xref: /linux-6.15/include/linux/mmzone.h (revision 66cd9d4e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/local_lock.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 enum migratetype {
43 	MIGRATE_UNMOVABLE,
44 	MIGRATE_MOVABLE,
45 	MIGRATE_RECLAIMABLE,
46 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
47 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
48 #ifdef CONFIG_CMA
49 	/*
50 	 * MIGRATE_CMA migration type is designed to mimic the way
51 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
52 	 * from MIGRATE_CMA pageblocks and page allocator never
53 	 * implicitly change migration type of MIGRATE_CMA pageblock.
54 	 *
55 	 * The way to use it is to change migratetype of a range of
56 	 * pageblocks to MIGRATE_CMA which can be done by
57 	 * __free_pageblock_cma() function.  What is important though
58 	 * is that a range of pageblocks must be aligned to
59 	 * MAX_ORDER_NR_PAGES should biggest page be bigger than
60 	 * a single pageblock.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 #  define is_migrate_cma(migratetype) false
78 #  define is_migrate_cma_page(_page) false
79 #endif
80 
81 static inline bool is_migrate_movable(int mt)
82 {
83 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85 
86 /*
87  * Check whether a migratetype can be merged with another migratetype.
88  *
89  * It is only mergeable when it can fall back to other migratetypes for
90  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91  */
92 static inline bool migratetype_is_mergeable(int mt)
93 {
94 	return mt < MIGRATE_PCPTYPES;
95 }
96 
97 #define for_each_migratetype_order(order, type) \
98 	for (order = 0; order < MAX_ORDER; order++) \
99 		for (type = 0; type < MIGRATE_TYPES; type++)
100 
101 extern int page_group_by_mobility_disabled;
102 
103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104 
105 #define get_pageblock_migratetype(page)					\
106 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107 
108 struct free_area {
109 	struct list_head	free_list[MIGRATE_TYPES];
110 	unsigned long		nr_free;
111 };
112 
113 static inline struct page *get_page_from_free_area(struct free_area *area,
114 					    int migratetype)
115 {
116 	return list_first_entry_or_null(&area->free_list[migratetype],
117 					struct page, lru);
118 }
119 
120 static inline bool free_area_empty(struct free_area *area, int migratetype)
121 {
122 	return list_empty(&area->free_list[migratetype]);
123 }
124 
125 struct pglist_data;
126 
127 /*
128  * Add a wild amount of padding here to ensure data fall into separate
129  * cachelines.  There are very few zone structures in the machine, so space
130  * consumption is not a concern here.
131  */
132 #if defined(CONFIG_SMP)
133 struct zone_padding {
134 	char x[0];
135 } ____cacheline_internodealigned_in_smp;
136 #define ZONE_PADDING(name)	struct zone_padding name;
137 #else
138 #define ZONE_PADDING(name)
139 #endif
140 
141 #ifdef CONFIG_NUMA
142 enum numa_stat_item {
143 	NUMA_HIT,		/* allocated in intended node */
144 	NUMA_MISS,		/* allocated in non intended node */
145 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
146 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
147 	NUMA_LOCAL,		/* allocation from local node */
148 	NUMA_OTHER,		/* allocation from other node */
149 	NR_VM_NUMA_EVENT_ITEMS
150 };
151 #else
152 #define NR_VM_NUMA_EVENT_ITEMS 0
153 #endif
154 
155 enum zone_stat_item {
156 	/* First 128 byte cacheline (assuming 64 bit words) */
157 	NR_FREE_PAGES,
158 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
159 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
160 	NR_ZONE_ACTIVE_ANON,
161 	NR_ZONE_INACTIVE_FILE,
162 	NR_ZONE_ACTIVE_FILE,
163 	NR_ZONE_UNEVICTABLE,
164 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
165 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
166 	/* Second 128 byte cacheline */
167 	NR_BOUNCE,
168 #if IS_ENABLED(CONFIG_ZSMALLOC)
169 	NR_ZSPAGES,		/* allocated in zsmalloc */
170 #endif
171 	NR_FREE_CMA_PAGES,
172 	NR_VM_ZONE_STAT_ITEMS };
173 
174 enum node_stat_item {
175 	NR_LRU_BASE,
176 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
177 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
178 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
179 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
180 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
181 	NR_SLAB_RECLAIMABLE_B,
182 	NR_SLAB_UNRECLAIMABLE_B,
183 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
184 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
185 	WORKINGSET_NODES,
186 	WORKINGSET_REFAULT_BASE,
187 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
188 	WORKINGSET_REFAULT_FILE,
189 	WORKINGSET_ACTIVATE_BASE,
190 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
191 	WORKINGSET_ACTIVATE_FILE,
192 	WORKINGSET_RESTORE_BASE,
193 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
194 	WORKINGSET_RESTORE_FILE,
195 	WORKINGSET_NODERECLAIM,
196 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
197 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
198 			   only modified from process context */
199 	NR_FILE_PAGES,
200 	NR_FILE_DIRTY,
201 	NR_WRITEBACK,
202 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
203 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
204 	NR_SHMEM_THPS,
205 	NR_SHMEM_PMDMAPPED,
206 	NR_FILE_THPS,
207 	NR_FILE_PMDMAPPED,
208 	NR_ANON_THPS,
209 	NR_VMSCAN_WRITE,
210 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
211 	NR_DIRTIED,		/* page dirtyings since bootup */
212 	NR_WRITTEN,		/* page writings since bootup */
213 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
214 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
215 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
216 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
217 	NR_KERNEL_STACK_KB,	/* measured in KiB */
218 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
219 	NR_KERNEL_SCS_KB,	/* measured in KiB */
220 #endif
221 	NR_PAGETABLE,		/* used for pagetables */
222 #ifdef CONFIG_SWAP
223 	NR_SWAPCACHE,
224 #endif
225 #ifdef CONFIG_NUMA_BALANCING
226 	PGPROMOTE_SUCCESS,	/* promote successfully */
227 #endif
228 	NR_VM_NODE_STAT_ITEMS
229 };
230 
231 /*
232  * Returns true if the item should be printed in THPs (/proc/vmstat
233  * currently prints number of anon, file and shmem THPs. But the item
234  * is charged in pages).
235  */
236 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
237 {
238 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
239 		return false;
240 
241 	return item == NR_ANON_THPS ||
242 	       item == NR_FILE_THPS ||
243 	       item == NR_SHMEM_THPS ||
244 	       item == NR_SHMEM_PMDMAPPED ||
245 	       item == NR_FILE_PMDMAPPED;
246 }
247 
248 /*
249  * Returns true if the value is measured in bytes (most vmstat values are
250  * measured in pages). This defines the API part, the internal representation
251  * might be different.
252  */
253 static __always_inline bool vmstat_item_in_bytes(int idx)
254 {
255 	/*
256 	 * Global and per-node slab counters track slab pages.
257 	 * It's expected that changes are multiples of PAGE_SIZE.
258 	 * Internally values are stored in pages.
259 	 *
260 	 * Per-memcg and per-lruvec counters track memory, consumed
261 	 * by individual slab objects. These counters are actually
262 	 * byte-precise.
263 	 */
264 	return (idx == NR_SLAB_RECLAIMABLE_B ||
265 		idx == NR_SLAB_UNRECLAIMABLE_B);
266 }
267 
268 /*
269  * We do arithmetic on the LRU lists in various places in the code,
270  * so it is important to keep the active lists LRU_ACTIVE higher in
271  * the array than the corresponding inactive lists, and to keep
272  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
273  *
274  * This has to be kept in sync with the statistics in zone_stat_item
275  * above and the descriptions in vmstat_text in mm/vmstat.c
276  */
277 #define LRU_BASE 0
278 #define LRU_ACTIVE 1
279 #define LRU_FILE 2
280 
281 enum lru_list {
282 	LRU_INACTIVE_ANON = LRU_BASE,
283 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
284 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
285 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
286 	LRU_UNEVICTABLE,
287 	NR_LRU_LISTS
288 };
289 
290 enum vmscan_throttle_state {
291 	VMSCAN_THROTTLE_WRITEBACK,
292 	VMSCAN_THROTTLE_ISOLATED,
293 	VMSCAN_THROTTLE_NOPROGRESS,
294 	VMSCAN_THROTTLE_CONGESTED,
295 	NR_VMSCAN_THROTTLE,
296 };
297 
298 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
299 
300 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
301 
302 static inline bool is_file_lru(enum lru_list lru)
303 {
304 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
305 }
306 
307 static inline bool is_active_lru(enum lru_list lru)
308 {
309 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
310 }
311 
312 #define ANON_AND_FILE 2
313 
314 enum lruvec_flags {
315 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
316 					 * backed by a congested BDI
317 					 */
318 };
319 
320 struct lruvec {
321 	struct list_head		lists[NR_LRU_LISTS];
322 	/* per lruvec lru_lock for memcg */
323 	spinlock_t			lru_lock;
324 	/*
325 	 * These track the cost of reclaiming one LRU - file or anon -
326 	 * over the other. As the observed cost of reclaiming one LRU
327 	 * increases, the reclaim scan balance tips toward the other.
328 	 */
329 	unsigned long			anon_cost;
330 	unsigned long			file_cost;
331 	/* Non-resident age, driven by LRU movement */
332 	atomic_long_t			nonresident_age;
333 	/* Refaults at the time of last reclaim cycle */
334 	unsigned long			refaults[ANON_AND_FILE];
335 	/* Various lruvec state flags (enum lruvec_flags) */
336 	unsigned long			flags;
337 #ifdef CONFIG_MEMCG
338 	struct pglist_data *pgdat;
339 #endif
340 };
341 
342 /* Isolate unmapped pages */
343 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
344 /* Isolate for asynchronous migration */
345 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
346 /* Isolate unevictable pages */
347 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
348 
349 /* LRU Isolation modes. */
350 typedef unsigned __bitwise isolate_mode_t;
351 
352 enum zone_watermarks {
353 	WMARK_MIN,
354 	WMARK_LOW,
355 	WMARK_HIGH,
356 	WMARK_PROMO,
357 	NR_WMARK
358 };
359 
360 /*
361  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional
362  * for pageblock size for THP if configured.
363  */
364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
365 #define NR_PCP_THP 1
366 #else
367 #define NR_PCP_THP 0
368 #endif
369 #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP))
370 
371 /*
372  * Shift to encode migratetype and order in the same integer, with order
373  * in the least significant bits.
374  */
375 #define NR_PCP_ORDER_WIDTH 8
376 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
377 
378 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
379 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
380 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
381 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
382 
383 /* Fields and list protected by pagesets local_lock in page_alloc.c */
384 struct per_cpu_pages {
385 	int count;		/* number of pages in the list */
386 	int high;		/* high watermark, emptying needed */
387 	int batch;		/* chunk size for buddy add/remove */
388 	short free_factor;	/* batch scaling factor during free */
389 #ifdef CONFIG_NUMA
390 	short expire;		/* When 0, remote pagesets are drained */
391 #endif
392 
393 	/* Lists of pages, one per migrate type stored on the pcp-lists */
394 	struct list_head lists[NR_PCP_LISTS];
395 };
396 
397 struct per_cpu_zonestat {
398 #ifdef CONFIG_SMP
399 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
400 	s8 stat_threshold;
401 #endif
402 #ifdef CONFIG_NUMA
403 	/*
404 	 * Low priority inaccurate counters that are only folded
405 	 * on demand. Use a large type to avoid the overhead of
406 	 * folding during refresh_cpu_vm_stats.
407 	 */
408 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
409 #endif
410 };
411 
412 struct per_cpu_nodestat {
413 	s8 stat_threshold;
414 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
415 };
416 
417 #endif /* !__GENERATING_BOUNDS.H */
418 
419 enum zone_type {
420 	/*
421 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
422 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
423 	 * On architectures where this area covers the whole 32 bit address
424 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
425 	 * DMA addressing constraints. This distinction is important as a 32bit
426 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
427 	 * platforms may need both zones as they support peripherals with
428 	 * different DMA addressing limitations.
429 	 */
430 #ifdef CONFIG_ZONE_DMA
431 	ZONE_DMA,
432 #endif
433 #ifdef CONFIG_ZONE_DMA32
434 	ZONE_DMA32,
435 #endif
436 	/*
437 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
438 	 * performed on pages in ZONE_NORMAL if the DMA devices support
439 	 * transfers to all addressable memory.
440 	 */
441 	ZONE_NORMAL,
442 #ifdef CONFIG_HIGHMEM
443 	/*
444 	 * A memory area that is only addressable by the kernel through
445 	 * mapping portions into its own address space. This is for example
446 	 * used by i386 to allow the kernel to address the memory beyond
447 	 * 900MB. The kernel will set up special mappings (page
448 	 * table entries on i386) for each page that the kernel needs to
449 	 * access.
450 	 */
451 	ZONE_HIGHMEM,
452 #endif
453 	/*
454 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
455 	 * movable pages with few exceptional cases described below. Main use
456 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
457 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
458 	 * to increase the number of THP/huge pages. Notable special cases are:
459 	 *
460 	 * 1. Pinned pages: (long-term) pinning of movable pages might
461 	 *    essentially turn such pages unmovable. Therefore, we do not allow
462 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
463 	 *    faulted, they come from the right zone right away. However, it is
464 	 *    still possible that address space already has pages in
465 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
466 	 *    touches that memory before pinning). In such case we migrate them
467 	 *    to a different zone. When migration fails - pinning fails.
468 	 * 2. memblock allocations: kernelcore/movablecore setups might create
469 	 *    situations where ZONE_MOVABLE contains unmovable allocations
470 	 *    after boot. Memory offlining and allocations fail early.
471 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
472 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
473 	 *    for example, if we have sections that are only partially
474 	 *    populated. Memory offlining and allocations fail early.
475 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
476 	 *    memory offlining, such pages cannot be allocated.
477 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
478 	 *    hotplugged memory blocks might only partially be managed by the
479 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
480 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
481 	 *    some cases (virtio-mem), such pages can be skipped during
482 	 *    memory offlining, however, cannot be moved/allocated. These
483 	 *    techniques might use alloc_contig_range() to hide previously
484 	 *    exposed pages from the buddy again (e.g., to implement some sort
485 	 *    of memory unplug in virtio-mem).
486 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
487 	 *    situations where ZERO_PAGE(0) which is allocated differently
488 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
489 	 *    cannot be migrated.
490 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
491 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
492 	 *    such zone. Such pages cannot be really moved around as they are
493 	 *    self-stored in the range, but they are treated as movable when
494 	 *    the range they describe is about to be offlined.
495 	 *
496 	 * In general, no unmovable allocations that degrade memory offlining
497 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
498 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
499 	 * if has_unmovable_pages() states that there are no unmovable pages,
500 	 * there can be false negatives).
501 	 */
502 	ZONE_MOVABLE,
503 #ifdef CONFIG_ZONE_DEVICE
504 	ZONE_DEVICE,
505 #endif
506 	__MAX_NR_ZONES
507 
508 };
509 
510 #ifndef __GENERATING_BOUNDS_H
511 
512 #define ASYNC_AND_SYNC 2
513 
514 struct zone {
515 	/* Read-mostly fields */
516 
517 	/* zone watermarks, access with *_wmark_pages(zone) macros */
518 	unsigned long _watermark[NR_WMARK];
519 	unsigned long watermark_boost;
520 
521 	unsigned long nr_reserved_highatomic;
522 
523 	/*
524 	 * We don't know if the memory that we're going to allocate will be
525 	 * freeable or/and it will be released eventually, so to avoid totally
526 	 * wasting several GB of ram we must reserve some of the lower zone
527 	 * memory (otherwise we risk to run OOM on the lower zones despite
528 	 * there being tons of freeable ram on the higher zones).  This array is
529 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
530 	 * changes.
531 	 */
532 	long lowmem_reserve[MAX_NR_ZONES];
533 
534 #ifdef CONFIG_NUMA
535 	int node;
536 #endif
537 	struct pglist_data	*zone_pgdat;
538 	struct per_cpu_pages	__percpu *per_cpu_pageset;
539 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
540 	/*
541 	 * the high and batch values are copied to individual pagesets for
542 	 * faster access
543 	 */
544 	int pageset_high;
545 	int pageset_batch;
546 
547 #ifndef CONFIG_SPARSEMEM
548 	/*
549 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
550 	 * In SPARSEMEM, this map is stored in struct mem_section
551 	 */
552 	unsigned long		*pageblock_flags;
553 #endif /* CONFIG_SPARSEMEM */
554 
555 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
556 	unsigned long		zone_start_pfn;
557 
558 	/*
559 	 * spanned_pages is the total pages spanned by the zone, including
560 	 * holes, which is calculated as:
561 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
562 	 *
563 	 * present_pages is physical pages existing within the zone, which
564 	 * is calculated as:
565 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
566 	 *
567 	 * present_early_pages is present pages existing within the zone
568 	 * located on memory available since early boot, excluding hotplugged
569 	 * memory.
570 	 *
571 	 * managed_pages is present pages managed by the buddy system, which
572 	 * is calculated as (reserved_pages includes pages allocated by the
573 	 * bootmem allocator):
574 	 *	managed_pages = present_pages - reserved_pages;
575 	 *
576 	 * cma pages is present pages that are assigned for CMA use
577 	 * (MIGRATE_CMA).
578 	 *
579 	 * So present_pages may be used by memory hotplug or memory power
580 	 * management logic to figure out unmanaged pages by checking
581 	 * (present_pages - managed_pages). And managed_pages should be used
582 	 * by page allocator and vm scanner to calculate all kinds of watermarks
583 	 * and thresholds.
584 	 *
585 	 * Locking rules:
586 	 *
587 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
588 	 * It is a seqlock because it has to be read outside of zone->lock,
589 	 * and it is done in the main allocator path.  But, it is written
590 	 * quite infrequently.
591 	 *
592 	 * The span_seq lock is declared along with zone->lock because it is
593 	 * frequently read in proximity to zone->lock.  It's good to
594 	 * give them a chance of being in the same cacheline.
595 	 *
596 	 * Write access to present_pages at runtime should be protected by
597 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
598 	 * present_pages should get_online_mems() to get a stable value.
599 	 */
600 	atomic_long_t		managed_pages;
601 	unsigned long		spanned_pages;
602 	unsigned long		present_pages;
603 #if defined(CONFIG_MEMORY_HOTPLUG)
604 	unsigned long		present_early_pages;
605 #endif
606 #ifdef CONFIG_CMA
607 	unsigned long		cma_pages;
608 #endif
609 
610 	const char		*name;
611 
612 #ifdef CONFIG_MEMORY_ISOLATION
613 	/*
614 	 * Number of isolated pageblock. It is used to solve incorrect
615 	 * freepage counting problem due to racy retrieving migratetype
616 	 * of pageblock. Protected by zone->lock.
617 	 */
618 	unsigned long		nr_isolate_pageblock;
619 #endif
620 
621 #ifdef CONFIG_MEMORY_HOTPLUG
622 	/* see spanned/present_pages for more description */
623 	seqlock_t		span_seqlock;
624 #endif
625 
626 	int initialized;
627 
628 	/* Write-intensive fields used from the page allocator */
629 	ZONE_PADDING(_pad1_)
630 
631 	/* free areas of different sizes */
632 	struct free_area	free_area[MAX_ORDER];
633 
634 	/* zone flags, see below */
635 	unsigned long		flags;
636 
637 	/* Primarily protects free_area */
638 	spinlock_t		lock;
639 
640 	/* Write-intensive fields used by compaction and vmstats. */
641 	ZONE_PADDING(_pad2_)
642 
643 	/*
644 	 * When free pages are below this point, additional steps are taken
645 	 * when reading the number of free pages to avoid per-cpu counter
646 	 * drift allowing watermarks to be breached
647 	 */
648 	unsigned long percpu_drift_mark;
649 
650 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
651 	/* pfn where compaction free scanner should start */
652 	unsigned long		compact_cached_free_pfn;
653 	/* pfn where compaction migration scanner should start */
654 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
655 	unsigned long		compact_init_migrate_pfn;
656 	unsigned long		compact_init_free_pfn;
657 #endif
658 
659 #ifdef CONFIG_COMPACTION
660 	/*
661 	 * On compaction failure, 1<<compact_defer_shift compactions
662 	 * are skipped before trying again. The number attempted since
663 	 * last failure is tracked with compact_considered.
664 	 * compact_order_failed is the minimum compaction failed order.
665 	 */
666 	unsigned int		compact_considered;
667 	unsigned int		compact_defer_shift;
668 	int			compact_order_failed;
669 #endif
670 
671 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
672 	/* Set to true when the PG_migrate_skip bits should be cleared */
673 	bool			compact_blockskip_flush;
674 #endif
675 
676 	bool			contiguous;
677 
678 	ZONE_PADDING(_pad3_)
679 	/* Zone statistics */
680 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
681 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
682 } ____cacheline_internodealigned_in_smp;
683 
684 enum pgdat_flags {
685 	PGDAT_DIRTY,			/* reclaim scanning has recently found
686 					 * many dirty file pages at the tail
687 					 * of the LRU.
688 					 */
689 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
690 					 * many pages under writeback
691 					 */
692 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
693 };
694 
695 enum zone_flags {
696 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
697 					 * Cleared when kswapd is woken.
698 					 */
699 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
700 };
701 
702 static inline unsigned long zone_managed_pages(struct zone *zone)
703 {
704 	return (unsigned long)atomic_long_read(&zone->managed_pages);
705 }
706 
707 static inline unsigned long zone_cma_pages(struct zone *zone)
708 {
709 #ifdef CONFIG_CMA
710 	return zone->cma_pages;
711 #else
712 	return 0;
713 #endif
714 }
715 
716 static inline unsigned long zone_end_pfn(const struct zone *zone)
717 {
718 	return zone->zone_start_pfn + zone->spanned_pages;
719 }
720 
721 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
722 {
723 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
724 }
725 
726 static inline bool zone_is_initialized(struct zone *zone)
727 {
728 	return zone->initialized;
729 }
730 
731 static inline bool zone_is_empty(struct zone *zone)
732 {
733 	return zone->spanned_pages == 0;
734 }
735 
736 /*
737  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
738  * intersection with the given zone
739  */
740 static inline bool zone_intersects(struct zone *zone,
741 		unsigned long start_pfn, unsigned long nr_pages)
742 {
743 	if (zone_is_empty(zone))
744 		return false;
745 	if (start_pfn >= zone_end_pfn(zone) ||
746 	    start_pfn + nr_pages <= zone->zone_start_pfn)
747 		return false;
748 
749 	return true;
750 }
751 
752 /*
753  * The "priority" of VM scanning is how much of the queues we will scan in one
754  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
755  * queues ("queue_length >> 12") during an aging round.
756  */
757 #define DEF_PRIORITY 12
758 
759 /* Maximum number of zones on a zonelist */
760 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
761 
762 enum {
763 	ZONELIST_FALLBACK,	/* zonelist with fallback */
764 #ifdef CONFIG_NUMA
765 	/*
766 	 * The NUMA zonelists are doubled because we need zonelists that
767 	 * restrict the allocations to a single node for __GFP_THISNODE.
768 	 */
769 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
770 #endif
771 	MAX_ZONELISTS
772 };
773 
774 /*
775  * This struct contains information about a zone in a zonelist. It is stored
776  * here to avoid dereferences into large structures and lookups of tables
777  */
778 struct zoneref {
779 	struct zone *zone;	/* Pointer to actual zone */
780 	int zone_idx;		/* zone_idx(zoneref->zone) */
781 };
782 
783 /*
784  * One allocation request operates on a zonelist. A zonelist
785  * is a list of zones, the first one is the 'goal' of the
786  * allocation, the other zones are fallback zones, in decreasing
787  * priority.
788  *
789  * To speed the reading of the zonelist, the zonerefs contain the zone index
790  * of the entry being read. Helper functions to access information given
791  * a struct zoneref are
792  *
793  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
794  * zonelist_zone_idx()	- Return the index of the zone for an entry
795  * zonelist_node_idx()	- Return the index of the node for an entry
796  */
797 struct zonelist {
798 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
799 };
800 
801 /*
802  * The array of struct pages for flatmem.
803  * It must be declared for SPARSEMEM as well because there are configurations
804  * that rely on that.
805  */
806 extern struct page *mem_map;
807 
808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
809 struct deferred_split {
810 	spinlock_t split_queue_lock;
811 	struct list_head split_queue;
812 	unsigned long split_queue_len;
813 };
814 #endif
815 
816 /*
817  * On NUMA machines, each NUMA node would have a pg_data_t to describe
818  * it's memory layout. On UMA machines there is a single pglist_data which
819  * describes the whole memory.
820  *
821  * Memory statistics and page replacement data structures are maintained on a
822  * per-zone basis.
823  */
824 typedef struct pglist_data {
825 	/*
826 	 * node_zones contains just the zones for THIS node. Not all of the
827 	 * zones may be populated, but it is the full list. It is referenced by
828 	 * this node's node_zonelists as well as other node's node_zonelists.
829 	 */
830 	struct zone node_zones[MAX_NR_ZONES];
831 
832 	/*
833 	 * node_zonelists contains references to all zones in all nodes.
834 	 * Generally the first zones will be references to this node's
835 	 * node_zones.
836 	 */
837 	struct zonelist node_zonelists[MAX_ZONELISTS];
838 
839 	int nr_zones; /* number of populated zones in this node */
840 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
841 	struct page *node_mem_map;
842 #ifdef CONFIG_PAGE_EXTENSION
843 	struct page_ext *node_page_ext;
844 #endif
845 #endif
846 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
847 	/*
848 	 * Must be held any time you expect node_start_pfn,
849 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
850 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
851 	 * init.
852 	 *
853 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
854 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
855 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
856 	 *
857 	 * Nests above zone->lock and zone->span_seqlock
858 	 */
859 	spinlock_t node_size_lock;
860 #endif
861 	unsigned long node_start_pfn;
862 	unsigned long node_present_pages; /* total number of physical pages */
863 	unsigned long node_spanned_pages; /* total size of physical page
864 					     range, including holes */
865 	int node_id;
866 	wait_queue_head_t kswapd_wait;
867 	wait_queue_head_t pfmemalloc_wait;
868 
869 	/* workqueues for throttling reclaim for different reasons. */
870 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
871 
872 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
873 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
874 					 * when throttling started. */
875 	struct task_struct *kswapd;	/* Protected by
876 					   mem_hotplug_begin/end() */
877 	int kswapd_order;
878 	enum zone_type kswapd_highest_zoneidx;
879 
880 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
881 
882 #ifdef CONFIG_COMPACTION
883 	int kcompactd_max_order;
884 	enum zone_type kcompactd_highest_zoneidx;
885 	wait_queue_head_t kcompactd_wait;
886 	struct task_struct *kcompactd;
887 	bool proactive_compact_trigger;
888 #endif
889 	/*
890 	 * This is a per-node reserve of pages that are not available
891 	 * to userspace allocations.
892 	 */
893 	unsigned long		totalreserve_pages;
894 
895 #ifdef CONFIG_NUMA
896 	/*
897 	 * node reclaim becomes active if more unmapped pages exist.
898 	 */
899 	unsigned long		min_unmapped_pages;
900 	unsigned long		min_slab_pages;
901 #endif /* CONFIG_NUMA */
902 
903 	/* Write-intensive fields used by page reclaim */
904 	ZONE_PADDING(_pad1_)
905 
906 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
907 	/*
908 	 * If memory initialisation on large machines is deferred then this
909 	 * is the first PFN that needs to be initialised.
910 	 */
911 	unsigned long first_deferred_pfn;
912 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
913 
914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
915 	struct deferred_split deferred_split_queue;
916 #endif
917 
918 	/* Fields commonly accessed by the page reclaim scanner */
919 
920 	/*
921 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
922 	 *
923 	 * Use mem_cgroup_lruvec() to look up lruvecs.
924 	 */
925 	struct lruvec		__lruvec;
926 
927 	unsigned long		flags;
928 
929 	ZONE_PADDING(_pad2_)
930 
931 	/* Per-node vmstats */
932 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
933 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
934 } pg_data_t;
935 
936 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
937 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
938 
939 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
940 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
941 
942 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
943 {
944 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
945 }
946 
947 static inline bool pgdat_is_empty(pg_data_t *pgdat)
948 {
949 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
950 }
951 
952 #include <linux/memory_hotplug.h>
953 
954 void build_all_zonelists(pg_data_t *pgdat);
955 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
956 		   enum zone_type highest_zoneidx);
957 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
958 			 int highest_zoneidx, unsigned int alloc_flags,
959 			 long free_pages);
960 bool zone_watermark_ok(struct zone *z, unsigned int order,
961 		unsigned long mark, int highest_zoneidx,
962 		unsigned int alloc_flags);
963 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
964 		unsigned long mark, int highest_zoneidx);
965 /*
966  * Memory initialization context, use to differentiate memory added by
967  * the platform statically or via memory hotplug interface.
968  */
969 enum meminit_context {
970 	MEMINIT_EARLY,
971 	MEMINIT_HOTPLUG,
972 };
973 
974 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
975 				     unsigned long size);
976 
977 extern void lruvec_init(struct lruvec *lruvec);
978 
979 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
980 {
981 #ifdef CONFIG_MEMCG
982 	return lruvec->pgdat;
983 #else
984 	return container_of(lruvec, struct pglist_data, __lruvec);
985 #endif
986 }
987 
988 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
989 int local_memory_node(int node_id);
990 #else
991 static inline int local_memory_node(int node_id) { return node_id; };
992 #endif
993 
994 /*
995  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
996  */
997 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
998 
999 #ifdef CONFIG_ZONE_DEVICE
1000 static inline bool zone_is_zone_device(struct zone *zone)
1001 {
1002 	return zone_idx(zone) == ZONE_DEVICE;
1003 }
1004 #else
1005 static inline bool zone_is_zone_device(struct zone *zone)
1006 {
1007 	return false;
1008 }
1009 #endif
1010 
1011 /*
1012  * Returns true if a zone has pages managed by the buddy allocator.
1013  * All the reclaim decisions have to use this function rather than
1014  * populated_zone(). If the whole zone is reserved then we can easily
1015  * end up with populated_zone() && !managed_zone().
1016  */
1017 static inline bool managed_zone(struct zone *zone)
1018 {
1019 	return zone_managed_pages(zone);
1020 }
1021 
1022 /* Returns true if a zone has memory */
1023 static inline bool populated_zone(struct zone *zone)
1024 {
1025 	return zone->present_pages;
1026 }
1027 
1028 #ifdef CONFIG_NUMA
1029 static inline int zone_to_nid(struct zone *zone)
1030 {
1031 	return zone->node;
1032 }
1033 
1034 static inline void zone_set_nid(struct zone *zone, int nid)
1035 {
1036 	zone->node = nid;
1037 }
1038 #else
1039 static inline int zone_to_nid(struct zone *zone)
1040 {
1041 	return 0;
1042 }
1043 
1044 static inline void zone_set_nid(struct zone *zone, int nid) {}
1045 #endif
1046 
1047 extern int movable_zone;
1048 
1049 static inline int is_highmem_idx(enum zone_type idx)
1050 {
1051 #ifdef CONFIG_HIGHMEM
1052 	return (idx == ZONE_HIGHMEM ||
1053 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1054 #else
1055 	return 0;
1056 #endif
1057 }
1058 
1059 #ifdef CONFIG_ZONE_DMA
1060 bool has_managed_dma(void);
1061 #else
1062 static inline bool has_managed_dma(void)
1063 {
1064 	return false;
1065 }
1066 #endif
1067 
1068 /**
1069  * is_highmem - helper function to quickly check if a struct zone is a
1070  *              highmem zone or not.  This is an attempt to keep references
1071  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1072  * @zone: pointer to struct zone variable
1073  * Return: 1 for a highmem zone, 0 otherwise
1074  */
1075 static inline int is_highmem(struct zone *zone)
1076 {
1077 #ifdef CONFIG_HIGHMEM
1078 	return is_highmem_idx(zone_idx(zone));
1079 #else
1080 	return 0;
1081 #endif
1082 }
1083 
1084 /* These two functions are used to setup the per zone pages min values */
1085 struct ctl_table;
1086 
1087 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1088 		loff_t *);
1089 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1090 		size_t *, loff_t *);
1091 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1092 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1093 		size_t *, loff_t *);
1094 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1095 		void *, size_t *, loff_t *);
1096 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1097 		void *, size_t *, loff_t *);
1098 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1099 		void *, size_t *, loff_t *);
1100 int numa_zonelist_order_handler(struct ctl_table *, int,
1101 		void *, size_t *, loff_t *);
1102 extern int percpu_pagelist_high_fraction;
1103 extern char numa_zonelist_order[];
1104 #define NUMA_ZONELIST_ORDER_LEN	16
1105 
1106 #ifndef CONFIG_NUMA
1107 
1108 extern struct pglist_data contig_page_data;
1109 static inline struct pglist_data *NODE_DATA(int nid)
1110 {
1111 	return &contig_page_data;
1112 }
1113 
1114 #else /* CONFIG_NUMA */
1115 
1116 #include <asm/mmzone.h>
1117 
1118 #endif /* !CONFIG_NUMA */
1119 
1120 extern struct pglist_data *first_online_pgdat(void);
1121 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1122 extern struct zone *next_zone(struct zone *zone);
1123 
1124 /**
1125  * for_each_online_pgdat - helper macro to iterate over all online nodes
1126  * @pgdat: pointer to a pg_data_t variable
1127  */
1128 #define for_each_online_pgdat(pgdat)			\
1129 	for (pgdat = first_online_pgdat();		\
1130 	     pgdat;					\
1131 	     pgdat = next_online_pgdat(pgdat))
1132 /**
1133  * for_each_zone - helper macro to iterate over all memory zones
1134  * @zone: pointer to struct zone variable
1135  *
1136  * The user only needs to declare the zone variable, for_each_zone
1137  * fills it in.
1138  */
1139 #define for_each_zone(zone)			        \
1140 	for (zone = (first_online_pgdat())->node_zones; \
1141 	     zone;					\
1142 	     zone = next_zone(zone))
1143 
1144 #define for_each_populated_zone(zone)		        \
1145 	for (zone = (first_online_pgdat())->node_zones; \
1146 	     zone;					\
1147 	     zone = next_zone(zone))			\
1148 		if (!populated_zone(zone))		\
1149 			; /* do nothing */		\
1150 		else
1151 
1152 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1153 {
1154 	return zoneref->zone;
1155 }
1156 
1157 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1158 {
1159 	return zoneref->zone_idx;
1160 }
1161 
1162 static inline int zonelist_node_idx(struct zoneref *zoneref)
1163 {
1164 	return zone_to_nid(zoneref->zone);
1165 }
1166 
1167 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1168 					enum zone_type highest_zoneidx,
1169 					nodemask_t *nodes);
1170 
1171 /**
1172  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1173  * @z: The cursor used as a starting point for the search
1174  * @highest_zoneidx: The zone index of the highest zone to return
1175  * @nodes: An optional nodemask to filter the zonelist with
1176  *
1177  * This function returns the next zone at or below a given zone index that is
1178  * within the allowed nodemask using a cursor as the starting point for the
1179  * search. The zoneref returned is a cursor that represents the current zone
1180  * being examined. It should be advanced by one before calling
1181  * next_zones_zonelist again.
1182  *
1183  * Return: the next zone at or below highest_zoneidx within the allowed
1184  * nodemask using a cursor within a zonelist as a starting point
1185  */
1186 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1187 					enum zone_type highest_zoneidx,
1188 					nodemask_t *nodes)
1189 {
1190 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1191 		return z;
1192 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1193 }
1194 
1195 /**
1196  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1197  * @zonelist: The zonelist to search for a suitable zone
1198  * @highest_zoneidx: The zone index of the highest zone to return
1199  * @nodes: An optional nodemask to filter the zonelist with
1200  *
1201  * This function returns the first zone at or below a given zone index that is
1202  * within the allowed nodemask. The zoneref returned is a cursor that can be
1203  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1204  * one before calling.
1205  *
1206  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1207  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1208  * update due to cpuset modification.
1209  *
1210  * Return: Zoneref pointer for the first suitable zone found
1211  */
1212 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1213 					enum zone_type highest_zoneidx,
1214 					nodemask_t *nodes)
1215 {
1216 	return next_zones_zonelist(zonelist->_zonerefs,
1217 							highest_zoneidx, nodes);
1218 }
1219 
1220 /**
1221  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1222  * @zone: The current zone in the iterator
1223  * @z: The current pointer within zonelist->_zonerefs being iterated
1224  * @zlist: The zonelist being iterated
1225  * @highidx: The zone index of the highest zone to return
1226  * @nodemask: Nodemask allowed by the allocator
1227  *
1228  * This iterator iterates though all zones at or below a given zone index and
1229  * within a given nodemask
1230  */
1231 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1232 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1233 		zone;							\
1234 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1235 			zone = zonelist_zone(z))
1236 
1237 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1238 	for (zone = z->zone;	\
1239 		zone;							\
1240 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1241 			zone = zonelist_zone(z))
1242 
1243 
1244 /**
1245  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1246  * @zone: The current zone in the iterator
1247  * @z: The current pointer within zonelist->zones being iterated
1248  * @zlist: The zonelist being iterated
1249  * @highidx: The zone index of the highest zone to return
1250  *
1251  * This iterator iterates though all zones at or below a given zone index.
1252  */
1253 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1254 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1255 
1256 /* Whether the 'nodes' are all movable nodes */
1257 static inline bool movable_only_nodes(nodemask_t *nodes)
1258 {
1259 	struct zonelist *zonelist;
1260 	struct zoneref *z;
1261 	int nid;
1262 
1263 	if (nodes_empty(*nodes))
1264 		return false;
1265 
1266 	/*
1267 	 * We can chose arbitrary node from the nodemask to get a
1268 	 * zonelist as they are interlinked. We just need to find
1269 	 * at least one zone that can satisfy kernel allocations.
1270 	 */
1271 	nid = first_node(*nodes);
1272 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1273 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1274 	return (!z->zone) ? true : false;
1275 }
1276 
1277 
1278 #ifdef CONFIG_SPARSEMEM
1279 #include <asm/sparsemem.h>
1280 #endif
1281 
1282 #ifdef CONFIG_FLATMEM
1283 #define pfn_to_nid(pfn)		(0)
1284 #endif
1285 
1286 #ifdef CONFIG_SPARSEMEM
1287 
1288 /*
1289  * PA_SECTION_SHIFT		physical address to/from section number
1290  * PFN_SECTION_SHIFT		pfn to/from section number
1291  */
1292 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1293 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1294 
1295 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1296 
1297 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1298 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1299 
1300 #define SECTION_BLOCKFLAGS_BITS \
1301 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1302 
1303 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1304 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1305 #endif
1306 
1307 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1308 {
1309 	return pfn >> PFN_SECTION_SHIFT;
1310 }
1311 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1312 {
1313 	return sec << PFN_SECTION_SHIFT;
1314 }
1315 
1316 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1317 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1318 
1319 #define SUBSECTION_SHIFT 21
1320 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1321 
1322 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1323 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1324 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1325 
1326 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1327 #error Subsection size exceeds section size
1328 #else
1329 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1330 #endif
1331 
1332 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1333 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1334 
1335 struct mem_section_usage {
1336 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1337 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1338 #endif
1339 	/* See declaration of similar field in struct zone */
1340 	unsigned long pageblock_flags[0];
1341 };
1342 
1343 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1344 
1345 struct page;
1346 struct page_ext;
1347 struct mem_section {
1348 	/*
1349 	 * This is, logically, a pointer to an array of struct
1350 	 * pages.  However, it is stored with some other magic.
1351 	 * (see sparse.c::sparse_init_one_section())
1352 	 *
1353 	 * Additionally during early boot we encode node id of
1354 	 * the location of the section here to guide allocation.
1355 	 * (see sparse.c::memory_present())
1356 	 *
1357 	 * Making it a UL at least makes someone do a cast
1358 	 * before using it wrong.
1359 	 */
1360 	unsigned long section_mem_map;
1361 
1362 	struct mem_section_usage *usage;
1363 #ifdef CONFIG_PAGE_EXTENSION
1364 	/*
1365 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1366 	 * section. (see page_ext.h about this.)
1367 	 */
1368 	struct page_ext *page_ext;
1369 	unsigned long pad;
1370 #endif
1371 	/*
1372 	 * WARNING: mem_section must be a power-of-2 in size for the
1373 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1374 	 */
1375 };
1376 
1377 #ifdef CONFIG_SPARSEMEM_EXTREME
1378 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1379 #else
1380 #define SECTIONS_PER_ROOT	1
1381 #endif
1382 
1383 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1384 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1385 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1386 
1387 #ifdef CONFIG_SPARSEMEM_EXTREME
1388 extern struct mem_section **mem_section;
1389 #else
1390 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1391 #endif
1392 
1393 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1394 {
1395 	return ms->usage->pageblock_flags;
1396 }
1397 
1398 static inline struct mem_section *__nr_to_section(unsigned long nr)
1399 {
1400 #ifdef CONFIG_SPARSEMEM_EXTREME
1401 	if (!mem_section)
1402 		return NULL;
1403 #endif
1404 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1405 		return NULL;
1406 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1407 }
1408 extern size_t mem_section_usage_size(void);
1409 
1410 /*
1411  * We use the lower bits of the mem_map pointer to store
1412  * a little bit of information.  The pointer is calculated
1413  * as mem_map - section_nr_to_pfn(pnum).  The result is
1414  * aligned to the minimum alignment of the two values:
1415  *   1. All mem_map arrays are page-aligned.
1416  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1417  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1418  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1419  *      worst combination is powerpc with 256k pages,
1420  *      which results in PFN_SECTION_SHIFT equal 6.
1421  * To sum it up, at least 6 bits are available.
1422  */
1423 #define SECTION_MARKED_PRESENT		(1UL<<0)
1424 #define SECTION_HAS_MEM_MAP		(1UL<<1)
1425 #define SECTION_IS_ONLINE		(1UL<<2)
1426 #define SECTION_IS_EARLY		(1UL<<3)
1427 #define SECTION_TAINT_ZONE_DEVICE	(1UL<<4)
1428 #define SECTION_MAP_LAST_BIT		(1UL<<5)
1429 #define SECTION_MAP_MASK		(~(SECTION_MAP_LAST_BIT-1))
1430 #define SECTION_NID_SHIFT		6
1431 
1432 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1433 {
1434 	unsigned long map = section->section_mem_map;
1435 	map &= SECTION_MAP_MASK;
1436 	return (struct page *)map;
1437 }
1438 
1439 static inline int present_section(struct mem_section *section)
1440 {
1441 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1442 }
1443 
1444 static inline int present_section_nr(unsigned long nr)
1445 {
1446 	return present_section(__nr_to_section(nr));
1447 }
1448 
1449 static inline int valid_section(struct mem_section *section)
1450 {
1451 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1452 }
1453 
1454 static inline int early_section(struct mem_section *section)
1455 {
1456 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1457 }
1458 
1459 static inline int valid_section_nr(unsigned long nr)
1460 {
1461 	return valid_section(__nr_to_section(nr));
1462 }
1463 
1464 static inline int online_section(struct mem_section *section)
1465 {
1466 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1467 }
1468 
1469 static inline int online_device_section(struct mem_section *section)
1470 {
1471 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1472 
1473 	return section && ((section->section_mem_map & flags) == flags);
1474 }
1475 
1476 static inline int online_section_nr(unsigned long nr)
1477 {
1478 	return online_section(__nr_to_section(nr));
1479 }
1480 
1481 #ifdef CONFIG_MEMORY_HOTPLUG
1482 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1483 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1484 #endif
1485 
1486 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1487 {
1488 	return __nr_to_section(pfn_to_section_nr(pfn));
1489 }
1490 
1491 extern unsigned long __highest_present_section_nr;
1492 
1493 static inline int subsection_map_index(unsigned long pfn)
1494 {
1495 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1496 }
1497 
1498 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1499 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1500 {
1501 	int idx = subsection_map_index(pfn);
1502 
1503 	return test_bit(idx, ms->usage->subsection_map);
1504 }
1505 #else
1506 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1507 {
1508 	return 1;
1509 }
1510 #endif
1511 
1512 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1513 /**
1514  * pfn_valid - check if there is a valid memory map entry for a PFN
1515  * @pfn: the page frame number to check
1516  *
1517  * Check if there is a valid memory map entry aka struct page for the @pfn.
1518  * Note, that availability of the memory map entry does not imply that
1519  * there is actual usable memory at that @pfn. The struct page may
1520  * represent a hole or an unusable page frame.
1521  *
1522  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1523  */
1524 static inline int pfn_valid(unsigned long pfn)
1525 {
1526 	struct mem_section *ms;
1527 
1528 	/*
1529 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1530 	 * pfn. Else it might lead to false positives when
1531 	 * some of the upper bits are set, but the lower bits
1532 	 * match a valid pfn.
1533 	 */
1534 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1535 		return 0;
1536 
1537 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1538 		return 0;
1539 	ms = __pfn_to_section(pfn);
1540 	if (!valid_section(ms))
1541 		return 0;
1542 	/*
1543 	 * Traditionally early sections always returned pfn_valid() for
1544 	 * the entire section-sized span.
1545 	 */
1546 	return early_section(ms) || pfn_section_valid(ms, pfn);
1547 }
1548 #endif
1549 
1550 static inline int pfn_in_present_section(unsigned long pfn)
1551 {
1552 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1553 		return 0;
1554 	return present_section(__pfn_to_section(pfn));
1555 }
1556 
1557 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1558 {
1559 	while (++section_nr <= __highest_present_section_nr) {
1560 		if (present_section_nr(section_nr))
1561 			return section_nr;
1562 	}
1563 
1564 	return -1;
1565 }
1566 
1567 /*
1568  * These are _only_ used during initialisation, therefore they
1569  * can use __initdata ...  They could have names to indicate
1570  * this restriction.
1571  */
1572 #ifdef CONFIG_NUMA
1573 #define pfn_to_nid(pfn)							\
1574 ({									\
1575 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1576 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1577 })
1578 #else
1579 #define pfn_to_nid(pfn)		(0)
1580 #endif
1581 
1582 void sparse_init(void);
1583 #else
1584 #define sparse_init()	do {} while (0)
1585 #define sparse_index_init(_sec, _nid)  do {} while (0)
1586 #define pfn_in_present_section pfn_valid
1587 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1588 #endif /* CONFIG_SPARSEMEM */
1589 
1590 #endif /* !__GENERATING_BOUNDS.H */
1591 #endif /* !__ASSEMBLY__ */
1592 #endif /* _LINUX_MMZONE_H */
1593