1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <linux/local_lock.h> 24 #include <asm/page.h> 25 26 /* Free memory management - zoned buddy allocator. */ 27 #ifndef CONFIG_FORCE_MAX_ZONEORDER 28 #define MAX_ORDER 11 29 #else 30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 31 #endif 32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34 /* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40 #define PAGE_ALLOC_COSTLY_ORDER 3 41 42 enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48 #ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. What is important though 58 * is that a range of pageblocks must be aligned to 59 * MAX_ORDER_NR_PAGES should biggest page be bigger than 60 * a single pageblock. 61 */ 62 MIGRATE_CMA, 63 #endif 64 #ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66 #endif 67 MIGRATE_TYPES 68 }; 69 70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71 extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73 #ifdef CONFIG_CMA 74 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76 #else 77 # define is_migrate_cma(migratetype) false 78 # define is_migrate_cma_page(_page) false 79 #endif 80 81 static inline bool is_migrate_movable(int mt) 82 { 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84 } 85 86 /* 87 * Check whether a migratetype can be merged with another migratetype. 88 * 89 * It is only mergeable when it can fall back to other migratetypes for 90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 91 */ 92 static inline bool migratetype_is_mergeable(int mt) 93 { 94 return mt < MIGRATE_PCPTYPES; 95 } 96 97 #define for_each_migratetype_order(order, type) \ 98 for (order = 0; order < MAX_ORDER; order++) \ 99 for (type = 0; type < MIGRATE_TYPES; type++) 100 101 extern int page_group_by_mobility_disabled; 102 103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 104 105 #define get_pageblock_migratetype(page) \ 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 107 108 struct free_area { 109 struct list_head free_list[MIGRATE_TYPES]; 110 unsigned long nr_free; 111 }; 112 113 static inline struct page *get_page_from_free_area(struct free_area *area, 114 int migratetype) 115 { 116 return list_first_entry_or_null(&area->free_list[migratetype], 117 struct page, lru); 118 } 119 120 static inline bool free_area_empty(struct free_area *area, int migratetype) 121 { 122 return list_empty(&area->free_list[migratetype]); 123 } 124 125 struct pglist_data; 126 127 /* 128 * Add a wild amount of padding here to ensure data fall into separate 129 * cachelines. There are very few zone structures in the machine, so space 130 * consumption is not a concern here. 131 */ 132 #if defined(CONFIG_SMP) 133 struct zone_padding { 134 char x[0]; 135 } ____cacheline_internodealigned_in_smp; 136 #define ZONE_PADDING(name) struct zone_padding name; 137 #else 138 #define ZONE_PADDING(name) 139 #endif 140 141 #ifdef CONFIG_NUMA 142 enum numa_stat_item { 143 NUMA_HIT, /* allocated in intended node */ 144 NUMA_MISS, /* allocated in non intended node */ 145 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 146 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 147 NUMA_LOCAL, /* allocation from local node */ 148 NUMA_OTHER, /* allocation from other node */ 149 NR_VM_NUMA_EVENT_ITEMS 150 }; 151 #else 152 #define NR_VM_NUMA_EVENT_ITEMS 0 153 #endif 154 155 enum zone_stat_item { 156 /* First 128 byte cacheline (assuming 64 bit words) */ 157 NR_FREE_PAGES, 158 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 159 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 160 NR_ZONE_ACTIVE_ANON, 161 NR_ZONE_INACTIVE_FILE, 162 NR_ZONE_ACTIVE_FILE, 163 NR_ZONE_UNEVICTABLE, 164 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 165 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 166 /* Second 128 byte cacheline */ 167 NR_BOUNCE, 168 #if IS_ENABLED(CONFIG_ZSMALLOC) 169 NR_ZSPAGES, /* allocated in zsmalloc */ 170 #endif 171 NR_FREE_CMA_PAGES, 172 NR_VM_ZONE_STAT_ITEMS }; 173 174 enum node_stat_item { 175 NR_LRU_BASE, 176 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 177 NR_ACTIVE_ANON, /* " " " " " */ 178 NR_INACTIVE_FILE, /* " " " " " */ 179 NR_ACTIVE_FILE, /* " " " " " */ 180 NR_UNEVICTABLE, /* " " " " " */ 181 NR_SLAB_RECLAIMABLE_B, 182 NR_SLAB_UNRECLAIMABLE_B, 183 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 184 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 185 WORKINGSET_NODES, 186 WORKINGSET_REFAULT_BASE, 187 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 188 WORKINGSET_REFAULT_FILE, 189 WORKINGSET_ACTIVATE_BASE, 190 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 191 WORKINGSET_ACTIVATE_FILE, 192 WORKINGSET_RESTORE_BASE, 193 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 194 WORKINGSET_RESTORE_FILE, 195 WORKINGSET_NODERECLAIM, 196 NR_ANON_MAPPED, /* Mapped anonymous pages */ 197 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 198 only modified from process context */ 199 NR_FILE_PAGES, 200 NR_FILE_DIRTY, 201 NR_WRITEBACK, 202 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 203 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 204 NR_SHMEM_THPS, 205 NR_SHMEM_PMDMAPPED, 206 NR_FILE_THPS, 207 NR_FILE_PMDMAPPED, 208 NR_ANON_THPS, 209 NR_VMSCAN_WRITE, 210 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 211 NR_DIRTIED, /* page dirtyings since bootup */ 212 NR_WRITTEN, /* page writings since bootup */ 213 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 214 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 215 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 216 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 217 NR_KERNEL_STACK_KB, /* measured in KiB */ 218 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 219 NR_KERNEL_SCS_KB, /* measured in KiB */ 220 #endif 221 NR_PAGETABLE, /* used for pagetables */ 222 #ifdef CONFIG_SWAP 223 NR_SWAPCACHE, 224 #endif 225 #ifdef CONFIG_NUMA_BALANCING 226 PGPROMOTE_SUCCESS, /* promote successfully */ 227 #endif 228 NR_VM_NODE_STAT_ITEMS 229 }; 230 231 /* 232 * Returns true if the item should be printed in THPs (/proc/vmstat 233 * currently prints number of anon, file and shmem THPs. But the item 234 * is charged in pages). 235 */ 236 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 237 { 238 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 239 return false; 240 241 return item == NR_ANON_THPS || 242 item == NR_FILE_THPS || 243 item == NR_SHMEM_THPS || 244 item == NR_SHMEM_PMDMAPPED || 245 item == NR_FILE_PMDMAPPED; 246 } 247 248 /* 249 * Returns true if the value is measured in bytes (most vmstat values are 250 * measured in pages). This defines the API part, the internal representation 251 * might be different. 252 */ 253 static __always_inline bool vmstat_item_in_bytes(int idx) 254 { 255 /* 256 * Global and per-node slab counters track slab pages. 257 * It's expected that changes are multiples of PAGE_SIZE. 258 * Internally values are stored in pages. 259 * 260 * Per-memcg and per-lruvec counters track memory, consumed 261 * by individual slab objects. These counters are actually 262 * byte-precise. 263 */ 264 return (idx == NR_SLAB_RECLAIMABLE_B || 265 idx == NR_SLAB_UNRECLAIMABLE_B); 266 } 267 268 /* 269 * We do arithmetic on the LRU lists in various places in the code, 270 * so it is important to keep the active lists LRU_ACTIVE higher in 271 * the array than the corresponding inactive lists, and to keep 272 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 273 * 274 * This has to be kept in sync with the statistics in zone_stat_item 275 * above and the descriptions in vmstat_text in mm/vmstat.c 276 */ 277 #define LRU_BASE 0 278 #define LRU_ACTIVE 1 279 #define LRU_FILE 2 280 281 enum lru_list { 282 LRU_INACTIVE_ANON = LRU_BASE, 283 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 284 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 285 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 286 LRU_UNEVICTABLE, 287 NR_LRU_LISTS 288 }; 289 290 enum vmscan_throttle_state { 291 VMSCAN_THROTTLE_WRITEBACK, 292 VMSCAN_THROTTLE_ISOLATED, 293 VMSCAN_THROTTLE_NOPROGRESS, 294 VMSCAN_THROTTLE_CONGESTED, 295 NR_VMSCAN_THROTTLE, 296 }; 297 298 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 299 300 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 301 302 static inline bool is_file_lru(enum lru_list lru) 303 { 304 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 305 } 306 307 static inline bool is_active_lru(enum lru_list lru) 308 { 309 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 310 } 311 312 #define ANON_AND_FILE 2 313 314 enum lruvec_flags { 315 LRUVEC_CONGESTED, /* lruvec has many dirty pages 316 * backed by a congested BDI 317 */ 318 }; 319 320 struct lruvec { 321 struct list_head lists[NR_LRU_LISTS]; 322 /* per lruvec lru_lock for memcg */ 323 spinlock_t lru_lock; 324 /* 325 * These track the cost of reclaiming one LRU - file or anon - 326 * over the other. As the observed cost of reclaiming one LRU 327 * increases, the reclaim scan balance tips toward the other. 328 */ 329 unsigned long anon_cost; 330 unsigned long file_cost; 331 /* Non-resident age, driven by LRU movement */ 332 atomic_long_t nonresident_age; 333 /* Refaults at the time of last reclaim cycle */ 334 unsigned long refaults[ANON_AND_FILE]; 335 /* Various lruvec state flags (enum lruvec_flags) */ 336 unsigned long flags; 337 #ifdef CONFIG_MEMCG 338 struct pglist_data *pgdat; 339 #endif 340 }; 341 342 /* Isolate unmapped pages */ 343 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 344 /* Isolate for asynchronous migration */ 345 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 346 /* Isolate unevictable pages */ 347 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 348 349 /* LRU Isolation modes. */ 350 typedef unsigned __bitwise isolate_mode_t; 351 352 enum zone_watermarks { 353 WMARK_MIN, 354 WMARK_LOW, 355 WMARK_HIGH, 356 WMARK_PROMO, 357 NR_WMARK 358 }; 359 360 /* 361 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional 362 * for pageblock size for THP if configured. 363 */ 364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 365 #define NR_PCP_THP 1 366 #else 367 #define NR_PCP_THP 0 368 #endif 369 #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP)) 370 371 /* 372 * Shift to encode migratetype and order in the same integer, with order 373 * in the least significant bits. 374 */ 375 #define NR_PCP_ORDER_WIDTH 8 376 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) 377 378 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 379 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 380 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 381 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 382 383 /* Fields and list protected by pagesets local_lock in page_alloc.c */ 384 struct per_cpu_pages { 385 int count; /* number of pages in the list */ 386 int high; /* high watermark, emptying needed */ 387 int batch; /* chunk size for buddy add/remove */ 388 short free_factor; /* batch scaling factor during free */ 389 #ifdef CONFIG_NUMA 390 short expire; /* When 0, remote pagesets are drained */ 391 #endif 392 393 /* Lists of pages, one per migrate type stored on the pcp-lists */ 394 struct list_head lists[NR_PCP_LISTS]; 395 }; 396 397 struct per_cpu_zonestat { 398 #ifdef CONFIG_SMP 399 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 400 s8 stat_threshold; 401 #endif 402 #ifdef CONFIG_NUMA 403 /* 404 * Low priority inaccurate counters that are only folded 405 * on demand. Use a large type to avoid the overhead of 406 * folding during refresh_cpu_vm_stats. 407 */ 408 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 409 #endif 410 }; 411 412 struct per_cpu_nodestat { 413 s8 stat_threshold; 414 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 415 }; 416 417 #endif /* !__GENERATING_BOUNDS.H */ 418 419 enum zone_type { 420 /* 421 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 422 * to DMA to all of the addressable memory (ZONE_NORMAL). 423 * On architectures where this area covers the whole 32 bit address 424 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 425 * DMA addressing constraints. This distinction is important as a 32bit 426 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 427 * platforms may need both zones as they support peripherals with 428 * different DMA addressing limitations. 429 */ 430 #ifdef CONFIG_ZONE_DMA 431 ZONE_DMA, 432 #endif 433 #ifdef CONFIG_ZONE_DMA32 434 ZONE_DMA32, 435 #endif 436 /* 437 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 438 * performed on pages in ZONE_NORMAL if the DMA devices support 439 * transfers to all addressable memory. 440 */ 441 ZONE_NORMAL, 442 #ifdef CONFIG_HIGHMEM 443 /* 444 * A memory area that is only addressable by the kernel through 445 * mapping portions into its own address space. This is for example 446 * used by i386 to allow the kernel to address the memory beyond 447 * 900MB. The kernel will set up special mappings (page 448 * table entries on i386) for each page that the kernel needs to 449 * access. 450 */ 451 ZONE_HIGHMEM, 452 #endif 453 /* 454 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 455 * movable pages with few exceptional cases described below. Main use 456 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 457 * likely to succeed, and to locally limit unmovable allocations - e.g., 458 * to increase the number of THP/huge pages. Notable special cases are: 459 * 460 * 1. Pinned pages: (long-term) pinning of movable pages might 461 * essentially turn such pages unmovable. Therefore, we do not allow 462 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 463 * faulted, they come from the right zone right away. However, it is 464 * still possible that address space already has pages in 465 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 466 * touches that memory before pinning). In such case we migrate them 467 * to a different zone. When migration fails - pinning fails. 468 * 2. memblock allocations: kernelcore/movablecore setups might create 469 * situations where ZONE_MOVABLE contains unmovable allocations 470 * after boot. Memory offlining and allocations fail early. 471 * 3. Memory holes: kernelcore/movablecore setups might create very rare 472 * situations where ZONE_MOVABLE contains memory holes after boot, 473 * for example, if we have sections that are only partially 474 * populated. Memory offlining and allocations fail early. 475 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 476 * memory offlining, such pages cannot be allocated. 477 * 5. Unmovable PG_offline pages: in paravirtualized environments, 478 * hotplugged memory blocks might only partially be managed by the 479 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 480 * parts not manged by the buddy are unmovable PG_offline pages. In 481 * some cases (virtio-mem), such pages can be skipped during 482 * memory offlining, however, cannot be moved/allocated. These 483 * techniques might use alloc_contig_range() to hide previously 484 * exposed pages from the buddy again (e.g., to implement some sort 485 * of memory unplug in virtio-mem). 486 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 487 * situations where ZERO_PAGE(0) which is allocated differently 488 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 489 * cannot be migrated. 490 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 491 * memory to the MOVABLE zone, the vmemmap pages are also placed in 492 * such zone. Such pages cannot be really moved around as they are 493 * self-stored in the range, but they are treated as movable when 494 * the range they describe is about to be offlined. 495 * 496 * In general, no unmovable allocations that degrade memory offlining 497 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 498 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 499 * if has_unmovable_pages() states that there are no unmovable pages, 500 * there can be false negatives). 501 */ 502 ZONE_MOVABLE, 503 #ifdef CONFIG_ZONE_DEVICE 504 ZONE_DEVICE, 505 #endif 506 __MAX_NR_ZONES 507 508 }; 509 510 #ifndef __GENERATING_BOUNDS_H 511 512 #define ASYNC_AND_SYNC 2 513 514 struct zone { 515 /* Read-mostly fields */ 516 517 /* zone watermarks, access with *_wmark_pages(zone) macros */ 518 unsigned long _watermark[NR_WMARK]; 519 unsigned long watermark_boost; 520 521 unsigned long nr_reserved_highatomic; 522 523 /* 524 * We don't know if the memory that we're going to allocate will be 525 * freeable or/and it will be released eventually, so to avoid totally 526 * wasting several GB of ram we must reserve some of the lower zone 527 * memory (otherwise we risk to run OOM on the lower zones despite 528 * there being tons of freeable ram on the higher zones). This array is 529 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 530 * changes. 531 */ 532 long lowmem_reserve[MAX_NR_ZONES]; 533 534 #ifdef CONFIG_NUMA 535 int node; 536 #endif 537 struct pglist_data *zone_pgdat; 538 struct per_cpu_pages __percpu *per_cpu_pageset; 539 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 540 /* 541 * the high and batch values are copied to individual pagesets for 542 * faster access 543 */ 544 int pageset_high; 545 int pageset_batch; 546 547 #ifndef CONFIG_SPARSEMEM 548 /* 549 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 550 * In SPARSEMEM, this map is stored in struct mem_section 551 */ 552 unsigned long *pageblock_flags; 553 #endif /* CONFIG_SPARSEMEM */ 554 555 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 556 unsigned long zone_start_pfn; 557 558 /* 559 * spanned_pages is the total pages spanned by the zone, including 560 * holes, which is calculated as: 561 * spanned_pages = zone_end_pfn - zone_start_pfn; 562 * 563 * present_pages is physical pages existing within the zone, which 564 * is calculated as: 565 * present_pages = spanned_pages - absent_pages(pages in holes); 566 * 567 * present_early_pages is present pages existing within the zone 568 * located on memory available since early boot, excluding hotplugged 569 * memory. 570 * 571 * managed_pages is present pages managed by the buddy system, which 572 * is calculated as (reserved_pages includes pages allocated by the 573 * bootmem allocator): 574 * managed_pages = present_pages - reserved_pages; 575 * 576 * cma pages is present pages that are assigned for CMA use 577 * (MIGRATE_CMA). 578 * 579 * So present_pages may be used by memory hotplug or memory power 580 * management logic to figure out unmanaged pages by checking 581 * (present_pages - managed_pages). And managed_pages should be used 582 * by page allocator and vm scanner to calculate all kinds of watermarks 583 * and thresholds. 584 * 585 * Locking rules: 586 * 587 * zone_start_pfn and spanned_pages are protected by span_seqlock. 588 * It is a seqlock because it has to be read outside of zone->lock, 589 * and it is done in the main allocator path. But, it is written 590 * quite infrequently. 591 * 592 * The span_seq lock is declared along with zone->lock because it is 593 * frequently read in proximity to zone->lock. It's good to 594 * give them a chance of being in the same cacheline. 595 * 596 * Write access to present_pages at runtime should be protected by 597 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 598 * present_pages should get_online_mems() to get a stable value. 599 */ 600 atomic_long_t managed_pages; 601 unsigned long spanned_pages; 602 unsigned long present_pages; 603 #if defined(CONFIG_MEMORY_HOTPLUG) 604 unsigned long present_early_pages; 605 #endif 606 #ifdef CONFIG_CMA 607 unsigned long cma_pages; 608 #endif 609 610 const char *name; 611 612 #ifdef CONFIG_MEMORY_ISOLATION 613 /* 614 * Number of isolated pageblock. It is used to solve incorrect 615 * freepage counting problem due to racy retrieving migratetype 616 * of pageblock. Protected by zone->lock. 617 */ 618 unsigned long nr_isolate_pageblock; 619 #endif 620 621 #ifdef CONFIG_MEMORY_HOTPLUG 622 /* see spanned/present_pages for more description */ 623 seqlock_t span_seqlock; 624 #endif 625 626 int initialized; 627 628 /* Write-intensive fields used from the page allocator */ 629 ZONE_PADDING(_pad1_) 630 631 /* free areas of different sizes */ 632 struct free_area free_area[MAX_ORDER]; 633 634 /* zone flags, see below */ 635 unsigned long flags; 636 637 /* Primarily protects free_area */ 638 spinlock_t lock; 639 640 /* Write-intensive fields used by compaction and vmstats. */ 641 ZONE_PADDING(_pad2_) 642 643 /* 644 * When free pages are below this point, additional steps are taken 645 * when reading the number of free pages to avoid per-cpu counter 646 * drift allowing watermarks to be breached 647 */ 648 unsigned long percpu_drift_mark; 649 650 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 651 /* pfn where compaction free scanner should start */ 652 unsigned long compact_cached_free_pfn; 653 /* pfn where compaction migration scanner should start */ 654 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 655 unsigned long compact_init_migrate_pfn; 656 unsigned long compact_init_free_pfn; 657 #endif 658 659 #ifdef CONFIG_COMPACTION 660 /* 661 * On compaction failure, 1<<compact_defer_shift compactions 662 * are skipped before trying again. The number attempted since 663 * last failure is tracked with compact_considered. 664 * compact_order_failed is the minimum compaction failed order. 665 */ 666 unsigned int compact_considered; 667 unsigned int compact_defer_shift; 668 int compact_order_failed; 669 #endif 670 671 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 672 /* Set to true when the PG_migrate_skip bits should be cleared */ 673 bool compact_blockskip_flush; 674 #endif 675 676 bool contiguous; 677 678 ZONE_PADDING(_pad3_) 679 /* Zone statistics */ 680 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 681 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 682 } ____cacheline_internodealigned_in_smp; 683 684 enum pgdat_flags { 685 PGDAT_DIRTY, /* reclaim scanning has recently found 686 * many dirty file pages at the tail 687 * of the LRU. 688 */ 689 PGDAT_WRITEBACK, /* reclaim scanning has recently found 690 * many pages under writeback 691 */ 692 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 693 }; 694 695 enum zone_flags { 696 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 697 * Cleared when kswapd is woken. 698 */ 699 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 700 }; 701 702 static inline unsigned long zone_managed_pages(struct zone *zone) 703 { 704 return (unsigned long)atomic_long_read(&zone->managed_pages); 705 } 706 707 static inline unsigned long zone_cma_pages(struct zone *zone) 708 { 709 #ifdef CONFIG_CMA 710 return zone->cma_pages; 711 #else 712 return 0; 713 #endif 714 } 715 716 static inline unsigned long zone_end_pfn(const struct zone *zone) 717 { 718 return zone->zone_start_pfn + zone->spanned_pages; 719 } 720 721 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 722 { 723 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 724 } 725 726 static inline bool zone_is_initialized(struct zone *zone) 727 { 728 return zone->initialized; 729 } 730 731 static inline bool zone_is_empty(struct zone *zone) 732 { 733 return zone->spanned_pages == 0; 734 } 735 736 /* 737 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 738 * intersection with the given zone 739 */ 740 static inline bool zone_intersects(struct zone *zone, 741 unsigned long start_pfn, unsigned long nr_pages) 742 { 743 if (zone_is_empty(zone)) 744 return false; 745 if (start_pfn >= zone_end_pfn(zone) || 746 start_pfn + nr_pages <= zone->zone_start_pfn) 747 return false; 748 749 return true; 750 } 751 752 /* 753 * The "priority" of VM scanning is how much of the queues we will scan in one 754 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 755 * queues ("queue_length >> 12") during an aging round. 756 */ 757 #define DEF_PRIORITY 12 758 759 /* Maximum number of zones on a zonelist */ 760 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 761 762 enum { 763 ZONELIST_FALLBACK, /* zonelist with fallback */ 764 #ifdef CONFIG_NUMA 765 /* 766 * The NUMA zonelists are doubled because we need zonelists that 767 * restrict the allocations to a single node for __GFP_THISNODE. 768 */ 769 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 770 #endif 771 MAX_ZONELISTS 772 }; 773 774 /* 775 * This struct contains information about a zone in a zonelist. It is stored 776 * here to avoid dereferences into large structures and lookups of tables 777 */ 778 struct zoneref { 779 struct zone *zone; /* Pointer to actual zone */ 780 int zone_idx; /* zone_idx(zoneref->zone) */ 781 }; 782 783 /* 784 * One allocation request operates on a zonelist. A zonelist 785 * is a list of zones, the first one is the 'goal' of the 786 * allocation, the other zones are fallback zones, in decreasing 787 * priority. 788 * 789 * To speed the reading of the zonelist, the zonerefs contain the zone index 790 * of the entry being read. Helper functions to access information given 791 * a struct zoneref are 792 * 793 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 794 * zonelist_zone_idx() - Return the index of the zone for an entry 795 * zonelist_node_idx() - Return the index of the node for an entry 796 */ 797 struct zonelist { 798 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 799 }; 800 801 /* 802 * The array of struct pages for flatmem. 803 * It must be declared for SPARSEMEM as well because there are configurations 804 * that rely on that. 805 */ 806 extern struct page *mem_map; 807 808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 809 struct deferred_split { 810 spinlock_t split_queue_lock; 811 struct list_head split_queue; 812 unsigned long split_queue_len; 813 }; 814 #endif 815 816 /* 817 * On NUMA machines, each NUMA node would have a pg_data_t to describe 818 * it's memory layout. On UMA machines there is a single pglist_data which 819 * describes the whole memory. 820 * 821 * Memory statistics and page replacement data structures are maintained on a 822 * per-zone basis. 823 */ 824 typedef struct pglist_data { 825 /* 826 * node_zones contains just the zones for THIS node. Not all of the 827 * zones may be populated, but it is the full list. It is referenced by 828 * this node's node_zonelists as well as other node's node_zonelists. 829 */ 830 struct zone node_zones[MAX_NR_ZONES]; 831 832 /* 833 * node_zonelists contains references to all zones in all nodes. 834 * Generally the first zones will be references to this node's 835 * node_zones. 836 */ 837 struct zonelist node_zonelists[MAX_ZONELISTS]; 838 839 int nr_zones; /* number of populated zones in this node */ 840 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 841 struct page *node_mem_map; 842 #ifdef CONFIG_PAGE_EXTENSION 843 struct page_ext *node_page_ext; 844 #endif 845 #endif 846 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 847 /* 848 * Must be held any time you expect node_start_pfn, 849 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 850 * Also synchronizes pgdat->first_deferred_pfn during deferred page 851 * init. 852 * 853 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 854 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 855 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 856 * 857 * Nests above zone->lock and zone->span_seqlock 858 */ 859 spinlock_t node_size_lock; 860 #endif 861 unsigned long node_start_pfn; 862 unsigned long node_present_pages; /* total number of physical pages */ 863 unsigned long node_spanned_pages; /* total size of physical page 864 range, including holes */ 865 int node_id; 866 wait_queue_head_t kswapd_wait; 867 wait_queue_head_t pfmemalloc_wait; 868 869 /* workqueues for throttling reclaim for different reasons. */ 870 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 871 872 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 873 unsigned long nr_reclaim_start; /* nr pages written while throttled 874 * when throttling started. */ 875 struct task_struct *kswapd; /* Protected by 876 mem_hotplug_begin/end() */ 877 int kswapd_order; 878 enum zone_type kswapd_highest_zoneidx; 879 880 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 881 882 #ifdef CONFIG_COMPACTION 883 int kcompactd_max_order; 884 enum zone_type kcompactd_highest_zoneidx; 885 wait_queue_head_t kcompactd_wait; 886 struct task_struct *kcompactd; 887 bool proactive_compact_trigger; 888 #endif 889 /* 890 * This is a per-node reserve of pages that are not available 891 * to userspace allocations. 892 */ 893 unsigned long totalreserve_pages; 894 895 #ifdef CONFIG_NUMA 896 /* 897 * node reclaim becomes active if more unmapped pages exist. 898 */ 899 unsigned long min_unmapped_pages; 900 unsigned long min_slab_pages; 901 #endif /* CONFIG_NUMA */ 902 903 /* Write-intensive fields used by page reclaim */ 904 ZONE_PADDING(_pad1_) 905 906 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 907 /* 908 * If memory initialisation on large machines is deferred then this 909 * is the first PFN that needs to be initialised. 910 */ 911 unsigned long first_deferred_pfn; 912 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 913 914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 915 struct deferred_split deferred_split_queue; 916 #endif 917 918 /* Fields commonly accessed by the page reclaim scanner */ 919 920 /* 921 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 922 * 923 * Use mem_cgroup_lruvec() to look up lruvecs. 924 */ 925 struct lruvec __lruvec; 926 927 unsigned long flags; 928 929 ZONE_PADDING(_pad2_) 930 931 /* Per-node vmstats */ 932 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 933 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 934 } pg_data_t; 935 936 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 937 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 938 939 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 940 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 941 942 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 943 { 944 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 945 } 946 947 static inline bool pgdat_is_empty(pg_data_t *pgdat) 948 { 949 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 950 } 951 952 #include <linux/memory_hotplug.h> 953 954 void build_all_zonelists(pg_data_t *pgdat); 955 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 956 enum zone_type highest_zoneidx); 957 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 958 int highest_zoneidx, unsigned int alloc_flags, 959 long free_pages); 960 bool zone_watermark_ok(struct zone *z, unsigned int order, 961 unsigned long mark, int highest_zoneidx, 962 unsigned int alloc_flags); 963 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 964 unsigned long mark, int highest_zoneidx); 965 /* 966 * Memory initialization context, use to differentiate memory added by 967 * the platform statically or via memory hotplug interface. 968 */ 969 enum meminit_context { 970 MEMINIT_EARLY, 971 MEMINIT_HOTPLUG, 972 }; 973 974 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 975 unsigned long size); 976 977 extern void lruvec_init(struct lruvec *lruvec); 978 979 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 980 { 981 #ifdef CONFIG_MEMCG 982 return lruvec->pgdat; 983 #else 984 return container_of(lruvec, struct pglist_data, __lruvec); 985 #endif 986 } 987 988 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 989 int local_memory_node(int node_id); 990 #else 991 static inline int local_memory_node(int node_id) { return node_id; }; 992 #endif 993 994 /* 995 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 996 */ 997 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 998 999 #ifdef CONFIG_ZONE_DEVICE 1000 static inline bool zone_is_zone_device(struct zone *zone) 1001 { 1002 return zone_idx(zone) == ZONE_DEVICE; 1003 } 1004 #else 1005 static inline bool zone_is_zone_device(struct zone *zone) 1006 { 1007 return false; 1008 } 1009 #endif 1010 1011 /* 1012 * Returns true if a zone has pages managed by the buddy allocator. 1013 * All the reclaim decisions have to use this function rather than 1014 * populated_zone(). If the whole zone is reserved then we can easily 1015 * end up with populated_zone() && !managed_zone(). 1016 */ 1017 static inline bool managed_zone(struct zone *zone) 1018 { 1019 return zone_managed_pages(zone); 1020 } 1021 1022 /* Returns true if a zone has memory */ 1023 static inline bool populated_zone(struct zone *zone) 1024 { 1025 return zone->present_pages; 1026 } 1027 1028 #ifdef CONFIG_NUMA 1029 static inline int zone_to_nid(struct zone *zone) 1030 { 1031 return zone->node; 1032 } 1033 1034 static inline void zone_set_nid(struct zone *zone, int nid) 1035 { 1036 zone->node = nid; 1037 } 1038 #else 1039 static inline int zone_to_nid(struct zone *zone) 1040 { 1041 return 0; 1042 } 1043 1044 static inline void zone_set_nid(struct zone *zone, int nid) {} 1045 #endif 1046 1047 extern int movable_zone; 1048 1049 static inline int is_highmem_idx(enum zone_type idx) 1050 { 1051 #ifdef CONFIG_HIGHMEM 1052 return (idx == ZONE_HIGHMEM || 1053 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1054 #else 1055 return 0; 1056 #endif 1057 } 1058 1059 #ifdef CONFIG_ZONE_DMA 1060 bool has_managed_dma(void); 1061 #else 1062 static inline bool has_managed_dma(void) 1063 { 1064 return false; 1065 } 1066 #endif 1067 1068 /** 1069 * is_highmem - helper function to quickly check if a struct zone is a 1070 * highmem zone or not. This is an attempt to keep references 1071 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1072 * @zone: pointer to struct zone variable 1073 * Return: 1 for a highmem zone, 0 otherwise 1074 */ 1075 static inline int is_highmem(struct zone *zone) 1076 { 1077 #ifdef CONFIG_HIGHMEM 1078 return is_highmem_idx(zone_idx(zone)); 1079 #else 1080 return 0; 1081 #endif 1082 } 1083 1084 /* These two functions are used to setup the per zone pages min values */ 1085 struct ctl_table; 1086 1087 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1088 loff_t *); 1089 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1090 size_t *, loff_t *); 1091 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1092 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1093 size_t *, loff_t *); 1094 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1095 void *, size_t *, loff_t *); 1096 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1097 void *, size_t *, loff_t *); 1098 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1099 void *, size_t *, loff_t *); 1100 int numa_zonelist_order_handler(struct ctl_table *, int, 1101 void *, size_t *, loff_t *); 1102 extern int percpu_pagelist_high_fraction; 1103 extern char numa_zonelist_order[]; 1104 #define NUMA_ZONELIST_ORDER_LEN 16 1105 1106 #ifndef CONFIG_NUMA 1107 1108 extern struct pglist_data contig_page_data; 1109 static inline struct pglist_data *NODE_DATA(int nid) 1110 { 1111 return &contig_page_data; 1112 } 1113 1114 #else /* CONFIG_NUMA */ 1115 1116 #include <asm/mmzone.h> 1117 1118 #endif /* !CONFIG_NUMA */ 1119 1120 extern struct pglist_data *first_online_pgdat(void); 1121 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1122 extern struct zone *next_zone(struct zone *zone); 1123 1124 /** 1125 * for_each_online_pgdat - helper macro to iterate over all online nodes 1126 * @pgdat: pointer to a pg_data_t variable 1127 */ 1128 #define for_each_online_pgdat(pgdat) \ 1129 for (pgdat = first_online_pgdat(); \ 1130 pgdat; \ 1131 pgdat = next_online_pgdat(pgdat)) 1132 /** 1133 * for_each_zone - helper macro to iterate over all memory zones 1134 * @zone: pointer to struct zone variable 1135 * 1136 * The user only needs to declare the zone variable, for_each_zone 1137 * fills it in. 1138 */ 1139 #define for_each_zone(zone) \ 1140 for (zone = (first_online_pgdat())->node_zones; \ 1141 zone; \ 1142 zone = next_zone(zone)) 1143 1144 #define for_each_populated_zone(zone) \ 1145 for (zone = (first_online_pgdat())->node_zones; \ 1146 zone; \ 1147 zone = next_zone(zone)) \ 1148 if (!populated_zone(zone)) \ 1149 ; /* do nothing */ \ 1150 else 1151 1152 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1153 { 1154 return zoneref->zone; 1155 } 1156 1157 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1158 { 1159 return zoneref->zone_idx; 1160 } 1161 1162 static inline int zonelist_node_idx(struct zoneref *zoneref) 1163 { 1164 return zone_to_nid(zoneref->zone); 1165 } 1166 1167 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1168 enum zone_type highest_zoneidx, 1169 nodemask_t *nodes); 1170 1171 /** 1172 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1173 * @z: The cursor used as a starting point for the search 1174 * @highest_zoneidx: The zone index of the highest zone to return 1175 * @nodes: An optional nodemask to filter the zonelist with 1176 * 1177 * This function returns the next zone at or below a given zone index that is 1178 * within the allowed nodemask using a cursor as the starting point for the 1179 * search. The zoneref returned is a cursor that represents the current zone 1180 * being examined. It should be advanced by one before calling 1181 * next_zones_zonelist again. 1182 * 1183 * Return: the next zone at or below highest_zoneidx within the allowed 1184 * nodemask using a cursor within a zonelist as a starting point 1185 */ 1186 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1187 enum zone_type highest_zoneidx, 1188 nodemask_t *nodes) 1189 { 1190 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1191 return z; 1192 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1193 } 1194 1195 /** 1196 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1197 * @zonelist: The zonelist to search for a suitable zone 1198 * @highest_zoneidx: The zone index of the highest zone to return 1199 * @nodes: An optional nodemask to filter the zonelist with 1200 * 1201 * This function returns the first zone at or below a given zone index that is 1202 * within the allowed nodemask. The zoneref returned is a cursor that can be 1203 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1204 * one before calling. 1205 * 1206 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1207 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1208 * update due to cpuset modification. 1209 * 1210 * Return: Zoneref pointer for the first suitable zone found 1211 */ 1212 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1213 enum zone_type highest_zoneidx, 1214 nodemask_t *nodes) 1215 { 1216 return next_zones_zonelist(zonelist->_zonerefs, 1217 highest_zoneidx, nodes); 1218 } 1219 1220 /** 1221 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1222 * @zone: The current zone in the iterator 1223 * @z: The current pointer within zonelist->_zonerefs being iterated 1224 * @zlist: The zonelist being iterated 1225 * @highidx: The zone index of the highest zone to return 1226 * @nodemask: Nodemask allowed by the allocator 1227 * 1228 * This iterator iterates though all zones at or below a given zone index and 1229 * within a given nodemask 1230 */ 1231 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1232 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1233 zone; \ 1234 z = next_zones_zonelist(++z, highidx, nodemask), \ 1235 zone = zonelist_zone(z)) 1236 1237 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1238 for (zone = z->zone; \ 1239 zone; \ 1240 z = next_zones_zonelist(++z, highidx, nodemask), \ 1241 zone = zonelist_zone(z)) 1242 1243 1244 /** 1245 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1246 * @zone: The current zone in the iterator 1247 * @z: The current pointer within zonelist->zones being iterated 1248 * @zlist: The zonelist being iterated 1249 * @highidx: The zone index of the highest zone to return 1250 * 1251 * This iterator iterates though all zones at or below a given zone index. 1252 */ 1253 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1254 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1255 1256 /* Whether the 'nodes' are all movable nodes */ 1257 static inline bool movable_only_nodes(nodemask_t *nodes) 1258 { 1259 struct zonelist *zonelist; 1260 struct zoneref *z; 1261 int nid; 1262 1263 if (nodes_empty(*nodes)) 1264 return false; 1265 1266 /* 1267 * We can chose arbitrary node from the nodemask to get a 1268 * zonelist as they are interlinked. We just need to find 1269 * at least one zone that can satisfy kernel allocations. 1270 */ 1271 nid = first_node(*nodes); 1272 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1273 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1274 return (!z->zone) ? true : false; 1275 } 1276 1277 1278 #ifdef CONFIG_SPARSEMEM 1279 #include <asm/sparsemem.h> 1280 #endif 1281 1282 #ifdef CONFIG_FLATMEM 1283 #define pfn_to_nid(pfn) (0) 1284 #endif 1285 1286 #ifdef CONFIG_SPARSEMEM 1287 1288 /* 1289 * PA_SECTION_SHIFT physical address to/from section number 1290 * PFN_SECTION_SHIFT pfn to/from section number 1291 */ 1292 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1293 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1294 1295 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1296 1297 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1298 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1299 1300 #define SECTION_BLOCKFLAGS_BITS \ 1301 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1302 1303 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1304 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1305 #endif 1306 1307 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1308 { 1309 return pfn >> PFN_SECTION_SHIFT; 1310 } 1311 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1312 { 1313 return sec << PFN_SECTION_SHIFT; 1314 } 1315 1316 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1317 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1318 1319 #define SUBSECTION_SHIFT 21 1320 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1321 1322 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1323 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1324 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1325 1326 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1327 #error Subsection size exceeds section size 1328 #else 1329 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1330 #endif 1331 1332 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1333 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1334 1335 struct mem_section_usage { 1336 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1337 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1338 #endif 1339 /* See declaration of similar field in struct zone */ 1340 unsigned long pageblock_flags[0]; 1341 }; 1342 1343 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1344 1345 struct page; 1346 struct page_ext; 1347 struct mem_section { 1348 /* 1349 * This is, logically, a pointer to an array of struct 1350 * pages. However, it is stored with some other magic. 1351 * (see sparse.c::sparse_init_one_section()) 1352 * 1353 * Additionally during early boot we encode node id of 1354 * the location of the section here to guide allocation. 1355 * (see sparse.c::memory_present()) 1356 * 1357 * Making it a UL at least makes someone do a cast 1358 * before using it wrong. 1359 */ 1360 unsigned long section_mem_map; 1361 1362 struct mem_section_usage *usage; 1363 #ifdef CONFIG_PAGE_EXTENSION 1364 /* 1365 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1366 * section. (see page_ext.h about this.) 1367 */ 1368 struct page_ext *page_ext; 1369 unsigned long pad; 1370 #endif 1371 /* 1372 * WARNING: mem_section must be a power-of-2 in size for the 1373 * calculation and use of SECTION_ROOT_MASK to make sense. 1374 */ 1375 }; 1376 1377 #ifdef CONFIG_SPARSEMEM_EXTREME 1378 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1379 #else 1380 #define SECTIONS_PER_ROOT 1 1381 #endif 1382 1383 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1384 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1385 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1386 1387 #ifdef CONFIG_SPARSEMEM_EXTREME 1388 extern struct mem_section **mem_section; 1389 #else 1390 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1391 #endif 1392 1393 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1394 { 1395 return ms->usage->pageblock_flags; 1396 } 1397 1398 static inline struct mem_section *__nr_to_section(unsigned long nr) 1399 { 1400 #ifdef CONFIG_SPARSEMEM_EXTREME 1401 if (!mem_section) 1402 return NULL; 1403 #endif 1404 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1405 return NULL; 1406 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1407 } 1408 extern size_t mem_section_usage_size(void); 1409 1410 /* 1411 * We use the lower bits of the mem_map pointer to store 1412 * a little bit of information. The pointer is calculated 1413 * as mem_map - section_nr_to_pfn(pnum). The result is 1414 * aligned to the minimum alignment of the two values: 1415 * 1. All mem_map arrays are page-aligned. 1416 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1417 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1418 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1419 * worst combination is powerpc with 256k pages, 1420 * which results in PFN_SECTION_SHIFT equal 6. 1421 * To sum it up, at least 6 bits are available. 1422 */ 1423 #define SECTION_MARKED_PRESENT (1UL<<0) 1424 #define SECTION_HAS_MEM_MAP (1UL<<1) 1425 #define SECTION_IS_ONLINE (1UL<<2) 1426 #define SECTION_IS_EARLY (1UL<<3) 1427 #define SECTION_TAINT_ZONE_DEVICE (1UL<<4) 1428 #define SECTION_MAP_LAST_BIT (1UL<<5) 1429 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1430 #define SECTION_NID_SHIFT 6 1431 1432 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1433 { 1434 unsigned long map = section->section_mem_map; 1435 map &= SECTION_MAP_MASK; 1436 return (struct page *)map; 1437 } 1438 1439 static inline int present_section(struct mem_section *section) 1440 { 1441 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1442 } 1443 1444 static inline int present_section_nr(unsigned long nr) 1445 { 1446 return present_section(__nr_to_section(nr)); 1447 } 1448 1449 static inline int valid_section(struct mem_section *section) 1450 { 1451 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1452 } 1453 1454 static inline int early_section(struct mem_section *section) 1455 { 1456 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1457 } 1458 1459 static inline int valid_section_nr(unsigned long nr) 1460 { 1461 return valid_section(__nr_to_section(nr)); 1462 } 1463 1464 static inline int online_section(struct mem_section *section) 1465 { 1466 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1467 } 1468 1469 static inline int online_device_section(struct mem_section *section) 1470 { 1471 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1472 1473 return section && ((section->section_mem_map & flags) == flags); 1474 } 1475 1476 static inline int online_section_nr(unsigned long nr) 1477 { 1478 return online_section(__nr_to_section(nr)); 1479 } 1480 1481 #ifdef CONFIG_MEMORY_HOTPLUG 1482 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1483 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1484 #endif 1485 1486 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1487 { 1488 return __nr_to_section(pfn_to_section_nr(pfn)); 1489 } 1490 1491 extern unsigned long __highest_present_section_nr; 1492 1493 static inline int subsection_map_index(unsigned long pfn) 1494 { 1495 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1496 } 1497 1498 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1499 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1500 { 1501 int idx = subsection_map_index(pfn); 1502 1503 return test_bit(idx, ms->usage->subsection_map); 1504 } 1505 #else 1506 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1507 { 1508 return 1; 1509 } 1510 #endif 1511 1512 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1513 /** 1514 * pfn_valid - check if there is a valid memory map entry for a PFN 1515 * @pfn: the page frame number to check 1516 * 1517 * Check if there is a valid memory map entry aka struct page for the @pfn. 1518 * Note, that availability of the memory map entry does not imply that 1519 * there is actual usable memory at that @pfn. The struct page may 1520 * represent a hole or an unusable page frame. 1521 * 1522 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1523 */ 1524 static inline int pfn_valid(unsigned long pfn) 1525 { 1526 struct mem_section *ms; 1527 1528 /* 1529 * Ensure the upper PAGE_SHIFT bits are clear in the 1530 * pfn. Else it might lead to false positives when 1531 * some of the upper bits are set, but the lower bits 1532 * match a valid pfn. 1533 */ 1534 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1535 return 0; 1536 1537 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1538 return 0; 1539 ms = __pfn_to_section(pfn); 1540 if (!valid_section(ms)) 1541 return 0; 1542 /* 1543 * Traditionally early sections always returned pfn_valid() for 1544 * the entire section-sized span. 1545 */ 1546 return early_section(ms) || pfn_section_valid(ms, pfn); 1547 } 1548 #endif 1549 1550 static inline int pfn_in_present_section(unsigned long pfn) 1551 { 1552 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1553 return 0; 1554 return present_section(__pfn_to_section(pfn)); 1555 } 1556 1557 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1558 { 1559 while (++section_nr <= __highest_present_section_nr) { 1560 if (present_section_nr(section_nr)) 1561 return section_nr; 1562 } 1563 1564 return -1; 1565 } 1566 1567 /* 1568 * These are _only_ used during initialisation, therefore they 1569 * can use __initdata ... They could have names to indicate 1570 * this restriction. 1571 */ 1572 #ifdef CONFIG_NUMA 1573 #define pfn_to_nid(pfn) \ 1574 ({ \ 1575 unsigned long __pfn_to_nid_pfn = (pfn); \ 1576 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1577 }) 1578 #else 1579 #define pfn_to_nid(pfn) (0) 1580 #endif 1581 1582 void sparse_init(void); 1583 #else 1584 #define sparse_init() do {} while (0) 1585 #define sparse_index_init(_sec, _nid) do {} while (0) 1586 #define pfn_in_present_section pfn_valid 1587 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1588 #endif /* CONFIG_SPARSEMEM */ 1589 1590 #endif /* !__GENERATING_BOUNDS.H */ 1591 #endif /* !__ASSEMBLY__ */ 1592 #endif /* _LINUX_MMZONE_H */ 1593