xref: /linux-6.15/include/linux/mmzone.h (revision 6faeeea4)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80 
81 #define get_pageblock_migratetype(page)					\
82 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
83 			PB_migrate_end, MIGRATETYPE_MASK)
84 
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 					MIGRATETYPE_MASK);
90 }
91 
92 struct free_area {
93 	struct list_head	free_list[MIGRATE_TYPES];
94 	unsigned long		nr_free;
95 };
96 
97 struct pglist_data;
98 
99 /*
100  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101  * So add a wild amount of padding here to ensure that they fall into separate
102  * cachelines.  There are very few zone structures in the machine, so space
103  * consumption is not a concern here.
104  */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 	char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name)	struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113 
114 enum zone_stat_item {
115 	/* First 128 byte cacheline (assuming 64 bit words) */
116 	NR_FREE_PAGES,
117 	NR_ALLOC_BATCH,
118 	NR_LRU_BASE,
119 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
121 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
122 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
123 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
124 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
125 	NR_ANON_PAGES,	/* Mapped anonymous pages */
126 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
127 			   only modified from process context */
128 	NR_FILE_PAGES,
129 	NR_FILE_DIRTY,
130 	NR_WRITEBACK,
131 	NR_SLAB_RECLAIMABLE,
132 	NR_SLAB_UNRECLAIMABLE,
133 	NR_PAGETABLE,		/* used for pagetables */
134 	NR_KERNEL_STACK,
135 	/* Second 128 byte cacheline */
136 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
137 	NR_BOUNCE,
138 	NR_VMSCAN_WRITE,
139 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
140 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
141 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
142 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
143 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
144 	NR_DIRTIED,		/* page dirtyings since bootup */
145 	NR_WRITTEN,		/* page writings since bootup */
146 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 	NUMA_HIT,		/* allocated in intended node */
149 	NUMA_MISS,		/* allocated in non intended node */
150 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
151 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
152 	NUMA_LOCAL,		/* allocation from local node */
153 	NUMA_OTHER,		/* allocation from other node */
154 #endif
155 	WORKINGSET_REFAULT,
156 	WORKINGSET_ACTIVATE,
157 	WORKINGSET_NODERECLAIM,
158 	NR_ANON_TRANSPARENT_HUGEPAGES,
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 /*
163  * We do arithmetic on the LRU lists in various places in the code,
164  * so it is important to keep the active lists LRU_ACTIVE higher in
165  * the array than the corresponding inactive lists, and to keep
166  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167  *
168  * This has to be kept in sync with the statistics in zone_stat_item
169  * above and the descriptions in vmstat_text in mm/vmstat.c
170  */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174 
175 enum lru_list {
176 	LRU_INACTIVE_ANON = LRU_BASE,
177 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 	LRU_UNEVICTABLE,
181 	NR_LRU_LISTS
182 };
183 
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185 
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187 
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192 
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197 
198 static inline int is_unevictable_lru(enum lru_list lru)
199 {
200 	return (lru == LRU_UNEVICTABLE);
201 }
202 
203 struct zone_reclaim_stat {
204 	/*
205 	 * The pageout code in vmscan.c keeps track of how many of the
206 	 * mem/swap backed and file backed pages are referenced.
207 	 * The higher the rotated/scanned ratio, the more valuable
208 	 * that cache is.
209 	 *
210 	 * The anon LRU stats live in [0], file LRU stats in [1]
211 	 */
212 	unsigned long		recent_rotated[2];
213 	unsigned long		recent_scanned[2];
214 };
215 
216 struct lruvec {
217 	struct list_head lists[NR_LRU_LISTS];
218 	struct zone_reclaim_stat reclaim_stat;
219 #ifdef CONFIG_MEMCG
220 	struct zone *zone;
221 #endif
222 };
223 
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
228 
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
237 
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240 
241 enum zone_watermarks {
242 	WMARK_MIN,
243 	WMARK_LOW,
244 	WMARK_HIGH,
245 	NR_WMARK
246 };
247 
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251 
252 struct per_cpu_pages {
253 	int count;		/* number of pages in the list */
254 	int high;		/* high watermark, emptying needed */
255 	int batch;		/* chunk size for buddy add/remove */
256 
257 	/* Lists of pages, one per migrate type stored on the pcp-lists */
258 	struct list_head lists[MIGRATE_PCPTYPES];
259 };
260 
261 struct per_cpu_pageset {
262 	struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 	s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 	s8 stat_threshold;
268 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271 
272 #endif /* !__GENERATING_BOUNDS.H */
273 
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 	/*
277 	 * ZONE_DMA is used when there are devices that are not able
278 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 	 * carve out the portion of memory that is needed for these devices.
280 	 * The range is arch specific.
281 	 *
282 	 * Some examples
283 	 *
284 	 * Architecture		Limit
285 	 * ---------------------------
286 	 * parisc, ia64, sparc	<4G
287 	 * s390			<2G
288 	 * arm			Various
289 	 * alpha		Unlimited or 0-16MB.
290 	 *
291 	 * i386, x86_64 and multiple other arches
292 	 * 			<16M.
293 	 */
294 	ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 	/*
298 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 	 * only able to do DMA to the lower 16M but also 32 bit devices that
300 	 * can only do DMA areas below 4G.
301 	 */
302 	ZONE_DMA32,
303 #endif
304 	/*
305 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 	 * performed on pages in ZONE_NORMAL if the DMA devices support
307 	 * transfers to all addressable memory.
308 	 */
309 	ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 	/*
312 	 * A memory area that is only addressable by the kernel through
313 	 * mapping portions into its own address space. This is for example
314 	 * used by i386 to allow the kernel to address the memory beyond
315 	 * 900MB. The kernel will set up special mappings (page
316 	 * table entries on i386) for each page that the kernel needs to
317 	 * access.
318 	 */
319 	ZONE_HIGHMEM,
320 #endif
321 	ZONE_MOVABLE,
322 	__MAX_NR_ZONES
323 };
324 
325 #ifndef __GENERATING_BOUNDS_H
326 
327 struct zone {
328 	/* Read-mostly fields */
329 
330 	/* zone watermarks, access with *_wmark_pages(zone) macros */
331 	unsigned long watermark[NR_WMARK];
332 
333 	/*
334 	 * We don't know if the memory that we're going to allocate will be freeable
335 	 * or/and it will be released eventually, so to avoid totally wasting several
336 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
337 	 * to run OOM on the lower zones despite there's tons of freeable ram
338 	 * on the higher zones). This array is recalculated at runtime if the
339 	 * sysctl_lowmem_reserve_ratio sysctl changes.
340 	 */
341 	long lowmem_reserve[MAX_NR_ZONES];
342 
343 #ifdef CONFIG_NUMA
344 	int node;
345 #endif
346 
347 	/*
348 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349 	 * this zone's LRU.  Maintained by the pageout code.
350 	 */
351 	unsigned int inactive_ratio;
352 
353 	struct pglist_data	*zone_pgdat;
354 	struct per_cpu_pageset __percpu *pageset;
355 
356 	/*
357 	 * This is a per-zone reserve of pages that should not be
358 	 * considered dirtyable memory.
359 	 */
360 	unsigned long		dirty_balance_reserve;
361 
362 #ifndef CONFIG_SPARSEMEM
363 	/*
364 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 	 * In SPARSEMEM, this map is stored in struct mem_section
366 	 */
367 	unsigned long		*pageblock_flags;
368 #endif /* CONFIG_SPARSEMEM */
369 
370 #ifdef CONFIG_NUMA
371 	/*
372 	 * zone reclaim becomes active if more unmapped pages exist.
373 	 */
374 	unsigned long		min_unmapped_pages;
375 	unsigned long		min_slab_pages;
376 #endif /* CONFIG_NUMA */
377 
378 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 	unsigned long		zone_start_pfn;
380 
381 	/*
382 	 * spanned_pages is the total pages spanned by the zone, including
383 	 * holes, which is calculated as:
384 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
385 	 *
386 	 * present_pages is physical pages existing within the zone, which
387 	 * is calculated as:
388 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
389 	 *
390 	 * managed_pages is present pages managed by the buddy system, which
391 	 * is calculated as (reserved_pages includes pages allocated by the
392 	 * bootmem allocator):
393 	 *	managed_pages = present_pages - reserved_pages;
394 	 *
395 	 * So present_pages may be used by memory hotplug or memory power
396 	 * management logic to figure out unmanaged pages by checking
397 	 * (present_pages - managed_pages). And managed_pages should be used
398 	 * by page allocator and vm scanner to calculate all kinds of watermarks
399 	 * and thresholds.
400 	 *
401 	 * Locking rules:
402 	 *
403 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 	 * It is a seqlock because it has to be read outside of zone->lock,
405 	 * and it is done in the main allocator path.  But, it is written
406 	 * quite infrequently.
407 	 *
408 	 * The span_seq lock is declared along with zone->lock because it is
409 	 * frequently read in proximity to zone->lock.  It's good to
410 	 * give them a chance of being in the same cacheline.
411 	 *
412 	 * Write access to present_pages at runtime should be protected by
413 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 	 * present_pages should get_online_mems() to get a stable value.
415 	 *
416 	 * Read access to managed_pages should be safe because it's unsigned
417 	 * long. Write access to zone->managed_pages and totalram_pages are
418 	 * protected by managed_page_count_lock at runtime. Idealy only
419 	 * adjust_managed_page_count() should be used instead of directly
420 	 * touching zone->managed_pages and totalram_pages.
421 	 */
422 	unsigned long		managed_pages;
423 	unsigned long		spanned_pages;
424 	unsigned long		present_pages;
425 
426 	const char		*name;
427 
428 	/*
429 	 * Number of MIGRATE_RESERVE page block. To maintain for just
430 	 * optimization. Protected by zone->lock.
431 	 */
432 	int			nr_migrate_reserve_block;
433 
434 #ifdef CONFIG_MEMORY_ISOLATION
435 	/*
436 	 * Number of isolated pageblock. It is used to solve incorrect
437 	 * freepage counting problem due to racy retrieving migratetype
438 	 * of pageblock. Protected by zone->lock.
439 	 */
440 	unsigned long		nr_isolate_pageblock;
441 #endif
442 
443 #ifdef CONFIG_MEMORY_HOTPLUG
444 	/* see spanned/present_pages for more description */
445 	seqlock_t		span_seqlock;
446 #endif
447 
448 	/*
449 	 * wait_table		-- the array holding the hash table
450 	 * wait_table_hash_nr_entries	-- the size of the hash table array
451 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
452 	 *
453 	 * The purpose of all these is to keep track of the people
454 	 * waiting for a page to become available and make them
455 	 * runnable again when possible. The trouble is that this
456 	 * consumes a lot of space, especially when so few things
457 	 * wait on pages at a given time. So instead of using
458 	 * per-page waitqueues, we use a waitqueue hash table.
459 	 *
460 	 * The bucket discipline is to sleep on the same queue when
461 	 * colliding and wake all in that wait queue when removing.
462 	 * When something wakes, it must check to be sure its page is
463 	 * truly available, a la thundering herd. The cost of a
464 	 * collision is great, but given the expected load of the
465 	 * table, they should be so rare as to be outweighed by the
466 	 * benefits from the saved space.
467 	 *
468 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
469 	 * primary users of these fields, and in mm/page_alloc.c
470 	 * free_area_init_core() performs the initialization of them.
471 	 */
472 	wait_queue_head_t	*wait_table;
473 	unsigned long		wait_table_hash_nr_entries;
474 	unsigned long		wait_table_bits;
475 
476 	ZONE_PADDING(_pad1_)
477 
478 	/* Write-intensive fields used from the page allocator */
479 	spinlock_t		lock;
480 
481 	/* free areas of different sizes */
482 	struct free_area	free_area[MAX_ORDER];
483 
484 	/* zone flags, see below */
485 	unsigned long		flags;
486 
487 	ZONE_PADDING(_pad2_)
488 
489 	/* Write-intensive fields used by page reclaim */
490 
491 	/* Fields commonly accessed by the page reclaim scanner */
492 	spinlock_t		lru_lock;
493 	struct lruvec		lruvec;
494 
495 	/* Evictions & activations on the inactive file list */
496 	atomic_long_t		inactive_age;
497 
498 	/*
499 	 * When free pages are below this point, additional steps are taken
500 	 * when reading the number of free pages to avoid per-cpu counter
501 	 * drift allowing watermarks to be breached
502 	 */
503 	unsigned long percpu_drift_mark;
504 
505 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
506 	/* pfn where compaction free scanner should start */
507 	unsigned long		compact_cached_free_pfn;
508 	/* pfn where async and sync compaction migration scanner should start */
509 	unsigned long		compact_cached_migrate_pfn[2];
510 #endif
511 
512 #ifdef CONFIG_COMPACTION
513 	/*
514 	 * On compaction failure, 1<<compact_defer_shift compactions
515 	 * are skipped before trying again. The number attempted since
516 	 * last failure is tracked with compact_considered.
517 	 */
518 	unsigned int		compact_considered;
519 	unsigned int		compact_defer_shift;
520 	int			compact_order_failed;
521 #endif
522 
523 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
524 	/* Set to true when the PG_migrate_skip bits should be cleared */
525 	bool			compact_blockskip_flush;
526 #endif
527 
528 	ZONE_PADDING(_pad3_)
529 	/* Zone statistics */
530 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
531 } ____cacheline_internodealigned_in_smp;
532 
533 enum zone_flags {
534 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
535 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
536 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
537 					 * a congested BDI
538 					 */
539 	ZONE_DIRTY,			/* reclaim scanning has recently found
540 					 * many dirty file pages at the tail
541 					 * of the LRU.
542 					 */
543 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
544 					 * many pages under writeback
545 					 */
546 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
547 };
548 
549 static inline unsigned long zone_end_pfn(const struct zone *zone)
550 {
551 	return zone->zone_start_pfn + zone->spanned_pages;
552 }
553 
554 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
555 {
556 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
557 }
558 
559 static inline bool zone_is_initialized(struct zone *zone)
560 {
561 	return !!zone->wait_table;
562 }
563 
564 static inline bool zone_is_empty(struct zone *zone)
565 {
566 	return zone->spanned_pages == 0;
567 }
568 
569 /*
570  * The "priority" of VM scanning is how much of the queues we will scan in one
571  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
572  * queues ("queue_length >> 12") during an aging round.
573  */
574 #define DEF_PRIORITY 12
575 
576 /* Maximum number of zones on a zonelist */
577 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
578 
579 #ifdef CONFIG_NUMA
580 
581 /*
582  * The NUMA zonelists are doubled because we need zonelists that restrict the
583  * allocations to a single node for __GFP_THISNODE.
584  *
585  * [0]	: Zonelist with fallback
586  * [1]	: No fallback (__GFP_THISNODE)
587  */
588 #define MAX_ZONELISTS 2
589 
590 
591 /*
592  * We cache key information from each zonelist for smaller cache
593  * footprint when scanning for free pages in get_page_from_freelist().
594  *
595  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
596  *    up short of free memory since the last time (last_fullzone_zap)
597  *    we zero'd fullzones.
598  * 2) The array z_to_n[] maps each zone in the zonelist to its node
599  *    id, so that we can efficiently evaluate whether that node is
600  *    set in the current tasks mems_allowed.
601  *
602  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
603  * indexed by a zones offset in the zonelist zones[] array.
604  *
605  * The get_page_from_freelist() routine does two scans.  During the
606  * first scan, we skip zones whose corresponding bit in 'fullzones'
607  * is set or whose corresponding node in current->mems_allowed (which
608  * comes from cpusets) is not set.  During the second scan, we bypass
609  * this zonelist_cache, to ensure we look methodically at each zone.
610  *
611  * Once per second, we zero out (zap) fullzones, forcing us to
612  * reconsider nodes that might have regained more free memory.
613  * The field last_full_zap is the time we last zapped fullzones.
614  *
615  * This mechanism reduces the amount of time we waste repeatedly
616  * reexaming zones for free memory when they just came up low on
617  * memory momentarilly ago.
618  *
619  * The zonelist_cache struct members logically belong in struct
620  * zonelist.  However, the mempolicy zonelists constructed for
621  * MPOL_BIND are intentionally variable length (and usually much
622  * shorter).  A general purpose mechanism for handling structs with
623  * multiple variable length members is more mechanism than we want
624  * here.  We resort to some special case hackery instead.
625  *
626  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
627  * part because they are shorter), so we put the fixed length stuff
628  * at the front of the zonelist struct, ending in a variable length
629  * zones[], as is needed by MPOL_BIND.
630  *
631  * Then we put the optional zonelist cache on the end of the zonelist
632  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
633  * the fixed length portion at the front of the struct.  This pointer
634  * both enables us to find the zonelist cache, and in the case of
635  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
636  * to know that the zonelist cache is not there.
637  *
638  * The end result is that struct zonelists come in two flavors:
639  *  1) The full, fixed length version, shown below, and
640  *  2) The custom zonelists for MPOL_BIND.
641  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
642  *
643  * Even though there may be multiple CPU cores on a node modifying
644  * fullzones or last_full_zap in the same zonelist_cache at the same
645  * time, we don't lock it.  This is just hint data - if it is wrong now
646  * and then, the allocator will still function, perhaps a bit slower.
647  */
648 
649 
650 struct zonelist_cache {
651 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
652 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
653 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
654 };
655 #else
656 #define MAX_ZONELISTS 1
657 struct zonelist_cache;
658 #endif
659 
660 /*
661  * This struct contains information about a zone in a zonelist. It is stored
662  * here to avoid dereferences into large structures and lookups of tables
663  */
664 struct zoneref {
665 	struct zone *zone;	/* Pointer to actual zone */
666 	int zone_idx;		/* zone_idx(zoneref->zone) */
667 };
668 
669 /*
670  * One allocation request operates on a zonelist. A zonelist
671  * is a list of zones, the first one is the 'goal' of the
672  * allocation, the other zones are fallback zones, in decreasing
673  * priority.
674  *
675  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
676  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
677  * *
678  * To speed the reading of the zonelist, the zonerefs contain the zone index
679  * of the entry being read. Helper functions to access information given
680  * a struct zoneref are
681  *
682  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
683  * zonelist_zone_idx()	- Return the index of the zone for an entry
684  * zonelist_node_idx()	- Return the index of the node for an entry
685  */
686 struct zonelist {
687 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
688 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
689 #ifdef CONFIG_NUMA
690 	struct zonelist_cache zlcache;			     // optional ...
691 #endif
692 };
693 
694 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
695 struct node_active_region {
696 	unsigned long start_pfn;
697 	unsigned long end_pfn;
698 	int nid;
699 };
700 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
701 
702 #ifndef CONFIG_DISCONTIGMEM
703 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
704 extern struct page *mem_map;
705 #endif
706 
707 /*
708  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
709  * (mostly NUMA machines?) to denote a higher-level memory zone than the
710  * zone denotes.
711  *
712  * On NUMA machines, each NUMA node would have a pg_data_t to describe
713  * it's memory layout.
714  *
715  * Memory statistics and page replacement data structures are maintained on a
716  * per-zone basis.
717  */
718 struct bootmem_data;
719 typedef struct pglist_data {
720 	struct zone node_zones[MAX_NR_ZONES];
721 	struct zonelist node_zonelists[MAX_ZONELISTS];
722 	int nr_zones;
723 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
724 	struct page *node_mem_map;
725 #ifdef CONFIG_PAGE_EXTENSION
726 	struct page_ext *node_page_ext;
727 #endif
728 #endif
729 #ifndef CONFIG_NO_BOOTMEM
730 	struct bootmem_data *bdata;
731 #endif
732 #ifdef CONFIG_MEMORY_HOTPLUG
733 	/*
734 	 * Must be held any time you expect node_start_pfn, node_present_pages
735 	 * or node_spanned_pages stay constant.  Holding this will also
736 	 * guarantee that any pfn_valid() stays that way.
737 	 *
738 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
739 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
740 	 *
741 	 * Nests above zone->lock and zone->span_seqlock
742 	 */
743 	spinlock_t node_size_lock;
744 #endif
745 	unsigned long node_start_pfn;
746 	unsigned long node_present_pages; /* total number of physical pages */
747 	unsigned long node_spanned_pages; /* total size of physical page
748 					     range, including holes */
749 	int node_id;
750 	wait_queue_head_t kswapd_wait;
751 	wait_queue_head_t pfmemalloc_wait;
752 	struct task_struct *kswapd;	/* Protected by
753 					   mem_hotplug_begin/end() */
754 	int kswapd_max_order;
755 	enum zone_type classzone_idx;
756 #ifdef CONFIG_NUMA_BALANCING
757 	/* Lock serializing the migrate rate limiting window */
758 	spinlock_t numabalancing_migrate_lock;
759 
760 	/* Rate limiting time interval */
761 	unsigned long numabalancing_migrate_next_window;
762 
763 	/* Number of pages migrated during the rate limiting time interval */
764 	unsigned long numabalancing_migrate_nr_pages;
765 #endif
766 } pg_data_t;
767 
768 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
769 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
770 #ifdef CONFIG_FLAT_NODE_MEM_MAP
771 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
772 #else
773 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
774 #endif
775 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
776 
777 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
778 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
779 
780 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
781 {
782 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
783 }
784 
785 static inline bool pgdat_is_empty(pg_data_t *pgdat)
786 {
787 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
788 }
789 
790 #include <linux/memory_hotplug.h>
791 
792 extern struct mutex zonelists_mutex;
793 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
794 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
795 bool zone_watermark_ok(struct zone *z, unsigned int order,
796 		unsigned long mark, int classzone_idx, int alloc_flags);
797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
798 		unsigned long mark, int classzone_idx, int alloc_flags);
799 enum memmap_context {
800 	MEMMAP_EARLY,
801 	MEMMAP_HOTPLUG,
802 };
803 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
804 				     unsigned long size,
805 				     enum memmap_context context);
806 
807 extern void lruvec_init(struct lruvec *lruvec);
808 
809 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
810 {
811 #ifdef CONFIG_MEMCG
812 	return lruvec->zone;
813 #else
814 	return container_of(lruvec, struct zone, lruvec);
815 #endif
816 }
817 
818 #ifdef CONFIG_HAVE_MEMORY_PRESENT
819 void memory_present(int nid, unsigned long start, unsigned long end);
820 #else
821 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
822 #endif
823 
824 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
825 int local_memory_node(int node_id);
826 #else
827 static inline int local_memory_node(int node_id) { return node_id; };
828 #endif
829 
830 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
831 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
832 #endif
833 
834 /*
835  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
836  */
837 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
838 
839 static inline int populated_zone(struct zone *zone)
840 {
841 	return (!!zone->present_pages);
842 }
843 
844 extern int movable_zone;
845 
846 static inline int zone_movable_is_highmem(void)
847 {
848 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
849 	return movable_zone == ZONE_HIGHMEM;
850 #elif defined(CONFIG_HIGHMEM)
851 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
852 #else
853 	return 0;
854 #endif
855 }
856 
857 static inline int is_highmem_idx(enum zone_type idx)
858 {
859 #ifdef CONFIG_HIGHMEM
860 	return (idx == ZONE_HIGHMEM ||
861 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
862 #else
863 	return 0;
864 #endif
865 }
866 
867 /**
868  * is_highmem - helper function to quickly check if a struct zone is a
869  *              highmem zone or not.  This is an attempt to keep references
870  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
871  * @zone - pointer to struct zone variable
872  */
873 static inline int is_highmem(struct zone *zone)
874 {
875 #ifdef CONFIG_HIGHMEM
876 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
877 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
878 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
879 		zone_movable_is_highmem());
880 #else
881 	return 0;
882 #endif
883 }
884 
885 /* These two functions are used to setup the per zone pages min values */
886 struct ctl_table;
887 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
890 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
891 					void __user *, size_t *, loff_t *);
892 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
895 			void __user *, size_t *, loff_t *);
896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 
899 extern int numa_zonelist_order_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 extern char numa_zonelist_order[];
902 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
903 
904 #ifndef CONFIG_NEED_MULTIPLE_NODES
905 
906 extern struct pglist_data contig_page_data;
907 #define NODE_DATA(nid)		(&contig_page_data)
908 #define NODE_MEM_MAP(nid)	mem_map
909 
910 #else /* CONFIG_NEED_MULTIPLE_NODES */
911 
912 #include <asm/mmzone.h>
913 
914 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
915 
916 extern struct pglist_data *first_online_pgdat(void);
917 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
918 extern struct zone *next_zone(struct zone *zone);
919 
920 /**
921  * for_each_online_pgdat - helper macro to iterate over all online nodes
922  * @pgdat - pointer to a pg_data_t variable
923  */
924 #define for_each_online_pgdat(pgdat)			\
925 	for (pgdat = first_online_pgdat();		\
926 	     pgdat;					\
927 	     pgdat = next_online_pgdat(pgdat))
928 /**
929  * for_each_zone - helper macro to iterate over all memory zones
930  * @zone - pointer to struct zone variable
931  *
932  * The user only needs to declare the zone variable, for_each_zone
933  * fills it in.
934  */
935 #define for_each_zone(zone)			        \
936 	for (zone = (first_online_pgdat())->node_zones; \
937 	     zone;					\
938 	     zone = next_zone(zone))
939 
940 #define for_each_populated_zone(zone)		        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))			\
944 		if (!populated_zone(zone))		\
945 			; /* do nothing */		\
946 		else
947 
948 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
949 {
950 	return zoneref->zone;
951 }
952 
953 static inline int zonelist_zone_idx(struct zoneref *zoneref)
954 {
955 	return zoneref->zone_idx;
956 }
957 
958 static inline int zonelist_node_idx(struct zoneref *zoneref)
959 {
960 #ifdef CONFIG_NUMA
961 	/* zone_to_nid not available in this context */
962 	return zoneref->zone->node;
963 #else
964 	return 0;
965 #endif /* CONFIG_NUMA */
966 }
967 
968 /**
969  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
970  * @z - The cursor used as a starting point for the search
971  * @highest_zoneidx - The zone index of the highest zone to return
972  * @nodes - An optional nodemask to filter the zonelist with
973  *
974  * This function returns the next zone at or below a given zone index that is
975  * within the allowed nodemask using a cursor as the starting point for the
976  * search. The zoneref returned is a cursor that represents the current zone
977  * being examined. It should be advanced by one before calling
978  * next_zones_zonelist again.
979  */
980 struct zoneref *next_zones_zonelist(struct zoneref *z,
981 					enum zone_type highest_zoneidx,
982 					nodemask_t *nodes);
983 
984 /**
985  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
986  * @zonelist - The zonelist to search for a suitable zone
987  * @highest_zoneidx - The zone index of the highest zone to return
988  * @nodes - An optional nodemask to filter the zonelist with
989  * @zone - The first suitable zone found is returned via this parameter
990  *
991  * This function returns the first zone at or below a given zone index that is
992  * within the allowed nodemask. The zoneref returned is a cursor that can be
993  * used to iterate the zonelist with next_zones_zonelist by advancing it by
994  * one before calling.
995  */
996 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
997 					enum zone_type highest_zoneidx,
998 					nodemask_t *nodes,
999 					struct zone **zone)
1000 {
1001 	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
1002 							highest_zoneidx, nodes);
1003 	*zone = zonelist_zone(z);
1004 	return z;
1005 }
1006 
1007 /**
1008  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1009  * @zone - The current zone in the iterator
1010  * @z - The current pointer within zonelist->zones being iterated
1011  * @zlist - The zonelist being iterated
1012  * @highidx - The zone index of the highest zone to return
1013  * @nodemask - Nodemask allowed by the allocator
1014  *
1015  * This iterator iterates though all zones at or below a given zone index and
1016  * within a given nodemask
1017  */
1018 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1019 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
1020 		zone;							\
1021 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1022 			zone = zonelist_zone(z))			\
1023 
1024 /**
1025  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1026  * @zone - The current zone in the iterator
1027  * @z - The current pointer within zonelist->zones being iterated
1028  * @zlist - The zonelist being iterated
1029  * @highidx - The zone index of the highest zone to return
1030  *
1031  * This iterator iterates though all zones at or below a given zone index.
1032  */
1033 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1034 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1035 
1036 #ifdef CONFIG_SPARSEMEM
1037 #include <asm/sparsemem.h>
1038 #endif
1039 
1040 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1041 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1042 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1043 {
1044 	return 0;
1045 }
1046 #endif
1047 
1048 #ifdef CONFIG_FLATMEM
1049 #define pfn_to_nid(pfn)		(0)
1050 #endif
1051 
1052 #ifdef CONFIG_SPARSEMEM
1053 
1054 /*
1055  * SECTION_SHIFT    		#bits space required to store a section #
1056  *
1057  * PA_SECTION_SHIFT		physical address to/from section number
1058  * PFN_SECTION_SHIFT		pfn to/from section number
1059  */
1060 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1061 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1062 
1063 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1064 
1065 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1066 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1067 
1068 #define SECTION_BLOCKFLAGS_BITS \
1069 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1070 
1071 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1072 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1073 #endif
1074 
1075 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1076 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1077 
1078 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1079 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1080 
1081 struct page;
1082 struct page_ext;
1083 struct mem_section {
1084 	/*
1085 	 * This is, logically, a pointer to an array of struct
1086 	 * pages.  However, it is stored with some other magic.
1087 	 * (see sparse.c::sparse_init_one_section())
1088 	 *
1089 	 * Additionally during early boot we encode node id of
1090 	 * the location of the section here to guide allocation.
1091 	 * (see sparse.c::memory_present())
1092 	 *
1093 	 * Making it a UL at least makes someone do a cast
1094 	 * before using it wrong.
1095 	 */
1096 	unsigned long section_mem_map;
1097 
1098 	/* See declaration of similar field in struct zone */
1099 	unsigned long *pageblock_flags;
1100 #ifdef CONFIG_PAGE_EXTENSION
1101 	/*
1102 	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1103 	 * section. (see page_ext.h about this.)
1104 	 */
1105 	struct page_ext *page_ext;
1106 	unsigned long pad;
1107 #endif
1108 	/*
1109 	 * WARNING: mem_section must be a power-of-2 in size for the
1110 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1111 	 */
1112 };
1113 
1114 #ifdef CONFIG_SPARSEMEM_EXTREME
1115 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1116 #else
1117 #define SECTIONS_PER_ROOT	1
1118 #endif
1119 
1120 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1121 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1122 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1123 
1124 #ifdef CONFIG_SPARSEMEM_EXTREME
1125 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1126 #else
1127 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1128 #endif
1129 
1130 static inline struct mem_section *__nr_to_section(unsigned long nr)
1131 {
1132 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1133 		return NULL;
1134 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1135 }
1136 extern int __section_nr(struct mem_section* ms);
1137 extern unsigned long usemap_size(void);
1138 
1139 /*
1140  * We use the lower bits of the mem_map pointer to store
1141  * a little bit of information.  There should be at least
1142  * 3 bits here due to 32-bit alignment.
1143  */
1144 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1145 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1146 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1147 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1148 #define SECTION_NID_SHIFT	2
1149 
1150 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1151 {
1152 	unsigned long map = section->section_mem_map;
1153 	map &= SECTION_MAP_MASK;
1154 	return (struct page *)map;
1155 }
1156 
1157 static inline int present_section(struct mem_section *section)
1158 {
1159 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1160 }
1161 
1162 static inline int present_section_nr(unsigned long nr)
1163 {
1164 	return present_section(__nr_to_section(nr));
1165 }
1166 
1167 static inline int valid_section(struct mem_section *section)
1168 {
1169 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1170 }
1171 
1172 static inline int valid_section_nr(unsigned long nr)
1173 {
1174 	return valid_section(__nr_to_section(nr));
1175 }
1176 
1177 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1178 {
1179 	return __nr_to_section(pfn_to_section_nr(pfn));
1180 }
1181 
1182 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1183 static inline int pfn_valid(unsigned long pfn)
1184 {
1185 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1186 		return 0;
1187 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1188 }
1189 #endif
1190 
1191 static inline int pfn_present(unsigned long pfn)
1192 {
1193 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1194 		return 0;
1195 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1196 }
1197 
1198 /*
1199  * These are _only_ used during initialisation, therefore they
1200  * can use __initdata ...  They could have names to indicate
1201  * this restriction.
1202  */
1203 #ifdef CONFIG_NUMA
1204 #define pfn_to_nid(pfn)							\
1205 ({									\
1206 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1207 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1208 })
1209 #else
1210 #define pfn_to_nid(pfn)		(0)
1211 #endif
1212 
1213 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1214 void sparse_init(void);
1215 #else
1216 #define sparse_init()	do {} while (0)
1217 #define sparse_index_init(_sec, _nid)  do {} while (0)
1218 #endif /* CONFIG_SPARSEMEM */
1219 
1220 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1221 bool early_pfn_in_nid(unsigned long pfn, int nid);
1222 #else
1223 #define early_pfn_in_nid(pfn, nid)	(1)
1224 #endif
1225 
1226 #ifndef early_pfn_valid
1227 #define early_pfn_valid(pfn)	(1)
1228 #endif
1229 
1230 void memory_present(int nid, unsigned long start, unsigned long end);
1231 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1232 
1233 /*
1234  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1235  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1236  * pfn_valid_within() should be used in this case; we optimise this away
1237  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1238  */
1239 #ifdef CONFIG_HOLES_IN_ZONE
1240 #define pfn_valid_within(pfn) pfn_valid(pfn)
1241 #else
1242 #define pfn_valid_within(pfn) (1)
1243 #endif
1244 
1245 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1246 /*
1247  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1248  * associated with it or not. In FLATMEM, it is expected that holes always
1249  * have valid memmap as long as there is valid PFNs either side of the hole.
1250  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1251  * entire section.
1252  *
1253  * However, an ARM, and maybe other embedded architectures in the future
1254  * free memmap backing holes to save memory on the assumption the memmap is
1255  * never used. The page_zone linkages are then broken even though pfn_valid()
1256  * returns true. A walker of the full memmap must then do this additional
1257  * check to ensure the memmap they are looking at is sane by making sure
1258  * the zone and PFN linkages are still valid. This is expensive, but walkers
1259  * of the full memmap are extremely rare.
1260  */
1261 int memmap_valid_within(unsigned long pfn,
1262 					struct page *page, struct zone *zone);
1263 #else
1264 static inline int memmap_valid_within(unsigned long pfn,
1265 					struct page *page, struct zone *zone)
1266 {
1267 	return 1;
1268 }
1269 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1270 
1271 #endif /* !__GENERATING_BOUNDS.H */
1272 #endif /* !__ASSEMBLY__ */
1273 #endif /* _LINUX_MMZONE_H */
1274