1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 #ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157 #endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160 enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206 #endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209 #ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211 #endif 212 #ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214 #endif 215 #ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218 #endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223 NR_VM_NODE_STAT_ITEMS 224 }; 225 226 /* 227 * Returns true if the item should be printed in THPs (/proc/vmstat 228 * currently prints number of anon, file and shmem THPs. But the item 229 * is charged in pages). 230 */ 231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 232 { 233 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 234 return false; 235 236 return item == NR_ANON_THPS || 237 item == NR_FILE_THPS || 238 item == NR_SHMEM_THPS || 239 item == NR_SHMEM_PMDMAPPED || 240 item == NR_FILE_PMDMAPPED; 241 } 242 243 /* 244 * Returns true if the value is measured in bytes (most vmstat values are 245 * measured in pages). This defines the API part, the internal representation 246 * might be different. 247 */ 248 static __always_inline bool vmstat_item_in_bytes(int idx) 249 { 250 /* 251 * Global and per-node slab counters track slab pages. 252 * It's expected that changes are multiples of PAGE_SIZE. 253 * Internally values are stored in pages. 254 * 255 * Per-memcg and per-lruvec counters track memory, consumed 256 * by individual slab objects. These counters are actually 257 * byte-precise. 258 */ 259 return (idx == NR_SLAB_RECLAIMABLE_B || 260 idx == NR_SLAB_UNRECLAIMABLE_B); 261 } 262 263 /* 264 * We do arithmetic on the LRU lists in various places in the code, 265 * so it is important to keep the active lists LRU_ACTIVE higher in 266 * the array than the corresponding inactive lists, and to keep 267 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 268 * 269 * This has to be kept in sync with the statistics in zone_stat_item 270 * above and the descriptions in vmstat_text in mm/vmstat.c 271 */ 272 #define LRU_BASE 0 273 #define LRU_ACTIVE 1 274 #define LRU_FILE 2 275 276 enum lru_list { 277 LRU_INACTIVE_ANON = LRU_BASE, 278 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 279 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 280 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 281 LRU_UNEVICTABLE, 282 NR_LRU_LISTS 283 }; 284 285 enum vmscan_throttle_state { 286 VMSCAN_THROTTLE_WRITEBACK, 287 VMSCAN_THROTTLE_ISOLATED, 288 VMSCAN_THROTTLE_NOPROGRESS, 289 VMSCAN_THROTTLE_CONGESTED, 290 NR_VMSCAN_THROTTLE, 291 }; 292 293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 294 295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 296 297 static inline bool is_file_lru(enum lru_list lru) 298 { 299 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 300 } 301 302 static inline bool is_active_lru(enum lru_list lru) 303 { 304 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 305 } 306 307 #define WORKINGSET_ANON 0 308 #define WORKINGSET_FILE 1 309 #define ANON_AND_FILE 2 310 311 enum lruvec_flags { 312 /* 313 * An lruvec has many dirty pages backed by a congested BDI: 314 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 315 * It can be cleared by cgroup reclaim or kswapd. 316 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 317 * It can only be cleared by kswapd. 318 * 319 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 320 * reclaim, but not vice versa. This only applies to the root cgroup. 321 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 322 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 323 * by kswapd). 324 */ 325 LRUVEC_CGROUP_CONGESTED, 326 LRUVEC_NODE_CONGESTED, 327 }; 328 329 #endif /* !__GENERATING_BOUNDS_H */ 330 331 /* 332 * Evictable pages are divided into multiple generations. The youngest and the 333 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 334 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 335 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 336 * corresponding generation. The gen counter in folio->flags stores gen+1 while 337 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 338 * 339 * A page is added to the youngest generation on faulting. The aging needs to 340 * check the accessed bit at least twice before handing this page over to the 341 * eviction. The first check takes care of the accessed bit set on the initial 342 * fault; the second check makes sure this page hasn't been used since then. 343 * This process, AKA second chance, requires a minimum of two generations, 344 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 345 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 346 * rest of generations, if they exist, are considered inactive. See 347 * lru_gen_is_active(). 348 * 349 * PG_active is always cleared while a page is on one of lrugen->folios[] so 350 * that the aging needs not to worry about it. And it's set again when a page 351 * considered active is isolated for non-reclaiming purposes, e.g., migration. 352 * See lru_gen_add_folio() and lru_gen_del_folio(). 353 * 354 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 355 * number of categories of the active/inactive LRU when keeping track of 356 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 357 * in folio->flags. 358 */ 359 #define MIN_NR_GENS 2U 360 #define MAX_NR_GENS 4U 361 362 /* 363 * Each generation is divided into multiple tiers. A page accessed N times 364 * through file descriptors is in tier order_base_2(N). A page in the first tier 365 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 366 * tables or read ahead. A page in any other tier (N>1) is marked by 367 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 368 * supported without using additional bits in folio->flags. 369 * 370 * In contrast to moving across generations which requires the LRU lock, moving 371 * across tiers only involves atomic operations on folio->flags and therefore 372 * has a negligible cost in the buffered access path. In the eviction path, 373 * comparisons of refaulted/(evicted+protected) from the first tier and the 374 * rest infer whether pages accessed multiple times through file descriptors 375 * are statistically hot and thus worth protecting. 376 * 377 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 378 * number of categories of the active/inactive LRU when keeping track of 379 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 380 * folio->flags. 381 */ 382 #define MAX_NR_TIERS 4U 383 384 #ifndef __GENERATING_BOUNDS_H 385 386 struct lruvec; 387 struct page_vma_mapped_walk; 388 389 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 390 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 391 392 #ifdef CONFIG_LRU_GEN 393 394 enum { 395 LRU_GEN_ANON, 396 LRU_GEN_FILE, 397 }; 398 399 enum { 400 LRU_GEN_CORE, 401 LRU_GEN_MM_WALK, 402 LRU_GEN_NONLEAF_YOUNG, 403 NR_LRU_GEN_CAPS 404 }; 405 406 #define MIN_LRU_BATCH BITS_PER_LONG 407 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 408 409 /* whether to keep historical stats from evicted generations */ 410 #ifdef CONFIG_LRU_GEN_STATS 411 #define NR_HIST_GENS MAX_NR_GENS 412 #else 413 #define NR_HIST_GENS 1U 414 #endif 415 416 /* 417 * The youngest generation number is stored in max_seq for both anon and file 418 * types as they are aged on an equal footing. The oldest generation numbers are 419 * stored in min_seq[] separately for anon and file types as clean file pages 420 * can be evicted regardless of swap constraints. 421 * 422 * Normally anon and file min_seq are in sync. But if swapping is constrained, 423 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 424 * min_seq behind. 425 * 426 * The number of pages in each generation is eventually consistent and therefore 427 * can be transiently negative when reset_batch_size() is pending. 428 */ 429 struct lru_gen_folio { 430 /* the aging increments the youngest generation number */ 431 unsigned long max_seq; 432 /* the eviction increments the oldest generation numbers */ 433 unsigned long min_seq[ANON_AND_FILE]; 434 /* the birth time of each generation in jiffies */ 435 unsigned long timestamps[MAX_NR_GENS]; 436 /* the multi-gen LRU lists, lazily sorted on eviction */ 437 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 438 /* the multi-gen LRU sizes, eventually consistent */ 439 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 440 /* the exponential moving average of refaulted */ 441 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 442 /* the exponential moving average of evicted+protected */ 443 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 444 /* the first tier doesn't need protection, hence the minus one */ 445 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 446 /* can be modified without holding the LRU lock */ 447 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 448 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 449 /* whether the multi-gen LRU is enabled */ 450 bool enabled; 451 /* the memcg generation this lru_gen_folio belongs to */ 452 u8 gen; 453 /* the list segment this lru_gen_folio belongs to */ 454 u8 seg; 455 /* per-node lru_gen_folio list for global reclaim */ 456 struct hlist_nulls_node list; 457 }; 458 459 enum { 460 MM_LEAF_TOTAL, /* total leaf entries */ 461 MM_LEAF_OLD, /* old leaf entries */ 462 MM_LEAF_YOUNG, /* young leaf entries */ 463 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 464 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 465 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 466 NR_MM_STATS 467 }; 468 469 /* double-buffering Bloom filters */ 470 #define NR_BLOOM_FILTERS 2 471 472 struct lru_gen_mm_state { 473 /* synced with max_seq after each iteration */ 474 unsigned long seq; 475 /* where the current iteration continues after */ 476 struct list_head *head; 477 /* where the last iteration ended before */ 478 struct list_head *tail; 479 /* Bloom filters flip after each iteration */ 480 unsigned long *filters[NR_BLOOM_FILTERS]; 481 /* the mm stats for debugging */ 482 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 483 }; 484 485 struct lru_gen_mm_walk { 486 /* the lruvec under reclaim */ 487 struct lruvec *lruvec; 488 /* max_seq from lru_gen_folio: can be out of date */ 489 unsigned long seq; 490 /* the next address within an mm to scan */ 491 unsigned long next_addr; 492 /* to batch promoted pages */ 493 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 494 /* to batch the mm stats */ 495 int mm_stats[NR_MM_STATS]; 496 /* total batched items */ 497 int batched; 498 bool can_swap; 499 bool force_scan; 500 }; 501 502 /* 503 * For each node, memcgs are divided into two generations: the old and the 504 * young. For each generation, memcgs are randomly sharded into multiple bins 505 * to improve scalability. For each bin, the hlist_nulls is virtually divided 506 * into three segments: the head, the tail and the default. 507 * 508 * An onlining memcg is added to the tail of a random bin in the old generation. 509 * The eviction starts at the head of a random bin in the old generation. The 510 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 511 * the old generation, is incremented when all its bins become empty. 512 * 513 * There are four operations: 514 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 515 * current generation (old or young) and updates its "seg" to "head"; 516 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 517 * current generation (old or young) and updates its "seg" to "tail"; 518 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 519 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 520 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 521 * young generation, updates its "gen" to "young" and resets its "seg" to 522 * "default". 523 * 524 * The events that trigger the above operations are: 525 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 526 * 2. The first attempt to reclaim a memcg below low, which triggers 527 * MEMCG_LRU_TAIL; 528 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 529 * threshold, which triggers MEMCG_LRU_TAIL; 530 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 531 * threshold, which triggers MEMCG_LRU_YOUNG; 532 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 533 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 534 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 535 * 536 * Notes: 537 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 538 * of their max_seq counters ensures the eventual fairness to all eligible 539 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 540 * 2. There are only two valid generations: old (seq) and young (seq+1). 541 * MEMCG_NR_GENS is set to three so that when reading the generation counter 542 * locklessly, a stale value (seq-1) does not wraparound to young. 543 */ 544 #define MEMCG_NR_GENS 3 545 #define MEMCG_NR_BINS 8 546 547 struct lru_gen_memcg { 548 /* the per-node memcg generation counter */ 549 unsigned long seq; 550 /* each memcg has one lru_gen_folio per node */ 551 unsigned long nr_memcgs[MEMCG_NR_GENS]; 552 /* per-node lru_gen_folio list for global reclaim */ 553 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 554 /* protects the above */ 555 spinlock_t lock; 556 }; 557 558 void lru_gen_init_pgdat(struct pglist_data *pgdat); 559 void lru_gen_init_lruvec(struct lruvec *lruvec); 560 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 561 562 void lru_gen_init_memcg(struct mem_cgroup *memcg); 563 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 564 void lru_gen_online_memcg(struct mem_cgroup *memcg); 565 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 566 void lru_gen_release_memcg(struct mem_cgroup *memcg); 567 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 568 569 #else /* !CONFIG_LRU_GEN */ 570 571 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 572 { 573 } 574 575 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 576 { 577 } 578 579 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 580 { 581 } 582 583 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 584 { 585 } 586 587 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 588 { 589 } 590 591 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 592 { 593 } 594 595 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 596 { 597 } 598 599 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 600 { 601 } 602 603 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 604 { 605 } 606 607 #endif /* CONFIG_LRU_GEN */ 608 609 struct lruvec { 610 struct list_head lists[NR_LRU_LISTS]; 611 /* per lruvec lru_lock for memcg */ 612 spinlock_t lru_lock; 613 /* 614 * These track the cost of reclaiming one LRU - file or anon - 615 * over the other. As the observed cost of reclaiming one LRU 616 * increases, the reclaim scan balance tips toward the other. 617 */ 618 unsigned long anon_cost; 619 unsigned long file_cost; 620 /* Non-resident age, driven by LRU movement */ 621 atomic_long_t nonresident_age; 622 /* Refaults at the time of last reclaim cycle */ 623 unsigned long refaults[ANON_AND_FILE]; 624 /* Various lruvec state flags (enum lruvec_flags) */ 625 unsigned long flags; 626 #ifdef CONFIG_LRU_GEN 627 /* evictable pages divided into generations */ 628 struct lru_gen_folio lrugen; 629 #ifdef CONFIG_LRU_GEN_WALKS_MMU 630 /* to concurrently iterate lru_gen_mm_list */ 631 struct lru_gen_mm_state mm_state; 632 #endif 633 #endif /* CONFIG_LRU_GEN */ 634 #ifdef CONFIG_MEMCG 635 struct pglist_data *pgdat; 636 #endif 637 struct zswap_lruvec_state zswap_lruvec_state; 638 }; 639 640 /* Isolate for asynchronous migration */ 641 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 642 /* Isolate unevictable pages */ 643 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 644 645 /* LRU Isolation modes. */ 646 typedef unsigned __bitwise isolate_mode_t; 647 648 enum zone_watermarks { 649 WMARK_MIN, 650 WMARK_LOW, 651 WMARK_HIGH, 652 WMARK_PROMO, 653 NR_WMARK 654 }; 655 656 /* 657 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 658 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 659 * it should not contribute to serious fragmentation causing THP allocation 660 * failures. 661 */ 662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 663 #define NR_PCP_THP 1 664 #else 665 #define NR_PCP_THP 0 666 #endif 667 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 668 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 669 670 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 671 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 672 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 673 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 674 675 /* 676 * Flags used in pcp->flags field. 677 * 678 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 679 * previous page freeing. To avoid to drain PCP for an accident 680 * high-order page freeing. 681 * 682 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 683 * draining PCP for consecutive high-order pages freeing without 684 * allocation if data cache slice of CPU is large enough. To reduce 685 * zone lock contention and keep cache-hot pages reusing. 686 */ 687 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 688 #define PCPF_FREE_HIGH_BATCH BIT(1) 689 690 struct per_cpu_pages { 691 spinlock_t lock; /* Protects lists field */ 692 int count; /* number of pages in the list */ 693 int high; /* high watermark, emptying needed */ 694 int high_min; /* min high watermark */ 695 int high_max; /* max high watermark */ 696 int batch; /* chunk size for buddy add/remove */ 697 u8 flags; /* protected by pcp->lock */ 698 u8 alloc_factor; /* batch scaling factor during allocate */ 699 #ifdef CONFIG_NUMA 700 u8 expire; /* When 0, remote pagesets are drained */ 701 #endif 702 short free_count; /* consecutive free count */ 703 704 /* Lists of pages, one per migrate type stored on the pcp-lists */ 705 struct list_head lists[NR_PCP_LISTS]; 706 } ____cacheline_aligned_in_smp; 707 708 struct per_cpu_zonestat { 709 #ifdef CONFIG_SMP 710 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 711 s8 stat_threshold; 712 #endif 713 #ifdef CONFIG_NUMA 714 /* 715 * Low priority inaccurate counters that are only folded 716 * on demand. Use a large type to avoid the overhead of 717 * folding during refresh_cpu_vm_stats. 718 */ 719 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 720 #endif 721 }; 722 723 struct per_cpu_nodestat { 724 s8 stat_threshold; 725 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 726 }; 727 728 #endif /* !__GENERATING_BOUNDS.H */ 729 730 enum zone_type { 731 /* 732 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 733 * to DMA to all of the addressable memory (ZONE_NORMAL). 734 * On architectures where this area covers the whole 32 bit address 735 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 736 * DMA addressing constraints. This distinction is important as a 32bit 737 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 738 * platforms may need both zones as they support peripherals with 739 * different DMA addressing limitations. 740 */ 741 #ifdef CONFIG_ZONE_DMA 742 ZONE_DMA, 743 #endif 744 #ifdef CONFIG_ZONE_DMA32 745 ZONE_DMA32, 746 #endif 747 /* 748 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 749 * performed on pages in ZONE_NORMAL if the DMA devices support 750 * transfers to all addressable memory. 751 */ 752 ZONE_NORMAL, 753 #ifdef CONFIG_HIGHMEM 754 /* 755 * A memory area that is only addressable by the kernel through 756 * mapping portions into its own address space. This is for example 757 * used by i386 to allow the kernel to address the memory beyond 758 * 900MB. The kernel will set up special mappings (page 759 * table entries on i386) for each page that the kernel needs to 760 * access. 761 */ 762 ZONE_HIGHMEM, 763 #endif 764 /* 765 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 766 * movable pages with few exceptional cases described below. Main use 767 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 768 * likely to succeed, and to locally limit unmovable allocations - e.g., 769 * to increase the number of THP/huge pages. Notable special cases are: 770 * 771 * 1. Pinned pages: (long-term) pinning of movable pages might 772 * essentially turn such pages unmovable. Therefore, we do not allow 773 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 774 * faulted, they come from the right zone right away. However, it is 775 * still possible that address space already has pages in 776 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 777 * touches that memory before pinning). In such case we migrate them 778 * to a different zone. When migration fails - pinning fails. 779 * 2. memblock allocations: kernelcore/movablecore setups might create 780 * situations where ZONE_MOVABLE contains unmovable allocations 781 * after boot. Memory offlining and allocations fail early. 782 * 3. Memory holes: kernelcore/movablecore setups might create very rare 783 * situations where ZONE_MOVABLE contains memory holes after boot, 784 * for example, if we have sections that are only partially 785 * populated. Memory offlining and allocations fail early. 786 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 787 * memory offlining, such pages cannot be allocated. 788 * 5. Unmovable PG_offline pages: in paravirtualized environments, 789 * hotplugged memory blocks might only partially be managed by the 790 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 791 * parts not manged by the buddy are unmovable PG_offline pages. In 792 * some cases (virtio-mem), such pages can be skipped during 793 * memory offlining, however, cannot be moved/allocated. These 794 * techniques might use alloc_contig_range() to hide previously 795 * exposed pages from the buddy again (e.g., to implement some sort 796 * of memory unplug in virtio-mem). 797 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 798 * situations where ZERO_PAGE(0) which is allocated differently 799 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 800 * cannot be migrated. 801 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 802 * memory to the MOVABLE zone, the vmemmap pages are also placed in 803 * such zone. Such pages cannot be really moved around as they are 804 * self-stored in the range, but they are treated as movable when 805 * the range they describe is about to be offlined. 806 * 807 * In general, no unmovable allocations that degrade memory offlining 808 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 809 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 810 * if has_unmovable_pages() states that there are no unmovable pages, 811 * there can be false negatives). 812 */ 813 ZONE_MOVABLE, 814 #ifdef CONFIG_ZONE_DEVICE 815 ZONE_DEVICE, 816 #endif 817 __MAX_NR_ZONES 818 819 }; 820 821 #ifndef __GENERATING_BOUNDS_H 822 823 #define ASYNC_AND_SYNC 2 824 825 struct zone { 826 /* Read-mostly fields */ 827 828 /* zone watermarks, access with *_wmark_pages(zone) macros */ 829 unsigned long _watermark[NR_WMARK]; 830 unsigned long watermark_boost; 831 832 unsigned long nr_reserved_highatomic; 833 834 /* 835 * We don't know if the memory that we're going to allocate will be 836 * freeable or/and it will be released eventually, so to avoid totally 837 * wasting several GB of ram we must reserve some of the lower zone 838 * memory (otherwise we risk to run OOM on the lower zones despite 839 * there being tons of freeable ram on the higher zones). This array is 840 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 841 * changes. 842 */ 843 long lowmem_reserve[MAX_NR_ZONES]; 844 845 #ifdef CONFIG_NUMA 846 int node; 847 #endif 848 struct pglist_data *zone_pgdat; 849 struct per_cpu_pages __percpu *per_cpu_pageset; 850 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 851 /* 852 * the high and batch values are copied to individual pagesets for 853 * faster access 854 */ 855 int pageset_high_min; 856 int pageset_high_max; 857 int pageset_batch; 858 859 #ifndef CONFIG_SPARSEMEM 860 /* 861 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 862 * In SPARSEMEM, this map is stored in struct mem_section 863 */ 864 unsigned long *pageblock_flags; 865 #endif /* CONFIG_SPARSEMEM */ 866 867 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 868 unsigned long zone_start_pfn; 869 870 /* 871 * spanned_pages is the total pages spanned by the zone, including 872 * holes, which is calculated as: 873 * spanned_pages = zone_end_pfn - zone_start_pfn; 874 * 875 * present_pages is physical pages existing within the zone, which 876 * is calculated as: 877 * present_pages = spanned_pages - absent_pages(pages in holes); 878 * 879 * present_early_pages is present pages existing within the zone 880 * located on memory available since early boot, excluding hotplugged 881 * memory. 882 * 883 * managed_pages is present pages managed by the buddy system, which 884 * is calculated as (reserved_pages includes pages allocated by the 885 * bootmem allocator): 886 * managed_pages = present_pages - reserved_pages; 887 * 888 * cma pages is present pages that are assigned for CMA use 889 * (MIGRATE_CMA). 890 * 891 * So present_pages may be used by memory hotplug or memory power 892 * management logic to figure out unmanaged pages by checking 893 * (present_pages - managed_pages). And managed_pages should be used 894 * by page allocator and vm scanner to calculate all kinds of watermarks 895 * and thresholds. 896 * 897 * Locking rules: 898 * 899 * zone_start_pfn and spanned_pages are protected by span_seqlock. 900 * It is a seqlock because it has to be read outside of zone->lock, 901 * and it is done in the main allocator path. But, it is written 902 * quite infrequently. 903 * 904 * The span_seq lock is declared along with zone->lock because it is 905 * frequently read in proximity to zone->lock. It's good to 906 * give them a chance of being in the same cacheline. 907 * 908 * Write access to present_pages at runtime should be protected by 909 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 910 * present_pages should use get_online_mems() to get a stable value. 911 */ 912 atomic_long_t managed_pages; 913 unsigned long spanned_pages; 914 unsigned long present_pages; 915 #if defined(CONFIG_MEMORY_HOTPLUG) 916 unsigned long present_early_pages; 917 #endif 918 #ifdef CONFIG_CMA 919 unsigned long cma_pages; 920 #endif 921 922 const char *name; 923 924 #ifdef CONFIG_MEMORY_ISOLATION 925 /* 926 * Number of isolated pageblock. It is used to solve incorrect 927 * freepage counting problem due to racy retrieving migratetype 928 * of pageblock. Protected by zone->lock. 929 */ 930 unsigned long nr_isolate_pageblock; 931 #endif 932 933 #ifdef CONFIG_MEMORY_HOTPLUG 934 /* see spanned/present_pages for more description */ 935 seqlock_t span_seqlock; 936 #endif 937 938 int initialized; 939 940 /* Write-intensive fields used from the page allocator */ 941 CACHELINE_PADDING(_pad1_); 942 943 /* free areas of different sizes */ 944 struct free_area free_area[NR_PAGE_ORDERS]; 945 946 #ifdef CONFIG_UNACCEPTED_MEMORY 947 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 948 struct list_head unaccepted_pages; 949 #endif 950 951 /* zone flags, see below */ 952 unsigned long flags; 953 954 /* Primarily protects free_area */ 955 spinlock_t lock; 956 957 /* Write-intensive fields used by compaction and vmstats. */ 958 CACHELINE_PADDING(_pad2_); 959 960 /* 961 * When free pages are below this point, additional steps are taken 962 * when reading the number of free pages to avoid per-cpu counter 963 * drift allowing watermarks to be breached 964 */ 965 unsigned long percpu_drift_mark; 966 967 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 968 /* pfn where compaction free scanner should start */ 969 unsigned long compact_cached_free_pfn; 970 /* pfn where compaction migration scanner should start */ 971 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 972 unsigned long compact_init_migrate_pfn; 973 unsigned long compact_init_free_pfn; 974 #endif 975 976 #ifdef CONFIG_COMPACTION 977 /* 978 * On compaction failure, 1<<compact_defer_shift compactions 979 * are skipped before trying again. The number attempted since 980 * last failure is tracked with compact_considered. 981 * compact_order_failed is the minimum compaction failed order. 982 */ 983 unsigned int compact_considered; 984 unsigned int compact_defer_shift; 985 int compact_order_failed; 986 #endif 987 988 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 989 /* Set to true when the PG_migrate_skip bits should be cleared */ 990 bool compact_blockskip_flush; 991 #endif 992 993 bool contiguous; 994 995 CACHELINE_PADDING(_pad3_); 996 /* Zone statistics */ 997 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 998 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 999 } ____cacheline_internodealigned_in_smp; 1000 1001 enum pgdat_flags { 1002 PGDAT_DIRTY, /* reclaim scanning has recently found 1003 * many dirty file pages at the tail 1004 * of the LRU. 1005 */ 1006 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1007 * many pages under writeback 1008 */ 1009 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1010 }; 1011 1012 enum zone_flags { 1013 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1014 * Cleared when kswapd is woken. 1015 */ 1016 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1017 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1018 }; 1019 1020 static inline unsigned long zone_managed_pages(struct zone *zone) 1021 { 1022 return (unsigned long)atomic_long_read(&zone->managed_pages); 1023 } 1024 1025 static inline unsigned long zone_cma_pages(struct zone *zone) 1026 { 1027 #ifdef CONFIG_CMA 1028 return zone->cma_pages; 1029 #else 1030 return 0; 1031 #endif 1032 } 1033 1034 static inline unsigned long zone_end_pfn(const struct zone *zone) 1035 { 1036 return zone->zone_start_pfn + zone->spanned_pages; 1037 } 1038 1039 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1040 { 1041 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1042 } 1043 1044 static inline bool zone_is_initialized(struct zone *zone) 1045 { 1046 return zone->initialized; 1047 } 1048 1049 static inline bool zone_is_empty(struct zone *zone) 1050 { 1051 return zone->spanned_pages == 0; 1052 } 1053 1054 #ifndef BUILD_VDSO32_64 1055 /* 1056 * The zone field is never updated after free_area_init_core() 1057 * sets it, so none of the operations on it need to be atomic. 1058 */ 1059 1060 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1061 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1062 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1063 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1064 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1065 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1066 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1067 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1068 1069 /* 1070 * Define the bit shifts to access each section. For non-existent 1071 * sections we define the shift as 0; that plus a 0 mask ensures 1072 * the compiler will optimise away reference to them. 1073 */ 1074 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1075 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1076 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1077 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1078 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1079 1080 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1081 #ifdef NODE_NOT_IN_PAGE_FLAGS 1082 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1083 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1084 SECTIONS_PGOFF : ZONES_PGOFF) 1085 #else 1086 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1087 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1088 NODES_PGOFF : ZONES_PGOFF) 1089 #endif 1090 1091 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1092 1093 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1094 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1095 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1096 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1097 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1098 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1099 1100 static inline enum zone_type page_zonenum(const struct page *page) 1101 { 1102 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1103 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1104 } 1105 1106 static inline enum zone_type folio_zonenum(const struct folio *folio) 1107 { 1108 return page_zonenum(&folio->page); 1109 } 1110 1111 #ifdef CONFIG_ZONE_DEVICE 1112 static inline bool is_zone_device_page(const struct page *page) 1113 { 1114 return page_zonenum(page) == ZONE_DEVICE; 1115 } 1116 1117 /* 1118 * Consecutive zone device pages should not be merged into the same sgl 1119 * or bvec segment with other types of pages or if they belong to different 1120 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1121 * without scanning the entire segment. This helper returns true either if 1122 * both pages are not zone device pages or both pages are zone device pages 1123 * with the same pgmap. 1124 */ 1125 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1126 const struct page *b) 1127 { 1128 if (is_zone_device_page(a) != is_zone_device_page(b)) 1129 return false; 1130 if (!is_zone_device_page(a)) 1131 return true; 1132 return a->pgmap == b->pgmap; 1133 } 1134 1135 extern void memmap_init_zone_device(struct zone *, unsigned long, 1136 unsigned long, struct dev_pagemap *); 1137 #else 1138 static inline bool is_zone_device_page(const struct page *page) 1139 { 1140 return false; 1141 } 1142 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1143 const struct page *b) 1144 { 1145 return true; 1146 } 1147 #endif 1148 1149 static inline bool folio_is_zone_device(const struct folio *folio) 1150 { 1151 return is_zone_device_page(&folio->page); 1152 } 1153 1154 static inline bool is_zone_movable_page(const struct page *page) 1155 { 1156 return page_zonenum(page) == ZONE_MOVABLE; 1157 } 1158 1159 static inline bool folio_is_zone_movable(const struct folio *folio) 1160 { 1161 return folio_zonenum(folio) == ZONE_MOVABLE; 1162 } 1163 #endif 1164 1165 /* 1166 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1167 * intersection with the given zone 1168 */ 1169 static inline bool zone_intersects(struct zone *zone, 1170 unsigned long start_pfn, unsigned long nr_pages) 1171 { 1172 if (zone_is_empty(zone)) 1173 return false; 1174 if (start_pfn >= zone_end_pfn(zone) || 1175 start_pfn + nr_pages <= zone->zone_start_pfn) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 /* 1182 * The "priority" of VM scanning is how much of the queues we will scan in one 1183 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1184 * queues ("queue_length >> 12") during an aging round. 1185 */ 1186 #define DEF_PRIORITY 12 1187 1188 /* Maximum number of zones on a zonelist */ 1189 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1190 1191 enum { 1192 ZONELIST_FALLBACK, /* zonelist with fallback */ 1193 #ifdef CONFIG_NUMA 1194 /* 1195 * The NUMA zonelists are doubled because we need zonelists that 1196 * restrict the allocations to a single node for __GFP_THISNODE. 1197 */ 1198 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1199 #endif 1200 MAX_ZONELISTS 1201 }; 1202 1203 /* 1204 * This struct contains information about a zone in a zonelist. It is stored 1205 * here to avoid dereferences into large structures and lookups of tables 1206 */ 1207 struct zoneref { 1208 struct zone *zone; /* Pointer to actual zone */ 1209 int zone_idx; /* zone_idx(zoneref->zone) */ 1210 }; 1211 1212 /* 1213 * One allocation request operates on a zonelist. A zonelist 1214 * is a list of zones, the first one is the 'goal' of the 1215 * allocation, the other zones are fallback zones, in decreasing 1216 * priority. 1217 * 1218 * To speed the reading of the zonelist, the zonerefs contain the zone index 1219 * of the entry being read. Helper functions to access information given 1220 * a struct zoneref are 1221 * 1222 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1223 * zonelist_zone_idx() - Return the index of the zone for an entry 1224 * zonelist_node_idx() - Return the index of the node for an entry 1225 */ 1226 struct zonelist { 1227 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1228 }; 1229 1230 /* 1231 * The array of struct pages for flatmem. 1232 * It must be declared for SPARSEMEM as well because there are configurations 1233 * that rely on that. 1234 */ 1235 extern struct page *mem_map; 1236 1237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1238 struct deferred_split { 1239 spinlock_t split_queue_lock; 1240 struct list_head split_queue; 1241 unsigned long split_queue_len; 1242 }; 1243 #endif 1244 1245 #ifdef CONFIG_MEMORY_FAILURE 1246 /* 1247 * Per NUMA node memory failure handling statistics. 1248 */ 1249 struct memory_failure_stats { 1250 /* 1251 * Number of raw pages poisoned. 1252 * Cases not accounted: memory outside kernel control, offline page, 1253 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1254 * error events, and unpoison actions from hwpoison_unpoison. 1255 */ 1256 unsigned long total; 1257 /* 1258 * Recovery results of poisoned raw pages handled by memory_failure, 1259 * in sync with mf_result. 1260 * total = ignored + failed + delayed + recovered. 1261 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1262 */ 1263 unsigned long ignored; 1264 unsigned long failed; 1265 unsigned long delayed; 1266 unsigned long recovered; 1267 }; 1268 #endif 1269 1270 /* 1271 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1272 * it's memory layout. On UMA machines there is a single pglist_data which 1273 * describes the whole memory. 1274 * 1275 * Memory statistics and page replacement data structures are maintained on a 1276 * per-zone basis. 1277 */ 1278 typedef struct pglist_data { 1279 /* 1280 * node_zones contains just the zones for THIS node. Not all of the 1281 * zones may be populated, but it is the full list. It is referenced by 1282 * this node's node_zonelists as well as other node's node_zonelists. 1283 */ 1284 struct zone node_zones[MAX_NR_ZONES]; 1285 1286 /* 1287 * node_zonelists contains references to all zones in all nodes. 1288 * Generally the first zones will be references to this node's 1289 * node_zones. 1290 */ 1291 struct zonelist node_zonelists[MAX_ZONELISTS]; 1292 1293 int nr_zones; /* number of populated zones in this node */ 1294 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1295 struct page *node_mem_map; 1296 #ifdef CONFIG_PAGE_EXTENSION 1297 struct page_ext *node_page_ext; 1298 #endif 1299 #endif 1300 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1301 /* 1302 * Must be held any time you expect node_start_pfn, 1303 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1304 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1305 * init. 1306 * 1307 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1308 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1309 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1310 * 1311 * Nests above zone->lock and zone->span_seqlock 1312 */ 1313 spinlock_t node_size_lock; 1314 #endif 1315 unsigned long node_start_pfn; 1316 unsigned long node_present_pages; /* total number of physical pages */ 1317 unsigned long node_spanned_pages; /* total size of physical page 1318 range, including holes */ 1319 int node_id; 1320 wait_queue_head_t kswapd_wait; 1321 wait_queue_head_t pfmemalloc_wait; 1322 1323 /* workqueues for throttling reclaim for different reasons. */ 1324 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1325 1326 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1327 unsigned long nr_reclaim_start; /* nr pages written while throttled 1328 * when throttling started. */ 1329 #ifdef CONFIG_MEMORY_HOTPLUG 1330 struct mutex kswapd_lock; 1331 #endif 1332 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1333 int kswapd_order; 1334 enum zone_type kswapd_highest_zoneidx; 1335 1336 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1337 1338 #ifdef CONFIG_COMPACTION 1339 int kcompactd_max_order; 1340 enum zone_type kcompactd_highest_zoneidx; 1341 wait_queue_head_t kcompactd_wait; 1342 struct task_struct *kcompactd; 1343 bool proactive_compact_trigger; 1344 #endif 1345 /* 1346 * This is a per-node reserve of pages that are not available 1347 * to userspace allocations. 1348 */ 1349 unsigned long totalreserve_pages; 1350 1351 #ifdef CONFIG_NUMA 1352 /* 1353 * node reclaim becomes active if more unmapped pages exist. 1354 */ 1355 unsigned long min_unmapped_pages; 1356 unsigned long min_slab_pages; 1357 #endif /* CONFIG_NUMA */ 1358 1359 /* Write-intensive fields used by page reclaim */ 1360 CACHELINE_PADDING(_pad1_); 1361 1362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1363 /* 1364 * If memory initialisation on large machines is deferred then this 1365 * is the first PFN that needs to be initialised. 1366 */ 1367 unsigned long first_deferred_pfn; 1368 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1369 1370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1371 struct deferred_split deferred_split_queue; 1372 #endif 1373 1374 #ifdef CONFIG_NUMA_BALANCING 1375 /* start time in ms of current promote rate limit period */ 1376 unsigned int nbp_rl_start; 1377 /* number of promote candidate pages at start time of current rate limit period */ 1378 unsigned long nbp_rl_nr_cand; 1379 /* promote threshold in ms */ 1380 unsigned int nbp_threshold; 1381 /* start time in ms of current promote threshold adjustment period */ 1382 unsigned int nbp_th_start; 1383 /* 1384 * number of promote candidate pages at start time of current promote 1385 * threshold adjustment period 1386 */ 1387 unsigned long nbp_th_nr_cand; 1388 #endif 1389 /* Fields commonly accessed by the page reclaim scanner */ 1390 1391 /* 1392 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1393 * 1394 * Use mem_cgroup_lruvec() to look up lruvecs. 1395 */ 1396 struct lruvec __lruvec; 1397 1398 unsigned long flags; 1399 1400 #ifdef CONFIG_LRU_GEN 1401 /* kswap mm walk data */ 1402 struct lru_gen_mm_walk mm_walk; 1403 /* lru_gen_folio list */ 1404 struct lru_gen_memcg memcg_lru; 1405 #endif 1406 1407 CACHELINE_PADDING(_pad2_); 1408 1409 /* Per-node vmstats */ 1410 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1411 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1412 #ifdef CONFIG_NUMA 1413 struct memory_tier __rcu *memtier; 1414 #endif 1415 #ifdef CONFIG_MEMORY_FAILURE 1416 struct memory_failure_stats mf_stats; 1417 #endif 1418 } pg_data_t; 1419 1420 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1421 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1422 1423 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1424 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1425 1426 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1427 { 1428 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1429 } 1430 1431 #include <linux/memory_hotplug.h> 1432 1433 void build_all_zonelists(pg_data_t *pgdat); 1434 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1435 enum zone_type highest_zoneidx); 1436 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1437 int highest_zoneidx, unsigned int alloc_flags, 1438 long free_pages); 1439 bool zone_watermark_ok(struct zone *z, unsigned int order, 1440 unsigned long mark, int highest_zoneidx, 1441 unsigned int alloc_flags); 1442 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1443 unsigned long mark, int highest_zoneidx); 1444 /* 1445 * Memory initialization context, use to differentiate memory added by 1446 * the platform statically or via memory hotplug interface. 1447 */ 1448 enum meminit_context { 1449 MEMINIT_EARLY, 1450 MEMINIT_HOTPLUG, 1451 }; 1452 1453 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1454 unsigned long size); 1455 1456 extern void lruvec_init(struct lruvec *lruvec); 1457 1458 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1459 { 1460 #ifdef CONFIG_MEMCG 1461 return lruvec->pgdat; 1462 #else 1463 return container_of(lruvec, struct pglist_data, __lruvec); 1464 #endif 1465 } 1466 1467 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1468 int local_memory_node(int node_id); 1469 #else 1470 static inline int local_memory_node(int node_id) { return node_id; }; 1471 #endif 1472 1473 /* 1474 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1475 */ 1476 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1477 1478 #ifdef CONFIG_ZONE_DEVICE 1479 static inline bool zone_is_zone_device(struct zone *zone) 1480 { 1481 return zone_idx(zone) == ZONE_DEVICE; 1482 } 1483 #else 1484 static inline bool zone_is_zone_device(struct zone *zone) 1485 { 1486 return false; 1487 } 1488 #endif 1489 1490 /* 1491 * Returns true if a zone has pages managed by the buddy allocator. 1492 * All the reclaim decisions have to use this function rather than 1493 * populated_zone(). If the whole zone is reserved then we can easily 1494 * end up with populated_zone() && !managed_zone(). 1495 */ 1496 static inline bool managed_zone(struct zone *zone) 1497 { 1498 return zone_managed_pages(zone); 1499 } 1500 1501 /* Returns true if a zone has memory */ 1502 static inline bool populated_zone(struct zone *zone) 1503 { 1504 return zone->present_pages; 1505 } 1506 1507 #ifdef CONFIG_NUMA 1508 static inline int zone_to_nid(struct zone *zone) 1509 { 1510 return zone->node; 1511 } 1512 1513 static inline void zone_set_nid(struct zone *zone, int nid) 1514 { 1515 zone->node = nid; 1516 } 1517 #else 1518 static inline int zone_to_nid(struct zone *zone) 1519 { 1520 return 0; 1521 } 1522 1523 static inline void zone_set_nid(struct zone *zone, int nid) {} 1524 #endif 1525 1526 extern int movable_zone; 1527 1528 static inline int is_highmem_idx(enum zone_type idx) 1529 { 1530 #ifdef CONFIG_HIGHMEM 1531 return (idx == ZONE_HIGHMEM || 1532 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1533 #else 1534 return 0; 1535 #endif 1536 } 1537 1538 /** 1539 * is_highmem - helper function to quickly check if a struct zone is a 1540 * highmem zone or not. This is an attempt to keep references 1541 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1542 * @zone: pointer to struct zone variable 1543 * Return: 1 for a highmem zone, 0 otherwise 1544 */ 1545 static inline int is_highmem(struct zone *zone) 1546 { 1547 return is_highmem_idx(zone_idx(zone)); 1548 } 1549 1550 #ifdef CONFIG_ZONE_DMA 1551 bool has_managed_dma(void); 1552 #else 1553 static inline bool has_managed_dma(void) 1554 { 1555 return false; 1556 } 1557 #endif 1558 1559 1560 #ifndef CONFIG_NUMA 1561 1562 extern struct pglist_data contig_page_data; 1563 static inline struct pglist_data *NODE_DATA(int nid) 1564 { 1565 return &contig_page_data; 1566 } 1567 1568 #else /* CONFIG_NUMA */ 1569 1570 #include <asm/mmzone.h> 1571 1572 #endif /* !CONFIG_NUMA */ 1573 1574 extern struct pglist_data *first_online_pgdat(void); 1575 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1576 extern struct zone *next_zone(struct zone *zone); 1577 1578 /** 1579 * for_each_online_pgdat - helper macro to iterate over all online nodes 1580 * @pgdat: pointer to a pg_data_t variable 1581 */ 1582 #define for_each_online_pgdat(pgdat) \ 1583 for (pgdat = first_online_pgdat(); \ 1584 pgdat; \ 1585 pgdat = next_online_pgdat(pgdat)) 1586 /** 1587 * for_each_zone - helper macro to iterate over all memory zones 1588 * @zone: pointer to struct zone variable 1589 * 1590 * The user only needs to declare the zone variable, for_each_zone 1591 * fills it in. 1592 */ 1593 #define for_each_zone(zone) \ 1594 for (zone = (first_online_pgdat())->node_zones; \ 1595 zone; \ 1596 zone = next_zone(zone)) 1597 1598 #define for_each_populated_zone(zone) \ 1599 for (zone = (first_online_pgdat())->node_zones; \ 1600 zone; \ 1601 zone = next_zone(zone)) \ 1602 if (!populated_zone(zone)) \ 1603 ; /* do nothing */ \ 1604 else 1605 1606 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1607 { 1608 return zoneref->zone; 1609 } 1610 1611 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1612 { 1613 return zoneref->zone_idx; 1614 } 1615 1616 static inline int zonelist_node_idx(struct zoneref *zoneref) 1617 { 1618 return zone_to_nid(zoneref->zone); 1619 } 1620 1621 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1622 enum zone_type highest_zoneidx, 1623 nodemask_t *nodes); 1624 1625 /** 1626 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1627 * @z: The cursor used as a starting point for the search 1628 * @highest_zoneidx: The zone index of the highest zone to return 1629 * @nodes: An optional nodemask to filter the zonelist with 1630 * 1631 * This function returns the next zone at or below a given zone index that is 1632 * within the allowed nodemask using a cursor as the starting point for the 1633 * search. The zoneref returned is a cursor that represents the current zone 1634 * being examined. It should be advanced by one before calling 1635 * next_zones_zonelist again. 1636 * 1637 * Return: the next zone at or below highest_zoneidx within the allowed 1638 * nodemask using a cursor within a zonelist as a starting point 1639 */ 1640 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1641 enum zone_type highest_zoneidx, 1642 nodemask_t *nodes) 1643 { 1644 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1645 return z; 1646 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1647 } 1648 1649 /** 1650 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1651 * @zonelist: The zonelist to search for a suitable zone 1652 * @highest_zoneidx: The zone index of the highest zone to return 1653 * @nodes: An optional nodemask to filter the zonelist with 1654 * 1655 * This function returns the first zone at or below a given zone index that is 1656 * within the allowed nodemask. The zoneref returned is a cursor that can be 1657 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1658 * one before calling. 1659 * 1660 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1661 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1662 * update due to cpuset modification. 1663 * 1664 * Return: Zoneref pointer for the first suitable zone found 1665 */ 1666 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1667 enum zone_type highest_zoneidx, 1668 nodemask_t *nodes) 1669 { 1670 return next_zones_zonelist(zonelist->_zonerefs, 1671 highest_zoneidx, nodes); 1672 } 1673 1674 /** 1675 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1676 * @zone: The current zone in the iterator 1677 * @z: The current pointer within zonelist->_zonerefs being iterated 1678 * @zlist: The zonelist being iterated 1679 * @highidx: The zone index of the highest zone to return 1680 * @nodemask: Nodemask allowed by the allocator 1681 * 1682 * This iterator iterates though all zones at or below a given zone index and 1683 * within a given nodemask 1684 */ 1685 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1686 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1687 zone; \ 1688 z = next_zones_zonelist(++z, highidx, nodemask), \ 1689 zone = zonelist_zone(z)) 1690 1691 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1692 for (zone = z->zone; \ 1693 zone; \ 1694 z = next_zones_zonelist(++z, highidx, nodemask), \ 1695 zone = zonelist_zone(z)) 1696 1697 1698 /** 1699 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1700 * @zone: The current zone in the iterator 1701 * @z: The current pointer within zonelist->zones being iterated 1702 * @zlist: The zonelist being iterated 1703 * @highidx: The zone index of the highest zone to return 1704 * 1705 * This iterator iterates though all zones at or below a given zone index. 1706 */ 1707 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1708 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1709 1710 /* Whether the 'nodes' are all movable nodes */ 1711 static inline bool movable_only_nodes(nodemask_t *nodes) 1712 { 1713 struct zonelist *zonelist; 1714 struct zoneref *z; 1715 int nid; 1716 1717 if (nodes_empty(*nodes)) 1718 return false; 1719 1720 /* 1721 * We can chose arbitrary node from the nodemask to get a 1722 * zonelist as they are interlinked. We just need to find 1723 * at least one zone that can satisfy kernel allocations. 1724 */ 1725 nid = first_node(*nodes); 1726 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1727 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1728 return (!z->zone) ? true : false; 1729 } 1730 1731 1732 #ifdef CONFIG_SPARSEMEM 1733 #include <asm/sparsemem.h> 1734 #endif 1735 1736 #ifdef CONFIG_FLATMEM 1737 #define pfn_to_nid(pfn) (0) 1738 #endif 1739 1740 #ifdef CONFIG_SPARSEMEM 1741 1742 /* 1743 * PA_SECTION_SHIFT physical address to/from section number 1744 * PFN_SECTION_SHIFT pfn to/from section number 1745 */ 1746 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1747 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1748 1749 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1750 1751 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1752 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1753 1754 #define SECTION_BLOCKFLAGS_BITS \ 1755 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1756 1757 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1758 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1759 #endif 1760 1761 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1762 { 1763 return pfn >> PFN_SECTION_SHIFT; 1764 } 1765 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1766 { 1767 return sec << PFN_SECTION_SHIFT; 1768 } 1769 1770 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1771 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1772 1773 #define SUBSECTION_SHIFT 21 1774 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1775 1776 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1777 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1778 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1779 1780 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1781 #error Subsection size exceeds section size 1782 #else 1783 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1784 #endif 1785 1786 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1787 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1788 1789 struct mem_section_usage { 1790 struct rcu_head rcu; 1791 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1792 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1793 #endif 1794 /* See declaration of similar field in struct zone */ 1795 unsigned long pageblock_flags[0]; 1796 }; 1797 1798 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1799 1800 struct page; 1801 struct page_ext; 1802 struct mem_section { 1803 /* 1804 * This is, logically, a pointer to an array of struct 1805 * pages. However, it is stored with some other magic. 1806 * (see sparse.c::sparse_init_one_section()) 1807 * 1808 * Additionally during early boot we encode node id of 1809 * the location of the section here to guide allocation. 1810 * (see sparse.c::memory_present()) 1811 * 1812 * Making it a UL at least makes someone do a cast 1813 * before using it wrong. 1814 */ 1815 unsigned long section_mem_map; 1816 1817 struct mem_section_usage *usage; 1818 #ifdef CONFIG_PAGE_EXTENSION 1819 /* 1820 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1821 * section. (see page_ext.h about this.) 1822 */ 1823 struct page_ext *page_ext; 1824 unsigned long pad; 1825 #endif 1826 /* 1827 * WARNING: mem_section must be a power-of-2 in size for the 1828 * calculation and use of SECTION_ROOT_MASK to make sense. 1829 */ 1830 }; 1831 1832 #ifdef CONFIG_SPARSEMEM_EXTREME 1833 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1834 #else 1835 #define SECTIONS_PER_ROOT 1 1836 #endif 1837 1838 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1839 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1840 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1841 1842 #ifdef CONFIG_SPARSEMEM_EXTREME 1843 extern struct mem_section **mem_section; 1844 #else 1845 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1846 #endif 1847 1848 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1849 { 1850 return ms->usage->pageblock_flags; 1851 } 1852 1853 static inline struct mem_section *__nr_to_section(unsigned long nr) 1854 { 1855 unsigned long root = SECTION_NR_TO_ROOT(nr); 1856 1857 if (unlikely(root >= NR_SECTION_ROOTS)) 1858 return NULL; 1859 1860 #ifdef CONFIG_SPARSEMEM_EXTREME 1861 if (!mem_section || !mem_section[root]) 1862 return NULL; 1863 #endif 1864 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1865 } 1866 extern size_t mem_section_usage_size(void); 1867 1868 /* 1869 * We use the lower bits of the mem_map pointer to store 1870 * a little bit of information. The pointer is calculated 1871 * as mem_map - section_nr_to_pfn(pnum). The result is 1872 * aligned to the minimum alignment of the two values: 1873 * 1. All mem_map arrays are page-aligned. 1874 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1875 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1876 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1877 * worst combination is powerpc with 256k pages, 1878 * which results in PFN_SECTION_SHIFT equal 6. 1879 * To sum it up, at least 6 bits are available on all architectures. 1880 * However, we can exceed 6 bits on some other architectures except 1881 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1882 * with the worst case of 64K pages on arm64) if we make sure the 1883 * exceeded bit is not applicable to powerpc. 1884 */ 1885 enum { 1886 SECTION_MARKED_PRESENT_BIT, 1887 SECTION_HAS_MEM_MAP_BIT, 1888 SECTION_IS_ONLINE_BIT, 1889 SECTION_IS_EARLY_BIT, 1890 #ifdef CONFIG_ZONE_DEVICE 1891 SECTION_TAINT_ZONE_DEVICE_BIT, 1892 #endif 1893 SECTION_MAP_LAST_BIT, 1894 }; 1895 1896 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1897 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1898 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1899 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1900 #ifdef CONFIG_ZONE_DEVICE 1901 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1902 #endif 1903 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1904 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1905 1906 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1907 { 1908 unsigned long map = section->section_mem_map; 1909 map &= SECTION_MAP_MASK; 1910 return (struct page *)map; 1911 } 1912 1913 static inline int present_section(struct mem_section *section) 1914 { 1915 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1916 } 1917 1918 static inline int present_section_nr(unsigned long nr) 1919 { 1920 return present_section(__nr_to_section(nr)); 1921 } 1922 1923 static inline int valid_section(struct mem_section *section) 1924 { 1925 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1926 } 1927 1928 static inline int early_section(struct mem_section *section) 1929 { 1930 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1931 } 1932 1933 static inline int valid_section_nr(unsigned long nr) 1934 { 1935 return valid_section(__nr_to_section(nr)); 1936 } 1937 1938 static inline int online_section(struct mem_section *section) 1939 { 1940 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1941 } 1942 1943 #ifdef CONFIG_ZONE_DEVICE 1944 static inline int online_device_section(struct mem_section *section) 1945 { 1946 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1947 1948 return section && ((section->section_mem_map & flags) == flags); 1949 } 1950 #else 1951 static inline int online_device_section(struct mem_section *section) 1952 { 1953 return 0; 1954 } 1955 #endif 1956 1957 static inline int online_section_nr(unsigned long nr) 1958 { 1959 return online_section(__nr_to_section(nr)); 1960 } 1961 1962 #ifdef CONFIG_MEMORY_HOTPLUG 1963 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1964 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1965 #endif 1966 1967 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1968 { 1969 return __nr_to_section(pfn_to_section_nr(pfn)); 1970 } 1971 1972 extern unsigned long __highest_present_section_nr; 1973 1974 static inline int subsection_map_index(unsigned long pfn) 1975 { 1976 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1977 } 1978 1979 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1980 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1981 { 1982 int idx = subsection_map_index(pfn); 1983 1984 return test_bit(idx, READ_ONCE(ms->usage)->subsection_map); 1985 } 1986 #else 1987 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1988 { 1989 return 1; 1990 } 1991 #endif 1992 1993 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1994 /** 1995 * pfn_valid - check if there is a valid memory map entry for a PFN 1996 * @pfn: the page frame number to check 1997 * 1998 * Check if there is a valid memory map entry aka struct page for the @pfn. 1999 * Note, that availability of the memory map entry does not imply that 2000 * there is actual usable memory at that @pfn. The struct page may 2001 * represent a hole or an unusable page frame. 2002 * 2003 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2004 */ 2005 static inline int pfn_valid(unsigned long pfn) 2006 { 2007 struct mem_section *ms; 2008 int ret; 2009 2010 /* 2011 * Ensure the upper PAGE_SHIFT bits are clear in the 2012 * pfn. Else it might lead to false positives when 2013 * some of the upper bits are set, but the lower bits 2014 * match a valid pfn. 2015 */ 2016 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2017 return 0; 2018 2019 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2020 return 0; 2021 ms = __pfn_to_section(pfn); 2022 rcu_read_lock_sched(); 2023 if (!valid_section(ms)) { 2024 rcu_read_unlock_sched(); 2025 return 0; 2026 } 2027 /* 2028 * Traditionally early sections always returned pfn_valid() for 2029 * the entire section-sized span. 2030 */ 2031 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2032 rcu_read_unlock_sched(); 2033 2034 return ret; 2035 } 2036 #endif 2037 2038 static inline int pfn_in_present_section(unsigned long pfn) 2039 { 2040 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2041 return 0; 2042 return present_section(__pfn_to_section(pfn)); 2043 } 2044 2045 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2046 { 2047 while (++section_nr <= __highest_present_section_nr) { 2048 if (present_section_nr(section_nr)) 2049 return section_nr; 2050 } 2051 2052 return -1; 2053 } 2054 2055 /* 2056 * These are _only_ used during initialisation, therefore they 2057 * can use __initdata ... They could have names to indicate 2058 * this restriction. 2059 */ 2060 #ifdef CONFIG_NUMA 2061 #define pfn_to_nid(pfn) \ 2062 ({ \ 2063 unsigned long __pfn_to_nid_pfn = (pfn); \ 2064 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2065 }) 2066 #else 2067 #define pfn_to_nid(pfn) (0) 2068 #endif 2069 2070 void sparse_init(void); 2071 #else 2072 #define sparse_init() do {} while (0) 2073 #define sparse_index_init(_sec, _nid) do {} while (0) 2074 #define pfn_in_present_section pfn_valid 2075 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2076 #endif /* CONFIG_SPARSEMEM */ 2077 2078 #endif /* !__GENERATING_BOUNDS.H */ 2079 #endif /* !__ASSEMBLY__ */ 2080 #endif /* _LINUX_MMZONE_H */ 2081