1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <generated/bounds.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 MIGRATE_ISOLATE, /* can't allocate from here */ 61 MIGRATE_TYPES 62 }; 63 64 #ifdef CONFIG_CMA 65 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 66 # define cma_wmark_pages(zone) zone->min_cma_pages 67 #else 68 # define is_migrate_cma(migratetype) false 69 # define cma_wmark_pages(zone) 0 70 #endif 71 72 #define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76 extern int page_group_by_mobility_disabled; 77 78 static inline int get_pageblock_migratetype(struct page *page) 79 { 80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 81 } 82 83 struct free_area { 84 struct list_head free_list[MIGRATE_TYPES]; 85 unsigned long nr_free; 86 }; 87 88 struct pglist_data; 89 90 /* 91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 92 * So add a wild amount of padding here to ensure that they fall into separate 93 * cachelines. There are very few zone structures in the machine, so space 94 * consumption is not a concern here. 95 */ 96 #if defined(CONFIG_SMP) 97 struct zone_padding { 98 char x[0]; 99 } ____cacheline_internodealigned_in_smp; 100 #define ZONE_PADDING(name) struct zone_padding name; 101 #else 102 #define ZONE_PADDING(name) 103 #endif 104 105 enum zone_stat_item { 106 /* First 128 byte cacheline (assuming 64 bit words) */ 107 NR_FREE_PAGES, 108 NR_LRU_BASE, 109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 110 NR_ACTIVE_ANON, /* " " " " " */ 111 NR_INACTIVE_FILE, /* " " " " " */ 112 NR_ACTIVE_FILE, /* " " " " " */ 113 NR_UNEVICTABLE, /* " " " " " */ 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 115 NR_ANON_PAGES, /* Mapped anonymous pages */ 116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 117 only modified from process context */ 118 NR_FILE_PAGES, 119 NR_FILE_DIRTY, 120 NR_WRITEBACK, 121 NR_SLAB_RECLAIMABLE, 122 NR_SLAB_UNRECLAIMABLE, 123 NR_PAGETABLE, /* used for pagetables */ 124 NR_KERNEL_STACK, 125 /* Second 128 byte cacheline */ 126 NR_UNSTABLE_NFS, /* NFS unstable pages */ 127 NR_BOUNCE, 128 NR_VMSCAN_WRITE, 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 134 NR_DIRTIED, /* page dirtyings since bootup */ 135 NR_WRITTEN, /* page writings since bootup */ 136 #ifdef CONFIG_NUMA 137 NUMA_HIT, /* allocated in intended node */ 138 NUMA_MISS, /* allocated in non intended node */ 139 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 141 NUMA_LOCAL, /* allocation from local node */ 142 NUMA_OTHER, /* allocation from other node */ 143 #endif 144 NR_ANON_TRANSPARENT_HUGEPAGES, 145 NR_VM_ZONE_STAT_ITEMS }; 146 147 /* 148 * We do arithmetic on the LRU lists in various places in the code, 149 * so it is important to keep the active lists LRU_ACTIVE higher in 150 * the array than the corresponding inactive lists, and to keep 151 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 152 * 153 * This has to be kept in sync with the statistics in zone_stat_item 154 * above and the descriptions in vmstat_text in mm/vmstat.c 155 */ 156 #define LRU_BASE 0 157 #define LRU_ACTIVE 1 158 #define LRU_FILE 2 159 160 enum lru_list { 161 LRU_INACTIVE_ANON = LRU_BASE, 162 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 163 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 164 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 165 LRU_UNEVICTABLE, 166 NR_LRU_LISTS 167 }; 168 169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 170 171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 172 173 static inline int is_file_lru(enum lru_list lru) 174 { 175 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 176 } 177 178 static inline int is_active_lru(enum lru_list lru) 179 { 180 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 181 } 182 183 static inline int is_unevictable_lru(enum lru_list lru) 184 { 185 return (lru == LRU_UNEVICTABLE); 186 } 187 188 struct zone_reclaim_stat { 189 /* 190 * The pageout code in vmscan.c keeps track of how many of the 191 * mem/swap backed and file backed pages are refeferenced. 192 * The higher the rotated/scanned ratio, the more valuable 193 * that cache is. 194 * 195 * The anon LRU stats live in [0], file LRU stats in [1] 196 */ 197 unsigned long recent_rotated[2]; 198 unsigned long recent_scanned[2]; 199 }; 200 201 struct lruvec { 202 struct list_head lists[NR_LRU_LISTS]; 203 struct zone_reclaim_stat reclaim_stat; 204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 205 struct zone *zone; 206 #endif 207 }; 208 209 /* Mask used at gathering information at once (see memcontrol.c) */ 210 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 211 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 212 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON) 213 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 214 215 /* Isolate clean file */ 216 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 217 /* Isolate unmapped file */ 218 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 219 /* Isolate for asynchronous migration */ 220 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 221 222 /* LRU Isolation modes. */ 223 typedef unsigned __bitwise__ isolate_mode_t; 224 225 enum zone_watermarks { 226 WMARK_MIN, 227 WMARK_LOW, 228 WMARK_HIGH, 229 NR_WMARK 230 }; 231 232 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 233 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 234 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 235 236 struct per_cpu_pages { 237 int count; /* number of pages in the list */ 238 int high; /* high watermark, emptying needed */ 239 int batch; /* chunk size for buddy add/remove */ 240 241 /* Lists of pages, one per migrate type stored on the pcp-lists */ 242 struct list_head lists[MIGRATE_PCPTYPES]; 243 }; 244 245 struct per_cpu_pageset { 246 struct per_cpu_pages pcp; 247 #ifdef CONFIG_NUMA 248 s8 expire; 249 #endif 250 #ifdef CONFIG_SMP 251 s8 stat_threshold; 252 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 253 #endif 254 }; 255 256 #endif /* !__GENERATING_BOUNDS.H */ 257 258 enum zone_type { 259 #ifdef CONFIG_ZONE_DMA 260 /* 261 * ZONE_DMA is used when there are devices that are not able 262 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 263 * carve out the portion of memory that is needed for these devices. 264 * The range is arch specific. 265 * 266 * Some examples 267 * 268 * Architecture Limit 269 * --------------------------- 270 * parisc, ia64, sparc <4G 271 * s390 <2G 272 * arm Various 273 * alpha Unlimited or 0-16MB. 274 * 275 * i386, x86_64 and multiple other arches 276 * <16M. 277 */ 278 ZONE_DMA, 279 #endif 280 #ifdef CONFIG_ZONE_DMA32 281 /* 282 * x86_64 needs two ZONE_DMAs because it supports devices that are 283 * only able to do DMA to the lower 16M but also 32 bit devices that 284 * can only do DMA areas below 4G. 285 */ 286 ZONE_DMA32, 287 #endif 288 /* 289 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 290 * performed on pages in ZONE_NORMAL if the DMA devices support 291 * transfers to all addressable memory. 292 */ 293 ZONE_NORMAL, 294 #ifdef CONFIG_HIGHMEM 295 /* 296 * A memory area that is only addressable by the kernel through 297 * mapping portions into its own address space. This is for example 298 * used by i386 to allow the kernel to address the memory beyond 299 * 900MB. The kernel will set up special mappings (page 300 * table entries on i386) for each page that the kernel needs to 301 * access. 302 */ 303 ZONE_HIGHMEM, 304 #endif 305 ZONE_MOVABLE, 306 __MAX_NR_ZONES 307 }; 308 309 #ifndef __GENERATING_BOUNDS_H 310 311 /* 312 * When a memory allocation must conform to specific limitations (such 313 * as being suitable for DMA) the caller will pass in hints to the 314 * allocator in the gfp_mask, in the zone modifier bits. These bits 315 * are used to select a priority ordered list of memory zones which 316 * match the requested limits. See gfp_zone() in include/linux/gfp.h 317 */ 318 319 #if MAX_NR_ZONES < 2 320 #define ZONES_SHIFT 0 321 #elif MAX_NR_ZONES <= 2 322 #define ZONES_SHIFT 1 323 #elif MAX_NR_ZONES <= 4 324 #define ZONES_SHIFT 2 325 #else 326 #error ZONES_SHIFT -- too many zones configured adjust calculation 327 #endif 328 329 struct zone { 330 /* Fields commonly accessed by the page allocator */ 331 332 /* zone watermarks, access with *_wmark_pages(zone) macros */ 333 unsigned long watermark[NR_WMARK]; 334 335 /* 336 * When free pages are below this point, additional steps are taken 337 * when reading the number of free pages to avoid per-cpu counter 338 * drift allowing watermarks to be breached 339 */ 340 unsigned long percpu_drift_mark; 341 342 /* 343 * We don't know if the memory that we're going to allocate will be freeable 344 * or/and it will be released eventually, so to avoid totally wasting several 345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 346 * to run OOM on the lower zones despite there's tons of freeable ram 347 * on the higher zones). This array is recalculated at runtime if the 348 * sysctl_lowmem_reserve_ratio sysctl changes. 349 */ 350 unsigned long lowmem_reserve[MAX_NR_ZONES]; 351 352 /* 353 * This is a per-zone reserve of pages that should not be 354 * considered dirtyable memory. 355 */ 356 unsigned long dirty_balance_reserve; 357 358 #ifdef CONFIG_NUMA 359 int node; 360 /* 361 * zone reclaim becomes active if more unmapped pages exist. 362 */ 363 unsigned long min_unmapped_pages; 364 unsigned long min_slab_pages; 365 #endif 366 struct per_cpu_pageset __percpu *pageset; 367 /* 368 * free areas of different sizes 369 */ 370 spinlock_t lock; 371 int all_unreclaimable; /* All pages pinned */ 372 #ifdef CONFIG_MEMORY_HOTPLUG 373 /* see spanned/present_pages for more description */ 374 seqlock_t span_seqlock; 375 #endif 376 #ifdef CONFIG_CMA 377 /* 378 * CMA needs to increase watermark levels during the allocation 379 * process to make sure that the system is not starved. 380 */ 381 unsigned long min_cma_pages; 382 #endif 383 struct free_area free_area[MAX_ORDER]; 384 385 #ifndef CONFIG_SPARSEMEM 386 /* 387 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 388 * In SPARSEMEM, this map is stored in struct mem_section 389 */ 390 unsigned long *pageblock_flags; 391 #endif /* CONFIG_SPARSEMEM */ 392 393 #ifdef CONFIG_COMPACTION 394 /* 395 * On compaction failure, 1<<compact_defer_shift compactions 396 * are skipped before trying again. The number attempted since 397 * last failure is tracked with compact_considered. 398 */ 399 unsigned int compact_considered; 400 unsigned int compact_defer_shift; 401 int compact_order_failed; 402 #endif 403 404 ZONE_PADDING(_pad1_) 405 406 /* Fields commonly accessed by the page reclaim scanner */ 407 spinlock_t lru_lock; 408 struct lruvec lruvec; 409 410 unsigned long pages_scanned; /* since last reclaim */ 411 unsigned long flags; /* zone flags, see below */ 412 413 /* Zone statistics */ 414 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 415 416 /* 417 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 418 * this zone's LRU. Maintained by the pageout code. 419 */ 420 unsigned int inactive_ratio; 421 422 423 ZONE_PADDING(_pad2_) 424 /* Rarely used or read-mostly fields */ 425 426 /* 427 * wait_table -- the array holding the hash table 428 * wait_table_hash_nr_entries -- the size of the hash table array 429 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 430 * 431 * The purpose of all these is to keep track of the people 432 * waiting for a page to become available and make them 433 * runnable again when possible. The trouble is that this 434 * consumes a lot of space, especially when so few things 435 * wait on pages at a given time. So instead of using 436 * per-page waitqueues, we use a waitqueue hash table. 437 * 438 * The bucket discipline is to sleep on the same queue when 439 * colliding and wake all in that wait queue when removing. 440 * When something wakes, it must check to be sure its page is 441 * truly available, a la thundering herd. The cost of a 442 * collision is great, but given the expected load of the 443 * table, they should be so rare as to be outweighed by the 444 * benefits from the saved space. 445 * 446 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 447 * primary users of these fields, and in mm/page_alloc.c 448 * free_area_init_core() performs the initialization of them. 449 */ 450 wait_queue_head_t * wait_table; 451 unsigned long wait_table_hash_nr_entries; 452 unsigned long wait_table_bits; 453 454 /* 455 * Discontig memory support fields. 456 */ 457 struct pglist_data *zone_pgdat; 458 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 459 unsigned long zone_start_pfn; 460 461 /* 462 * zone_start_pfn, spanned_pages and present_pages are all 463 * protected by span_seqlock. It is a seqlock because it has 464 * to be read outside of zone->lock, and it is done in the main 465 * allocator path. But, it is written quite infrequently. 466 * 467 * The lock is declared along with zone->lock because it is 468 * frequently read in proximity to zone->lock. It's good to 469 * give them a chance of being in the same cacheline. 470 */ 471 unsigned long spanned_pages; /* total size, including holes */ 472 unsigned long present_pages; /* amount of memory (excluding holes) */ 473 474 /* 475 * rarely used fields: 476 */ 477 const char *name; 478 } ____cacheline_internodealigned_in_smp; 479 480 typedef enum { 481 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 482 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 483 ZONE_CONGESTED, /* zone has many dirty pages backed by 484 * a congested BDI 485 */ 486 } zone_flags_t; 487 488 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 489 { 490 set_bit(flag, &zone->flags); 491 } 492 493 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 494 { 495 return test_and_set_bit(flag, &zone->flags); 496 } 497 498 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 499 { 500 clear_bit(flag, &zone->flags); 501 } 502 503 static inline int zone_is_reclaim_congested(const struct zone *zone) 504 { 505 return test_bit(ZONE_CONGESTED, &zone->flags); 506 } 507 508 static inline int zone_is_reclaim_locked(const struct zone *zone) 509 { 510 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 511 } 512 513 static inline int zone_is_oom_locked(const struct zone *zone) 514 { 515 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 516 } 517 518 /* 519 * The "priority" of VM scanning is how much of the queues we will scan in one 520 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 521 * queues ("queue_length >> 12") during an aging round. 522 */ 523 #define DEF_PRIORITY 12 524 525 /* Maximum number of zones on a zonelist */ 526 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 527 528 #ifdef CONFIG_NUMA 529 530 /* 531 * The NUMA zonelists are doubled because we need zonelists that restrict the 532 * allocations to a single node for GFP_THISNODE. 533 * 534 * [0] : Zonelist with fallback 535 * [1] : No fallback (GFP_THISNODE) 536 */ 537 #define MAX_ZONELISTS 2 538 539 540 /* 541 * We cache key information from each zonelist for smaller cache 542 * footprint when scanning for free pages in get_page_from_freelist(). 543 * 544 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 545 * up short of free memory since the last time (last_fullzone_zap) 546 * we zero'd fullzones. 547 * 2) The array z_to_n[] maps each zone in the zonelist to its node 548 * id, so that we can efficiently evaluate whether that node is 549 * set in the current tasks mems_allowed. 550 * 551 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 552 * indexed by a zones offset in the zonelist zones[] array. 553 * 554 * The get_page_from_freelist() routine does two scans. During the 555 * first scan, we skip zones whose corresponding bit in 'fullzones' 556 * is set or whose corresponding node in current->mems_allowed (which 557 * comes from cpusets) is not set. During the second scan, we bypass 558 * this zonelist_cache, to ensure we look methodically at each zone. 559 * 560 * Once per second, we zero out (zap) fullzones, forcing us to 561 * reconsider nodes that might have regained more free memory. 562 * The field last_full_zap is the time we last zapped fullzones. 563 * 564 * This mechanism reduces the amount of time we waste repeatedly 565 * reexaming zones for free memory when they just came up low on 566 * memory momentarilly ago. 567 * 568 * The zonelist_cache struct members logically belong in struct 569 * zonelist. However, the mempolicy zonelists constructed for 570 * MPOL_BIND are intentionally variable length (and usually much 571 * shorter). A general purpose mechanism for handling structs with 572 * multiple variable length members is more mechanism than we want 573 * here. We resort to some special case hackery instead. 574 * 575 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 576 * part because they are shorter), so we put the fixed length stuff 577 * at the front of the zonelist struct, ending in a variable length 578 * zones[], as is needed by MPOL_BIND. 579 * 580 * Then we put the optional zonelist cache on the end of the zonelist 581 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 582 * the fixed length portion at the front of the struct. This pointer 583 * both enables us to find the zonelist cache, and in the case of 584 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 585 * to know that the zonelist cache is not there. 586 * 587 * The end result is that struct zonelists come in two flavors: 588 * 1) The full, fixed length version, shown below, and 589 * 2) The custom zonelists for MPOL_BIND. 590 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 591 * 592 * Even though there may be multiple CPU cores on a node modifying 593 * fullzones or last_full_zap in the same zonelist_cache at the same 594 * time, we don't lock it. This is just hint data - if it is wrong now 595 * and then, the allocator will still function, perhaps a bit slower. 596 */ 597 598 599 struct zonelist_cache { 600 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 601 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 602 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 603 }; 604 #else 605 #define MAX_ZONELISTS 1 606 struct zonelist_cache; 607 #endif 608 609 /* 610 * This struct contains information about a zone in a zonelist. It is stored 611 * here to avoid dereferences into large structures and lookups of tables 612 */ 613 struct zoneref { 614 struct zone *zone; /* Pointer to actual zone */ 615 int zone_idx; /* zone_idx(zoneref->zone) */ 616 }; 617 618 /* 619 * One allocation request operates on a zonelist. A zonelist 620 * is a list of zones, the first one is the 'goal' of the 621 * allocation, the other zones are fallback zones, in decreasing 622 * priority. 623 * 624 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 625 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 626 * * 627 * To speed the reading of the zonelist, the zonerefs contain the zone index 628 * of the entry being read. Helper functions to access information given 629 * a struct zoneref are 630 * 631 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 632 * zonelist_zone_idx() - Return the index of the zone for an entry 633 * zonelist_node_idx() - Return the index of the node for an entry 634 */ 635 struct zonelist { 636 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 637 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 638 #ifdef CONFIG_NUMA 639 struct zonelist_cache zlcache; // optional ... 640 #endif 641 }; 642 643 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 644 struct node_active_region { 645 unsigned long start_pfn; 646 unsigned long end_pfn; 647 int nid; 648 }; 649 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 650 651 #ifndef CONFIG_DISCONTIGMEM 652 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 653 extern struct page *mem_map; 654 #endif 655 656 /* 657 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 658 * (mostly NUMA machines?) to denote a higher-level memory zone than the 659 * zone denotes. 660 * 661 * On NUMA machines, each NUMA node would have a pg_data_t to describe 662 * it's memory layout. 663 * 664 * Memory statistics and page replacement data structures are maintained on a 665 * per-zone basis. 666 */ 667 struct bootmem_data; 668 typedef struct pglist_data { 669 struct zone node_zones[MAX_NR_ZONES]; 670 struct zonelist node_zonelists[MAX_ZONELISTS]; 671 int nr_zones; 672 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 673 struct page *node_mem_map; 674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 675 struct page_cgroup *node_page_cgroup; 676 #endif 677 #endif 678 #ifndef CONFIG_NO_BOOTMEM 679 struct bootmem_data *bdata; 680 #endif 681 #ifdef CONFIG_MEMORY_HOTPLUG 682 /* 683 * Must be held any time you expect node_start_pfn, node_present_pages 684 * or node_spanned_pages stay constant. Holding this will also 685 * guarantee that any pfn_valid() stays that way. 686 * 687 * Nests above zone->lock and zone->size_seqlock. 688 */ 689 spinlock_t node_size_lock; 690 #endif 691 unsigned long node_start_pfn; 692 unsigned long node_present_pages; /* total number of physical pages */ 693 unsigned long node_spanned_pages; /* total size of physical page 694 range, including holes */ 695 int node_id; 696 wait_queue_head_t kswapd_wait; 697 struct task_struct *kswapd; 698 int kswapd_max_order; 699 enum zone_type classzone_idx; 700 } pg_data_t; 701 702 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 703 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 704 #ifdef CONFIG_FLAT_NODE_MEM_MAP 705 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 706 #else 707 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 708 #endif 709 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 710 711 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 712 713 #define node_end_pfn(nid) ({\ 714 pg_data_t *__pgdat = NODE_DATA(nid);\ 715 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\ 716 }) 717 718 #include <linux/memory_hotplug.h> 719 720 extern struct mutex zonelists_mutex; 721 void build_all_zonelists(void *data); 722 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 723 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 724 int classzone_idx, int alloc_flags); 725 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 726 int classzone_idx, int alloc_flags); 727 enum memmap_context { 728 MEMMAP_EARLY, 729 MEMMAP_HOTPLUG, 730 }; 731 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 732 unsigned long size, 733 enum memmap_context context); 734 735 extern void lruvec_init(struct lruvec *lruvec, struct zone *zone); 736 737 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 738 { 739 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 740 return lruvec->zone; 741 #else 742 return container_of(lruvec, struct zone, lruvec); 743 #endif 744 } 745 746 #ifdef CONFIG_HAVE_MEMORY_PRESENT 747 void memory_present(int nid, unsigned long start, unsigned long end); 748 #else 749 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 750 #endif 751 752 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 753 int local_memory_node(int node_id); 754 #else 755 static inline int local_memory_node(int node_id) { return node_id; }; 756 #endif 757 758 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 759 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 760 #endif 761 762 /* 763 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 764 */ 765 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 766 767 static inline int populated_zone(struct zone *zone) 768 { 769 return (!!zone->present_pages); 770 } 771 772 extern int movable_zone; 773 774 static inline int zone_movable_is_highmem(void) 775 { 776 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE) 777 return movable_zone == ZONE_HIGHMEM; 778 #else 779 return 0; 780 #endif 781 } 782 783 static inline int is_highmem_idx(enum zone_type idx) 784 { 785 #ifdef CONFIG_HIGHMEM 786 return (idx == ZONE_HIGHMEM || 787 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 788 #else 789 return 0; 790 #endif 791 } 792 793 static inline int is_normal_idx(enum zone_type idx) 794 { 795 return (idx == ZONE_NORMAL); 796 } 797 798 /** 799 * is_highmem - helper function to quickly check if a struct zone is a 800 * highmem zone or not. This is an attempt to keep references 801 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 802 * @zone - pointer to struct zone variable 803 */ 804 static inline int is_highmem(struct zone *zone) 805 { 806 #ifdef CONFIG_HIGHMEM 807 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 808 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 809 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 810 zone_movable_is_highmem()); 811 #else 812 return 0; 813 #endif 814 } 815 816 static inline int is_normal(struct zone *zone) 817 { 818 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 819 } 820 821 static inline int is_dma32(struct zone *zone) 822 { 823 #ifdef CONFIG_ZONE_DMA32 824 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 825 #else 826 return 0; 827 #endif 828 } 829 830 static inline int is_dma(struct zone *zone) 831 { 832 #ifdef CONFIG_ZONE_DMA 833 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 834 #else 835 return 0; 836 #endif 837 } 838 839 /* These two functions are used to setup the per zone pages min values */ 840 struct ctl_table; 841 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 842 void __user *, size_t *, loff_t *); 843 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 844 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 845 void __user *, size_t *, loff_t *); 846 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 847 void __user *, size_t *, loff_t *); 848 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 849 void __user *, size_t *, loff_t *); 850 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 851 void __user *, size_t *, loff_t *); 852 853 extern int numa_zonelist_order_handler(struct ctl_table *, int, 854 void __user *, size_t *, loff_t *); 855 extern char numa_zonelist_order[]; 856 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 857 858 #ifndef CONFIG_NEED_MULTIPLE_NODES 859 860 extern struct pglist_data contig_page_data; 861 #define NODE_DATA(nid) (&contig_page_data) 862 #define NODE_MEM_MAP(nid) mem_map 863 864 #else /* CONFIG_NEED_MULTIPLE_NODES */ 865 866 #include <asm/mmzone.h> 867 868 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 869 870 extern struct pglist_data *first_online_pgdat(void); 871 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 872 extern struct zone *next_zone(struct zone *zone); 873 874 /** 875 * for_each_online_pgdat - helper macro to iterate over all online nodes 876 * @pgdat - pointer to a pg_data_t variable 877 */ 878 #define for_each_online_pgdat(pgdat) \ 879 for (pgdat = first_online_pgdat(); \ 880 pgdat; \ 881 pgdat = next_online_pgdat(pgdat)) 882 /** 883 * for_each_zone - helper macro to iterate over all memory zones 884 * @zone - pointer to struct zone variable 885 * 886 * The user only needs to declare the zone variable, for_each_zone 887 * fills it in. 888 */ 889 #define for_each_zone(zone) \ 890 for (zone = (first_online_pgdat())->node_zones; \ 891 zone; \ 892 zone = next_zone(zone)) 893 894 #define for_each_populated_zone(zone) \ 895 for (zone = (first_online_pgdat())->node_zones; \ 896 zone; \ 897 zone = next_zone(zone)) \ 898 if (!populated_zone(zone)) \ 899 ; /* do nothing */ \ 900 else 901 902 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 903 { 904 return zoneref->zone; 905 } 906 907 static inline int zonelist_zone_idx(struct zoneref *zoneref) 908 { 909 return zoneref->zone_idx; 910 } 911 912 static inline int zonelist_node_idx(struct zoneref *zoneref) 913 { 914 #ifdef CONFIG_NUMA 915 /* zone_to_nid not available in this context */ 916 return zoneref->zone->node; 917 #else 918 return 0; 919 #endif /* CONFIG_NUMA */ 920 } 921 922 /** 923 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 924 * @z - The cursor used as a starting point for the search 925 * @highest_zoneidx - The zone index of the highest zone to return 926 * @nodes - An optional nodemask to filter the zonelist with 927 * @zone - The first suitable zone found is returned via this parameter 928 * 929 * This function returns the next zone at or below a given zone index that is 930 * within the allowed nodemask using a cursor as the starting point for the 931 * search. The zoneref returned is a cursor that represents the current zone 932 * being examined. It should be advanced by one before calling 933 * next_zones_zonelist again. 934 */ 935 struct zoneref *next_zones_zonelist(struct zoneref *z, 936 enum zone_type highest_zoneidx, 937 nodemask_t *nodes, 938 struct zone **zone); 939 940 /** 941 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 942 * @zonelist - The zonelist to search for a suitable zone 943 * @highest_zoneidx - The zone index of the highest zone to return 944 * @nodes - An optional nodemask to filter the zonelist with 945 * @zone - The first suitable zone found is returned via this parameter 946 * 947 * This function returns the first zone at or below a given zone index that is 948 * within the allowed nodemask. The zoneref returned is a cursor that can be 949 * used to iterate the zonelist with next_zones_zonelist by advancing it by 950 * one before calling. 951 */ 952 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 953 enum zone_type highest_zoneidx, 954 nodemask_t *nodes, 955 struct zone **zone) 956 { 957 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 958 zone); 959 } 960 961 /** 962 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 963 * @zone - The current zone in the iterator 964 * @z - The current pointer within zonelist->zones being iterated 965 * @zlist - The zonelist being iterated 966 * @highidx - The zone index of the highest zone to return 967 * @nodemask - Nodemask allowed by the allocator 968 * 969 * This iterator iterates though all zones at or below a given zone index and 970 * within a given nodemask 971 */ 972 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 973 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 974 zone; \ 975 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 976 977 /** 978 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 979 * @zone - The current zone in the iterator 980 * @z - The current pointer within zonelist->zones being iterated 981 * @zlist - The zonelist being iterated 982 * @highidx - The zone index of the highest zone to return 983 * 984 * This iterator iterates though all zones at or below a given zone index. 985 */ 986 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 987 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 988 989 #ifdef CONFIG_SPARSEMEM 990 #include <asm/sparsemem.h> 991 #endif 992 993 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 994 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 995 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 996 { 997 return 0; 998 } 999 #endif 1000 1001 #ifdef CONFIG_FLATMEM 1002 #define pfn_to_nid(pfn) (0) 1003 #endif 1004 1005 #ifdef CONFIG_SPARSEMEM 1006 1007 /* 1008 * SECTION_SHIFT #bits space required to store a section # 1009 * 1010 * PA_SECTION_SHIFT physical address to/from section number 1011 * PFN_SECTION_SHIFT pfn to/from section number 1012 */ 1013 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 1014 1015 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1016 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1017 1018 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1019 1020 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1021 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1022 1023 #define SECTION_BLOCKFLAGS_BITS \ 1024 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1025 1026 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1027 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1028 #endif 1029 1030 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1031 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1032 1033 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1034 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1035 1036 struct page; 1037 struct page_cgroup; 1038 struct mem_section { 1039 /* 1040 * This is, logically, a pointer to an array of struct 1041 * pages. However, it is stored with some other magic. 1042 * (see sparse.c::sparse_init_one_section()) 1043 * 1044 * Additionally during early boot we encode node id of 1045 * the location of the section here to guide allocation. 1046 * (see sparse.c::memory_present()) 1047 * 1048 * Making it a UL at least makes someone do a cast 1049 * before using it wrong. 1050 */ 1051 unsigned long section_mem_map; 1052 1053 /* See declaration of similar field in struct zone */ 1054 unsigned long *pageblock_flags; 1055 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1056 /* 1057 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1058 * section. (see memcontrol.h/page_cgroup.h about this.) 1059 */ 1060 struct page_cgroup *page_cgroup; 1061 unsigned long pad; 1062 #endif 1063 }; 1064 1065 #ifdef CONFIG_SPARSEMEM_EXTREME 1066 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1067 #else 1068 #define SECTIONS_PER_ROOT 1 1069 #endif 1070 1071 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1072 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1073 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1074 1075 #ifdef CONFIG_SPARSEMEM_EXTREME 1076 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1077 #else 1078 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1079 #endif 1080 1081 static inline struct mem_section *__nr_to_section(unsigned long nr) 1082 { 1083 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1084 return NULL; 1085 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1086 } 1087 extern int __section_nr(struct mem_section* ms); 1088 extern unsigned long usemap_size(void); 1089 1090 /* 1091 * We use the lower bits of the mem_map pointer to store 1092 * a little bit of information. There should be at least 1093 * 3 bits here due to 32-bit alignment. 1094 */ 1095 #define SECTION_MARKED_PRESENT (1UL<<0) 1096 #define SECTION_HAS_MEM_MAP (1UL<<1) 1097 #define SECTION_MAP_LAST_BIT (1UL<<2) 1098 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1099 #define SECTION_NID_SHIFT 2 1100 1101 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1102 { 1103 unsigned long map = section->section_mem_map; 1104 map &= SECTION_MAP_MASK; 1105 return (struct page *)map; 1106 } 1107 1108 static inline int present_section(struct mem_section *section) 1109 { 1110 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1111 } 1112 1113 static inline int present_section_nr(unsigned long nr) 1114 { 1115 return present_section(__nr_to_section(nr)); 1116 } 1117 1118 static inline int valid_section(struct mem_section *section) 1119 { 1120 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1121 } 1122 1123 static inline int valid_section_nr(unsigned long nr) 1124 { 1125 return valid_section(__nr_to_section(nr)); 1126 } 1127 1128 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1129 { 1130 return __nr_to_section(pfn_to_section_nr(pfn)); 1131 } 1132 1133 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1134 static inline int pfn_valid(unsigned long pfn) 1135 { 1136 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1137 return 0; 1138 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1139 } 1140 #endif 1141 1142 static inline int pfn_present(unsigned long pfn) 1143 { 1144 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1145 return 0; 1146 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1147 } 1148 1149 /* 1150 * These are _only_ used during initialisation, therefore they 1151 * can use __initdata ... They could have names to indicate 1152 * this restriction. 1153 */ 1154 #ifdef CONFIG_NUMA 1155 #define pfn_to_nid(pfn) \ 1156 ({ \ 1157 unsigned long __pfn_to_nid_pfn = (pfn); \ 1158 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1159 }) 1160 #else 1161 #define pfn_to_nid(pfn) (0) 1162 #endif 1163 1164 #define early_pfn_valid(pfn) pfn_valid(pfn) 1165 void sparse_init(void); 1166 #else 1167 #define sparse_init() do {} while (0) 1168 #define sparse_index_init(_sec, _nid) do {} while (0) 1169 #endif /* CONFIG_SPARSEMEM */ 1170 1171 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1172 bool early_pfn_in_nid(unsigned long pfn, int nid); 1173 #else 1174 #define early_pfn_in_nid(pfn, nid) (1) 1175 #endif 1176 1177 #ifndef early_pfn_valid 1178 #define early_pfn_valid(pfn) (1) 1179 #endif 1180 1181 void memory_present(int nid, unsigned long start, unsigned long end); 1182 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1183 1184 /* 1185 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1186 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1187 * pfn_valid_within() should be used in this case; we optimise this away 1188 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1189 */ 1190 #ifdef CONFIG_HOLES_IN_ZONE 1191 #define pfn_valid_within(pfn) pfn_valid(pfn) 1192 #else 1193 #define pfn_valid_within(pfn) (1) 1194 #endif 1195 1196 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1197 /* 1198 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1199 * associated with it or not. In FLATMEM, it is expected that holes always 1200 * have valid memmap as long as there is valid PFNs either side of the hole. 1201 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1202 * entire section. 1203 * 1204 * However, an ARM, and maybe other embedded architectures in the future 1205 * free memmap backing holes to save memory on the assumption the memmap is 1206 * never used. The page_zone linkages are then broken even though pfn_valid() 1207 * returns true. A walker of the full memmap must then do this additional 1208 * check to ensure the memmap they are looking at is sane by making sure 1209 * the zone and PFN linkages are still valid. This is expensive, but walkers 1210 * of the full memmap are extremely rare. 1211 */ 1212 int memmap_valid_within(unsigned long pfn, 1213 struct page *page, struct zone *zone); 1214 #else 1215 static inline int memmap_valid_within(unsigned long pfn, 1216 struct page *page, struct zone *zone) 1217 { 1218 return 1; 1219 } 1220 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1221 1222 #endif /* !__GENERATING_BOUNDS.H */ 1223 #endif /* !__ASSEMBLY__ */ 1224 #endif /* _LINUX_MMZONE_H */ 1225