xref: /linux-6.15/include/linux/mmzone.h (revision 82d00a93)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 static inline struct page *get_page_from_free_area(struct free_area *area,
104 					    int migratetype)
105 {
106 	return list_first_entry_or_null(&area->free_list[migratetype],
107 					struct page, lru);
108 }
109 
110 static inline bool free_area_empty(struct free_area *area, int migratetype)
111 {
112 	return list_empty(&area->free_list[migratetype]);
113 }
114 
115 struct pglist_data;
116 
117 /*
118  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
119  * So add a wild amount of padding here to ensure that they fall into separate
120  * cachelines.  There are very few zone structures in the machine, so space
121  * consumption is not a concern here.
122  */
123 #if defined(CONFIG_SMP)
124 struct zone_padding {
125 	char x[0];
126 } ____cacheline_internodealigned_in_smp;
127 #define ZONE_PADDING(name)	struct zone_padding name;
128 #else
129 #define ZONE_PADDING(name)
130 #endif
131 
132 #ifdef CONFIG_NUMA
133 enum numa_stat_item {
134 	NUMA_HIT,		/* allocated in intended node */
135 	NUMA_MISS,		/* allocated in non intended node */
136 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
137 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
138 	NUMA_LOCAL,		/* allocation from local node */
139 	NUMA_OTHER,		/* allocation from other node */
140 	NR_VM_NUMA_STAT_ITEMS
141 };
142 #else
143 #define NR_VM_NUMA_STAT_ITEMS 0
144 #endif
145 
146 enum zone_stat_item {
147 	/* First 128 byte cacheline (assuming 64 bit words) */
148 	NR_FREE_PAGES,
149 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
150 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
151 	NR_ZONE_ACTIVE_ANON,
152 	NR_ZONE_INACTIVE_FILE,
153 	NR_ZONE_ACTIVE_FILE,
154 	NR_ZONE_UNEVICTABLE,
155 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
156 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
157 	NR_PAGETABLE,		/* used for pagetables */
158 	NR_KERNEL_STACK_KB,	/* measured in KiB */
159 	/* Second 128 byte cacheline */
160 	NR_BOUNCE,
161 #if IS_ENABLED(CONFIG_ZSMALLOC)
162 	NR_ZSPAGES,		/* allocated in zsmalloc */
163 #endif
164 	NR_FREE_CMA_PAGES,
165 	NR_VM_ZONE_STAT_ITEMS };
166 
167 enum node_stat_item {
168 	NR_LRU_BASE,
169 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
170 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
171 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
172 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
173 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
174 	NR_SLAB_RECLAIMABLE,
175 	NR_SLAB_UNRECLAIMABLE,
176 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
177 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
178 	WORKINGSET_NODES,
179 	WORKINGSET_REFAULT,
180 	WORKINGSET_ACTIVATE,
181 	WORKINGSET_RESTORE,
182 	WORKINGSET_NODERECLAIM,
183 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
184 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
185 			   only modified from process context */
186 	NR_FILE_PAGES,
187 	NR_FILE_DIRTY,
188 	NR_WRITEBACK,
189 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
190 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
191 	NR_SHMEM_THPS,
192 	NR_SHMEM_PMDMAPPED,
193 	NR_FILE_THPS,
194 	NR_FILE_PMDMAPPED,
195 	NR_ANON_THPS,
196 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
197 	NR_VMSCAN_WRITE,
198 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
199 	NR_DIRTIED,		/* page dirtyings since bootup */
200 	NR_WRITTEN,		/* page writings since bootup */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_VM_NODE_STAT_ITEMS
205 };
206 
207 /*
208  * We do arithmetic on the LRU lists in various places in the code,
209  * so it is important to keep the active lists LRU_ACTIVE higher in
210  * the array than the corresponding inactive lists, and to keep
211  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
212  *
213  * This has to be kept in sync with the statistics in zone_stat_item
214  * above and the descriptions in vmstat_text in mm/vmstat.c
215  */
216 #define LRU_BASE 0
217 #define LRU_ACTIVE 1
218 #define LRU_FILE 2
219 
220 enum lru_list {
221 	LRU_INACTIVE_ANON = LRU_BASE,
222 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
223 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
224 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
225 	LRU_UNEVICTABLE,
226 	NR_LRU_LISTS
227 };
228 
229 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
230 
231 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
232 
233 static inline bool is_file_lru(enum lru_list lru)
234 {
235 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
236 }
237 
238 static inline bool is_active_lru(enum lru_list lru)
239 {
240 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
241 }
242 
243 struct zone_reclaim_stat {
244 	/*
245 	 * The pageout code in vmscan.c keeps track of how many of the
246 	 * mem/swap backed and file backed pages are referenced.
247 	 * The higher the rotated/scanned ratio, the more valuable
248 	 * that cache is.
249 	 *
250 	 * The anon LRU stats live in [0], file LRU stats in [1]
251 	 */
252 	unsigned long		recent_rotated[2];
253 	unsigned long		recent_scanned[2];
254 };
255 
256 enum lruvec_flags {
257 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
258 					 * backed by a congested BDI
259 					 */
260 };
261 
262 struct lruvec {
263 	struct list_head		lists[NR_LRU_LISTS];
264 	struct zone_reclaim_stat	reclaim_stat;
265 	/* Evictions & activations on the inactive file list */
266 	atomic_long_t			inactive_age;
267 	/* Refaults at the time of last reclaim cycle */
268 	unsigned long			refaults;
269 	/* Various lruvec state flags (enum lruvec_flags) */
270 	unsigned long			flags;
271 #ifdef CONFIG_MEMCG
272 	struct pglist_data *pgdat;
273 #endif
274 };
275 
276 /* Isolate unmapped pages */
277 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
278 /* Isolate for asynchronous migration */
279 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
280 /* Isolate unevictable pages */
281 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
282 
283 /* LRU Isolation modes. */
284 typedef unsigned __bitwise isolate_mode_t;
285 
286 enum zone_watermarks {
287 	WMARK_MIN,
288 	WMARK_LOW,
289 	WMARK_HIGH,
290 	NR_WMARK
291 };
292 
293 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
294 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
295 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
296 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
297 
298 struct per_cpu_pages {
299 	int count;		/* number of pages in the list */
300 	int high;		/* high watermark, emptying needed */
301 	int batch;		/* chunk size for buddy add/remove */
302 
303 	/* Lists of pages, one per migrate type stored on the pcp-lists */
304 	struct list_head lists[MIGRATE_PCPTYPES];
305 };
306 
307 struct per_cpu_pageset {
308 	struct per_cpu_pages pcp;
309 #ifdef CONFIG_NUMA
310 	s8 expire;
311 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
312 #endif
313 #ifdef CONFIG_SMP
314 	s8 stat_threshold;
315 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
316 #endif
317 };
318 
319 struct per_cpu_nodestat {
320 	s8 stat_threshold;
321 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
322 };
323 
324 #endif /* !__GENERATING_BOUNDS.H */
325 
326 enum zone_type {
327 	/*
328 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
329 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
330 	 * On architectures where this area covers the whole 32 bit address
331 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
332 	 * DMA addressing constraints. This distinction is important as a 32bit
333 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
334 	 * platforms may need both zones as they support peripherals with
335 	 * different DMA addressing limitations.
336 	 *
337 	 * Some examples:
338 	 *
339 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
340 	 *    rest of the lower 4G.
341 	 *
342 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
343 	 *    the specific device.
344 	 *
345 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
346 	 *    lower 4G.
347 	 *
348 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
349 	 *    depending on the specific device.
350 	 *
351 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
352 	 *
353 	 *  - ia64 and riscv only use ZONE_DMA32.
354 	 *
355 	 *  - parisc uses neither.
356 	 */
357 #ifdef CONFIG_ZONE_DMA
358 	ZONE_DMA,
359 #endif
360 #ifdef CONFIG_ZONE_DMA32
361 	ZONE_DMA32,
362 #endif
363 	/*
364 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
365 	 * performed on pages in ZONE_NORMAL if the DMA devices support
366 	 * transfers to all addressable memory.
367 	 */
368 	ZONE_NORMAL,
369 #ifdef CONFIG_HIGHMEM
370 	/*
371 	 * A memory area that is only addressable by the kernel through
372 	 * mapping portions into its own address space. This is for example
373 	 * used by i386 to allow the kernel to address the memory beyond
374 	 * 900MB. The kernel will set up special mappings (page
375 	 * table entries on i386) for each page that the kernel needs to
376 	 * access.
377 	 */
378 	ZONE_HIGHMEM,
379 #endif
380 	ZONE_MOVABLE,
381 #ifdef CONFIG_ZONE_DEVICE
382 	ZONE_DEVICE,
383 #endif
384 	__MAX_NR_ZONES
385 
386 };
387 
388 #ifndef __GENERATING_BOUNDS_H
389 
390 struct zone {
391 	/* Read-mostly fields */
392 
393 	/* zone watermarks, access with *_wmark_pages(zone) macros */
394 	unsigned long _watermark[NR_WMARK];
395 	unsigned long watermark_boost;
396 
397 	unsigned long nr_reserved_highatomic;
398 
399 	/*
400 	 * We don't know if the memory that we're going to allocate will be
401 	 * freeable or/and it will be released eventually, so to avoid totally
402 	 * wasting several GB of ram we must reserve some of the lower zone
403 	 * memory (otherwise we risk to run OOM on the lower zones despite
404 	 * there being tons of freeable ram on the higher zones).  This array is
405 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
406 	 * changes.
407 	 */
408 	long lowmem_reserve[MAX_NR_ZONES];
409 
410 #ifdef CONFIG_NUMA
411 	int node;
412 #endif
413 	struct pglist_data	*zone_pgdat;
414 	struct per_cpu_pageset __percpu *pageset;
415 
416 #ifndef CONFIG_SPARSEMEM
417 	/*
418 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
419 	 * In SPARSEMEM, this map is stored in struct mem_section
420 	 */
421 	unsigned long		*pageblock_flags;
422 #endif /* CONFIG_SPARSEMEM */
423 
424 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
425 	unsigned long		zone_start_pfn;
426 
427 	/*
428 	 * spanned_pages is the total pages spanned by the zone, including
429 	 * holes, which is calculated as:
430 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
431 	 *
432 	 * present_pages is physical pages existing within the zone, which
433 	 * is calculated as:
434 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
435 	 *
436 	 * managed_pages is present pages managed by the buddy system, which
437 	 * is calculated as (reserved_pages includes pages allocated by the
438 	 * bootmem allocator):
439 	 *	managed_pages = present_pages - reserved_pages;
440 	 *
441 	 * So present_pages may be used by memory hotplug or memory power
442 	 * management logic to figure out unmanaged pages by checking
443 	 * (present_pages - managed_pages). And managed_pages should be used
444 	 * by page allocator and vm scanner to calculate all kinds of watermarks
445 	 * and thresholds.
446 	 *
447 	 * Locking rules:
448 	 *
449 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
450 	 * It is a seqlock because it has to be read outside of zone->lock,
451 	 * and it is done in the main allocator path.  But, it is written
452 	 * quite infrequently.
453 	 *
454 	 * The span_seq lock is declared along with zone->lock because it is
455 	 * frequently read in proximity to zone->lock.  It's good to
456 	 * give them a chance of being in the same cacheline.
457 	 *
458 	 * Write access to present_pages at runtime should be protected by
459 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
460 	 * present_pages should get_online_mems() to get a stable value.
461 	 */
462 	atomic_long_t		managed_pages;
463 	unsigned long		spanned_pages;
464 	unsigned long		present_pages;
465 
466 	const char		*name;
467 
468 #ifdef CONFIG_MEMORY_ISOLATION
469 	/*
470 	 * Number of isolated pageblock. It is used to solve incorrect
471 	 * freepage counting problem due to racy retrieving migratetype
472 	 * of pageblock. Protected by zone->lock.
473 	 */
474 	unsigned long		nr_isolate_pageblock;
475 #endif
476 
477 #ifdef CONFIG_MEMORY_HOTPLUG
478 	/* see spanned/present_pages for more description */
479 	seqlock_t		span_seqlock;
480 #endif
481 
482 	int initialized;
483 
484 	/* Write-intensive fields used from the page allocator */
485 	ZONE_PADDING(_pad1_)
486 
487 	/* free areas of different sizes */
488 	struct free_area	free_area[MAX_ORDER];
489 
490 	/* zone flags, see below */
491 	unsigned long		flags;
492 
493 	/* Primarily protects free_area */
494 	spinlock_t		lock;
495 
496 	/* Write-intensive fields used by compaction and vmstats. */
497 	ZONE_PADDING(_pad2_)
498 
499 	/*
500 	 * When free pages are below this point, additional steps are taken
501 	 * when reading the number of free pages to avoid per-cpu counter
502 	 * drift allowing watermarks to be breached
503 	 */
504 	unsigned long percpu_drift_mark;
505 
506 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
507 	/* pfn where compaction free scanner should start */
508 	unsigned long		compact_cached_free_pfn;
509 	/* pfn where async and sync compaction migration scanner should start */
510 	unsigned long		compact_cached_migrate_pfn[2];
511 	unsigned long		compact_init_migrate_pfn;
512 	unsigned long		compact_init_free_pfn;
513 #endif
514 
515 #ifdef CONFIG_COMPACTION
516 	/*
517 	 * On compaction failure, 1<<compact_defer_shift compactions
518 	 * are skipped before trying again. The number attempted since
519 	 * last failure is tracked with compact_considered.
520 	 */
521 	unsigned int		compact_considered;
522 	unsigned int		compact_defer_shift;
523 	int			compact_order_failed;
524 #endif
525 
526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 	/* Set to true when the PG_migrate_skip bits should be cleared */
528 	bool			compact_blockskip_flush;
529 #endif
530 
531 	bool			contiguous;
532 
533 	ZONE_PADDING(_pad3_)
534 	/* Zone statistics */
535 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
536 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
537 } ____cacheline_internodealigned_in_smp;
538 
539 enum pgdat_flags {
540 	PGDAT_DIRTY,			/* reclaim scanning has recently found
541 					 * many dirty file pages at the tail
542 					 * of the LRU.
543 					 */
544 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
545 					 * many pages under writeback
546 					 */
547 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
548 };
549 
550 enum zone_flags {
551 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
552 					 * Cleared when kswapd is woken.
553 					 */
554 };
555 
556 static inline unsigned long zone_managed_pages(struct zone *zone)
557 {
558 	return (unsigned long)atomic_long_read(&zone->managed_pages);
559 }
560 
561 static inline unsigned long zone_end_pfn(const struct zone *zone)
562 {
563 	return zone->zone_start_pfn + zone->spanned_pages;
564 }
565 
566 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
567 {
568 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
569 }
570 
571 static inline bool zone_is_initialized(struct zone *zone)
572 {
573 	return zone->initialized;
574 }
575 
576 static inline bool zone_is_empty(struct zone *zone)
577 {
578 	return zone->spanned_pages == 0;
579 }
580 
581 /*
582  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
583  * intersection with the given zone
584  */
585 static inline bool zone_intersects(struct zone *zone,
586 		unsigned long start_pfn, unsigned long nr_pages)
587 {
588 	if (zone_is_empty(zone))
589 		return false;
590 	if (start_pfn >= zone_end_pfn(zone) ||
591 	    start_pfn + nr_pages <= zone->zone_start_pfn)
592 		return false;
593 
594 	return true;
595 }
596 
597 /*
598  * The "priority" of VM scanning is how much of the queues we will scan in one
599  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
600  * queues ("queue_length >> 12") during an aging round.
601  */
602 #define DEF_PRIORITY 12
603 
604 /* Maximum number of zones on a zonelist */
605 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
606 
607 enum {
608 	ZONELIST_FALLBACK,	/* zonelist with fallback */
609 #ifdef CONFIG_NUMA
610 	/*
611 	 * The NUMA zonelists are doubled because we need zonelists that
612 	 * restrict the allocations to a single node for __GFP_THISNODE.
613 	 */
614 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
615 #endif
616 	MAX_ZONELISTS
617 };
618 
619 /*
620  * This struct contains information about a zone in a zonelist. It is stored
621  * here to avoid dereferences into large structures and lookups of tables
622  */
623 struct zoneref {
624 	struct zone *zone;	/* Pointer to actual zone */
625 	int zone_idx;		/* zone_idx(zoneref->zone) */
626 };
627 
628 /*
629  * One allocation request operates on a zonelist. A zonelist
630  * is a list of zones, the first one is the 'goal' of the
631  * allocation, the other zones are fallback zones, in decreasing
632  * priority.
633  *
634  * To speed the reading of the zonelist, the zonerefs contain the zone index
635  * of the entry being read. Helper functions to access information given
636  * a struct zoneref are
637  *
638  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
639  * zonelist_zone_idx()	- Return the index of the zone for an entry
640  * zonelist_node_idx()	- Return the index of the node for an entry
641  */
642 struct zonelist {
643 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
644 };
645 
646 #ifndef CONFIG_DISCONTIGMEM
647 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
648 extern struct page *mem_map;
649 #endif
650 
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct deferred_split {
653 	spinlock_t split_queue_lock;
654 	struct list_head split_queue;
655 	unsigned long split_queue_len;
656 };
657 #endif
658 
659 /*
660  * On NUMA machines, each NUMA node would have a pg_data_t to describe
661  * it's memory layout. On UMA machines there is a single pglist_data which
662  * describes the whole memory.
663  *
664  * Memory statistics and page replacement data structures are maintained on a
665  * per-zone basis.
666  */
667 typedef struct pglist_data {
668 	struct zone node_zones[MAX_NR_ZONES];
669 	struct zonelist node_zonelists[MAX_ZONELISTS];
670 	int nr_zones;
671 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
672 	struct page *node_mem_map;
673 #ifdef CONFIG_PAGE_EXTENSION
674 	struct page_ext *node_page_ext;
675 #endif
676 #endif
677 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
678 	/*
679 	 * Must be held any time you expect node_start_pfn,
680 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
681 	 *
682 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
683 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
684 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
685 	 *
686 	 * Nests above zone->lock and zone->span_seqlock
687 	 */
688 	spinlock_t node_size_lock;
689 #endif
690 	unsigned long node_start_pfn;
691 	unsigned long node_present_pages; /* total number of physical pages */
692 	unsigned long node_spanned_pages; /* total size of physical page
693 					     range, including holes */
694 	int node_id;
695 	wait_queue_head_t kswapd_wait;
696 	wait_queue_head_t pfmemalloc_wait;
697 	struct task_struct *kswapd;	/* Protected by
698 					   mem_hotplug_begin/end() */
699 	int kswapd_order;
700 	enum zone_type kswapd_classzone_idx;
701 
702 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
703 
704 #ifdef CONFIG_COMPACTION
705 	int kcompactd_max_order;
706 	enum zone_type kcompactd_classzone_idx;
707 	wait_queue_head_t kcompactd_wait;
708 	struct task_struct *kcompactd;
709 #endif
710 	/*
711 	 * This is a per-node reserve of pages that are not available
712 	 * to userspace allocations.
713 	 */
714 	unsigned long		totalreserve_pages;
715 
716 #ifdef CONFIG_NUMA
717 	/*
718 	 * node reclaim becomes active if more unmapped pages exist.
719 	 */
720 	unsigned long		min_unmapped_pages;
721 	unsigned long		min_slab_pages;
722 #endif /* CONFIG_NUMA */
723 
724 	/* Write-intensive fields used by page reclaim */
725 	ZONE_PADDING(_pad1_)
726 	spinlock_t		lru_lock;
727 
728 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
729 	/*
730 	 * If memory initialisation on large machines is deferred then this
731 	 * is the first PFN that needs to be initialised.
732 	 */
733 	unsigned long first_deferred_pfn;
734 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
735 
736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
737 	struct deferred_split deferred_split_queue;
738 #endif
739 
740 	/* Fields commonly accessed by the page reclaim scanner */
741 
742 	/*
743 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
744 	 *
745 	 * Use mem_cgroup_lruvec() to look up lruvecs.
746 	 */
747 	struct lruvec		__lruvec;
748 
749 	unsigned long		flags;
750 
751 	ZONE_PADDING(_pad2_)
752 
753 	/* Per-node vmstats */
754 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
755 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
756 } pg_data_t;
757 
758 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
759 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
760 #ifdef CONFIG_FLAT_NODE_MEM_MAP
761 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
762 #else
763 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
764 #endif
765 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
766 
767 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
768 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
769 
770 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
771 {
772 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
773 }
774 
775 static inline bool pgdat_is_empty(pg_data_t *pgdat)
776 {
777 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
778 }
779 
780 #include <linux/memory_hotplug.h>
781 
782 void build_all_zonelists(pg_data_t *pgdat);
783 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
784 		   enum zone_type classzone_idx);
785 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
786 			 int classzone_idx, unsigned int alloc_flags,
787 			 long free_pages);
788 bool zone_watermark_ok(struct zone *z, unsigned int order,
789 		unsigned long mark, int classzone_idx,
790 		unsigned int alloc_flags);
791 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
792 		unsigned long mark, int classzone_idx);
793 enum memmap_context {
794 	MEMMAP_EARLY,
795 	MEMMAP_HOTPLUG,
796 };
797 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
798 				     unsigned long size);
799 
800 extern void lruvec_init(struct lruvec *lruvec);
801 
802 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
803 {
804 #ifdef CONFIG_MEMCG
805 	return lruvec->pgdat;
806 #else
807 	return container_of(lruvec, struct pglist_data, __lruvec);
808 #endif
809 }
810 
811 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
812 
813 #ifdef CONFIG_HAVE_MEMORY_PRESENT
814 void memory_present(int nid, unsigned long start, unsigned long end);
815 #else
816 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
817 #endif
818 
819 #if defined(CONFIG_SPARSEMEM)
820 void memblocks_present(void);
821 #else
822 static inline void memblocks_present(void) {}
823 #endif
824 
825 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
826 int local_memory_node(int node_id);
827 #else
828 static inline int local_memory_node(int node_id) { return node_id; };
829 #endif
830 
831 /*
832  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
833  */
834 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
835 
836 /*
837  * Returns true if a zone has pages managed by the buddy allocator.
838  * All the reclaim decisions have to use this function rather than
839  * populated_zone(). If the whole zone is reserved then we can easily
840  * end up with populated_zone() && !managed_zone().
841  */
842 static inline bool managed_zone(struct zone *zone)
843 {
844 	return zone_managed_pages(zone);
845 }
846 
847 /* Returns true if a zone has memory */
848 static inline bool populated_zone(struct zone *zone)
849 {
850 	return zone->present_pages;
851 }
852 
853 #ifdef CONFIG_NUMA
854 static inline int zone_to_nid(struct zone *zone)
855 {
856 	return zone->node;
857 }
858 
859 static inline void zone_set_nid(struct zone *zone, int nid)
860 {
861 	zone->node = nid;
862 }
863 #else
864 static inline int zone_to_nid(struct zone *zone)
865 {
866 	return 0;
867 }
868 
869 static inline void zone_set_nid(struct zone *zone, int nid) {}
870 #endif
871 
872 extern int movable_zone;
873 
874 #ifdef CONFIG_HIGHMEM
875 static inline int zone_movable_is_highmem(void)
876 {
877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
878 	return movable_zone == ZONE_HIGHMEM;
879 #else
880 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
881 #endif
882 }
883 #endif
884 
885 static inline int is_highmem_idx(enum zone_type idx)
886 {
887 #ifdef CONFIG_HIGHMEM
888 	return (idx == ZONE_HIGHMEM ||
889 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
890 #else
891 	return 0;
892 #endif
893 }
894 
895 /**
896  * is_highmem - helper function to quickly check if a struct zone is a
897  *              highmem zone or not.  This is an attempt to keep references
898  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
899  * @zone - pointer to struct zone variable
900  */
901 static inline int is_highmem(struct zone *zone)
902 {
903 #ifdef CONFIG_HIGHMEM
904 	return is_highmem_idx(zone_idx(zone));
905 #else
906 	return 0;
907 #endif
908 }
909 
910 /* These two functions are used to setup the per zone pages min values */
911 struct ctl_table;
912 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
913 					void __user *, size_t *, loff_t *);
914 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
915 					void __user *, size_t *, loff_t *);
916 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
917 					void __user *, size_t *, loff_t *);
918 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
919 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
920 					void __user *, size_t *, loff_t *);
921 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
922 					void __user *, size_t *, loff_t *);
923 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
924 			void __user *, size_t *, loff_t *);
925 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
926 			void __user *, size_t *, loff_t *);
927 
928 extern int numa_zonelist_order_handler(struct ctl_table *, int,
929 			void __user *, size_t *, loff_t *);
930 extern char numa_zonelist_order[];
931 #define NUMA_ZONELIST_ORDER_LEN	16
932 
933 #ifndef CONFIG_NEED_MULTIPLE_NODES
934 
935 extern struct pglist_data contig_page_data;
936 #define NODE_DATA(nid)		(&contig_page_data)
937 #define NODE_MEM_MAP(nid)	mem_map
938 
939 #else /* CONFIG_NEED_MULTIPLE_NODES */
940 
941 #include <asm/mmzone.h>
942 
943 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
944 
945 extern struct pglist_data *first_online_pgdat(void);
946 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
947 extern struct zone *next_zone(struct zone *zone);
948 
949 /**
950  * for_each_online_pgdat - helper macro to iterate over all online nodes
951  * @pgdat - pointer to a pg_data_t variable
952  */
953 #define for_each_online_pgdat(pgdat)			\
954 	for (pgdat = first_online_pgdat();		\
955 	     pgdat;					\
956 	     pgdat = next_online_pgdat(pgdat))
957 /**
958  * for_each_zone - helper macro to iterate over all memory zones
959  * @zone - pointer to struct zone variable
960  *
961  * The user only needs to declare the zone variable, for_each_zone
962  * fills it in.
963  */
964 #define for_each_zone(zone)			        \
965 	for (zone = (first_online_pgdat())->node_zones; \
966 	     zone;					\
967 	     zone = next_zone(zone))
968 
969 #define for_each_populated_zone(zone)		        \
970 	for (zone = (first_online_pgdat())->node_zones; \
971 	     zone;					\
972 	     zone = next_zone(zone))			\
973 		if (!populated_zone(zone))		\
974 			; /* do nothing */		\
975 		else
976 
977 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
978 {
979 	return zoneref->zone;
980 }
981 
982 static inline int zonelist_zone_idx(struct zoneref *zoneref)
983 {
984 	return zoneref->zone_idx;
985 }
986 
987 static inline int zonelist_node_idx(struct zoneref *zoneref)
988 {
989 	return zone_to_nid(zoneref->zone);
990 }
991 
992 struct zoneref *__next_zones_zonelist(struct zoneref *z,
993 					enum zone_type highest_zoneidx,
994 					nodemask_t *nodes);
995 
996 /**
997  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
998  * @z - The cursor used as a starting point for the search
999  * @highest_zoneidx - The zone index of the highest zone to return
1000  * @nodes - An optional nodemask to filter the zonelist with
1001  *
1002  * This function returns the next zone at or below a given zone index that is
1003  * within the allowed nodemask using a cursor as the starting point for the
1004  * search. The zoneref returned is a cursor that represents the current zone
1005  * being examined. It should be advanced by one before calling
1006  * next_zones_zonelist again.
1007  */
1008 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1009 					enum zone_type highest_zoneidx,
1010 					nodemask_t *nodes)
1011 {
1012 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1013 		return z;
1014 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1015 }
1016 
1017 /**
1018  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1019  * @zonelist - The zonelist to search for a suitable zone
1020  * @highest_zoneidx - The zone index of the highest zone to return
1021  * @nodes - An optional nodemask to filter the zonelist with
1022  * @return - Zoneref pointer for the first suitable zone found (see below)
1023  *
1024  * This function returns the first zone at or below a given zone index that is
1025  * within the allowed nodemask. The zoneref returned is a cursor that can be
1026  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1027  * one before calling.
1028  *
1029  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1030  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1031  * update due to cpuset modification.
1032  */
1033 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1034 					enum zone_type highest_zoneidx,
1035 					nodemask_t *nodes)
1036 {
1037 	return next_zones_zonelist(zonelist->_zonerefs,
1038 							highest_zoneidx, nodes);
1039 }
1040 
1041 /**
1042  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1043  * @zone - The current zone in the iterator
1044  * @z - The current pointer within zonelist->_zonerefs being iterated
1045  * @zlist - The zonelist being iterated
1046  * @highidx - The zone index of the highest zone to return
1047  * @nodemask - Nodemask allowed by the allocator
1048  *
1049  * This iterator iterates though all zones at or below a given zone index and
1050  * within a given nodemask
1051  */
1052 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1053 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1054 		zone;							\
1055 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1056 			zone = zonelist_zone(z))
1057 
1058 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1059 	for (zone = z->zone;	\
1060 		zone;							\
1061 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1062 			zone = zonelist_zone(z))
1063 
1064 
1065 /**
1066  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1067  * @zone - The current zone in the iterator
1068  * @z - The current pointer within zonelist->zones being iterated
1069  * @zlist - The zonelist being iterated
1070  * @highidx - The zone index of the highest zone to return
1071  *
1072  * This iterator iterates though all zones at or below a given zone index.
1073  */
1074 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1075 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1076 
1077 #ifdef CONFIG_SPARSEMEM
1078 #include <asm/sparsemem.h>
1079 #endif
1080 
1081 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1082 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1083 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1084 {
1085 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1086 	return 0;
1087 }
1088 #endif
1089 
1090 #ifdef CONFIG_FLATMEM
1091 #define pfn_to_nid(pfn)		(0)
1092 #endif
1093 
1094 #ifdef CONFIG_SPARSEMEM
1095 
1096 /*
1097  * SECTION_SHIFT    		#bits space required to store a section #
1098  *
1099  * PA_SECTION_SHIFT		physical address to/from section number
1100  * PFN_SECTION_SHIFT		pfn to/from section number
1101  */
1102 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1103 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1104 
1105 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1106 
1107 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1108 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1109 
1110 #define SECTION_BLOCKFLAGS_BITS \
1111 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1112 
1113 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1114 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1115 #endif
1116 
1117 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1118 {
1119 	return pfn >> PFN_SECTION_SHIFT;
1120 }
1121 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1122 {
1123 	return sec << PFN_SECTION_SHIFT;
1124 }
1125 
1126 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1127 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1128 
1129 #define SUBSECTION_SHIFT 21
1130 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1131 
1132 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1133 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1134 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1135 
1136 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1137 #error Subsection size exceeds section size
1138 #else
1139 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1140 #endif
1141 
1142 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1143 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1144 
1145 struct mem_section_usage {
1146 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1147 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1148 #endif
1149 	/* See declaration of similar field in struct zone */
1150 	unsigned long pageblock_flags[0];
1151 };
1152 
1153 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1154 
1155 struct page;
1156 struct page_ext;
1157 struct mem_section {
1158 	/*
1159 	 * This is, logically, a pointer to an array of struct
1160 	 * pages.  However, it is stored with some other magic.
1161 	 * (see sparse.c::sparse_init_one_section())
1162 	 *
1163 	 * Additionally during early boot we encode node id of
1164 	 * the location of the section here to guide allocation.
1165 	 * (see sparse.c::memory_present())
1166 	 *
1167 	 * Making it a UL at least makes someone do a cast
1168 	 * before using it wrong.
1169 	 */
1170 	unsigned long section_mem_map;
1171 
1172 	struct mem_section_usage *usage;
1173 #ifdef CONFIG_PAGE_EXTENSION
1174 	/*
1175 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1176 	 * section. (see page_ext.h about this.)
1177 	 */
1178 	struct page_ext *page_ext;
1179 	unsigned long pad;
1180 #endif
1181 	/*
1182 	 * WARNING: mem_section must be a power-of-2 in size for the
1183 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1184 	 */
1185 };
1186 
1187 #ifdef CONFIG_SPARSEMEM_EXTREME
1188 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1189 #else
1190 #define SECTIONS_PER_ROOT	1
1191 #endif
1192 
1193 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1194 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1195 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1196 
1197 #ifdef CONFIG_SPARSEMEM_EXTREME
1198 extern struct mem_section **mem_section;
1199 #else
1200 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1201 #endif
1202 
1203 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1204 {
1205 	return ms->usage->pageblock_flags;
1206 }
1207 
1208 static inline struct mem_section *__nr_to_section(unsigned long nr)
1209 {
1210 #ifdef CONFIG_SPARSEMEM_EXTREME
1211 	if (!mem_section)
1212 		return NULL;
1213 #endif
1214 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1215 		return NULL;
1216 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1217 }
1218 extern unsigned long __section_nr(struct mem_section *ms);
1219 extern size_t mem_section_usage_size(void);
1220 
1221 /*
1222  * We use the lower bits of the mem_map pointer to store
1223  * a little bit of information.  The pointer is calculated
1224  * as mem_map - section_nr_to_pfn(pnum).  The result is
1225  * aligned to the minimum alignment of the two values:
1226  *   1. All mem_map arrays are page-aligned.
1227  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1228  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1229  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1230  *      worst combination is powerpc with 256k pages,
1231  *      which results in PFN_SECTION_SHIFT equal 6.
1232  * To sum it up, at least 6 bits are available.
1233  */
1234 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1235 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1236 #define SECTION_IS_ONLINE	(1UL<<2)
1237 #define SECTION_IS_EARLY	(1UL<<3)
1238 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1239 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1240 #define SECTION_NID_SHIFT	3
1241 
1242 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1243 {
1244 	unsigned long map = section->section_mem_map;
1245 	map &= SECTION_MAP_MASK;
1246 	return (struct page *)map;
1247 }
1248 
1249 static inline int present_section(struct mem_section *section)
1250 {
1251 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1252 }
1253 
1254 static inline int present_section_nr(unsigned long nr)
1255 {
1256 	return present_section(__nr_to_section(nr));
1257 }
1258 
1259 static inline int valid_section(struct mem_section *section)
1260 {
1261 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1262 }
1263 
1264 static inline int early_section(struct mem_section *section)
1265 {
1266 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1267 }
1268 
1269 static inline int valid_section_nr(unsigned long nr)
1270 {
1271 	return valid_section(__nr_to_section(nr));
1272 }
1273 
1274 static inline int online_section(struct mem_section *section)
1275 {
1276 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1277 }
1278 
1279 static inline int online_section_nr(unsigned long nr)
1280 {
1281 	return online_section(__nr_to_section(nr));
1282 }
1283 
1284 #ifdef CONFIG_MEMORY_HOTPLUG
1285 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1286 #ifdef CONFIG_MEMORY_HOTREMOVE
1287 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1288 #endif
1289 #endif
1290 
1291 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1292 {
1293 	return __nr_to_section(pfn_to_section_nr(pfn));
1294 }
1295 
1296 extern unsigned long __highest_present_section_nr;
1297 
1298 static inline int subsection_map_index(unsigned long pfn)
1299 {
1300 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1301 }
1302 
1303 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1304 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1305 {
1306 	int idx = subsection_map_index(pfn);
1307 
1308 	return test_bit(idx, ms->usage->subsection_map);
1309 }
1310 #else
1311 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1312 {
1313 	return 1;
1314 }
1315 #endif
1316 
1317 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1318 static inline int pfn_valid(unsigned long pfn)
1319 {
1320 	struct mem_section *ms;
1321 
1322 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1323 		return 0;
1324 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1325 	if (!valid_section(ms))
1326 		return 0;
1327 	/*
1328 	 * Traditionally early sections always returned pfn_valid() for
1329 	 * the entire section-sized span.
1330 	 */
1331 	return early_section(ms) || pfn_section_valid(ms, pfn);
1332 }
1333 #endif
1334 
1335 static inline int pfn_in_present_section(unsigned long pfn)
1336 {
1337 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1338 		return 0;
1339 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1340 }
1341 
1342 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1343 {
1344 	while (++section_nr <= __highest_present_section_nr) {
1345 		if (present_section_nr(section_nr))
1346 			return section_nr;
1347 	}
1348 
1349 	return -1;
1350 }
1351 
1352 /*
1353  * These are _only_ used during initialisation, therefore they
1354  * can use __initdata ...  They could have names to indicate
1355  * this restriction.
1356  */
1357 #ifdef CONFIG_NUMA
1358 #define pfn_to_nid(pfn)							\
1359 ({									\
1360 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1361 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1362 })
1363 #else
1364 #define pfn_to_nid(pfn)		(0)
1365 #endif
1366 
1367 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1368 void sparse_init(void);
1369 #else
1370 #define sparse_init()	do {} while (0)
1371 #define sparse_index_init(_sec, _nid)  do {} while (0)
1372 #define pfn_in_present_section pfn_valid
1373 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1374 #endif /* CONFIG_SPARSEMEM */
1375 
1376 /*
1377  * During memory init memblocks map pfns to nids. The search is expensive and
1378  * this caches recent lookups. The implementation of __early_pfn_to_nid
1379  * may treat start/end as pfns or sections.
1380  */
1381 struct mminit_pfnnid_cache {
1382 	unsigned long last_start;
1383 	unsigned long last_end;
1384 	int last_nid;
1385 };
1386 
1387 #ifndef early_pfn_valid
1388 #define early_pfn_valid(pfn)	(1)
1389 #endif
1390 
1391 void memory_present(int nid, unsigned long start, unsigned long end);
1392 
1393 /*
1394  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1395  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1396  * pfn_valid_within() should be used in this case; we optimise this away
1397  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1398  */
1399 #ifdef CONFIG_HOLES_IN_ZONE
1400 #define pfn_valid_within(pfn) pfn_valid(pfn)
1401 #else
1402 #define pfn_valid_within(pfn) (1)
1403 #endif
1404 
1405 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1406 /*
1407  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1408  * associated with it or not. This means that a struct page exists for this
1409  * pfn. The caller cannot assume the page is fully initialized in general.
1410  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1411  * will ensure the struct page is fully online and initialized. Special pages
1412  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1413  *
1414  * In FLATMEM, it is expected that holes always have valid memmap as long as
1415  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1416  * that a valid section has a memmap for the entire section.
1417  *
1418  * However, an ARM, and maybe other embedded architectures in the future
1419  * free memmap backing holes to save memory on the assumption the memmap is
1420  * never used. The page_zone linkages are then broken even though pfn_valid()
1421  * returns true. A walker of the full memmap must then do this additional
1422  * check to ensure the memmap they are looking at is sane by making sure
1423  * the zone and PFN linkages are still valid. This is expensive, but walkers
1424  * of the full memmap are extremely rare.
1425  */
1426 bool memmap_valid_within(unsigned long pfn,
1427 					struct page *page, struct zone *zone);
1428 #else
1429 static inline bool memmap_valid_within(unsigned long pfn,
1430 					struct page *page, struct zone *zone)
1431 {
1432 	return true;
1433 }
1434 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1435 
1436 #endif /* !__GENERATING_BOUNDS.H */
1437 #endif /* !__ASSEMBLY__ */
1438 #endif /* _LINUX_MMZONE_H */
1439