1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151 #if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153 #endif 154 NR_FREE_CMA_PAGES, 155 #ifdef CONFIG_UNACCEPTED_MEMORY 156 NR_UNACCEPTED, 157 #endif 158 NR_VM_ZONE_STAT_ITEMS }; 159 160 enum node_stat_item { 161 NR_LRU_BASE, 162 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 163 NR_ACTIVE_ANON, /* " " " " " */ 164 NR_INACTIVE_FILE, /* " " " " " */ 165 NR_ACTIVE_FILE, /* " " " " " */ 166 NR_UNEVICTABLE, /* " " " " " */ 167 NR_SLAB_RECLAIMABLE_B, 168 NR_SLAB_UNRECLAIMABLE_B, 169 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 170 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 171 WORKINGSET_NODES, 172 WORKINGSET_REFAULT_BASE, 173 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_FILE, 175 WORKINGSET_ACTIVATE_BASE, 176 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_FILE, 178 WORKINGSET_RESTORE_BASE, 179 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_FILE, 181 WORKINGSET_NODERECLAIM, 182 NR_ANON_MAPPED, /* Mapped anonymous pages */ 183 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 184 only modified from process context */ 185 NR_FILE_PAGES, 186 NR_FILE_DIRTY, 187 NR_WRITEBACK, 188 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 189 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 190 NR_SHMEM_THPS, 191 NR_SHMEM_PMDMAPPED, 192 NR_FILE_THPS, 193 NR_FILE_PMDMAPPED, 194 NR_ANON_THPS, 195 NR_VMSCAN_WRITE, 196 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 197 NR_DIRTIED, /* page dirtyings since bootup */ 198 NR_WRITTEN, /* page writings since bootup */ 199 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 200 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 201 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 202 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 203 NR_KERNEL_STACK_KB, /* measured in KiB */ 204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 205 NR_KERNEL_SCS_KB, /* measured in KiB */ 206 #endif 207 NR_PAGETABLE, /* used for pagetables */ 208 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 209 #ifdef CONFIG_IOMMU_SUPPORT 210 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 211 #endif 212 #ifdef CONFIG_SWAP 213 NR_SWAPCACHE, 214 #endif 215 #ifdef CONFIG_NUMA_BALANCING 216 PGPROMOTE_SUCCESS, /* promote successfully */ 217 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 218 #endif 219 /* PGDEMOTE_*: pages demoted */ 220 PGDEMOTE_KSWAPD, 221 PGDEMOTE_DIRECT, 222 PGDEMOTE_KHUGEPAGED, 223 NR_VM_NODE_STAT_ITEMS 224 }; 225 226 /* 227 * Returns true if the item should be printed in THPs (/proc/vmstat 228 * currently prints number of anon, file and shmem THPs. But the item 229 * is charged in pages). 230 */ 231 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 232 { 233 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 234 return false; 235 236 return item == NR_ANON_THPS || 237 item == NR_FILE_THPS || 238 item == NR_SHMEM_THPS || 239 item == NR_SHMEM_PMDMAPPED || 240 item == NR_FILE_PMDMAPPED; 241 } 242 243 /* 244 * Returns true if the value is measured in bytes (most vmstat values are 245 * measured in pages). This defines the API part, the internal representation 246 * might be different. 247 */ 248 static __always_inline bool vmstat_item_in_bytes(int idx) 249 { 250 /* 251 * Global and per-node slab counters track slab pages. 252 * It's expected that changes are multiples of PAGE_SIZE. 253 * Internally values are stored in pages. 254 * 255 * Per-memcg and per-lruvec counters track memory, consumed 256 * by individual slab objects. These counters are actually 257 * byte-precise. 258 */ 259 return (idx == NR_SLAB_RECLAIMABLE_B || 260 idx == NR_SLAB_UNRECLAIMABLE_B); 261 } 262 263 /* 264 * We do arithmetic on the LRU lists in various places in the code, 265 * so it is important to keep the active lists LRU_ACTIVE higher in 266 * the array than the corresponding inactive lists, and to keep 267 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 268 * 269 * This has to be kept in sync with the statistics in zone_stat_item 270 * above and the descriptions in vmstat_text in mm/vmstat.c 271 */ 272 #define LRU_BASE 0 273 #define LRU_ACTIVE 1 274 #define LRU_FILE 2 275 276 enum lru_list { 277 LRU_INACTIVE_ANON = LRU_BASE, 278 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 279 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 280 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 281 LRU_UNEVICTABLE, 282 NR_LRU_LISTS 283 }; 284 285 enum vmscan_throttle_state { 286 VMSCAN_THROTTLE_WRITEBACK, 287 VMSCAN_THROTTLE_ISOLATED, 288 VMSCAN_THROTTLE_NOPROGRESS, 289 VMSCAN_THROTTLE_CONGESTED, 290 NR_VMSCAN_THROTTLE, 291 }; 292 293 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 294 295 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 296 297 static inline bool is_file_lru(enum lru_list lru) 298 { 299 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 300 } 301 302 static inline bool is_active_lru(enum lru_list lru) 303 { 304 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 305 } 306 307 #define WORKINGSET_ANON 0 308 #define WORKINGSET_FILE 1 309 #define ANON_AND_FILE 2 310 311 enum lruvec_flags { 312 /* 313 * An lruvec has many dirty pages backed by a congested BDI: 314 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 315 * It can be cleared by cgroup reclaim or kswapd. 316 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 317 * It can only be cleared by kswapd. 318 * 319 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 320 * reclaim, but not vice versa. This only applies to the root cgroup. 321 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 322 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 323 * by kswapd). 324 */ 325 LRUVEC_CGROUP_CONGESTED, 326 LRUVEC_NODE_CONGESTED, 327 }; 328 329 #endif /* !__GENERATING_BOUNDS_H */ 330 331 /* 332 * Evictable pages are divided into multiple generations. The youngest and the 333 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 334 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 335 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 336 * corresponding generation. The gen counter in folio->flags stores gen+1 while 337 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 338 * 339 * A page is added to the youngest generation on faulting. The aging needs to 340 * check the accessed bit at least twice before handing this page over to the 341 * eviction. The first check takes care of the accessed bit set on the initial 342 * fault; the second check makes sure this page hasn't been used since then. 343 * This process, AKA second chance, requires a minimum of two generations, 344 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 345 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 346 * rest of generations, if they exist, are considered inactive. See 347 * lru_gen_is_active(). 348 * 349 * PG_active is always cleared while a page is on one of lrugen->folios[] so 350 * that the aging needs not to worry about it. And it's set again when a page 351 * considered active is isolated for non-reclaiming purposes, e.g., migration. 352 * See lru_gen_add_folio() and lru_gen_del_folio(). 353 * 354 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 355 * number of categories of the active/inactive LRU when keeping track of 356 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 357 * in folio->flags. 358 */ 359 #define MIN_NR_GENS 2U 360 #define MAX_NR_GENS 4U 361 362 /* 363 * Each generation is divided into multiple tiers. A page accessed N times 364 * through file descriptors is in tier order_base_2(N). A page in the first tier 365 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 366 * tables or read ahead. A page in any other tier (N>1) is marked by 367 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 368 * supported without using additional bits in folio->flags. 369 * 370 * In contrast to moving across generations which requires the LRU lock, moving 371 * across tiers only involves atomic operations on folio->flags and therefore 372 * has a negligible cost in the buffered access path. In the eviction path, 373 * comparisons of refaulted/(evicted+protected) from the first tier and the 374 * rest infer whether pages accessed multiple times through file descriptors 375 * are statistically hot and thus worth protecting. 376 * 377 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 378 * number of categories of the active/inactive LRU when keeping track of 379 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 380 * folio->flags. 381 */ 382 #define MAX_NR_TIERS 4U 383 384 #ifndef __GENERATING_BOUNDS_H 385 386 struct lruvec; 387 struct page_vma_mapped_walk; 388 389 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 390 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 391 392 #ifdef CONFIG_LRU_GEN 393 394 enum { 395 LRU_GEN_ANON, 396 LRU_GEN_FILE, 397 }; 398 399 enum { 400 LRU_GEN_CORE, 401 LRU_GEN_MM_WALK, 402 LRU_GEN_NONLEAF_YOUNG, 403 NR_LRU_GEN_CAPS 404 }; 405 406 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 407 408 #define MIN_LRU_BATCH BITS_PER_LONG 409 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 410 411 /* whether to keep historical stats from evicted generations */ 412 #ifdef CONFIG_LRU_GEN_STATS 413 #define NR_HIST_GENS MAX_NR_GENS 414 #else 415 #define NR_HIST_GENS 1U 416 #endif 417 418 /* 419 * The youngest generation number is stored in max_seq for both anon and file 420 * types as they are aged on an equal footing. The oldest generation numbers are 421 * stored in min_seq[] separately for anon and file types as clean file pages 422 * can be evicted regardless of swap constraints. 423 * 424 * Normally anon and file min_seq are in sync. But if swapping is constrained, 425 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 426 * min_seq behind. 427 * 428 * The number of pages in each generation is eventually consistent and therefore 429 * can be transiently negative when reset_batch_size() is pending. 430 */ 431 struct lru_gen_folio { 432 /* the aging increments the youngest generation number */ 433 unsigned long max_seq; 434 /* the eviction increments the oldest generation numbers */ 435 unsigned long min_seq[ANON_AND_FILE]; 436 /* the birth time of each generation in jiffies */ 437 unsigned long timestamps[MAX_NR_GENS]; 438 /* the multi-gen LRU lists, lazily sorted on eviction */ 439 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 440 /* the multi-gen LRU sizes, eventually consistent */ 441 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 442 /* the exponential moving average of refaulted */ 443 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 444 /* the exponential moving average of evicted+protected */ 445 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 446 /* the first tier doesn't need protection, hence the minus one */ 447 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 448 /* can be modified without holding the LRU lock */ 449 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 450 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 451 /* whether the multi-gen LRU is enabled */ 452 bool enabled; 453 /* the memcg generation this lru_gen_folio belongs to */ 454 u8 gen; 455 /* the list segment this lru_gen_folio belongs to */ 456 u8 seg; 457 /* per-node lru_gen_folio list for global reclaim */ 458 struct hlist_nulls_node list; 459 }; 460 461 enum { 462 MM_LEAF_TOTAL, /* total leaf entries */ 463 MM_LEAF_YOUNG, /* young leaf entries */ 464 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 465 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 466 NR_MM_STATS 467 }; 468 469 /* double-buffering Bloom filters */ 470 #define NR_BLOOM_FILTERS 2 471 472 struct lru_gen_mm_state { 473 /* synced with max_seq after each iteration */ 474 unsigned long seq; 475 /* where the current iteration continues after */ 476 struct list_head *head; 477 /* where the last iteration ended before */ 478 struct list_head *tail; 479 /* Bloom filters flip after each iteration */ 480 unsigned long *filters[NR_BLOOM_FILTERS]; 481 /* the mm stats for debugging */ 482 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 483 }; 484 485 struct lru_gen_mm_walk { 486 /* the lruvec under reclaim */ 487 struct lruvec *lruvec; 488 /* max_seq from lru_gen_folio: can be out of date */ 489 unsigned long seq; 490 /* the next address within an mm to scan */ 491 unsigned long next_addr; 492 /* to batch promoted pages */ 493 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 494 /* to batch the mm stats */ 495 int mm_stats[NR_MM_STATS]; 496 /* total batched items */ 497 int batched; 498 bool can_swap; 499 bool force_scan; 500 }; 501 502 /* 503 * For each node, memcgs are divided into two generations: the old and the 504 * young. For each generation, memcgs are randomly sharded into multiple bins 505 * to improve scalability. For each bin, the hlist_nulls is virtually divided 506 * into three segments: the head, the tail and the default. 507 * 508 * An onlining memcg is added to the tail of a random bin in the old generation. 509 * The eviction starts at the head of a random bin in the old generation. The 510 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 511 * the old generation, is incremented when all its bins become empty. 512 * 513 * There are four operations: 514 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 515 * current generation (old or young) and updates its "seg" to "head"; 516 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 517 * current generation (old or young) and updates its "seg" to "tail"; 518 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 519 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 520 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 521 * young generation, updates its "gen" to "young" and resets its "seg" to 522 * "default". 523 * 524 * The events that trigger the above operations are: 525 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 526 * 2. The first attempt to reclaim a memcg below low, which triggers 527 * MEMCG_LRU_TAIL; 528 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 529 * threshold, which triggers MEMCG_LRU_TAIL; 530 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 531 * threshold, which triggers MEMCG_LRU_YOUNG; 532 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 533 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 534 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 535 * 536 * Notes: 537 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 538 * of their max_seq counters ensures the eventual fairness to all eligible 539 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 540 * 2. There are only two valid generations: old (seq) and young (seq+1). 541 * MEMCG_NR_GENS is set to three so that when reading the generation counter 542 * locklessly, a stale value (seq-1) does not wraparound to young. 543 */ 544 #define MEMCG_NR_GENS 3 545 #define MEMCG_NR_BINS 8 546 547 struct lru_gen_memcg { 548 /* the per-node memcg generation counter */ 549 unsigned long seq; 550 /* each memcg has one lru_gen_folio per node */ 551 unsigned long nr_memcgs[MEMCG_NR_GENS]; 552 /* per-node lru_gen_folio list for global reclaim */ 553 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 554 /* protects the above */ 555 spinlock_t lock; 556 }; 557 558 void lru_gen_init_pgdat(struct pglist_data *pgdat); 559 void lru_gen_init_lruvec(struct lruvec *lruvec); 560 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 561 562 void lru_gen_init_memcg(struct mem_cgroup *memcg); 563 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 564 void lru_gen_online_memcg(struct mem_cgroup *memcg); 565 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 566 void lru_gen_release_memcg(struct mem_cgroup *memcg); 567 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 568 569 #else /* !CONFIG_LRU_GEN */ 570 571 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 572 { 573 } 574 575 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 576 { 577 } 578 579 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 580 { 581 return false; 582 } 583 584 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 585 { 586 } 587 588 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 589 { 590 } 591 592 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 593 { 594 } 595 596 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 597 { 598 } 599 600 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 601 { 602 } 603 604 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 605 { 606 } 607 608 #endif /* CONFIG_LRU_GEN */ 609 610 struct lruvec { 611 struct list_head lists[NR_LRU_LISTS]; 612 /* per lruvec lru_lock for memcg */ 613 spinlock_t lru_lock; 614 /* 615 * These track the cost of reclaiming one LRU - file or anon - 616 * over the other. As the observed cost of reclaiming one LRU 617 * increases, the reclaim scan balance tips toward the other. 618 */ 619 unsigned long anon_cost; 620 unsigned long file_cost; 621 /* Non-resident age, driven by LRU movement */ 622 atomic_long_t nonresident_age; 623 /* Refaults at the time of last reclaim cycle */ 624 unsigned long refaults[ANON_AND_FILE]; 625 /* Various lruvec state flags (enum lruvec_flags) */ 626 unsigned long flags; 627 #ifdef CONFIG_LRU_GEN 628 /* evictable pages divided into generations */ 629 struct lru_gen_folio lrugen; 630 #ifdef CONFIG_LRU_GEN_WALKS_MMU 631 /* to concurrently iterate lru_gen_mm_list */ 632 struct lru_gen_mm_state mm_state; 633 #endif 634 #endif /* CONFIG_LRU_GEN */ 635 #ifdef CONFIG_MEMCG 636 struct pglist_data *pgdat; 637 #endif 638 struct zswap_lruvec_state zswap_lruvec_state; 639 }; 640 641 /* Isolate for asynchronous migration */ 642 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 643 /* Isolate unevictable pages */ 644 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 645 646 /* LRU Isolation modes. */ 647 typedef unsigned __bitwise isolate_mode_t; 648 649 enum zone_watermarks { 650 WMARK_MIN, 651 WMARK_LOW, 652 WMARK_HIGH, 653 WMARK_PROMO, 654 NR_WMARK 655 }; 656 657 /* 658 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 659 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 660 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 661 */ 662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 663 #define NR_PCP_THP 2 664 #else 665 #define NR_PCP_THP 0 666 #endif 667 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 668 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 669 670 /* 671 * Flags used in pcp->flags field. 672 * 673 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 674 * previous page freeing. To avoid to drain PCP for an accident 675 * high-order page freeing. 676 * 677 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 678 * draining PCP for consecutive high-order pages freeing without 679 * allocation if data cache slice of CPU is large enough. To reduce 680 * zone lock contention and keep cache-hot pages reusing. 681 */ 682 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 683 #define PCPF_FREE_HIGH_BATCH BIT(1) 684 685 struct per_cpu_pages { 686 spinlock_t lock; /* Protects lists field */ 687 int count; /* number of pages in the list */ 688 int high; /* high watermark, emptying needed */ 689 int high_min; /* min high watermark */ 690 int high_max; /* max high watermark */ 691 int batch; /* chunk size for buddy add/remove */ 692 u8 flags; /* protected by pcp->lock */ 693 u8 alloc_factor; /* batch scaling factor during allocate */ 694 #ifdef CONFIG_NUMA 695 u8 expire; /* When 0, remote pagesets are drained */ 696 #endif 697 short free_count; /* consecutive free count */ 698 699 /* Lists of pages, one per migrate type stored on the pcp-lists */ 700 struct list_head lists[NR_PCP_LISTS]; 701 } ____cacheline_aligned_in_smp; 702 703 struct per_cpu_zonestat { 704 #ifdef CONFIG_SMP 705 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 706 s8 stat_threshold; 707 #endif 708 #ifdef CONFIG_NUMA 709 /* 710 * Low priority inaccurate counters that are only folded 711 * on demand. Use a large type to avoid the overhead of 712 * folding during refresh_cpu_vm_stats. 713 */ 714 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 715 #endif 716 }; 717 718 struct per_cpu_nodestat { 719 s8 stat_threshold; 720 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 721 }; 722 723 #endif /* !__GENERATING_BOUNDS.H */ 724 725 enum zone_type { 726 /* 727 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 728 * to DMA to all of the addressable memory (ZONE_NORMAL). 729 * On architectures where this area covers the whole 32 bit address 730 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 731 * DMA addressing constraints. This distinction is important as a 32bit 732 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 733 * platforms may need both zones as they support peripherals with 734 * different DMA addressing limitations. 735 */ 736 #ifdef CONFIG_ZONE_DMA 737 ZONE_DMA, 738 #endif 739 #ifdef CONFIG_ZONE_DMA32 740 ZONE_DMA32, 741 #endif 742 /* 743 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 744 * performed on pages in ZONE_NORMAL if the DMA devices support 745 * transfers to all addressable memory. 746 */ 747 ZONE_NORMAL, 748 #ifdef CONFIG_HIGHMEM 749 /* 750 * A memory area that is only addressable by the kernel through 751 * mapping portions into its own address space. This is for example 752 * used by i386 to allow the kernel to address the memory beyond 753 * 900MB. The kernel will set up special mappings (page 754 * table entries on i386) for each page that the kernel needs to 755 * access. 756 */ 757 ZONE_HIGHMEM, 758 #endif 759 /* 760 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 761 * movable pages with few exceptional cases described below. Main use 762 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 763 * likely to succeed, and to locally limit unmovable allocations - e.g., 764 * to increase the number of THP/huge pages. Notable special cases are: 765 * 766 * 1. Pinned pages: (long-term) pinning of movable pages might 767 * essentially turn such pages unmovable. Therefore, we do not allow 768 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 769 * faulted, they come from the right zone right away. However, it is 770 * still possible that address space already has pages in 771 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 772 * touches that memory before pinning). In such case we migrate them 773 * to a different zone. When migration fails - pinning fails. 774 * 2. memblock allocations: kernelcore/movablecore setups might create 775 * situations where ZONE_MOVABLE contains unmovable allocations 776 * after boot. Memory offlining and allocations fail early. 777 * 3. Memory holes: kernelcore/movablecore setups might create very rare 778 * situations where ZONE_MOVABLE contains memory holes after boot, 779 * for example, if we have sections that are only partially 780 * populated. Memory offlining and allocations fail early. 781 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 782 * memory offlining, such pages cannot be allocated. 783 * 5. Unmovable PG_offline pages: in paravirtualized environments, 784 * hotplugged memory blocks might only partially be managed by the 785 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 786 * parts not manged by the buddy are unmovable PG_offline pages. In 787 * some cases (virtio-mem), such pages can be skipped during 788 * memory offlining, however, cannot be moved/allocated. These 789 * techniques might use alloc_contig_range() to hide previously 790 * exposed pages from the buddy again (e.g., to implement some sort 791 * of memory unplug in virtio-mem). 792 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 793 * situations where ZERO_PAGE(0) which is allocated differently 794 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 795 * cannot be migrated. 796 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 797 * memory to the MOVABLE zone, the vmemmap pages are also placed in 798 * such zone. Such pages cannot be really moved around as they are 799 * self-stored in the range, but they are treated as movable when 800 * the range they describe is about to be offlined. 801 * 802 * In general, no unmovable allocations that degrade memory offlining 803 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 804 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 805 * if has_unmovable_pages() states that there are no unmovable pages, 806 * there can be false negatives). 807 */ 808 ZONE_MOVABLE, 809 #ifdef CONFIG_ZONE_DEVICE 810 ZONE_DEVICE, 811 #endif 812 __MAX_NR_ZONES 813 814 }; 815 816 #ifndef __GENERATING_BOUNDS_H 817 818 #define ASYNC_AND_SYNC 2 819 820 struct zone { 821 /* Read-mostly fields */ 822 823 /* zone watermarks, access with *_wmark_pages(zone) macros */ 824 unsigned long _watermark[NR_WMARK]; 825 unsigned long watermark_boost; 826 827 unsigned long nr_reserved_highatomic; 828 unsigned long nr_free_highatomic; 829 830 /* 831 * We don't know if the memory that we're going to allocate will be 832 * freeable or/and it will be released eventually, so to avoid totally 833 * wasting several GB of ram we must reserve some of the lower zone 834 * memory (otherwise we risk to run OOM on the lower zones despite 835 * there being tons of freeable ram on the higher zones). This array is 836 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 837 * changes. 838 */ 839 long lowmem_reserve[MAX_NR_ZONES]; 840 841 #ifdef CONFIG_NUMA 842 int node; 843 #endif 844 struct pglist_data *zone_pgdat; 845 struct per_cpu_pages __percpu *per_cpu_pageset; 846 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 847 /* 848 * the high and batch values are copied to individual pagesets for 849 * faster access 850 */ 851 int pageset_high_min; 852 int pageset_high_max; 853 int pageset_batch; 854 855 #ifndef CONFIG_SPARSEMEM 856 /* 857 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 858 * In SPARSEMEM, this map is stored in struct mem_section 859 */ 860 unsigned long *pageblock_flags; 861 #endif /* CONFIG_SPARSEMEM */ 862 863 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 864 unsigned long zone_start_pfn; 865 866 /* 867 * spanned_pages is the total pages spanned by the zone, including 868 * holes, which is calculated as: 869 * spanned_pages = zone_end_pfn - zone_start_pfn; 870 * 871 * present_pages is physical pages existing within the zone, which 872 * is calculated as: 873 * present_pages = spanned_pages - absent_pages(pages in holes); 874 * 875 * present_early_pages is present pages existing within the zone 876 * located on memory available since early boot, excluding hotplugged 877 * memory. 878 * 879 * managed_pages is present pages managed by the buddy system, which 880 * is calculated as (reserved_pages includes pages allocated by the 881 * bootmem allocator): 882 * managed_pages = present_pages - reserved_pages; 883 * 884 * cma pages is present pages that are assigned for CMA use 885 * (MIGRATE_CMA). 886 * 887 * So present_pages may be used by memory hotplug or memory power 888 * management logic to figure out unmanaged pages by checking 889 * (present_pages - managed_pages). And managed_pages should be used 890 * by page allocator and vm scanner to calculate all kinds of watermarks 891 * and thresholds. 892 * 893 * Locking rules: 894 * 895 * zone_start_pfn and spanned_pages are protected by span_seqlock. 896 * It is a seqlock because it has to be read outside of zone->lock, 897 * and it is done in the main allocator path. But, it is written 898 * quite infrequently. 899 * 900 * The span_seq lock is declared along with zone->lock because it is 901 * frequently read in proximity to zone->lock. It's good to 902 * give them a chance of being in the same cacheline. 903 * 904 * Write access to present_pages at runtime should be protected by 905 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 906 * present_pages should use get_online_mems() to get a stable value. 907 */ 908 atomic_long_t managed_pages; 909 unsigned long spanned_pages; 910 unsigned long present_pages; 911 #if defined(CONFIG_MEMORY_HOTPLUG) 912 unsigned long present_early_pages; 913 #endif 914 #ifdef CONFIG_CMA 915 unsigned long cma_pages; 916 #endif 917 918 const char *name; 919 920 #ifdef CONFIG_MEMORY_ISOLATION 921 /* 922 * Number of isolated pageblock. It is used to solve incorrect 923 * freepage counting problem due to racy retrieving migratetype 924 * of pageblock. Protected by zone->lock. 925 */ 926 unsigned long nr_isolate_pageblock; 927 #endif 928 929 #ifdef CONFIG_MEMORY_HOTPLUG 930 /* see spanned/present_pages for more description */ 931 seqlock_t span_seqlock; 932 #endif 933 934 int initialized; 935 936 /* Write-intensive fields used from the page allocator */ 937 CACHELINE_PADDING(_pad1_); 938 939 /* free areas of different sizes */ 940 struct free_area free_area[NR_PAGE_ORDERS]; 941 942 #ifdef CONFIG_UNACCEPTED_MEMORY 943 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 944 struct list_head unaccepted_pages; 945 #endif 946 947 /* zone flags, see below */ 948 unsigned long flags; 949 950 /* Primarily protects free_area */ 951 spinlock_t lock; 952 953 /* Write-intensive fields used by compaction and vmstats. */ 954 CACHELINE_PADDING(_pad2_); 955 956 /* 957 * When free pages are below this point, additional steps are taken 958 * when reading the number of free pages to avoid per-cpu counter 959 * drift allowing watermarks to be breached 960 */ 961 unsigned long percpu_drift_mark; 962 963 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 964 /* pfn where compaction free scanner should start */ 965 unsigned long compact_cached_free_pfn; 966 /* pfn where compaction migration scanner should start */ 967 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 968 unsigned long compact_init_migrate_pfn; 969 unsigned long compact_init_free_pfn; 970 #endif 971 972 #ifdef CONFIG_COMPACTION 973 /* 974 * On compaction failure, 1<<compact_defer_shift compactions 975 * are skipped before trying again. The number attempted since 976 * last failure is tracked with compact_considered. 977 * compact_order_failed is the minimum compaction failed order. 978 */ 979 unsigned int compact_considered; 980 unsigned int compact_defer_shift; 981 int compact_order_failed; 982 #endif 983 984 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 985 /* Set to true when the PG_migrate_skip bits should be cleared */ 986 bool compact_blockskip_flush; 987 #endif 988 989 bool contiguous; 990 991 CACHELINE_PADDING(_pad3_); 992 /* Zone statistics */ 993 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 994 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 995 } ____cacheline_internodealigned_in_smp; 996 997 enum pgdat_flags { 998 PGDAT_DIRTY, /* reclaim scanning has recently found 999 * many dirty file pages at the tail 1000 * of the LRU. 1001 */ 1002 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1003 * many pages under writeback 1004 */ 1005 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1006 }; 1007 1008 enum zone_flags { 1009 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1010 * Cleared when kswapd is woken. 1011 */ 1012 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1013 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1014 }; 1015 1016 static inline unsigned long wmark_pages(const struct zone *z, 1017 enum zone_watermarks w) 1018 { 1019 return z->_watermark[w] + z->watermark_boost; 1020 } 1021 1022 static inline unsigned long min_wmark_pages(const struct zone *z) 1023 { 1024 return wmark_pages(z, WMARK_MIN); 1025 } 1026 1027 static inline unsigned long low_wmark_pages(const struct zone *z) 1028 { 1029 return wmark_pages(z, WMARK_LOW); 1030 } 1031 1032 static inline unsigned long high_wmark_pages(const struct zone *z) 1033 { 1034 return wmark_pages(z, WMARK_HIGH); 1035 } 1036 1037 static inline unsigned long promo_wmark_pages(const struct zone *z) 1038 { 1039 return wmark_pages(z, WMARK_PROMO); 1040 } 1041 1042 static inline unsigned long zone_managed_pages(struct zone *zone) 1043 { 1044 return (unsigned long)atomic_long_read(&zone->managed_pages); 1045 } 1046 1047 static inline unsigned long zone_cma_pages(struct zone *zone) 1048 { 1049 #ifdef CONFIG_CMA 1050 return zone->cma_pages; 1051 #else 1052 return 0; 1053 #endif 1054 } 1055 1056 static inline unsigned long zone_end_pfn(const struct zone *zone) 1057 { 1058 return zone->zone_start_pfn + zone->spanned_pages; 1059 } 1060 1061 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1062 { 1063 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1064 } 1065 1066 static inline bool zone_is_initialized(struct zone *zone) 1067 { 1068 return zone->initialized; 1069 } 1070 1071 static inline bool zone_is_empty(struct zone *zone) 1072 { 1073 return zone->spanned_pages == 0; 1074 } 1075 1076 #ifndef BUILD_VDSO32_64 1077 /* 1078 * The zone field is never updated after free_area_init_core() 1079 * sets it, so none of the operations on it need to be atomic. 1080 */ 1081 1082 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1083 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1084 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1085 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1086 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1087 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1088 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1089 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1090 1091 /* 1092 * Define the bit shifts to access each section. For non-existent 1093 * sections we define the shift as 0; that plus a 0 mask ensures 1094 * the compiler will optimise away reference to them. 1095 */ 1096 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1097 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1098 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1099 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1100 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1101 1102 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1103 #ifdef NODE_NOT_IN_PAGE_FLAGS 1104 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1105 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1106 SECTIONS_PGOFF : ZONES_PGOFF) 1107 #else 1108 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1109 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1110 NODES_PGOFF : ZONES_PGOFF) 1111 #endif 1112 1113 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1114 1115 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1116 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1117 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1118 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1119 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1120 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1121 1122 static inline enum zone_type page_zonenum(const struct page *page) 1123 { 1124 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1125 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1126 } 1127 1128 static inline enum zone_type folio_zonenum(const struct folio *folio) 1129 { 1130 return page_zonenum(&folio->page); 1131 } 1132 1133 #ifdef CONFIG_ZONE_DEVICE 1134 static inline bool is_zone_device_page(const struct page *page) 1135 { 1136 return page_zonenum(page) == ZONE_DEVICE; 1137 } 1138 1139 /* 1140 * Consecutive zone device pages should not be merged into the same sgl 1141 * or bvec segment with other types of pages or if they belong to different 1142 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1143 * without scanning the entire segment. This helper returns true either if 1144 * both pages are not zone device pages or both pages are zone device pages 1145 * with the same pgmap. 1146 */ 1147 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1148 const struct page *b) 1149 { 1150 if (is_zone_device_page(a) != is_zone_device_page(b)) 1151 return false; 1152 if (!is_zone_device_page(a)) 1153 return true; 1154 return a->pgmap == b->pgmap; 1155 } 1156 1157 extern void memmap_init_zone_device(struct zone *, unsigned long, 1158 unsigned long, struct dev_pagemap *); 1159 #else 1160 static inline bool is_zone_device_page(const struct page *page) 1161 { 1162 return false; 1163 } 1164 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1165 const struct page *b) 1166 { 1167 return true; 1168 } 1169 #endif 1170 1171 static inline bool folio_is_zone_device(const struct folio *folio) 1172 { 1173 return is_zone_device_page(&folio->page); 1174 } 1175 1176 static inline bool is_zone_movable_page(const struct page *page) 1177 { 1178 return page_zonenum(page) == ZONE_MOVABLE; 1179 } 1180 1181 static inline bool folio_is_zone_movable(const struct folio *folio) 1182 { 1183 return folio_zonenum(folio) == ZONE_MOVABLE; 1184 } 1185 #endif 1186 1187 /* 1188 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1189 * intersection with the given zone 1190 */ 1191 static inline bool zone_intersects(struct zone *zone, 1192 unsigned long start_pfn, unsigned long nr_pages) 1193 { 1194 if (zone_is_empty(zone)) 1195 return false; 1196 if (start_pfn >= zone_end_pfn(zone) || 1197 start_pfn + nr_pages <= zone->zone_start_pfn) 1198 return false; 1199 1200 return true; 1201 } 1202 1203 /* 1204 * The "priority" of VM scanning is how much of the queues we will scan in one 1205 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1206 * queues ("queue_length >> 12") during an aging round. 1207 */ 1208 #define DEF_PRIORITY 12 1209 1210 /* Maximum number of zones on a zonelist */ 1211 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1212 1213 enum { 1214 ZONELIST_FALLBACK, /* zonelist with fallback */ 1215 #ifdef CONFIG_NUMA 1216 /* 1217 * The NUMA zonelists are doubled because we need zonelists that 1218 * restrict the allocations to a single node for __GFP_THISNODE. 1219 */ 1220 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1221 #endif 1222 MAX_ZONELISTS 1223 }; 1224 1225 /* 1226 * This struct contains information about a zone in a zonelist. It is stored 1227 * here to avoid dereferences into large structures and lookups of tables 1228 */ 1229 struct zoneref { 1230 struct zone *zone; /* Pointer to actual zone */ 1231 int zone_idx; /* zone_idx(zoneref->zone) */ 1232 }; 1233 1234 /* 1235 * One allocation request operates on a zonelist. A zonelist 1236 * is a list of zones, the first one is the 'goal' of the 1237 * allocation, the other zones are fallback zones, in decreasing 1238 * priority. 1239 * 1240 * To speed the reading of the zonelist, the zonerefs contain the zone index 1241 * of the entry being read. Helper functions to access information given 1242 * a struct zoneref are 1243 * 1244 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1245 * zonelist_zone_idx() - Return the index of the zone for an entry 1246 * zonelist_node_idx() - Return the index of the node for an entry 1247 */ 1248 struct zonelist { 1249 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1250 }; 1251 1252 /* 1253 * The array of struct pages for flatmem. 1254 * It must be declared for SPARSEMEM as well because there are configurations 1255 * that rely on that. 1256 */ 1257 extern struct page *mem_map; 1258 1259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1260 struct deferred_split { 1261 spinlock_t split_queue_lock; 1262 struct list_head split_queue; 1263 unsigned long split_queue_len; 1264 }; 1265 #endif 1266 1267 #ifdef CONFIG_MEMORY_FAILURE 1268 /* 1269 * Per NUMA node memory failure handling statistics. 1270 */ 1271 struct memory_failure_stats { 1272 /* 1273 * Number of raw pages poisoned. 1274 * Cases not accounted: memory outside kernel control, offline page, 1275 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1276 * error events, and unpoison actions from hwpoison_unpoison. 1277 */ 1278 unsigned long total; 1279 /* 1280 * Recovery results of poisoned raw pages handled by memory_failure, 1281 * in sync with mf_result. 1282 * total = ignored + failed + delayed + recovered. 1283 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1284 */ 1285 unsigned long ignored; 1286 unsigned long failed; 1287 unsigned long delayed; 1288 unsigned long recovered; 1289 }; 1290 #endif 1291 1292 /* 1293 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1294 * it's memory layout. On UMA machines there is a single pglist_data which 1295 * describes the whole memory. 1296 * 1297 * Memory statistics and page replacement data structures are maintained on a 1298 * per-zone basis. 1299 */ 1300 typedef struct pglist_data { 1301 /* 1302 * node_zones contains just the zones for THIS node. Not all of the 1303 * zones may be populated, but it is the full list. It is referenced by 1304 * this node's node_zonelists as well as other node's node_zonelists. 1305 */ 1306 struct zone node_zones[MAX_NR_ZONES]; 1307 1308 /* 1309 * node_zonelists contains references to all zones in all nodes. 1310 * Generally the first zones will be references to this node's 1311 * node_zones. 1312 */ 1313 struct zonelist node_zonelists[MAX_ZONELISTS]; 1314 1315 int nr_zones; /* number of populated zones in this node */ 1316 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1317 struct page *node_mem_map; 1318 #ifdef CONFIG_PAGE_EXTENSION 1319 struct page_ext *node_page_ext; 1320 #endif 1321 #endif 1322 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1323 /* 1324 * Must be held any time you expect node_start_pfn, 1325 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1326 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1327 * init. 1328 * 1329 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1330 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1331 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1332 * 1333 * Nests above zone->lock and zone->span_seqlock 1334 */ 1335 spinlock_t node_size_lock; 1336 #endif 1337 unsigned long node_start_pfn; 1338 unsigned long node_present_pages; /* total number of physical pages */ 1339 unsigned long node_spanned_pages; /* total size of physical page 1340 range, including holes */ 1341 int node_id; 1342 wait_queue_head_t kswapd_wait; 1343 wait_queue_head_t pfmemalloc_wait; 1344 1345 /* workqueues for throttling reclaim for different reasons. */ 1346 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1347 1348 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1349 unsigned long nr_reclaim_start; /* nr pages written while throttled 1350 * when throttling started. */ 1351 #ifdef CONFIG_MEMORY_HOTPLUG 1352 struct mutex kswapd_lock; 1353 #endif 1354 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1355 int kswapd_order; 1356 enum zone_type kswapd_highest_zoneidx; 1357 1358 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1359 1360 #ifdef CONFIG_COMPACTION 1361 int kcompactd_max_order; 1362 enum zone_type kcompactd_highest_zoneidx; 1363 wait_queue_head_t kcompactd_wait; 1364 struct task_struct *kcompactd; 1365 bool proactive_compact_trigger; 1366 #endif 1367 /* 1368 * This is a per-node reserve of pages that are not available 1369 * to userspace allocations. 1370 */ 1371 unsigned long totalreserve_pages; 1372 1373 #ifdef CONFIG_NUMA 1374 /* 1375 * node reclaim becomes active if more unmapped pages exist. 1376 */ 1377 unsigned long min_unmapped_pages; 1378 unsigned long min_slab_pages; 1379 #endif /* CONFIG_NUMA */ 1380 1381 /* Write-intensive fields used by page reclaim */ 1382 CACHELINE_PADDING(_pad1_); 1383 1384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1385 /* 1386 * If memory initialisation on large machines is deferred then this 1387 * is the first PFN that needs to be initialised. 1388 */ 1389 unsigned long first_deferred_pfn; 1390 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1391 1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1393 struct deferred_split deferred_split_queue; 1394 #endif 1395 1396 #ifdef CONFIG_NUMA_BALANCING 1397 /* start time in ms of current promote rate limit period */ 1398 unsigned int nbp_rl_start; 1399 /* number of promote candidate pages at start time of current rate limit period */ 1400 unsigned long nbp_rl_nr_cand; 1401 /* promote threshold in ms */ 1402 unsigned int nbp_threshold; 1403 /* start time in ms of current promote threshold adjustment period */ 1404 unsigned int nbp_th_start; 1405 /* 1406 * number of promote candidate pages at start time of current promote 1407 * threshold adjustment period 1408 */ 1409 unsigned long nbp_th_nr_cand; 1410 #endif 1411 /* Fields commonly accessed by the page reclaim scanner */ 1412 1413 /* 1414 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1415 * 1416 * Use mem_cgroup_lruvec() to look up lruvecs. 1417 */ 1418 struct lruvec __lruvec; 1419 1420 unsigned long flags; 1421 1422 #ifdef CONFIG_LRU_GEN 1423 /* kswap mm walk data */ 1424 struct lru_gen_mm_walk mm_walk; 1425 /* lru_gen_folio list */ 1426 struct lru_gen_memcg memcg_lru; 1427 #endif 1428 1429 CACHELINE_PADDING(_pad2_); 1430 1431 /* Per-node vmstats */ 1432 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1433 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1434 #ifdef CONFIG_NUMA 1435 struct memory_tier __rcu *memtier; 1436 #endif 1437 #ifdef CONFIG_MEMORY_FAILURE 1438 struct memory_failure_stats mf_stats; 1439 #endif 1440 } pg_data_t; 1441 1442 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1443 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1444 1445 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1446 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1447 1448 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1449 { 1450 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1451 } 1452 1453 #include <linux/memory_hotplug.h> 1454 1455 void build_all_zonelists(pg_data_t *pgdat); 1456 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1457 enum zone_type highest_zoneidx); 1458 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1459 int highest_zoneidx, unsigned int alloc_flags, 1460 long free_pages); 1461 bool zone_watermark_ok(struct zone *z, unsigned int order, 1462 unsigned long mark, int highest_zoneidx, 1463 unsigned int alloc_flags); 1464 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1465 unsigned long mark, int highest_zoneidx); 1466 /* 1467 * Memory initialization context, use to differentiate memory added by 1468 * the platform statically or via memory hotplug interface. 1469 */ 1470 enum meminit_context { 1471 MEMINIT_EARLY, 1472 MEMINIT_HOTPLUG, 1473 }; 1474 1475 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1476 unsigned long size); 1477 1478 extern void lruvec_init(struct lruvec *lruvec); 1479 1480 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1481 { 1482 #ifdef CONFIG_MEMCG 1483 return lruvec->pgdat; 1484 #else 1485 return container_of(lruvec, struct pglist_data, __lruvec); 1486 #endif 1487 } 1488 1489 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1490 int local_memory_node(int node_id); 1491 #else 1492 static inline int local_memory_node(int node_id) { return node_id; }; 1493 #endif 1494 1495 /* 1496 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1497 */ 1498 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1499 1500 #ifdef CONFIG_ZONE_DEVICE 1501 static inline bool zone_is_zone_device(struct zone *zone) 1502 { 1503 return zone_idx(zone) == ZONE_DEVICE; 1504 } 1505 #else 1506 static inline bool zone_is_zone_device(struct zone *zone) 1507 { 1508 return false; 1509 } 1510 #endif 1511 1512 /* 1513 * Returns true if a zone has pages managed by the buddy allocator. 1514 * All the reclaim decisions have to use this function rather than 1515 * populated_zone(). If the whole zone is reserved then we can easily 1516 * end up with populated_zone() && !managed_zone(). 1517 */ 1518 static inline bool managed_zone(struct zone *zone) 1519 { 1520 return zone_managed_pages(zone); 1521 } 1522 1523 /* Returns true if a zone has memory */ 1524 static inline bool populated_zone(struct zone *zone) 1525 { 1526 return zone->present_pages; 1527 } 1528 1529 #ifdef CONFIG_NUMA 1530 static inline int zone_to_nid(struct zone *zone) 1531 { 1532 return zone->node; 1533 } 1534 1535 static inline void zone_set_nid(struct zone *zone, int nid) 1536 { 1537 zone->node = nid; 1538 } 1539 #else 1540 static inline int zone_to_nid(struct zone *zone) 1541 { 1542 return 0; 1543 } 1544 1545 static inline void zone_set_nid(struct zone *zone, int nid) {} 1546 #endif 1547 1548 extern int movable_zone; 1549 1550 static inline int is_highmem_idx(enum zone_type idx) 1551 { 1552 #ifdef CONFIG_HIGHMEM 1553 return (idx == ZONE_HIGHMEM || 1554 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1555 #else 1556 return 0; 1557 #endif 1558 } 1559 1560 /** 1561 * is_highmem - helper function to quickly check if a struct zone is a 1562 * highmem zone or not. This is an attempt to keep references 1563 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1564 * @zone: pointer to struct zone variable 1565 * Return: 1 for a highmem zone, 0 otherwise 1566 */ 1567 static inline int is_highmem(struct zone *zone) 1568 { 1569 return is_highmem_idx(zone_idx(zone)); 1570 } 1571 1572 #ifdef CONFIG_ZONE_DMA 1573 bool has_managed_dma(void); 1574 #else 1575 static inline bool has_managed_dma(void) 1576 { 1577 return false; 1578 } 1579 #endif 1580 1581 1582 #ifndef CONFIG_NUMA 1583 1584 extern struct pglist_data contig_page_data; 1585 static inline struct pglist_data *NODE_DATA(int nid) 1586 { 1587 return &contig_page_data; 1588 } 1589 1590 #else /* CONFIG_NUMA */ 1591 1592 #include <asm/mmzone.h> 1593 1594 #endif /* !CONFIG_NUMA */ 1595 1596 extern struct pglist_data *first_online_pgdat(void); 1597 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1598 extern struct zone *next_zone(struct zone *zone); 1599 1600 /** 1601 * for_each_online_pgdat - helper macro to iterate over all online nodes 1602 * @pgdat: pointer to a pg_data_t variable 1603 */ 1604 #define for_each_online_pgdat(pgdat) \ 1605 for (pgdat = first_online_pgdat(); \ 1606 pgdat; \ 1607 pgdat = next_online_pgdat(pgdat)) 1608 /** 1609 * for_each_zone - helper macro to iterate over all memory zones 1610 * @zone: pointer to struct zone variable 1611 * 1612 * The user only needs to declare the zone variable, for_each_zone 1613 * fills it in. 1614 */ 1615 #define for_each_zone(zone) \ 1616 for (zone = (first_online_pgdat())->node_zones; \ 1617 zone; \ 1618 zone = next_zone(zone)) 1619 1620 #define for_each_populated_zone(zone) \ 1621 for (zone = (first_online_pgdat())->node_zones; \ 1622 zone; \ 1623 zone = next_zone(zone)) \ 1624 if (!populated_zone(zone)) \ 1625 ; /* do nothing */ \ 1626 else 1627 1628 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1629 { 1630 return zoneref->zone; 1631 } 1632 1633 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1634 { 1635 return zoneref->zone_idx; 1636 } 1637 1638 static inline int zonelist_node_idx(struct zoneref *zoneref) 1639 { 1640 return zone_to_nid(zoneref->zone); 1641 } 1642 1643 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1644 enum zone_type highest_zoneidx, 1645 nodemask_t *nodes); 1646 1647 /** 1648 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1649 * @z: The cursor used as a starting point for the search 1650 * @highest_zoneidx: The zone index of the highest zone to return 1651 * @nodes: An optional nodemask to filter the zonelist with 1652 * 1653 * This function returns the next zone at or below a given zone index that is 1654 * within the allowed nodemask using a cursor as the starting point for the 1655 * search. The zoneref returned is a cursor that represents the current zone 1656 * being examined. It should be advanced by one before calling 1657 * next_zones_zonelist again. 1658 * 1659 * Return: the next zone at or below highest_zoneidx within the allowed 1660 * nodemask using a cursor within a zonelist as a starting point 1661 */ 1662 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1663 enum zone_type highest_zoneidx, 1664 nodemask_t *nodes) 1665 { 1666 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1667 return z; 1668 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1669 } 1670 1671 /** 1672 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1673 * @zonelist: The zonelist to search for a suitable zone 1674 * @highest_zoneidx: The zone index of the highest zone to return 1675 * @nodes: An optional nodemask to filter the zonelist with 1676 * 1677 * This function returns the first zone at or below a given zone index that is 1678 * within the allowed nodemask. The zoneref returned is a cursor that can be 1679 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1680 * one before calling. 1681 * 1682 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1683 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1684 * update due to cpuset modification. 1685 * 1686 * Return: Zoneref pointer for the first suitable zone found 1687 */ 1688 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1689 enum zone_type highest_zoneidx, 1690 nodemask_t *nodes) 1691 { 1692 return next_zones_zonelist(zonelist->_zonerefs, 1693 highest_zoneidx, nodes); 1694 } 1695 1696 /** 1697 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1698 * @zone: The current zone in the iterator 1699 * @z: The current pointer within zonelist->_zonerefs being iterated 1700 * @zlist: The zonelist being iterated 1701 * @highidx: The zone index of the highest zone to return 1702 * @nodemask: Nodemask allowed by the allocator 1703 * 1704 * This iterator iterates though all zones at or below a given zone index and 1705 * within a given nodemask 1706 */ 1707 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1708 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1709 zone; \ 1710 z = next_zones_zonelist(++z, highidx, nodemask), \ 1711 zone = zonelist_zone(z)) 1712 1713 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1714 for (zone = zonelist_zone(z); \ 1715 zone; \ 1716 z = next_zones_zonelist(++z, highidx, nodemask), \ 1717 zone = zonelist_zone(z)) 1718 1719 1720 /** 1721 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1722 * @zone: The current zone in the iterator 1723 * @z: The current pointer within zonelist->zones being iterated 1724 * @zlist: The zonelist being iterated 1725 * @highidx: The zone index of the highest zone to return 1726 * 1727 * This iterator iterates though all zones at or below a given zone index. 1728 */ 1729 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1730 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1731 1732 /* Whether the 'nodes' are all movable nodes */ 1733 static inline bool movable_only_nodes(nodemask_t *nodes) 1734 { 1735 struct zonelist *zonelist; 1736 struct zoneref *z; 1737 int nid; 1738 1739 if (nodes_empty(*nodes)) 1740 return false; 1741 1742 /* 1743 * We can chose arbitrary node from the nodemask to get a 1744 * zonelist as they are interlinked. We just need to find 1745 * at least one zone that can satisfy kernel allocations. 1746 */ 1747 nid = first_node(*nodes); 1748 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1749 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1750 return (!zonelist_zone(z)) ? true : false; 1751 } 1752 1753 1754 #ifdef CONFIG_SPARSEMEM 1755 #include <asm/sparsemem.h> 1756 #endif 1757 1758 #ifdef CONFIG_FLATMEM 1759 #define pfn_to_nid(pfn) (0) 1760 #endif 1761 1762 #ifdef CONFIG_SPARSEMEM 1763 1764 /* 1765 * PA_SECTION_SHIFT physical address to/from section number 1766 * PFN_SECTION_SHIFT pfn to/from section number 1767 */ 1768 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1769 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1770 1771 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1772 1773 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1774 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1775 1776 #define SECTION_BLOCKFLAGS_BITS \ 1777 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1778 1779 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1780 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1781 #endif 1782 1783 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1784 { 1785 return pfn >> PFN_SECTION_SHIFT; 1786 } 1787 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1788 { 1789 return sec << PFN_SECTION_SHIFT; 1790 } 1791 1792 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1793 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1794 1795 #define SUBSECTION_SHIFT 21 1796 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1797 1798 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1799 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1800 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1801 1802 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1803 #error Subsection size exceeds section size 1804 #else 1805 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1806 #endif 1807 1808 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1809 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1810 1811 struct mem_section_usage { 1812 struct rcu_head rcu; 1813 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1814 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1815 #endif 1816 /* See declaration of similar field in struct zone */ 1817 unsigned long pageblock_flags[0]; 1818 }; 1819 1820 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1821 1822 struct page; 1823 struct page_ext; 1824 struct mem_section { 1825 /* 1826 * This is, logically, a pointer to an array of struct 1827 * pages. However, it is stored with some other magic. 1828 * (see sparse.c::sparse_init_one_section()) 1829 * 1830 * Additionally during early boot we encode node id of 1831 * the location of the section here to guide allocation. 1832 * (see sparse.c::memory_present()) 1833 * 1834 * Making it a UL at least makes someone do a cast 1835 * before using it wrong. 1836 */ 1837 unsigned long section_mem_map; 1838 1839 struct mem_section_usage *usage; 1840 #ifdef CONFIG_PAGE_EXTENSION 1841 /* 1842 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1843 * section. (see page_ext.h about this.) 1844 */ 1845 struct page_ext *page_ext; 1846 unsigned long pad; 1847 #endif 1848 /* 1849 * WARNING: mem_section must be a power-of-2 in size for the 1850 * calculation and use of SECTION_ROOT_MASK to make sense. 1851 */ 1852 }; 1853 1854 #ifdef CONFIG_SPARSEMEM_EXTREME 1855 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1856 #else 1857 #define SECTIONS_PER_ROOT 1 1858 #endif 1859 1860 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1861 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1862 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1863 1864 #ifdef CONFIG_SPARSEMEM_EXTREME 1865 extern struct mem_section **mem_section; 1866 #else 1867 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1868 #endif 1869 1870 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1871 { 1872 return ms->usage->pageblock_flags; 1873 } 1874 1875 static inline struct mem_section *__nr_to_section(unsigned long nr) 1876 { 1877 unsigned long root = SECTION_NR_TO_ROOT(nr); 1878 1879 if (unlikely(root >= NR_SECTION_ROOTS)) 1880 return NULL; 1881 1882 #ifdef CONFIG_SPARSEMEM_EXTREME 1883 if (!mem_section || !mem_section[root]) 1884 return NULL; 1885 #endif 1886 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1887 } 1888 extern size_t mem_section_usage_size(void); 1889 1890 /* 1891 * We use the lower bits of the mem_map pointer to store 1892 * a little bit of information. The pointer is calculated 1893 * as mem_map - section_nr_to_pfn(pnum). The result is 1894 * aligned to the minimum alignment of the two values: 1895 * 1. All mem_map arrays are page-aligned. 1896 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1897 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1898 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1899 * worst combination is powerpc with 256k pages, 1900 * which results in PFN_SECTION_SHIFT equal 6. 1901 * To sum it up, at least 6 bits are available on all architectures. 1902 * However, we can exceed 6 bits on some other architectures except 1903 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1904 * with the worst case of 64K pages on arm64) if we make sure the 1905 * exceeded bit is not applicable to powerpc. 1906 */ 1907 enum { 1908 SECTION_MARKED_PRESENT_BIT, 1909 SECTION_HAS_MEM_MAP_BIT, 1910 SECTION_IS_ONLINE_BIT, 1911 SECTION_IS_EARLY_BIT, 1912 #ifdef CONFIG_ZONE_DEVICE 1913 SECTION_TAINT_ZONE_DEVICE_BIT, 1914 #endif 1915 SECTION_MAP_LAST_BIT, 1916 }; 1917 1918 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1919 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1920 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1921 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1922 #ifdef CONFIG_ZONE_DEVICE 1923 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1924 #endif 1925 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1926 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1927 1928 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1929 { 1930 unsigned long map = section->section_mem_map; 1931 map &= SECTION_MAP_MASK; 1932 return (struct page *)map; 1933 } 1934 1935 static inline int present_section(struct mem_section *section) 1936 { 1937 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1938 } 1939 1940 static inline int present_section_nr(unsigned long nr) 1941 { 1942 return present_section(__nr_to_section(nr)); 1943 } 1944 1945 static inline int valid_section(struct mem_section *section) 1946 { 1947 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1948 } 1949 1950 static inline int early_section(struct mem_section *section) 1951 { 1952 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1953 } 1954 1955 static inline int valid_section_nr(unsigned long nr) 1956 { 1957 return valid_section(__nr_to_section(nr)); 1958 } 1959 1960 static inline int online_section(struct mem_section *section) 1961 { 1962 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1963 } 1964 1965 #ifdef CONFIG_ZONE_DEVICE 1966 static inline int online_device_section(struct mem_section *section) 1967 { 1968 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1969 1970 return section && ((section->section_mem_map & flags) == flags); 1971 } 1972 #else 1973 static inline int online_device_section(struct mem_section *section) 1974 { 1975 return 0; 1976 } 1977 #endif 1978 1979 static inline int online_section_nr(unsigned long nr) 1980 { 1981 return online_section(__nr_to_section(nr)); 1982 } 1983 1984 #ifdef CONFIG_MEMORY_HOTPLUG 1985 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1986 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1987 #endif 1988 1989 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1990 { 1991 return __nr_to_section(pfn_to_section_nr(pfn)); 1992 } 1993 1994 extern unsigned long __highest_present_section_nr; 1995 1996 static inline int subsection_map_index(unsigned long pfn) 1997 { 1998 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1999 } 2000 2001 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2002 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2003 { 2004 int idx = subsection_map_index(pfn); 2005 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2006 2007 return usage ? test_bit(idx, usage->subsection_map) : 0; 2008 } 2009 #else 2010 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2011 { 2012 return 1; 2013 } 2014 #endif 2015 2016 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 2017 /** 2018 * pfn_valid - check if there is a valid memory map entry for a PFN 2019 * @pfn: the page frame number to check 2020 * 2021 * Check if there is a valid memory map entry aka struct page for the @pfn. 2022 * Note, that availability of the memory map entry does not imply that 2023 * there is actual usable memory at that @pfn. The struct page may 2024 * represent a hole or an unusable page frame. 2025 * 2026 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2027 */ 2028 static inline int pfn_valid(unsigned long pfn) 2029 { 2030 struct mem_section *ms; 2031 int ret; 2032 2033 /* 2034 * Ensure the upper PAGE_SHIFT bits are clear in the 2035 * pfn. Else it might lead to false positives when 2036 * some of the upper bits are set, but the lower bits 2037 * match a valid pfn. 2038 */ 2039 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2040 return 0; 2041 2042 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2043 return 0; 2044 ms = __pfn_to_section(pfn); 2045 rcu_read_lock_sched(); 2046 if (!valid_section(ms)) { 2047 rcu_read_unlock_sched(); 2048 return 0; 2049 } 2050 /* 2051 * Traditionally early sections always returned pfn_valid() for 2052 * the entire section-sized span. 2053 */ 2054 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2055 rcu_read_unlock_sched(); 2056 2057 return ret; 2058 } 2059 #endif 2060 2061 static inline int pfn_in_present_section(unsigned long pfn) 2062 { 2063 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2064 return 0; 2065 return present_section(__pfn_to_section(pfn)); 2066 } 2067 2068 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2069 { 2070 while (++section_nr <= __highest_present_section_nr) { 2071 if (present_section_nr(section_nr)) 2072 return section_nr; 2073 } 2074 2075 return -1; 2076 } 2077 2078 /* 2079 * These are _only_ used during initialisation, therefore they 2080 * can use __initdata ... They could have names to indicate 2081 * this restriction. 2082 */ 2083 #ifdef CONFIG_NUMA 2084 #define pfn_to_nid(pfn) \ 2085 ({ \ 2086 unsigned long __pfn_to_nid_pfn = (pfn); \ 2087 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2088 }) 2089 #else 2090 #define pfn_to_nid(pfn) (0) 2091 #endif 2092 2093 void sparse_init(void); 2094 #else 2095 #define sparse_init() do {} while (0) 2096 #define sparse_index_init(_sec, _nid) do {} while (0) 2097 #define pfn_in_present_section pfn_valid 2098 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2099 #endif /* CONFIG_SPARSEMEM */ 2100 2101 #endif /* !__GENERATING_BOUNDS.H */ 2102 #endif /* !__ASSEMBLY__ */ 2103 #endif /* _LINUX_MMZONE_H */ 2104