUNDS.H */
1293 #endif /* !__ASSEMBLY__ */
1294 #endif /* _LINUX_MMZONE_H */
1295