xref: /linux-6.15/include/linux/mmzone.h (revision 6fa79bca)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_RECLAIMABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 	MIGRATE_ISOLATE,	/* can't allocate from here */
61 	MIGRATE_TYPES
62 };
63 
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #  define cma_wmark_pages(zone)	zone->min_cma_pages
67 #else
68 #  define is_migrate_cma(migratetype) false
69 #  define cma_wmark_pages(zone) 0
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82 
83 struct free_area {
84 	struct list_head	free_list[MIGRATE_TYPES];
85 	unsigned long		nr_free;
86 };
87 
88 struct pglist_data;
89 
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 	char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)	struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104 
105 enum zone_stat_item {
106 	/* First 128 byte cacheline (assuming 64 bit words) */
107 	NR_FREE_PAGES,
108 	NR_LRU_BASE,
109 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
111 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
112 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
113 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
114 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
115 	NR_ANON_PAGES,	/* Mapped anonymous pages */
116 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
117 			   only modified from process context */
118 	NR_FILE_PAGES,
119 	NR_FILE_DIRTY,
120 	NR_WRITEBACK,
121 	NR_SLAB_RECLAIMABLE,
122 	NR_SLAB_UNRECLAIMABLE,
123 	NR_PAGETABLE,		/* used for pagetables */
124 	NR_KERNEL_STACK,
125 	/* Second 128 byte cacheline */
126 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
127 	NR_BOUNCE,
128 	NR_VMSCAN_WRITE,
129 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
130 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
131 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
132 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
133 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
134 	NR_DIRTIED,		/* page dirtyings since bootup */
135 	NR_WRITTEN,		/* page writings since bootup */
136 #ifdef CONFIG_NUMA
137 	NUMA_HIT,		/* allocated in intended node */
138 	NUMA_MISS,		/* allocated in non intended node */
139 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
140 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
141 	NUMA_LOCAL,		/* allocation from local node */
142 	NUMA_OTHER,		/* allocation from other node */
143 #endif
144 	NR_ANON_TRANSPARENT_HUGEPAGES,
145 	NR_FREE_CMA_PAGES,
146 	NR_VM_ZONE_STAT_ITEMS };
147 
148 /*
149  * We do arithmetic on the LRU lists in various places in the code,
150  * so it is important to keep the active lists LRU_ACTIVE higher in
151  * the array than the corresponding inactive lists, and to keep
152  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
153  *
154  * This has to be kept in sync with the statistics in zone_stat_item
155  * above and the descriptions in vmstat_text in mm/vmstat.c
156  */
157 #define LRU_BASE 0
158 #define LRU_ACTIVE 1
159 #define LRU_FILE 2
160 
161 enum lru_list {
162 	LRU_INACTIVE_ANON = LRU_BASE,
163 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
164 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
165 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
166 	LRU_UNEVICTABLE,
167 	NR_LRU_LISTS
168 };
169 
170 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
171 
172 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
173 
174 static inline int is_file_lru(enum lru_list lru)
175 {
176 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
177 }
178 
179 static inline int is_active_lru(enum lru_list lru)
180 {
181 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
182 }
183 
184 static inline int is_unevictable_lru(enum lru_list lru)
185 {
186 	return (lru == LRU_UNEVICTABLE);
187 }
188 
189 struct zone_reclaim_stat {
190 	/*
191 	 * The pageout code in vmscan.c keeps track of how many of the
192 	 * mem/swap backed and file backed pages are referenced.
193 	 * The higher the rotated/scanned ratio, the more valuable
194 	 * that cache is.
195 	 *
196 	 * The anon LRU stats live in [0], file LRU stats in [1]
197 	 */
198 	unsigned long		recent_rotated[2];
199 	unsigned long		recent_scanned[2];
200 };
201 
202 struct lruvec {
203 	struct list_head lists[NR_LRU_LISTS];
204 	struct zone_reclaim_stat reclaim_stat;
205 #ifdef CONFIG_MEMCG
206 	struct zone *zone;
207 #endif
208 };
209 
210 /* Mask used at gathering information at once (see memcontrol.c) */
211 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
212 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
213 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
214 
215 /* Isolate clean file */
216 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
217 /* Isolate unmapped file */
218 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
219 /* Isolate for asynchronous migration */
220 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
221 /* Isolate unevictable pages */
222 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
223 
224 /* LRU Isolation modes. */
225 typedef unsigned __bitwise__ isolate_mode_t;
226 
227 enum zone_watermarks {
228 	WMARK_MIN,
229 	WMARK_LOW,
230 	WMARK_HIGH,
231 	NR_WMARK
232 };
233 
234 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
235 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
236 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
237 
238 struct per_cpu_pages {
239 	int count;		/* number of pages in the list */
240 	int high;		/* high watermark, emptying needed */
241 	int batch;		/* chunk size for buddy add/remove */
242 
243 	/* Lists of pages, one per migrate type stored on the pcp-lists */
244 	struct list_head lists[MIGRATE_PCPTYPES];
245 };
246 
247 struct per_cpu_pageset {
248 	struct per_cpu_pages pcp;
249 #ifdef CONFIG_NUMA
250 	s8 expire;
251 #endif
252 #ifdef CONFIG_SMP
253 	s8 stat_threshold;
254 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
255 #endif
256 };
257 
258 #endif /* !__GENERATING_BOUNDS.H */
259 
260 enum zone_type {
261 #ifdef CONFIG_ZONE_DMA
262 	/*
263 	 * ZONE_DMA is used when there are devices that are not able
264 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
265 	 * carve out the portion of memory that is needed for these devices.
266 	 * The range is arch specific.
267 	 *
268 	 * Some examples
269 	 *
270 	 * Architecture		Limit
271 	 * ---------------------------
272 	 * parisc, ia64, sparc	<4G
273 	 * s390			<2G
274 	 * arm			Various
275 	 * alpha		Unlimited or 0-16MB.
276 	 *
277 	 * i386, x86_64 and multiple other arches
278 	 * 			<16M.
279 	 */
280 	ZONE_DMA,
281 #endif
282 #ifdef CONFIG_ZONE_DMA32
283 	/*
284 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
285 	 * only able to do DMA to the lower 16M but also 32 bit devices that
286 	 * can only do DMA areas below 4G.
287 	 */
288 	ZONE_DMA32,
289 #endif
290 	/*
291 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
292 	 * performed on pages in ZONE_NORMAL if the DMA devices support
293 	 * transfers to all addressable memory.
294 	 */
295 	ZONE_NORMAL,
296 #ifdef CONFIG_HIGHMEM
297 	/*
298 	 * A memory area that is only addressable by the kernel through
299 	 * mapping portions into its own address space. This is for example
300 	 * used by i386 to allow the kernel to address the memory beyond
301 	 * 900MB. The kernel will set up special mappings (page
302 	 * table entries on i386) for each page that the kernel needs to
303 	 * access.
304 	 */
305 	ZONE_HIGHMEM,
306 #endif
307 	ZONE_MOVABLE,
308 	__MAX_NR_ZONES
309 };
310 
311 #ifndef __GENERATING_BOUNDS_H
312 
313 /*
314  * When a memory allocation must conform to specific limitations (such
315  * as being suitable for DMA) the caller will pass in hints to the
316  * allocator in the gfp_mask, in the zone modifier bits.  These bits
317  * are used to select a priority ordered list of memory zones which
318  * match the requested limits. See gfp_zone() in include/linux/gfp.h
319  */
320 
321 #if MAX_NR_ZONES < 2
322 #define ZONES_SHIFT 0
323 #elif MAX_NR_ZONES <= 2
324 #define ZONES_SHIFT 1
325 #elif MAX_NR_ZONES <= 4
326 #define ZONES_SHIFT 2
327 #else
328 #error ZONES_SHIFT -- too many zones configured adjust calculation
329 #endif
330 
331 struct zone {
332 	/* Fields commonly accessed by the page allocator */
333 
334 	/* zone watermarks, access with *_wmark_pages(zone) macros */
335 	unsigned long watermark[NR_WMARK];
336 
337 	/*
338 	 * When free pages are below this point, additional steps are taken
339 	 * when reading the number of free pages to avoid per-cpu counter
340 	 * drift allowing watermarks to be breached
341 	 */
342 	unsigned long percpu_drift_mark;
343 
344 	/*
345 	 * We don't know if the memory that we're going to allocate will be freeable
346 	 * or/and it will be released eventually, so to avoid totally wasting several
347 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
348 	 * to run OOM on the lower zones despite there's tons of freeable ram
349 	 * on the higher zones). This array is recalculated at runtime if the
350 	 * sysctl_lowmem_reserve_ratio sysctl changes.
351 	 */
352 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
353 
354 	/*
355 	 * This is a per-zone reserve of pages that should not be
356 	 * considered dirtyable memory.
357 	 */
358 	unsigned long		dirty_balance_reserve;
359 
360 #ifdef CONFIG_NUMA
361 	int node;
362 	/*
363 	 * zone reclaim becomes active if more unmapped pages exist.
364 	 */
365 	unsigned long		min_unmapped_pages;
366 	unsigned long		min_slab_pages;
367 #endif
368 	struct per_cpu_pageset __percpu *pageset;
369 	/*
370 	 * free areas of different sizes
371 	 */
372 	spinlock_t		lock;
373 	int                     all_unreclaimable; /* All pages pinned */
374 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
375 	/* Set to true when the PG_migrate_skip bits should be cleared */
376 	bool			compact_blockskip_flush;
377 
378 	/* pfns where compaction scanners should start */
379 	unsigned long		compact_cached_free_pfn;
380 	unsigned long		compact_cached_migrate_pfn;
381 #endif
382 #ifdef CONFIG_MEMORY_HOTPLUG
383 	/* see spanned/present_pages for more description */
384 	seqlock_t		span_seqlock;
385 #endif
386 #ifdef CONFIG_CMA
387 	/*
388 	 * CMA needs to increase watermark levels during the allocation
389 	 * process to make sure that the system is not starved.
390 	 */
391 	unsigned long		min_cma_pages;
392 #endif
393 	struct free_area	free_area[MAX_ORDER];
394 
395 #ifndef CONFIG_SPARSEMEM
396 	/*
397 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
398 	 * In SPARSEMEM, this map is stored in struct mem_section
399 	 */
400 	unsigned long		*pageblock_flags;
401 #endif /* CONFIG_SPARSEMEM */
402 
403 #ifdef CONFIG_COMPACTION
404 	/*
405 	 * On compaction failure, 1<<compact_defer_shift compactions
406 	 * are skipped before trying again. The number attempted since
407 	 * last failure is tracked with compact_considered.
408 	 */
409 	unsigned int		compact_considered;
410 	unsigned int		compact_defer_shift;
411 	int			compact_order_failed;
412 #endif
413 
414 	ZONE_PADDING(_pad1_)
415 
416 	/* Fields commonly accessed by the page reclaim scanner */
417 	spinlock_t		lru_lock;
418 	struct lruvec		lruvec;
419 
420 	unsigned long		pages_scanned;	   /* since last reclaim */
421 	unsigned long		flags;		   /* zone flags, see below */
422 
423 	/* Zone statistics */
424 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
425 
426 	/*
427 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
428 	 * this zone's LRU.  Maintained by the pageout code.
429 	 */
430 	unsigned int inactive_ratio;
431 
432 
433 	ZONE_PADDING(_pad2_)
434 	/* Rarely used or read-mostly fields */
435 
436 	/*
437 	 * wait_table		-- the array holding the hash table
438 	 * wait_table_hash_nr_entries	-- the size of the hash table array
439 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
440 	 *
441 	 * The purpose of all these is to keep track of the people
442 	 * waiting for a page to become available and make them
443 	 * runnable again when possible. The trouble is that this
444 	 * consumes a lot of space, especially when so few things
445 	 * wait on pages at a given time. So instead of using
446 	 * per-page waitqueues, we use a waitqueue hash table.
447 	 *
448 	 * The bucket discipline is to sleep on the same queue when
449 	 * colliding and wake all in that wait queue when removing.
450 	 * When something wakes, it must check to be sure its page is
451 	 * truly available, a la thundering herd. The cost of a
452 	 * collision is great, but given the expected load of the
453 	 * table, they should be so rare as to be outweighed by the
454 	 * benefits from the saved space.
455 	 *
456 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
457 	 * primary users of these fields, and in mm/page_alloc.c
458 	 * free_area_init_core() performs the initialization of them.
459 	 */
460 	wait_queue_head_t	* wait_table;
461 	unsigned long		wait_table_hash_nr_entries;
462 	unsigned long		wait_table_bits;
463 
464 	/*
465 	 * Discontig memory support fields.
466 	 */
467 	struct pglist_data	*zone_pgdat;
468 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
469 	unsigned long		zone_start_pfn;
470 
471 	/*
472 	 * zone_start_pfn, spanned_pages and present_pages are all
473 	 * protected by span_seqlock.  It is a seqlock because it has
474 	 * to be read outside of zone->lock, and it is done in the main
475 	 * allocator path.  But, it is written quite infrequently.
476 	 *
477 	 * The lock is declared along with zone->lock because it is
478 	 * frequently read in proximity to zone->lock.  It's good to
479 	 * give them a chance of being in the same cacheline.
480 	 */
481 	unsigned long		spanned_pages;	/* total size, including holes */
482 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
483 
484 	/*
485 	 * rarely used fields:
486 	 */
487 	const char		*name;
488 #ifdef CONFIG_MEMORY_ISOLATION
489 	/*
490 	 * the number of MIGRATE_ISOLATE *pageblock*.
491 	 * We need this for free page counting. Look at zone_watermark_ok_safe.
492 	 * It's protected by zone->lock
493 	 */
494 	int		nr_pageblock_isolate;
495 #endif
496 } ____cacheline_internodealigned_in_smp;
497 
498 typedef enum {
499 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
500 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
501 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
502 					 * a congested BDI
503 					 */
504 } zone_flags_t;
505 
506 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
507 {
508 	set_bit(flag, &zone->flags);
509 }
510 
511 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
512 {
513 	return test_and_set_bit(flag, &zone->flags);
514 }
515 
516 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
517 {
518 	clear_bit(flag, &zone->flags);
519 }
520 
521 static inline int zone_is_reclaim_congested(const struct zone *zone)
522 {
523 	return test_bit(ZONE_CONGESTED, &zone->flags);
524 }
525 
526 static inline int zone_is_reclaim_locked(const struct zone *zone)
527 {
528 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
529 }
530 
531 static inline int zone_is_oom_locked(const struct zone *zone)
532 {
533 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
534 }
535 
536 /*
537  * The "priority" of VM scanning is how much of the queues we will scan in one
538  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
539  * queues ("queue_length >> 12") during an aging round.
540  */
541 #define DEF_PRIORITY 12
542 
543 /* Maximum number of zones on a zonelist */
544 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
545 
546 #ifdef CONFIG_NUMA
547 
548 /*
549  * The NUMA zonelists are doubled because we need zonelists that restrict the
550  * allocations to a single node for GFP_THISNODE.
551  *
552  * [0]	: Zonelist with fallback
553  * [1]	: No fallback (GFP_THISNODE)
554  */
555 #define MAX_ZONELISTS 2
556 
557 
558 /*
559  * We cache key information from each zonelist for smaller cache
560  * footprint when scanning for free pages in get_page_from_freelist().
561  *
562  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
563  *    up short of free memory since the last time (last_fullzone_zap)
564  *    we zero'd fullzones.
565  * 2) The array z_to_n[] maps each zone in the zonelist to its node
566  *    id, so that we can efficiently evaluate whether that node is
567  *    set in the current tasks mems_allowed.
568  *
569  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
570  * indexed by a zones offset in the zonelist zones[] array.
571  *
572  * The get_page_from_freelist() routine does two scans.  During the
573  * first scan, we skip zones whose corresponding bit in 'fullzones'
574  * is set or whose corresponding node in current->mems_allowed (which
575  * comes from cpusets) is not set.  During the second scan, we bypass
576  * this zonelist_cache, to ensure we look methodically at each zone.
577  *
578  * Once per second, we zero out (zap) fullzones, forcing us to
579  * reconsider nodes that might have regained more free memory.
580  * The field last_full_zap is the time we last zapped fullzones.
581  *
582  * This mechanism reduces the amount of time we waste repeatedly
583  * reexaming zones for free memory when they just came up low on
584  * memory momentarilly ago.
585  *
586  * The zonelist_cache struct members logically belong in struct
587  * zonelist.  However, the mempolicy zonelists constructed for
588  * MPOL_BIND are intentionally variable length (and usually much
589  * shorter).  A general purpose mechanism for handling structs with
590  * multiple variable length members is more mechanism than we want
591  * here.  We resort to some special case hackery instead.
592  *
593  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
594  * part because they are shorter), so we put the fixed length stuff
595  * at the front of the zonelist struct, ending in a variable length
596  * zones[], as is needed by MPOL_BIND.
597  *
598  * Then we put the optional zonelist cache on the end of the zonelist
599  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
600  * the fixed length portion at the front of the struct.  This pointer
601  * both enables us to find the zonelist cache, and in the case of
602  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
603  * to know that the zonelist cache is not there.
604  *
605  * The end result is that struct zonelists come in two flavors:
606  *  1) The full, fixed length version, shown below, and
607  *  2) The custom zonelists for MPOL_BIND.
608  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
609  *
610  * Even though there may be multiple CPU cores on a node modifying
611  * fullzones or last_full_zap in the same zonelist_cache at the same
612  * time, we don't lock it.  This is just hint data - if it is wrong now
613  * and then, the allocator will still function, perhaps a bit slower.
614  */
615 
616 
617 struct zonelist_cache {
618 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
619 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
620 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
621 };
622 #else
623 #define MAX_ZONELISTS 1
624 struct zonelist_cache;
625 #endif
626 
627 /*
628  * This struct contains information about a zone in a zonelist. It is stored
629  * here to avoid dereferences into large structures and lookups of tables
630  */
631 struct zoneref {
632 	struct zone *zone;	/* Pointer to actual zone */
633 	int zone_idx;		/* zone_idx(zoneref->zone) */
634 };
635 
636 /*
637  * One allocation request operates on a zonelist. A zonelist
638  * is a list of zones, the first one is the 'goal' of the
639  * allocation, the other zones are fallback zones, in decreasing
640  * priority.
641  *
642  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
643  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
644  * *
645  * To speed the reading of the zonelist, the zonerefs contain the zone index
646  * of the entry being read. Helper functions to access information given
647  * a struct zoneref are
648  *
649  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
650  * zonelist_zone_idx()	- Return the index of the zone for an entry
651  * zonelist_node_idx()	- Return the index of the node for an entry
652  */
653 struct zonelist {
654 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
655 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
656 #ifdef CONFIG_NUMA
657 	struct zonelist_cache zlcache;			     // optional ...
658 #endif
659 };
660 
661 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
662 struct node_active_region {
663 	unsigned long start_pfn;
664 	unsigned long end_pfn;
665 	int nid;
666 };
667 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
668 
669 #ifndef CONFIG_DISCONTIGMEM
670 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
671 extern struct page *mem_map;
672 #endif
673 
674 /*
675  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
676  * (mostly NUMA machines?) to denote a higher-level memory zone than the
677  * zone denotes.
678  *
679  * On NUMA machines, each NUMA node would have a pg_data_t to describe
680  * it's memory layout.
681  *
682  * Memory statistics and page replacement data structures are maintained on a
683  * per-zone basis.
684  */
685 struct bootmem_data;
686 typedef struct pglist_data {
687 	struct zone node_zones[MAX_NR_ZONES];
688 	struct zonelist node_zonelists[MAX_ZONELISTS];
689 	int nr_zones;
690 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
691 	struct page *node_mem_map;
692 #ifdef CONFIG_MEMCG
693 	struct page_cgroup *node_page_cgroup;
694 #endif
695 #endif
696 #ifndef CONFIG_NO_BOOTMEM
697 	struct bootmem_data *bdata;
698 #endif
699 #ifdef CONFIG_MEMORY_HOTPLUG
700 	/*
701 	 * Must be held any time you expect node_start_pfn, node_present_pages
702 	 * or node_spanned_pages stay constant.  Holding this will also
703 	 * guarantee that any pfn_valid() stays that way.
704 	 *
705 	 * Nests above zone->lock and zone->size_seqlock.
706 	 */
707 	spinlock_t node_size_lock;
708 #endif
709 	unsigned long node_start_pfn;
710 	unsigned long node_present_pages; /* total number of physical pages */
711 	unsigned long node_spanned_pages; /* total size of physical page
712 					     range, including holes */
713 	int node_id;
714 	nodemask_t reclaim_nodes;	/* Nodes allowed to reclaim from */
715 	wait_queue_head_t kswapd_wait;
716 	wait_queue_head_t pfmemalloc_wait;
717 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
718 	int kswapd_max_order;
719 	enum zone_type classzone_idx;
720 } pg_data_t;
721 
722 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
723 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
724 #ifdef CONFIG_FLAT_NODE_MEM_MAP
725 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
726 #else
727 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
728 #endif
729 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
730 
731 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
732 
733 #define node_end_pfn(nid) ({\
734 	pg_data_t *__pgdat = NODE_DATA(nid);\
735 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
736 })
737 
738 #include <linux/memory_hotplug.h>
739 
740 extern struct mutex zonelists_mutex;
741 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
742 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
743 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
744 		int classzone_idx, int alloc_flags);
745 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
746 		int classzone_idx, int alloc_flags);
747 enum memmap_context {
748 	MEMMAP_EARLY,
749 	MEMMAP_HOTPLUG,
750 };
751 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
752 				     unsigned long size,
753 				     enum memmap_context context);
754 
755 extern void lruvec_init(struct lruvec *lruvec);
756 
757 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
758 {
759 #ifdef CONFIG_MEMCG
760 	return lruvec->zone;
761 #else
762 	return container_of(lruvec, struct zone, lruvec);
763 #endif
764 }
765 
766 #ifdef CONFIG_HAVE_MEMORY_PRESENT
767 void memory_present(int nid, unsigned long start, unsigned long end);
768 #else
769 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
770 #endif
771 
772 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
773 int local_memory_node(int node_id);
774 #else
775 static inline int local_memory_node(int node_id) { return node_id; };
776 #endif
777 
778 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
779 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
780 #endif
781 
782 /*
783  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
784  */
785 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
786 
787 static inline int populated_zone(struct zone *zone)
788 {
789 	return (!!zone->present_pages);
790 }
791 
792 extern int movable_zone;
793 
794 static inline int zone_movable_is_highmem(void)
795 {
796 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
797 	return movable_zone == ZONE_HIGHMEM;
798 #else
799 	return 0;
800 #endif
801 }
802 
803 static inline int is_highmem_idx(enum zone_type idx)
804 {
805 #ifdef CONFIG_HIGHMEM
806 	return (idx == ZONE_HIGHMEM ||
807 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
808 #else
809 	return 0;
810 #endif
811 }
812 
813 static inline int is_normal_idx(enum zone_type idx)
814 {
815 	return (idx == ZONE_NORMAL);
816 }
817 
818 /**
819  * is_highmem - helper function to quickly check if a struct zone is a
820  *              highmem zone or not.  This is an attempt to keep references
821  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
822  * @zone - pointer to struct zone variable
823  */
824 static inline int is_highmem(struct zone *zone)
825 {
826 #ifdef CONFIG_HIGHMEM
827 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
828 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
829 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
830 		zone_movable_is_highmem());
831 #else
832 	return 0;
833 #endif
834 }
835 
836 static inline int is_normal(struct zone *zone)
837 {
838 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
839 }
840 
841 static inline int is_dma32(struct zone *zone)
842 {
843 #ifdef CONFIG_ZONE_DMA32
844 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
845 #else
846 	return 0;
847 #endif
848 }
849 
850 static inline int is_dma(struct zone *zone)
851 {
852 #ifdef CONFIG_ZONE_DMA
853 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
854 #else
855 	return 0;
856 #endif
857 }
858 
859 /* These two functions are used to setup the per zone pages min values */
860 struct ctl_table;
861 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
862 					void __user *, size_t *, loff_t *);
863 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
864 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
865 					void __user *, size_t *, loff_t *);
866 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
867 					void __user *, size_t *, loff_t *);
868 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
869 			void __user *, size_t *, loff_t *);
870 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
871 			void __user *, size_t *, loff_t *);
872 
873 extern int numa_zonelist_order_handler(struct ctl_table *, int,
874 			void __user *, size_t *, loff_t *);
875 extern char numa_zonelist_order[];
876 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
877 
878 #ifndef CONFIG_NEED_MULTIPLE_NODES
879 
880 extern struct pglist_data contig_page_data;
881 #define NODE_DATA(nid)		(&contig_page_data)
882 #define NODE_MEM_MAP(nid)	mem_map
883 
884 #else /* CONFIG_NEED_MULTIPLE_NODES */
885 
886 #include <asm/mmzone.h>
887 
888 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
889 
890 extern struct pglist_data *first_online_pgdat(void);
891 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
892 extern struct zone *next_zone(struct zone *zone);
893 
894 /**
895  * for_each_online_pgdat - helper macro to iterate over all online nodes
896  * @pgdat - pointer to a pg_data_t variable
897  */
898 #define for_each_online_pgdat(pgdat)			\
899 	for (pgdat = first_online_pgdat();		\
900 	     pgdat;					\
901 	     pgdat = next_online_pgdat(pgdat))
902 /**
903  * for_each_zone - helper macro to iterate over all memory zones
904  * @zone - pointer to struct zone variable
905  *
906  * The user only needs to declare the zone variable, for_each_zone
907  * fills it in.
908  */
909 #define for_each_zone(zone)			        \
910 	for (zone = (first_online_pgdat())->node_zones; \
911 	     zone;					\
912 	     zone = next_zone(zone))
913 
914 #define for_each_populated_zone(zone)		        \
915 	for (zone = (first_online_pgdat())->node_zones; \
916 	     zone;					\
917 	     zone = next_zone(zone))			\
918 		if (!populated_zone(zone))		\
919 			; /* do nothing */		\
920 		else
921 
922 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
923 {
924 	return zoneref->zone;
925 }
926 
927 static inline int zonelist_zone_idx(struct zoneref *zoneref)
928 {
929 	return zoneref->zone_idx;
930 }
931 
932 static inline int zonelist_node_idx(struct zoneref *zoneref)
933 {
934 #ifdef CONFIG_NUMA
935 	/* zone_to_nid not available in this context */
936 	return zoneref->zone->node;
937 #else
938 	return 0;
939 #endif /* CONFIG_NUMA */
940 }
941 
942 /**
943  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
944  * @z - The cursor used as a starting point for the search
945  * @highest_zoneidx - The zone index of the highest zone to return
946  * @nodes - An optional nodemask to filter the zonelist with
947  * @zone - The first suitable zone found is returned via this parameter
948  *
949  * This function returns the next zone at or below a given zone index that is
950  * within the allowed nodemask using a cursor as the starting point for the
951  * search. The zoneref returned is a cursor that represents the current zone
952  * being examined. It should be advanced by one before calling
953  * next_zones_zonelist again.
954  */
955 struct zoneref *next_zones_zonelist(struct zoneref *z,
956 					enum zone_type highest_zoneidx,
957 					nodemask_t *nodes,
958 					struct zone **zone);
959 
960 /**
961  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
962  * @zonelist - The zonelist to search for a suitable zone
963  * @highest_zoneidx - The zone index of the highest zone to return
964  * @nodes - An optional nodemask to filter the zonelist with
965  * @zone - The first suitable zone found is returned via this parameter
966  *
967  * This function returns the first zone at or below a given zone index that is
968  * within the allowed nodemask. The zoneref returned is a cursor that can be
969  * used to iterate the zonelist with next_zones_zonelist by advancing it by
970  * one before calling.
971  */
972 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
973 					enum zone_type highest_zoneidx,
974 					nodemask_t *nodes,
975 					struct zone **zone)
976 {
977 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
978 								zone);
979 }
980 
981 /**
982  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
983  * @zone - The current zone in the iterator
984  * @z - The current pointer within zonelist->zones being iterated
985  * @zlist - The zonelist being iterated
986  * @highidx - The zone index of the highest zone to return
987  * @nodemask - Nodemask allowed by the allocator
988  *
989  * This iterator iterates though all zones at or below a given zone index and
990  * within a given nodemask
991  */
992 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
993 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
994 		zone;							\
995 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
996 
997 /**
998  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
999  * @zone - The current zone in the iterator
1000  * @z - The current pointer within zonelist->zones being iterated
1001  * @zlist - The zonelist being iterated
1002  * @highidx - The zone index of the highest zone to return
1003  *
1004  * This iterator iterates though all zones at or below a given zone index.
1005  */
1006 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1007 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1008 
1009 #ifdef CONFIG_SPARSEMEM
1010 #include <asm/sparsemem.h>
1011 #endif
1012 
1013 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1014 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1015 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1016 {
1017 	return 0;
1018 }
1019 #endif
1020 
1021 #ifdef CONFIG_FLATMEM
1022 #define pfn_to_nid(pfn)		(0)
1023 #endif
1024 
1025 #ifdef CONFIG_SPARSEMEM
1026 
1027 /*
1028  * SECTION_SHIFT    		#bits space required to store a section #
1029  *
1030  * PA_SECTION_SHIFT		physical address to/from section number
1031  * PFN_SECTION_SHIFT		pfn to/from section number
1032  */
1033 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1034 
1035 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1036 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1037 
1038 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1039 
1040 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1041 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1042 
1043 #define SECTION_BLOCKFLAGS_BITS \
1044 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1045 
1046 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1047 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1048 #endif
1049 
1050 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1051 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1052 
1053 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1054 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1055 
1056 struct page;
1057 struct page_cgroup;
1058 struct mem_section {
1059 	/*
1060 	 * This is, logically, a pointer to an array of struct
1061 	 * pages.  However, it is stored with some other magic.
1062 	 * (see sparse.c::sparse_init_one_section())
1063 	 *
1064 	 * Additionally during early boot we encode node id of
1065 	 * the location of the section here to guide allocation.
1066 	 * (see sparse.c::memory_present())
1067 	 *
1068 	 * Making it a UL at least makes someone do a cast
1069 	 * before using it wrong.
1070 	 */
1071 	unsigned long section_mem_map;
1072 
1073 	/* See declaration of similar field in struct zone */
1074 	unsigned long *pageblock_flags;
1075 #ifdef CONFIG_MEMCG
1076 	/*
1077 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1078 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1079 	 */
1080 	struct page_cgroup *page_cgroup;
1081 	unsigned long pad;
1082 #endif
1083 };
1084 
1085 #ifdef CONFIG_SPARSEMEM_EXTREME
1086 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1087 #else
1088 #define SECTIONS_PER_ROOT	1
1089 #endif
1090 
1091 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1092 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1093 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1094 
1095 #ifdef CONFIG_SPARSEMEM_EXTREME
1096 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1097 #else
1098 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1099 #endif
1100 
1101 static inline struct mem_section *__nr_to_section(unsigned long nr)
1102 {
1103 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1104 		return NULL;
1105 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1106 }
1107 extern int __section_nr(struct mem_section* ms);
1108 extern unsigned long usemap_size(void);
1109 
1110 /*
1111  * We use the lower bits of the mem_map pointer to store
1112  * a little bit of information.  There should be at least
1113  * 3 bits here due to 32-bit alignment.
1114  */
1115 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1116 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1117 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1118 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1119 #define SECTION_NID_SHIFT	2
1120 
1121 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1122 {
1123 	unsigned long map = section->section_mem_map;
1124 	map &= SECTION_MAP_MASK;
1125 	return (struct page *)map;
1126 }
1127 
1128 static inline int present_section(struct mem_section *section)
1129 {
1130 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1131 }
1132 
1133 static inline int present_section_nr(unsigned long nr)
1134 {
1135 	return present_section(__nr_to_section(nr));
1136 }
1137 
1138 static inline int valid_section(struct mem_section *section)
1139 {
1140 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1141 }
1142 
1143 static inline int valid_section_nr(unsigned long nr)
1144 {
1145 	return valid_section(__nr_to_section(nr));
1146 }
1147 
1148 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1149 {
1150 	return __nr_to_section(pfn_to_section_nr(pfn));
1151 }
1152 
1153 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1154 static inline int pfn_valid(unsigned long pfn)
1155 {
1156 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1157 		return 0;
1158 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1159 }
1160 #endif
1161 
1162 static inline int pfn_present(unsigned long pfn)
1163 {
1164 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1165 		return 0;
1166 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1167 }
1168 
1169 /*
1170  * These are _only_ used during initialisation, therefore they
1171  * can use __initdata ...  They could have names to indicate
1172  * this restriction.
1173  */
1174 #ifdef CONFIG_NUMA
1175 #define pfn_to_nid(pfn)							\
1176 ({									\
1177 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1178 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1179 })
1180 #else
1181 #define pfn_to_nid(pfn)		(0)
1182 #endif
1183 
1184 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1185 void sparse_init(void);
1186 #else
1187 #define sparse_init()	do {} while (0)
1188 #define sparse_index_init(_sec, _nid)  do {} while (0)
1189 #endif /* CONFIG_SPARSEMEM */
1190 
1191 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1192 bool early_pfn_in_nid(unsigned long pfn, int nid);
1193 #else
1194 #define early_pfn_in_nid(pfn, nid)	(1)
1195 #endif
1196 
1197 #ifndef early_pfn_valid
1198 #define early_pfn_valid(pfn)	(1)
1199 #endif
1200 
1201 void memory_present(int nid, unsigned long start, unsigned long end);
1202 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1203 
1204 /*
1205  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1206  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1207  * pfn_valid_within() should be used in this case; we optimise this away
1208  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1209  */
1210 #ifdef CONFIG_HOLES_IN_ZONE
1211 #define pfn_valid_within(pfn) pfn_valid(pfn)
1212 #else
1213 #define pfn_valid_within(pfn) (1)
1214 #endif
1215 
1216 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1217 /*
1218  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1219  * associated with it or not. In FLATMEM, it is expected that holes always
1220  * have valid memmap as long as there is valid PFNs either side of the hole.
1221  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1222  * entire section.
1223  *
1224  * However, an ARM, and maybe other embedded architectures in the future
1225  * free memmap backing holes to save memory on the assumption the memmap is
1226  * never used. The page_zone linkages are then broken even though pfn_valid()
1227  * returns true. A walker of the full memmap must then do this additional
1228  * check to ensure the memmap they are looking at is sane by making sure
1229  * the zone and PFN linkages are still valid. This is expensive, but walkers
1230  * of the full memmap are extremely rare.
1231  */
1232 int memmap_valid_within(unsigned long pfn,
1233 					struct page *page, struct zone *zone);
1234 #else
1235 static inline int memmap_valid_within(unsigned long pfn,
1236 					struct page *page, struct zone *zone)
1237 {
1238 	return 1;
1239 }
1240 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1241 
1242 #endif /* !__GENERATING_BOUNDS.H */
1243 #endif /* !__ASSEMBLY__ */
1244 #endif /* _LINUX_MMZONE_H */
1245