xref: /linux-6.15/include/linux/mmzone.h (revision 6edf2e37)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22 
23 /* Free memory management - zoned buddy allocator.  */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 
31 /*
32  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33  * costly to service.  That is between allocation orders which should
34  * coalesce naturally under reasonable reclaim pressure and those which
35  * will not.
36  */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38 
39 enum migratetype {
40 	MIGRATE_UNMOVABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_RECLAIMABLE,
43 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
44 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 	/*
47 	 * MIGRATE_CMA migration type is designed to mimic the way
48 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
49 	 * from MIGRATE_CMA pageblocks and page allocator never
50 	 * implicitly change migration type of MIGRATE_CMA pageblock.
51 	 *
52 	 * The way to use it is to change migratetype of a range of
53 	 * pageblocks to MIGRATE_CMA which can be done by
54 	 * __free_pageblock_cma() function.  What is important though
55 	 * is that a range of pageblocks must be aligned to
56 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 	 * a single pageblock.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 #define for_each_migratetype_order(order, type) \
84 	for (order = 0; order < MAX_ORDER; order++) \
85 		for (type = 0; type < MIGRATE_TYPES; type++)
86 
87 extern int page_group_by_mobility_disabled;
88 
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 
92 #define get_pageblock_migratetype(page)					\
93 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
94 			PB_migrate_end, MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 struct pglist_data;
102 
103 /*
104  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105  * So add a wild amount of padding here to ensure that they fall into separate
106  * cachelines.  There are very few zone structures in the machine, so space
107  * consumption is not a concern here.
108  */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 	char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name)	struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	NR_PAGETABLE,		/* used for pagetables */
144 	NR_KERNEL_STACK_KB,	/* measured in KiB */
145 	/* Second 128 byte cacheline */
146 	NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 	NR_ZSPAGES,		/* allocated in zsmalloc */
149 #endif
150 	NR_FREE_CMA_PAGES,
151 	NR_VM_ZONE_STAT_ITEMS };
152 
153 enum node_stat_item {
154 	NR_LRU_BASE,
155 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
157 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
158 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
159 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
160 	NR_SLAB_RECLAIMABLE,
161 	NR_SLAB_UNRECLAIMABLE,
162 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
163 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
164 	WORKINGSET_NODES,
165 	WORKINGSET_REFAULT,
166 	WORKINGSET_ACTIVATE,
167 	WORKINGSET_RESTORE,
168 	WORKINGSET_NODERECLAIM,
169 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
170 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
171 			   only modified from process context */
172 	NR_FILE_PAGES,
173 	NR_FILE_DIRTY,
174 	NR_WRITEBACK,
175 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
176 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
177 	NR_SHMEM_THPS,
178 	NR_SHMEM_PMDMAPPED,
179 	NR_ANON_THPS,
180 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
181 	NR_VMSCAN_WRITE,
182 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
183 	NR_DIRTIED,		/* page dirtyings since bootup */
184 	NR_WRITTEN,		/* page writings since bootup */
185 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
186 	NR_VM_NODE_STAT_ITEMS
187 };
188 
189 /*
190  * We do arithmetic on the LRU lists in various places in the code,
191  * so it is important to keep the active lists LRU_ACTIVE higher in
192  * the array than the corresponding inactive lists, and to keep
193  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
194  *
195  * This has to be kept in sync with the statistics in zone_stat_item
196  * above and the descriptions in vmstat_text in mm/vmstat.c
197  */
198 #define LRU_BASE 0
199 #define LRU_ACTIVE 1
200 #define LRU_FILE 2
201 
202 enum lru_list {
203 	LRU_INACTIVE_ANON = LRU_BASE,
204 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
205 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
206 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
207 	LRU_UNEVICTABLE,
208 	NR_LRU_LISTS
209 };
210 
211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
212 
213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
214 
215 static inline int is_file_lru(enum lru_list lru)
216 {
217 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
218 }
219 
220 static inline int is_active_lru(enum lru_list lru)
221 {
222 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
223 }
224 
225 struct zone_reclaim_stat {
226 	/*
227 	 * The pageout code in vmscan.c keeps track of how many of the
228 	 * mem/swap backed and file backed pages are referenced.
229 	 * The higher the rotated/scanned ratio, the more valuable
230 	 * that cache is.
231 	 *
232 	 * The anon LRU stats live in [0], file LRU stats in [1]
233 	 */
234 	unsigned long		recent_rotated[2];
235 	unsigned long		recent_scanned[2];
236 };
237 
238 struct lruvec {
239 	struct list_head		lists[NR_LRU_LISTS];
240 	struct zone_reclaim_stat	reclaim_stat;
241 	/* Evictions & activations on the inactive file list */
242 	atomic_long_t			inactive_age;
243 	/* Refaults at the time of last reclaim cycle */
244 	unsigned long			refaults;
245 #ifdef CONFIG_MEMCG
246 	struct pglist_data *pgdat;
247 #endif
248 };
249 
250 /* Mask used at gathering information at once (see memcontrol.c) */
251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
253 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
254 
255 /* Isolate unmapped file */
256 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
257 /* Isolate for asynchronous migration */
258 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
259 /* Isolate unevictable pages */
260 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
261 
262 /* LRU Isolation modes. */
263 typedef unsigned __bitwise isolate_mode_t;
264 
265 enum zone_watermarks {
266 	WMARK_MIN,
267 	WMARK_LOW,
268 	WMARK_HIGH,
269 	NR_WMARK
270 };
271 
272 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
273 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
274 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
275 
276 struct per_cpu_pages {
277 	int count;		/* number of pages in the list */
278 	int high;		/* high watermark, emptying needed */
279 	int batch;		/* chunk size for buddy add/remove */
280 
281 	/* Lists of pages, one per migrate type stored on the pcp-lists */
282 	struct list_head lists[MIGRATE_PCPTYPES];
283 };
284 
285 struct per_cpu_pageset {
286 	struct per_cpu_pages pcp;
287 #ifdef CONFIG_NUMA
288 	s8 expire;
289 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
290 #endif
291 #ifdef CONFIG_SMP
292 	s8 stat_threshold;
293 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
294 #endif
295 };
296 
297 struct per_cpu_nodestat {
298 	s8 stat_threshold;
299 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
300 };
301 
302 #endif /* !__GENERATING_BOUNDS.H */
303 
304 enum zone_type {
305 #ifdef CONFIG_ZONE_DMA
306 	/*
307 	 * ZONE_DMA is used when there are devices that are not able
308 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
309 	 * carve out the portion of memory that is needed for these devices.
310 	 * The range is arch specific.
311 	 *
312 	 * Some examples
313 	 *
314 	 * Architecture		Limit
315 	 * ---------------------------
316 	 * parisc, ia64, sparc	<4G
317 	 * s390			<2G
318 	 * arm			Various
319 	 * alpha		Unlimited or 0-16MB.
320 	 *
321 	 * i386, x86_64 and multiple other arches
322 	 * 			<16M.
323 	 */
324 	ZONE_DMA,
325 #endif
326 #ifdef CONFIG_ZONE_DMA32
327 	/*
328 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
329 	 * only able to do DMA to the lower 16M but also 32 bit devices that
330 	 * can only do DMA areas below 4G.
331 	 */
332 	ZONE_DMA32,
333 #endif
334 	/*
335 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
336 	 * performed on pages in ZONE_NORMAL if the DMA devices support
337 	 * transfers to all addressable memory.
338 	 */
339 	ZONE_NORMAL,
340 #ifdef CONFIG_HIGHMEM
341 	/*
342 	 * A memory area that is only addressable by the kernel through
343 	 * mapping portions into its own address space. This is for example
344 	 * used by i386 to allow the kernel to address the memory beyond
345 	 * 900MB. The kernel will set up special mappings (page
346 	 * table entries on i386) for each page that the kernel needs to
347 	 * access.
348 	 */
349 	ZONE_HIGHMEM,
350 #endif
351 	ZONE_MOVABLE,
352 #ifdef CONFIG_ZONE_DEVICE
353 	ZONE_DEVICE,
354 #endif
355 	__MAX_NR_ZONES
356 
357 };
358 
359 #ifndef __GENERATING_BOUNDS_H
360 
361 struct zone {
362 	/* Read-mostly fields */
363 
364 	/* zone watermarks, access with *_wmark_pages(zone) macros */
365 	unsigned long watermark[NR_WMARK];
366 
367 	unsigned long nr_reserved_highatomic;
368 
369 	/*
370 	 * We don't know if the memory that we're going to allocate will be
371 	 * freeable or/and it will be released eventually, so to avoid totally
372 	 * wasting several GB of ram we must reserve some of the lower zone
373 	 * memory (otherwise we risk to run OOM on the lower zones despite
374 	 * there being tons of freeable ram on the higher zones).  This array is
375 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
376 	 * changes.
377 	 */
378 	long lowmem_reserve[MAX_NR_ZONES];
379 
380 #ifdef CONFIG_NUMA
381 	int node;
382 #endif
383 	struct pglist_data	*zone_pgdat;
384 	struct per_cpu_pageset __percpu *pageset;
385 
386 #ifndef CONFIG_SPARSEMEM
387 	/*
388 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
389 	 * In SPARSEMEM, this map is stored in struct mem_section
390 	 */
391 	unsigned long		*pageblock_flags;
392 #endif /* CONFIG_SPARSEMEM */
393 
394 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
395 	unsigned long		zone_start_pfn;
396 
397 	/*
398 	 * spanned_pages is the total pages spanned by the zone, including
399 	 * holes, which is calculated as:
400 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
401 	 *
402 	 * present_pages is physical pages existing within the zone, which
403 	 * is calculated as:
404 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
405 	 *
406 	 * managed_pages is present pages managed by the buddy system, which
407 	 * is calculated as (reserved_pages includes pages allocated by the
408 	 * bootmem allocator):
409 	 *	managed_pages = present_pages - reserved_pages;
410 	 *
411 	 * So present_pages may be used by memory hotplug or memory power
412 	 * management logic to figure out unmanaged pages by checking
413 	 * (present_pages - managed_pages). And managed_pages should be used
414 	 * by page allocator and vm scanner to calculate all kinds of watermarks
415 	 * and thresholds.
416 	 *
417 	 * Locking rules:
418 	 *
419 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
420 	 * It is a seqlock because it has to be read outside of zone->lock,
421 	 * and it is done in the main allocator path.  But, it is written
422 	 * quite infrequently.
423 	 *
424 	 * The span_seq lock is declared along with zone->lock because it is
425 	 * frequently read in proximity to zone->lock.  It's good to
426 	 * give them a chance of being in the same cacheline.
427 	 *
428 	 * Write access to present_pages at runtime should be protected by
429 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
430 	 * present_pages should get_online_mems() to get a stable value.
431 	 *
432 	 * Read access to managed_pages should be safe because it's unsigned
433 	 * long. Write access to zone->managed_pages and totalram_pages are
434 	 * protected by managed_page_count_lock at runtime. Idealy only
435 	 * adjust_managed_page_count() should be used instead of directly
436 	 * touching zone->managed_pages and totalram_pages.
437 	 */
438 	unsigned long		managed_pages;
439 	unsigned long		spanned_pages;
440 	unsigned long		present_pages;
441 
442 	const char		*name;
443 
444 #ifdef CONFIG_MEMORY_ISOLATION
445 	/*
446 	 * Number of isolated pageblock. It is used to solve incorrect
447 	 * freepage counting problem due to racy retrieving migratetype
448 	 * of pageblock. Protected by zone->lock.
449 	 */
450 	unsigned long		nr_isolate_pageblock;
451 #endif
452 
453 #ifdef CONFIG_MEMORY_HOTPLUG
454 	/* see spanned/present_pages for more description */
455 	seqlock_t		span_seqlock;
456 #endif
457 
458 	int initialized;
459 
460 	/* Write-intensive fields used from the page allocator */
461 	ZONE_PADDING(_pad1_)
462 
463 	/* free areas of different sizes */
464 	struct free_area	free_area[MAX_ORDER];
465 
466 	/* zone flags, see below */
467 	unsigned long		flags;
468 
469 	/* Primarily protects free_area */
470 	spinlock_t		lock;
471 
472 	/* Write-intensive fields used by compaction and vmstats. */
473 	ZONE_PADDING(_pad2_)
474 
475 	/*
476 	 * When free pages are below this point, additional steps are taken
477 	 * when reading the number of free pages to avoid per-cpu counter
478 	 * drift allowing watermarks to be breached
479 	 */
480 	unsigned long percpu_drift_mark;
481 
482 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
483 	/* pfn where compaction free scanner should start */
484 	unsigned long		compact_cached_free_pfn;
485 	/* pfn where async and sync compaction migration scanner should start */
486 	unsigned long		compact_cached_migrate_pfn[2];
487 #endif
488 
489 #ifdef CONFIG_COMPACTION
490 	/*
491 	 * On compaction failure, 1<<compact_defer_shift compactions
492 	 * are skipped before trying again. The number attempted since
493 	 * last failure is tracked with compact_considered.
494 	 */
495 	unsigned int		compact_considered;
496 	unsigned int		compact_defer_shift;
497 	int			compact_order_failed;
498 #endif
499 
500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 	/* Set to true when the PG_migrate_skip bits should be cleared */
502 	bool			compact_blockskip_flush;
503 #endif
504 
505 	bool			contiguous;
506 
507 	ZONE_PADDING(_pad3_)
508 	/* Zone statistics */
509 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
510 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
511 } ____cacheline_internodealigned_in_smp;
512 
513 enum pgdat_flags {
514 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
515 					 * a congested BDI
516 					 */
517 	PGDAT_DIRTY,			/* reclaim scanning has recently found
518 					 * many dirty file pages at the tail
519 					 * of the LRU.
520 					 */
521 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
522 					 * many pages under writeback
523 					 */
524 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
525 };
526 
527 static inline unsigned long zone_end_pfn(const struct zone *zone)
528 {
529 	return zone->zone_start_pfn + zone->spanned_pages;
530 }
531 
532 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
533 {
534 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
535 }
536 
537 static inline bool zone_is_initialized(struct zone *zone)
538 {
539 	return zone->initialized;
540 }
541 
542 static inline bool zone_is_empty(struct zone *zone)
543 {
544 	return zone->spanned_pages == 0;
545 }
546 
547 /*
548  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
549  * intersection with the given zone
550  */
551 static inline bool zone_intersects(struct zone *zone,
552 		unsigned long start_pfn, unsigned long nr_pages)
553 {
554 	if (zone_is_empty(zone))
555 		return false;
556 	if (start_pfn >= zone_end_pfn(zone) ||
557 	    start_pfn + nr_pages <= zone->zone_start_pfn)
558 		return false;
559 
560 	return true;
561 }
562 
563 /*
564  * The "priority" of VM scanning is how much of the queues we will scan in one
565  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
566  * queues ("queue_length >> 12") during an aging round.
567  */
568 #define DEF_PRIORITY 12
569 
570 /* Maximum number of zones on a zonelist */
571 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
572 
573 enum {
574 	ZONELIST_FALLBACK,	/* zonelist with fallback */
575 #ifdef CONFIG_NUMA
576 	/*
577 	 * The NUMA zonelists are doubled because we need zonelists that
578 	 * restrict the allocations to a single node for __GFP_THISNODE.
579 	 */
580 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
581 #endif
582 	MAX_ZONELISTS
583 };
584 
585 /*
586  * This struct contains information about a zone in a zonelist. It is stored
587  * here to avoid dereferences into large structures and lookups of tables
588  */
589 struct zoneref {
590 	struct zone *zone;	/* Pointer to actual zone */
591 	int zone_idx;		/* zone_idx(zoneref->zone) */
592 };
593 
594 /*
595  * One allocation request operates on a zonelist. A zonelist
596  * is a list of zones, the first one is the 'goal' of the
597  * allocation, the other zones are fallback zones, in decreasing
598  * priority.
599  *
600  * To speed the reading of the zonelist, the zonerefs contain the zone index
601  * of the entry being read. Helper functions to access information given
602  * a struct zoneref are
603  *
604  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
605  * zonelist_zone_idx()	- Return the index of the zone for an entry
606  * zonelist_node_idx()	- Return the index of the node for an entry
607  */
608 struct zonelist {
609 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
610 };
611 
612 #ifndef CONFIG_DISCONTIGMEM
613 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
614 extern struct page *mem_map;
615 #endif
616 
617 /*
618  * On NUMA machines, each NUMA node would have a pg_data_t to describe
619  * it's memory layout. On UMA machines there is a single pglist_data which
620  * describes the whole memory.
621  *
622  * Memory statistics and page replacement data structures are maintained on a
623  * per-zone basis.
624  */
625 struct bootmem_data;
626 typedef struct pglist_data {
627 	struct zone node_zones[MAX_NR_ZONES];
628 	struct zonelist node_zonelists[MAX_ZONELISTS];
629 	int nr_zones;
630 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
631 	struct page *node_mem_map;
632 #ifdef CONFIG_PAGE_EXTENSION
633 	struct page_ext *node_page_ext;
634 #endif
635 #endif
636 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
637 	/*
638 	 * Must be held any time you expect node_start_pfn, node_present_pages
639 	 * or node_spanned_pages stay constant.  Holding this will also
640 	 * guarantee that any pfn_valid() stays that way.
641 	 *
642 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
643 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
644 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
645 	 *
646 	 * Nests above zone->lock and zone->span_seqlock
647 	 */
648 	spinlock_t node_size_lock;
649 #endif
650 	unsigned long node_start_pfn;
651 	unsigned long node_present_pages; /* total number of physical pages */
652 	unsigned long node_spanned_pages; /* total size of physical page
653 					     range, including holes */
654 	int node_id;
655 	wait_queue_head_t kswapd_wait;
656 	wait_queue_head_t pfmemalloc_wait;
657 	struct task_struct *kswapd;	/* Protected by
658 					   mem_hotplug_begin/end() */
659 	int kswapd_order;
660 	enum zone_type kswapd_classzone_idx;
661 
662 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
663 
664 #ifdef CONFIG_COMPACTION
665 	int kcompactd_max_order;
666 	enum zone_type kcompactd_classzone_idx;
667 	wait_queue_head_t kcompactd_wait;
668 	struct task_struct *kcompactd;
669 #endif
670 	/*
671 	 * This is a per-node reserve of pages that are not available
672 	 * to userspace allocations.
673 	 */
674 	unsigned long		totalreserve_pages;
675 
676 #ifdef CONFIG_NUMA
677 	/*
678 	 * zone reclaim becomes active if more unmapped pages exist.
679 	 */
680 	unsigned long		min_unmapped_pages;
681 	unsigned long		min_slab_pages;
682 #endif /* CONFIG_NUMA */
683 
684 	/* Write-intensive fields used by page reclaim */
685 	ZONE_PADDING(_pad1_)
686 	spinlock_t		lru_lock;
687 
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 	/*
690 	 * If memory initialisation on large machines is deferred then this
691 	 * is the first PFN that needs to be initialised.
692 	 */
693 	unsigned long first_deferred_pfn;
694 	/* Number of non-deferred pages */
695 	unsigned long static_init_pgcnt;
696 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
697 
698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
699 	spinlock_t split_queue_lock;
700 	struct list_head split_queue;
701 	unsigned long split_queue_len;
702 #endif
703 
704 	/* Fields commonly accessed by the page reclaim scanner */
705 	struct lruvec		lruvec;
706 
707 	unsigned long		flags;
708 
709 	ZONE_PADDING(_pad2_)
710 
711 	/* Per-node vmstats */
712 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
713 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
714 } pg_data_t;
715 
716 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
717 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
718 #ifdef CONFIG_FLAT_NODE_MEM_MAP
719 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
720 #else
721 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
722 #endif
723 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
724 
725 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
726 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
727 static inline spinlock_t *zone_lru_lock(struct zone *zone)
728 {
729 	return &zone->zone_pgdat->lru_lock;
730 }
731 
732 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
733 {
734 	return &pgdat->lruvec;
735 }
736 
737 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
738 {
739 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
740 }
741 
742 static inline bool pgdat_is_empty(pg_data_t *pgdat)
743 {
744 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
745 }
746 
747 #include <linux/memory_hotplug.h>
748 
749 void build_all_zonelists(pg_data_t *pgdat);
750 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
751 		   enum zone_type classzone_idx);
752 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
753 			 int classzone_idx, unsigned int alloc_flags,
754 			 long free_pages);
755 bool zone_watermark_ok(struct zone *z, unsigned int order,
756 		unsigned long mark, int classzone_idx,
757 		unsigned int alloc_flags);
758 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
759 		unsigned long mark, int classzone_idx);
760 enum memmap_context {
761 	MEMMAP_EARLY,
762 	MEMMAP_HOTPLUG,
763 };
764 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
765 				     unsigned long size);
766 
767 extern void lruvec_init(struct lruvec *lruvec);
768 
769 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
770 {
771 #ifdef CONFIG_MEMCG
772 	return lruvec->pgdat;
773 #else
774 	return container_of(lruvec, struct pglist_data, lruvec);
775 #endif
776 }
777 
778 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
779 
780 #ifdef CONFIG_HAVE_MEMORY_PRESENT
781 void memory_present(int nid, unsigned long start, unsigned long end);
782 #else
783 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
784 #endif
785 
786 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
787 int local_memory_node(int node_id);
788 #else
789 static inline int local_memory_node(int node_id) { return node_id; };
790 #endif
791 
792 /*
793  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
794  */
795 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
796 
797 #ifdef CONFIG_ZONE_DEVICE
798 static inline bool is_dev_zone(const struct zone *zone)
799 {
800 	return zone_idx(zone) == ZONE_DEVICE;
801 }
802 #else
803 static inline bool is_dev_zone(const struct zone *zone)
804 {
805 	return false;
806 }
807 #endif
808 
809 /*
810  * Returns true if a zone has pages managed by the buddy allocator.
811  * All the reclaim decisions have to use this function rather than
812  * populated_zone(). If the whole zone is reserved then we can easily
813  * end up with populated_zone() && !managed_zone().
814  */
815 static inline bool managed_zone(struct zone *zone)
816 {
817 	return zone->managed_pages;
818 }
819 
820 /* Returns true if a zone has memory */
821 static inline bool populated_zone(struct zone *zone)
822 {
823 	return zone->present_pages;
824 }
825 
826 #ifdef CONFIG_NUMA
827 static inline int zone_to_nid(struct zone *zone)
828 {
829 	return zone->node;
830 }
831 
832 static inline void zone_set_nid(struct zone *zone, int nid)
833 {
834 	zone->node = nid;
835 }
836 #else
837 static inline int zone_to_nid(struct zone *zone)
838 {
839 	return 0;
840 }
841 
842 static inline void zone_set_nid(struct zone *zone, int nid) {}
843 #endif
844 
845 extern int movable_zone;
846 
847 #ifdef CONFIG_HIGHMEM
848 static inline int zone_movable_is_highmem(void)
849 {
850 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
851 	return movable_zone == ZONE_HIGHMEM;
852 #else
853 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
854 #endif
855 }
856 #endif
857 
858 static inline int is_highmem_idx(enum zone_type idx)
859 {
860 #ifdef CONFIG_HIGHMEM
861 	return (idx == ZONE_HIGHMEM ||
862 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
863 #else
864 	return 0;
865 #endif
866 }
867 
868 /**
869  * is_highmem - helper function to quickly check if a struct zone is a
870  *              highmem zone or not.  This is an attempt to keep references
871  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
872  * @zone - pointer to struct zone variable
873  */
874 static inline int is_highmem(struct zone *zone)
875 {
876 #ifdef CONFIG_HIGHMEM
877 	return is_highmem_idx(zone_idx(zone));
878 #else
879 	return 0;
880 #endif
881 }
882 
883 /* These two functions are used to setup the per zone pages min values */
884 struct ctl_table;
885 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
886 					void __user *, size_t *, loff_t *);
887 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
888 					void __user *, size_t *, loff_t *);
889 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
890 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
891 					void __user *, size_t *, loff_t *);
892 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
893 					void __user *, size_t *, loff_t *);
894 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
895 			void __user *, size_t *, loff_t *);
896 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
897 			void __user *, size_t *, loff_t *);
898 
899 extern int numa_zonelist_order_handler(struct ctl_table *, int,
900 			void __user *, size_t *, loff_t *);
901 extern char numa_zonelist_order[];
902 #define NUMA_ZONELIST_ORDER_LEN	16
903 
904 #ifndef CONFIG_NEED_MULTIPLE_NODES
905 
906 extern struct pglist_data contig_page_data;
907 #define NODE_DATA(nid)		(&contig_page_data)
908 #define NODE_MEM_MAP(nid)	mem_map
909 
910 #else /* CONFIG_NEED_MULTIPLE_NODES */
911 
912 #include <asm/mmzone.h>
913 
914 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
915 
916 extern struct pglist_data *first_online_pgdat(void);
917 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
918 extern struct zone *next_zone(struct zone *zone);
919 
920 /**
921  * for_each_online_pgdat - helper macro to iterate over all online nodes
922  * @pgdat - pointer to a pg_data_t variable
923  */
924 #define for_each_online_pgdat(pgdat)			\
925 	for (pgdat = first_online_pgdat();		\
926 	     pgdat;					\
927 	     pgdat = next_online_pgdat(pgdat))
928 /**
929  * for_each_zone - helper macro to iterate over all memory zones
930  * @zone - pointer to struct zone variable
931  *
932  * The user only needs to declare the zone variable, for_each_zone
933  * fills it in.
934  */
935 #define for_each_zone(zone)			        \
936 	for (zone = (first_online_pgdat())->node_zones; \
937 	     zone;					\
938 	     zone = next_zone(zone))
939 
940 #define for_each_populated_zone(zone)		        \
941 	for (zone = (first_online_pgdat())->node_zones; \
942 	     zone;					\
943 	     zone = next_zone(zone))			\
944 		if (!populated_zone(zone))		\
945 			; /* do nothing */		\
946 		else
947 
948 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
949 {
950 	return zoneref->zone;
951 }
952 
953 static inline int zonelist_zone_idx(struct zoneref *zoneref)
954 {
955 	return zoneref->zone_idx;
956 }
957 
958 static inline int zonelist_node_idx(struct zoneref *zoneref)
959 {
960 	return zone_to_nid(zoneref->zone);
961 }
962 
963 struct zoneref *__next_zones_zonelist(struct zoneref *z,
964 					enum zone_type highest_zoneidx,
965 					nodemask_t *nodes);
966 
967 /**
968  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
969  * @z - The cursor used as a starting point for the search
970  * @highest_zoneidx - The zone index of the highest zone to return
971  * @nodes - An optional nodemask to filter the zonelist with
972  *
973  * This function returns the next zone at or below a given zone index that is
974  * within the allowed nodemask using a cursor as the starting point for the
975  * search. The zoneref returned is a cursor that represents the current zone
976  * being examined. It should be advanced by one before calling
977  * next_zones_zonelist again.
978  */
979 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
980 					enum zone_type highest_zoneidx,
981 					nodemask_t *nodes)
982 {
983 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
984 		return z;
985 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
986 }
987 
988 /**
989  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
990  * @zonelist - The zonelist to search for a suitable zone
991  * @highest_zoneidx - The zone index of the highest zone to return
992  * @nodes - An optional nodemask to filter the zonelist with
993  * @return - Zoneref pointer for the first suitable zone found (see below)
994  *
995  * This function returns the first zone at or below a given zone index that is
996  * within the allowed nodemask. The zoneref returned is a cursor that can be
997  * used to iterate the zonelist with next_zones_zonelist by advancing it by
998  * one before calling.
999  *
1000  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1001  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1002  * update due to cpuset modification.
1003  */
1004 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1005 					enum zone_type highest_zoneidx,
1006 					nodemask_t *nodes)
1007 {
1008 	return next_zones_zonelist(zonelist->_zonerefs,
1009 							highest_zoneidx, nodes);
1010 }
1011 
1012 /**
1013  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1014  * @zone - The current zone in the iterator
1015  * @z - The current pointer within zonelist->zones being iterated
1016  * @zlist - The zonelist being iterated
1017  * @highidx - The zone index of the highest zone to return
1018  * @nodemask - Nodemask allowed by the allocator
1019  *
1020  * This iterator iterates though all zones at or below a given zone index and
1021  * within a given nodemask
1022  */
1023 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1024 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1025 		zone;							\
1026 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1027 			zone = zonelist_zone(z))
1028 
1029 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1030 	for (zone = z->zone;	\
1031 		zone;							\
1032 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1033 			zone = zonelist_zone(z))
1034 
1035 
1036 /**
1037  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1038  * @zone - The current zone in the iterator
1039  * @z - The current pointer within zonelist->zones being iterated
1040  * @zlist - The zonelist being iterated
1041  * @highidx - The zone index of the highest zone to return
1042  *
1043  * This iterator iterates though all zones at or below a given zone index.
1044  */
1045 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1046 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1047 
1048 #ifdef CONFIG_SPARSEMEM
1049 #include <asm/sparsemem.h>
1050 #endif
1051 
1052 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1053 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1054 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1055 {
1056 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1057 	return 0;
1058 }
1059 #endif
1060 
1061 #ifdef CONFIG_FLATMEM
1062 #define pfn_to_nid(pfn)		(0)
1063 #endif
1064 
1065 #ifdef CONFIG_SPARSEMEM
1066 
1067 /*
1068  * SECTION_SHIFT    		#bits space required to store a section #
1069  *
1070  * PA_SECTION_SHIFT		physical address to/from section number
1071  * PFN_SECTION_SHIFT		pfn to/from section number
1072  */
1073 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1074 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1075 
1076 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1077 
1078 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1079 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1080 
1081 #define SECTION_BLOCKFLAGS_BITS \
1082 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1083 
1084 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1085 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1086 #endif
1087 
1088 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1089 {
1090 	return pfn >> PFN_SECTION_SHIFT;
1091 }
1092 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1093 {
1094 	return sec << PFN_SECTION_SHIFT;
1095 }
1096 
1097 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1098 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1099 
1100 struct page;
1101 struct page_ext;
1102 struct mem_section {
1103 	/*
1104 	 * This is, logically, a pointer to an array of struct
1105 	 * pages.  However, it is stored with some other magic.
1106 	 * (see sparse.c::sparse_init_one_section())
1107 	 *
1108 	 * Additionally during early boot we encode node id of
1109 	 * the location of the section here to guide allocation.
1110 	 * (see sparse.c::memory_present())
1111 	 *
1112 	 * Making it a UL at least makes someone do a cast
1113 	 * before using it wrong.
1114 	 */
1115 	unsigned long section_mem_map;
1116 
1117 	/* See declaration of similar field in struct zone */
1118 	unsigned long *pageblock_flags;
1119 #ifdef CONFIG_PAGE_EXTENSION
1120 	/*
1121 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1122 	 * section. (see page_ext.h about this.)
1123 	 */
1124 	struct page_ext *page_ext;
1125 	unsigned long pad;
1126 #endif
1127 	/*
1128 	 * WARNING: mem_section must be a power-of-2 in size for the
1129 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1130 	 */
1131 };
1132 
1133 #ifdef CONFIG_SPARSEMEM_EXTREME
1134 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1135 #else
1136 #define SECTIONS_PER_ROOT	1
1137 #endif
1138 
1139 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1140 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1141 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1142 
1143 #ifdef CONFIG_SPARSEMEM_EXTREME
1144 extern struct mem_section **mem_section;
1145 #else
1146 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1147 #endif
1148 
1149 static inline struct mem_section *__nr_to_section(unsigned long nr)
1150 {
1151 #ifdef CONFIG_SPARSEMEM_EXTREME
1152 	if (!mem_section)
1153 		return NULL;
1154 #endif
1155 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1156 		return NULL;
1157 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1158 }
1159 extern int __section_nr(struct mem_section* ms);
1160 extern unsigned long usemap_size(void);
1161 
1162 /*
1163  * We use the lower bits of the mem_map pointer to store
1164  * a little bit of information.  The pointer is calculated
1165  * as mem_map - section_nr_to_pfn(pnum).  The result is
1166  * aligned to the minimum alignment of the two values:
1167  *   1. All mem_map arrays are page-aligned.
1168  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1169  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1170  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1171  *      worst combination is powerpc with 256k pages,
1172  *      which results in PFN_SECTION_SHIFT equal 6.
1173  * To sum it up, at least 6 bits are available.
1174  */
1175 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1176 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1177 #define SECTION_IS_ONLINE	(1UL<<2)
1178 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1179 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1180 #define SECTION_NID_SHIFT	3
1181 
1182 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1183 {
1184 	unsigned long map = section->section_mem_map;
1185 	map &= SECTION_MAP_MASK;
1186 	return (struct page *)map;
1187 }
1188 
1189 static inline int present_section(struct mem_section *section)
1190 {
1191 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1192 }
1193 
1194 static inline int present_section_nr(unsigned long nr)
1195 {
1196 	return present_section(__nr_to_section(nr));
1197 }
1198 
1199 static inline int valid_section(struct mem_section *section)
1200 {
1201 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1202 }
1203 
1204 static inline int valid_section_nr(unsigned long nr)
1205 {
1206 	return valid_section(__nr_to_section(nr));
1207 }
1208 
1209 static inline int online_section(struct mem_section *section)
1210 {
1211 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1212 }
1213 
1214 static inline int online_section_nr(unsigned long nr)
1215 {
1216 	return online_section(__nr_to_section(nr));
1217 }
1218 
1219 #ifdef CONFIG_MEMORY_HOTPLUG
1220 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1221 #ifdef CONFIG_MEMORY_HOTREMOVE
1222 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1223 #endif
1224 #endif
1225 
1226 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1227 {
1228 	return __nr_to_section(pfn_to_section_nr(pfn));
1229 }
1230 
1231 extern int __highest_present_section_nr;
1232 
1233 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1234 static inline int pfn_valid(unsigned long pfn)
1235 {
1236 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1237 		return 0;
1238 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1239 }
1240 #endif
1241 
1242 static inline int pfn_present(unsigned long pfn)
1243 {
1244 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1245 		return 0;
1246 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1247 }
1248 
1249 /*
1250  * These are _only_ used during initialisation, therefore they
1251  * can use __initdata ...  They could have names to indicate
1252  * this restriction.
1253  */
1254 #ifdef CONFIG_NUMA
1255 #define pfn_to_nid(pfn)							\
1256 ({									\
1257 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1258 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1259 })
1260 #else
1261 #define pfn_to_nid(pfn)		(0)
1262 #endif
1263 
1264 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1265 void sparse_init(void);
1266 #else
1267 #define sparse_init()	do {} while (0)
1268 #define sparse_index_init(_sec, _nid)  do {} while (0)
1269 #endif /* CONFIG_SPARSEMEM */
1270 
1271 /*
1272  * During memory init memblocks map pfns to nids. The search is expensive and
1273  * this caches recent lookups. The implementation of __early_pfn_to_nid
1274  * may treat start/end as pfns or sections.
1275  */
1276 struct mminit_pfnnid_cache {
1277 	unsigned long last_start;
1278 	unsigned long last_end;
1279 	int last_nid;
1280 };
1281 
1282 #ifndef early_pfn_valid
1283 #define early_pfn_valid(pfn)	(1)
1284 #endif
1285 
1286 void memory_present(int nid, unsigned long start, unsigned long end);
1287 
1288 /*
1289  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1290  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1291  * pfn_valid_within() should be used in this case; we optimise this away
1292  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1293  */
1294 #ifdef CONFIG_HOLES_IN_ZONE
1295 #define pfn_valid_within(pfn) pfn_valid(pfn)
1296 #else
1297 #define pfn_valid_within(pfn) (1)
1298 #endif
1299 
1300 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1301 /*
1302  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1303  * associated with it or not. This means that a struct page exists for this
1304  * pfn. The caller cannot assume the page is fully initialized in general.
1305  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1306  * will ensure the struct page is fully online and initialized. Special pages
1307  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1308  *
1309  * In FLATMEM, it is expected that holes always have valid memmap as long as
1310  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1311  * that a valid section has a memmap for the entire section.
1312  *
1313  * However, an ARM, and maybe other embedded architectures in the future
1314  * free memmap backing holes to save memory on the assumption the memmap is
1315  * never used. The page_zone linkages are then broken even though pfn_valid()
1316  * returns true. A walker of the full memmap must then do this additional
1317  * check to ensure the memmap they are looking at is sane by making sure
1318  * the zone and PFN linkages are still valid. This is expensive, but walkers
1319  * of the full memmap are extremely rare.
1320  */
1321 bool memmap_valid_within(unsigned long pfn,
1322 					struct page *page, struct zone *zone);
1323 #else
1324 static inline bool memmap_valid_within(unsigned long pfn,
1325 					struct page *page, struct zone *zone)
1326 {
1327 	return true;
1328 }
1329 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1330 
1331 #endif /* !__GENERATING_BOUNDS.H */
1332 #endif /* !__ASSEMBLY__ */
1333 #endif /* _LINUX_MMZONE_H */
1334