1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <generated/bounds.h> 19 #include <asm/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 #define MIGRATE_UNMOVABLE 0 39 #define MIGRATE_RECLAIMABLE 1 40 #define MIGRATE_MOVABLE 2 41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42 #define MIGRATE_RESERVE 3 43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44 #define MIGRATE_TYPES 5 45 46 #define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50 extern int page_group_by_mobility_disabled; 51 52 static inline int get_pageblock_migratetype(struct page *page) 53 { 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55 } 56 57 struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60 }; 61 62 struct pglist_data; 63 64 /* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70 #if defined(CONFIG_SMP) 71 struct zone_padding { 72 char x[0]; 73 } ____cacheline_internodealigned_in_smp; 74 #define ZONE_PADDING(name) struct zone_padding name; 75 #else 76 #define ZONE_PADDING(name) 77 #endif 78 79 enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 #ifdef CONFIG_NUMA 108 NUMA_HIT, /* allocated in intended node */ 109 NUMA_MISS, /* allocated in non intended node */ 110 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 112 NUMA_LOCAL, /* allocation from local node */ 113 NUMA_OTHER, /* allocation from other node */ 114 #endif 115 NR_VM_ZONE_STAT_ITEMS }; 116 117 /* 118 * We do arithmetic on the LRU lists in various places in the code, 119 * so it is important to keep the active lists LRU_ACTIVE higher in 120 * the array than the corresponding inactive lists, and to keep 121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 122 * 123 * This has to be kept in sync with the statistics in zone_stat_item 124 * above and the descriptions in vmstat_text in mm/vmstat.c 125 */ 126 #define LRU_BASE 0 127 #define LRU_ACTIVE 1 128 #define LRU_FILE 2 129 130 enum lru_list { 131 LRU_INACTIVE_ANON = LRU_BASE, 132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 135 LRU_UNEVICTABLE, 136 NR_LRU_LISTS 137 }; 138 139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 140 141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 142 143 static inline int is_file_lru(enum lru_list l) 144 { 145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 146 } 147 148 static inline int is_active_lru(enum lru_list l) 149 { 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 151 } 152 153 static inline int is_unevictable_lru(enum lru_list l) 154 { 155 return (l == LRU_UNEVICTABLE); 156 } 157 158 enum zone_watermarks { 159 WMARK_MIN, 160 WMARK_LOW, 161 WMARK_HIGH, 162 NR_WMARK 163 }; 164 165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 168 169 struct per_cpu_pages { 170 int count; /* number of pages in the list */ 171 int high; /* high watermark, emptying needed */ 172 int batch; /* chunk size for buddy add/remove */ 173 174 /* Lists of pages, one per migrate type stored on the pcp-lists */ 175 struct list_head lists[MIGRATE_PCPTYPES]; 176 }; 177 178 struct per_cpu_pageset { 179 struct per_cpu_pages pcp; 180 #ifdef CONFIG_NUMA 181 s8 expire; 182 #endif 183 #ifdef CONFIG_SMP 184 s8 stat_threshold; 185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 186 #endif 187 }; 188 189 #endif /* !__GENERATING_BOUNDS.H */ 190 191 enum zone_type { 192 #ifdef CONFIG_ZONE_DMA 193 /* 194 * ZONE_DMA is used when there are devices that are not able 195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 196 * carve out the portion of memory that is needed for these devices. 197 * The range is arch specific. 198 * 199 * Some examples 200 * 201 * Architecture Limit 202 * --------------------------- 203 * parisc, ia64, sparc <4G 204 * s390 <2G 205 * arm Various 206 * alpha Unlimited or 0-16MB. 207 * 208 * i386, x86_64 and multiple other arches 209 * <16M. 210 */ 211 ZONE_DMA, 212 #endif 213 #ifdef CONFIG_ZONE_DMA32 214 /* 215 * x86_64 needs two ZONE_DMAs because it supports devices that are 216 * only able to do DMA to the lower 16M but also 32 bit devices that 217 * can only do DMA areas below 4G. 218 */ 219 ZONE_DMA32, 220 #endif 221 /* 222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 223 * performed on pages in ZONE_NORMAL if the DMA devices support 224 * transfers to all addressable memory. 225 */ 226 ZONE_NORMAL, 227 #ifdef CONFIG_HIGHMEM 228 /* 229 * A memory area that is only addressable by the kernel through 230 * mapping portions into its own address space. This is for example 231 * used by i386 to allow the kernel to address the memory beyond 232 * 900MB. The kernel will set up special mappings (page 233 * table entries on i386) for each page that the kernel needs to 234 * access. 235 */ 236 ZONE_HIGHMEM, 237 #endif 238 ZONE_MOVABLE, 239 __MAX_NR_ZONES 240 }; 241 242 #ifndef __GENERATING_BOUNDS_H 243 244 /* 245 * When a memory allocation must conform to specific limitations (such 246 * as being suitable for DMA) the caller will pass in hints to the 247 * allocator in the gfp_mask, in the zone modifier bits. These bits 248 * are used to select a priority ordered list of memory zones which 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h 250 */ 251 252 #if MAX_NR_ZONES < 2 253 #define ZONES_SHIFT 0 254 #elif MAX_NR_ZONES <= 2 255 #define ZONES_SHIFT 1 256 #elif MAX_NR_ZONES <= 4 257 #define ZONES_SHIFT 2 258 #else 259 #error ZONES_SHIFT -- too many zones configured adjust calculation 260 #endif 261 262 struct zone_reclaim_stat { 263 /* 264 * The pageout code in vmscan.c keeps track of how many of the 265 * mem/swap backed and file backed pages are refeferenced. 266 * The higher the rotated/scanned ratio, the more valuable 267 * that cache is. 268 * 269 * The anon LRU stats live in [0], file LRU stats in [1] 270 */ 271 unsigned long recent_rotated[2]; 272 unsigned long recent_scanned[2]; 273 274 /* 275 * accumulated for batching 276 */ 277 unsigned long nr_saved_scan[NR_LRU_LISTS]; 278 }; 279 280 struct zone { 281 /* Fields commonly accessed by the page allocator */ 282 283 /* zone watermarks, access with *_wmark_pages(zone) macros */ 284 unsigned long watermark[NR_WMARK]; 285 286 /* 287 * We don't know if the memory that we're going to allocate will be freeable 288 * or/and it will be released eventually, so to avoid totally wasting several 289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 290 * to run OOM on the lower zones despite there's tons of freeable ram 291 * on the higher zones). This array is recalculated at runtime if the 292 * sysctl_lowmem_reserve_ratio sysctl changes. 293 */ 294 unsigned long lowmem_reserve[MAX_NR_ZONES]; 295 296 #ifdef CONFIG_NUMA 297 int node; 298 /* 299 * zone reclaim becomes active if more unmapped pages exist. 300 */ 301 unsigned long min_unmapped_pages; 302 unsigned long min_slab_pages; 303 #endif 304 struct per_cpu_pageset __percpu *pageset; 305 /* 306 * free areas of different sizes 307 */ 308 spinlock_t lock; 309 int all_unreclaimable; /* All pages pinned */ 310 #ifdef CONFIG_MEMORY_HOTPLUG 311 /* see spanned/present_pages for more description */ 312 seqlock_t span_seqlock; 313 #endif 314 struct free_area free_area[MAX_ORDER]; 315 316 #ifndef CONFIG_SPARSEMEM 317 /* 318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 319 * In SPARSEMEM, this map is stored in struct mem_section 320 */ 321 unsigned long *pageblock_flags; 322 #endif /* CONFIG_SPARSEMEM */ 323 324 #ifdef CONFIG_COMPACTION 325 /* 326 * On compaction failure, 1<<compact_defer_shift compactions 327 * are skipped before trying again. The number attempted since 328 * last failure is tracked with compact_considered. 329 */ 330 unsigned int compact_considered; 331 unsigned int compact_defer_shift; 332 #endif 333 334 ZONE_PADDING(_pad1_) 335 336 /* Fields commonly accessed by the page reclaim scanner */ 337 spinlock_t lru_lock; 338 struct zone_lru { 339 struct list_head list; 340 } lru[NR_LRU_LISTS]; 341 342 struct zone_reclaim_stat reclaim_stat; 343 344 unsigned long pages_scanned; /* since last reclaim */ 345 unsigned long flags; /* zone flags, see below */ 346 347 /* Zone statistics */ 348 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 349 350 /* 351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 352 * this zone's LRU. Maintained by the pageout code. 353 */ 354 unsigned int inactive_ratio; 355 356 357 ZONE_PADDING(_pad2_) 358 /* Rarely used or read-mostly fields */ 359 360 /* 361 * wait_table -- the array holding the hash table 362 * wait_table_hash_nr_entries -- the size of the hash table array 363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 364 * 365 * The purpose of all these is to keep track of the people 366 * waiting for a page to become available and make them 367 * runnable again when possible. The trouble is that this 368 * consumes a lot of space, especially when so few things 369 * wait on pages at a given time. So instead of using 370 * per-page waitqueues, we use a waitqueue hash table. 371 * 372 * The bucket discipline is to sleep on the same queue when 373 * colliding and wake all in that wait queue when removing. 374 * When something wakes, it must check to be sure its page is 375 * truly available, a la thundering herd. The cost of a 376 * collision is great, but given the expected load of the 377 * table, they should be so rare as to be outweighed by the 378 * benefits from the saved space. 379 * 380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 381 * primary users of these fields, and in mm/page_alloc.c 382 * free_area_init_core() performs the initialization of them. 383 */ 384 wait_queue_head_t * wait_table; 385 unsigned long wait_table_hash_nr_entries; 386 unsigned long wait_table_bits; 387 388 /* 389 * Discontig memory support fields. 390 */ 391 struct pglist_data *zone_pgdat; 392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 393 unsigned long zone_start_pfn; 394 395 /* 396 * zone_start_pfn, spanned_pages and present_pages are all 397 * protected by span_seqlock. It is a seqlock because it has 398 * to be read outside of zone->lock, and it is done in the main 399 * allocator path. But, it is written quite infrequently. 400 * 401 * The lock is declared along with zone->lock because it is 402 * frequently read in proximity to zone->lock. It's good to 403 * give them a chance of being in the same cacheline. 404 */ 405 unsigned long spanned_pages; /* total size, including holes */ 406 unsigned long present_pages; /* amount of memory (excluding holes) */ 407 408 /* 409 * rarely used fields: 410 */ 411 const char *name; 412 } ____cacheline_internodealigned_in_smp; 413 414 typedef enum { 415 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 416 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 417 } zone_flags_t; 418 419 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 420 { 421 set_bit(flag, &zone->flags); 422 } 423 424 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 425 { 426 return test_and_set_bit(flag, &zone->flags); 427 } 428 429 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 430 { 431 clear_bit(flag, &zone->flags); 432 } 433 434 static inline int zone_is_reclaim_locked(const struct zone *zone) 435 { 436 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 437 } 438 439 static inline int zone_is_oom_locked(const struct zone *zone) 440 { 441 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 442 } 443 444 /* 445 * The "priority" of VM scanning is how much of the queues we will scan in one 446 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 447 * queues ("queue_length >> 12") during an aging round. 448 */ 449 #define DEF_PRIORITY 12 450 451 /* Maximum number of zones on a zonelist */ 452 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 453 454 #ifdef CONFIG_NUMA 455 456 /* 457 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 458 * allocations to a single node for GFP_THISNODE. 459 * 460 * [0] : Zonelist with fallback 461 * [1] : No fallback (GFP_THISNODE) 462 */ 463 #define MAX_ZONELISTS 2 464 465 466 /* 467 * We cache key information from each zonelist for smaller cache 468 * footprint when scanning for free pages in get_page_from_freelist(). 469 * 470 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 471 * up short of free memory since the last time (last_fullzone_zap) 472 * we zero'd fullzones. 473 * 2) The array z_to_n[] maps each zone in the zonelist to its node 474 * id, so that we can efficiently evaluate whether that node is 475 * set in the current tasks mems_allowed. 476 * 477 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 478 * indexed by a zones offset in the zonelist zones[] array. 479 * 480 * The get_page_from_freelist() routine does two scans. During the 481 * first scan, we skip zones whose corresponding bit in 'fullzones' 482 * is set or whose corresponding node in current->mems_allowed (which 483 * comes from cpusets) is not set. During the second scan, we bypass 484 * this zonelist_cache, to ensure we look methodically at each zone. 485 * 486 * Once per second, we zero out (zap) fullzones, forcing us to 487 * reconsider nodes that might have regained more free memory. 488 * The field last_full_zap is the time we last zapped fullzones. 489 * 490 * This mechanism reduces the amount of time we waste repeatedly 491 * reexaming zones for free memory when they just came up low on 492 * memory momentarilly ago. 493 * 494 * The zonelist_cache struct members logically belong in struct 495 * zonelist. However, the mempolicy zonelists constructed for 496 * MPOL_BIND are intentionally variable length (and usually much 497 * shorter). A general purpose mechanism for handling structs with 498 * multiple variable length members is more mechanism than we want 499 * here. We resort to some special case hackery instead. 500 * 501 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 502 * part because they are shorter), so we put the fixed length stuff 503 * at the front of the zonelist struct, ending in a variable length 504 * zones[], as is needed by MPOL_BIND. 505 * 506 * Then we put the optional zonelist cache on the end of the zonelist 507 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 508 * the fixed length portion at the front of the struct. This pointer 509 * both enables us to find the zonelist cache, and in the case of 510 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 511 * to know that the zonelist cache is not there. 512 * 513 * The end result is that struct zonelists come in two flavors: 514 * 1) The full, fixed length version, shown below, and 515 * 2) The custom zonelists for MPOL_BIND. 516 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 517 * 518 * Even though there may be multiple CPU cores on a node modifying 519 * fullzones or last_full_zap in the same zonelist_cache at the same 520 * time, we don't lock it. This is just hint data - if it is wrong now 521 * and then, the allocator will still function, perhaps a bit slower. 522 */ 523 524 525 struct zonelist_cache { 526 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 527 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 528 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 529 }; 530 #else 531 #define MAX_ZONELISTS 1 532 struct zonelist_cache; 533 #endif 534 535 /* 536 * This struct contains information about a zone in a zonelist. It is stored 537 * here to avoid dereferences into large structures and lookups of tables 538 */ 539 struct zoneref { 540 struct zone *zone; /* Pointer to actual zone */ 541 int zone_idx; /* zone_idx(zoneref->zone) */ 542 }; 543 544 /* 545 * One allocation request operates on a zonelist. A zonelist 546 * is a list of zones, the first one is the 'goal' of the 547 * allocation, the other zones are fallback zones, in decreasing 548 * priority. 549 * 550 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 551 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 552 * * 553 * To speed the reading of the zonelist, the zonerefs contain the zone index 554 * of the entry being read. Helper functions to access information given 555 * a struct zoneref are 556 * 557 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 558 * zonelist_zone_idx() - Return the index of the zone for an entry 559 * zonelist_node_idx() - Return the index of the node for an entry 560 */ 561 struct zonelist { 562 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 563 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 564 #ifdef CONFIG_NUMA 565 struct zonelist_cache zlcache; // optional ... 566 #endif 567 }; 568 569 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 570 struct node_active_region { 571 unsigned long start_pfn; 572 unsigned long end_pfn; 573 int nid; 574 }; 575 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 576 577 #ifndef CONFIG_DISCONTIGMEM 578 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 579 extern struct page *mem_map; 580 #endif 581 582 /* 583 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 584 * (mostly NUMA machines?) to denote a higher-level memory zone than the 585 * zone denotes. 586 * 587 * On NUMA machines, each NUMA node would have a pg_data_t to describe 588 * it's memory layout. 589 * 590 * Memory statistics and page replacement data structures are maintained on a 591 * per-zone basis. 592 */ 593 struct bootmem_data; 594 typedef struct pglist_data { 595 struct zone node_zones[MAX_NR_ZONES]; 596 struct zonelist node_zonelists[MAX_ZONELISTS]; 597 int nr_zones; 598 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 599 struct page *node_mem_map; 600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 601 struct page_cgroup *node_page_cgroup; 602 #endif 603 #endif 604 #ifndef CONFIG_NO_BOOTMEM 605 struct bootmem_data *bdata; 606 #endif 607 #ifdef CONFIG_MEMORY_HOTPLUG 608 /* 609 * Must be held any time you expect node_start_pfn, node_present_pages 610 * or node_spanned_pages stay constant. Holding this will also 611 * guarantee that any pfn_valid() stays that way. 612 * 613 * Nests above zone->lock and zone->size_seqlock. 614 */ 615 spinlock_t node_size_lock; 616 #endif 617 unsigned long node_start_pfn; 618 unsigned long node_present_pages; /* total number of physical pages */ 619 unsigned long node_spanned_pages; /* total size of physical page 620 range, including holes */ 621 int node_id; 622 wait_queue_head_t kswapd_wait; 623 struct task_struct *kswapd; 624 int kswapd_max_order; 625 } pg_data_t; 626 627 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 628 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 629 #ifdef CONFIG_FLAT_NODE_MEM_MAP 630 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 631 #else 632 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 633 #endif 634 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 635 636 #include <linux/memory_hotplug.h> 637 638 extern struct mutex zonelists_mutex; 639 void build_all_zonelists(void *data); 640 void wakeup_kswapd(struct zone *zone, int order); 641 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 642 int classzone_idx, int alloc_flags); 643 enum memmap_context { 644 MEMMAP_EARLY, 645 MEMMAP_HOTPLUG, 646 }; 647 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 648 unsigned long size, 649 enum memmap_context context); 650 651 #ifdef CONFIG_HAVE_MEMORY_PRESENT 652 void memory_present(int nid, unsigned long start, unsigned long end); 653 #else 654 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 655 #endif 656 657 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 658 int local_memory_node(int node_id); 659 #else 660 static inline int local_memory_node(int node_id) { return node_id; }; 661 #endif 662 663 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 664 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 665 #endif 666 667 /* 668 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 669 */ 670 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 671 672 static inline int populated_zone(struct zone *zone) 673 { 674 return (!!zone->present_pages); 675 } 676 677 extern int movable_zone; 678 679 static inline int zone_movable_is_highmem(void) 680 { 681 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 682 return movable_zone == ZONE_HIGHMEM; 683 #else 684 return 0; 685 #endif 686 } 687 688 static inline int is_highmem_idx(enum zone_type idx) 689 { 690 #ifdef CONFIG_HIGHMEM 691 return (idx == ZONE_HIGHMEM || 692 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 693 #else 694 return 0; 695 #endif 696 } 697 698 static inline int is_normal_idx(enum zone_type idx) 699 { 700 return (idx == ZONE_NORMAL); 701 } 702 703 /** 704 * is_highmem - helper function to quickly check if a struct zone is a 705 * highmem zone or not. This is an attempt to keep references 706 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 707 * @zone - pointer to struct zone variable 708 */ 709 static inline int is_highmem(struct zone *zone) 710 { 711 #ifdef CONFIG_HIGHMEM 712 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 713 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 714 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 715 zone_movable_is_highmem()); 716 #else 717 return 0; 718 #endif 719 } 720 721 static inline int is_normal(struct zone *zone) 722 { 723 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 724 } 725 726 static inline int is_dma32(struct zone *zone) 727 { 728 #ifdef CONFIG_ZONE_DMA32 729 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 730 #else 731 return 0; 732 #endif 733 } 734 735 static inline int is_dma(struct zone *zone) 736 { 737 #ifdef CONFIG_ZONE_DMA 738 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 739 #else 740 return 0; 741 #endif 742 } 743 744 /* These two functions are used to setup the per zone pages min values */ 745 struct ctl_table; 746 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 747 void __user *, size_t *, loff_t *); 748 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 749 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 750 void __user *, size_t *, loff_t *); 751 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 752 void __user *, size_t *, loff_t *); 753 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 754 void __user *, size_t *, loff_t *); 755 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 756 void __user *, size_t *, loff_t *); 757 758 extern int numa_zonelist_order_handler(struct ctl_table *, int, 759 void __user *, size_t *, loff_t *); 760 extern char numa_zonelist_order[]; 761 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 762 763 #ifndef CONFIG_NEED_MULTIPLE_NODES 764 765 extern struct pglist_data contig_page_data; 766 #define NODE_DATA(nid) (&contig_page_data) 767 #define NODE_MEM_MAP(nid) mem_map 768 769 #else /* CONFIG_NEED_MULTIPLE_NODES */ 770 771 #include <asm/mmzone.h> 772 773 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 774 775 extern struct pglist_data *first_online_pgdat(void); 776 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 777 extern struct zone *next_zone(struct zone *zone); 778 779 /** 780 * for_each_online_pgdat - helper macro to iterate over all online nodes 781 * @pgdat - pointer to a pg_data_t variable 782 */ 783 #define for_each_online_pgdat(pgdat) \ 784 for (pgdat = first_online_pgdat(); \ 785 pgdat; \ 786 pgdat = next_online_pgdat(pgdat)) 787 /** 788 * for_each_zone - helper macro to iterate over all memory zones 789 * @zone - pointer to struct zone variable 790 * 791 * The user only needs to declare the zone variable, for_each_zone 792 * fills it in. 793 */ 794 #define for_each_zone(zone) \ 795 for (zone = (first_online_pgdat())->node_zones; \ 796 zone; \ 797 zone = next_zone(zone)) 798 799 #define for_each_populated_zone(zone) \ 800 for (zone = (first_online_pgdat())->node_zones; \ 801 zone; \ 802 zone = next_zone(zone)) \ 803 if (!populated_zone(zone)) \ 804 ; /* do nothing */ \ 805 else 806 807 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 808 { 809 return zoneref->zone; 810 } 811 812 static inline int zonelist_zone_idx(struct zoneref *zoneref) 813 { 814 return zoneref->zone_idx; 815 } 816 817 static inline int zonelist_node_idx(struct zoneref *zoneref) 818 { 819 #ifdef CONFIG_NUMA 820 /* zone_to_nid not available in this context */ 821 return zoneref->zone->node; 822 #else 823 return 0; 824 #endif /* CONFIG_NUMA */ 825 } 826 827 /** 828 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 829 * @z - The cursor used as a starting point for the search 830 * @highest_zoneidx - The zone index of the highest zone to return 831 * @nodes - An optional nodemask to filter the zonelist with 832 * @zone - The first suitable zone found is returned via this parameter 833 * 834 * This function returns the next zone at or below a given zone index that is 835 * within the allowed nodemask using a cursor as the starting point for the 836 * search. The zoneref returned is a cursor that represents the current zone 837 * being examined. It should be advanced by one before calling 838 * next_zones_zonelist again. 839 */ 840 struct zoneref *next_zones_zonelist(struct zoneref *z, 841 enum zone_type highest_zoneidx, 842 nodemask_t *nodes, 843 struct zone **zone); 844 845 /** 846 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 847 * @zonelist - The zonelist to search for a suitable zone 848 * @highest_zoneidx - The zone index of the highest zone to return 849 * @nodes - An optional nodemask to filter the zonelist with 850 * @zone - The first suitable zone found is returned via this parameter 851 * 852 * This function returns the first zone at or below a given zone index that is 853 * within the allowed nodemask. The zoneref returned is a cursor that can be 854 * used to iterate the zonelist with next_zones_zonelist by advancing it by 855 * one before calling. 856 */ 857 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 858 enum zone_type highest_zoneidx, 859 nodemask_t *nodes, 860 struct zone **zone) 861 { 862 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 863 zone); 864 } 865 866 /** 867 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 868 * @zone - The current zone in the iterator 869 * @z - The current pointer within zonelist->zones being iterated 870 * @zlist - The zonelist being iterated 871 * @highidx - The zone index of the highest zone to return 872 * @nodemask - Nodemask allowed by the allocator 873 * 874 * This iterator iterates though all zones at or below a given zone index and 875 * within a given nodemask 876 */ 877 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 878 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 879 zone; \ 880 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 881 882 /** 883 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 884 * @zone - The current zone in the iterator 885 * @z - The current pointer within zonelist->zones being iterated 886 * @zlist - The zonelist being iterated 887 * @highidx - The zone index of the highest zone to return 888 * 889 * This iterator iterates though all zones at or below a given zone index. 890 */ 891 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 892 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 893 894 #ifdef CONFIG_SPARSEMEM 895 #include <asm/sparsemem.h> 896 #endif 897 898 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 899 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 900 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 901 { 902 return 0; 903 } 904 #endif 905 906 #ifdef CONFIG_FLATMEM 907 #define pfn_to_nid(pfn) (0) 908 #endif 909 910 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 911 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 912 913 #ifdef CONFIG_SPARSEMEM 914 915 /* 916 * SECTION_SHIFT #bits space required to store a section # 917 * 918 * PA_SECTION_SHIFT physical address to/from section number 919 * PFN_SECTION_SHIFT pfn to/from section number 920 */ 921 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 922 923 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 924 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 925 926 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 927 928 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 929 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 930 931 #define SECTION_BLOCKFLAGS_BITS \ 932 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 933 934 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 935 #error Allocator MAX_ORDER exceeds SECTION_SIZE 936 #endif 937 938 struct page; 939 struct page_cgroup; 940 struct mem_section { 941 /* 942 * This is, logically, a pointer to an array of struct 943 * pages. However, it is stored with some other magic. 944 * (see sparse.c::sparse_init_one_section()) 945 * 946 * Additionally during early boot we encode node id of 947 * the location of the section here to guide allocation. 948 * (see sparse.c::memory_present()) 949 * 950 * Making it a UL at least makes someone do a cast 951 * before using it wrong. 952 */ 953 unsigned long section_mem_map; 954 955 /* See declaration of similar field in struct zone */ 956 unsigned long *pageblock_flags; 957 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 958 /* 959 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 960 * section. (see memcontrol.h/page_cgroup.h about this.) 961 */ 962 struct page_cgroup *page_cgroup; 963 unsigned long pad; 964 #endif 965 }; 966 967 #ifdef CONFIG_SPARSEMEM_EXTREME 968 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 969 #else 970 #define SECTIONS_PER_ROOT 1 971 #endif 972 973 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 974 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 975 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 976 977 #ifdef CONFIG_SPARSEMEM_EXTREME 978 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 979 #else 980 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 981 #endif 982 983 static inline struct mem_section *__nr_to_section(unsigned long nr) 984 { 985 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 986 return NULL; 987 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 988 } 989 extern int __section_nr(struct mem_section* ms); 990 extern unsigned long usemap_size(void); 991 992 /* 993 * We use the lower bits of the mem_map pointer to store 994 * a little bit of information. There should be at least 995 * 3 bits here due to 32-bit alignment. 996 */ 997 #define SECTION_MARKED_PRESENT (1UL<<0) 998 #define SECTION_HAS_MEM_MAP (1UL<<1) 999 #define SECTION_MAP_LAST_BIT (1UL<<2) 1000 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1001 #define SECTION_NID_SHIFT 2 1002 1003 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1004 { 1005 unsigned long map = section->section_mem_map; 1006 map &= SECTION_MAP_MASK; 1007 return (struct page *)map; 1008 } 1009 1010 static inline int present_section(struct mem_section *section) 1011 { 1012 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1013 } 1014 1015 static inline int present_section_nr(unsigned long nr) 1016 { 1017 return present_section(__nr_to_section(nr)); 1018 } 1019 1020 static inline int valid_section(struct mem_section *section) 1021 { 1022 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1023 } 1024 1025 static inline int valid_section_nr(unsigned long nr) 1026 { 1027 return valid_section(__nr_to_section(nr)); 1028 } 1029 1030 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1031 { 1032 return __nr_to_section(pfn_to_section_nr(pfn)); 1033 } 1034 1035 static inline int pfn_valid(unsigned long pfn) 1036 { 1037 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1038 return 0; 1039 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1040 } 1041 1042 static inline int pfn_present(unsigned long pfn) 1043 { 1044 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1045 return 0; 1046 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1047 } 1048 1049 /* 1050 * These are _only_ used during initialisation, therefore they 1051 * can use __initdata ... They could have names to indicate 1052 * this restriction. 1053 */ 1054 #ifdef CONFIG_NUMA 1055 #define pfn_to_nid(pfn) \ 1056 ({ \ 1057 unsigned long __pfn_to_nid_pfn = (pfn); \ 1058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1059 }) 1060 #else 1061 #define pfn_to_nid(pfn) (0) 1062 #endif 1063 1064 #define early_pfn_valid(pfn) pfn_valid(pfn) 1065 void sparse_init(void); 1066 #else 1067 #define sparse_init() do {} while (0) 1068 #define sparse_index_init(_sec, _nid) do {} while (0) 1069 #endif /* CONFIG_SPARSEMEM */ 1070 1071 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1072 bool early_pfn_in_nid(unsigned long pfn, int nid); 1073 #else 1074 #define early_pfn_in_nid(pfn, nid) (1) 1075 #endif 1076 1077 #ifndef early_pfn_valid 1078 #define early_pfn_valid(pfn) (1) 1079 #endif 1080 1081 void memory_present(int nid, unsigned long start, unsigned long end); 1082 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1083 1084 /* 1085 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1086 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1087 * pfn_valid_within() should be used in this case; we optimise this away 1088 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1089 */ 1090 #ifdef CONFIG_HOLES_IN_ZONE 1091 #define pfn_valid_within(pfn) pfn_valid(pfn) 1092 #else 1093 #define pfn_valid_within(pfn) (1) 1094 #endif 1095 1096 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1097 /* 1098 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1099 * associated with it or not. In FLATMEM, it is expected that holes always 1100 * have valid memmap as long as there is valid PFNs either side of the hole. 1101 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1102 * entire section. 1103 * 1104 * However, an ARM, and maybe other embedded architectures in the future 1105 * free memmap backing holes to save memory on the assumption the memmap is 1106 * never used. The page_zone linkages are then broken even though pfn_valid() 1107 * returns true. A walker of the full memmap must then do this additional 1108 * check to ensure the memmap they are looking at is sane by making sure 1109 * the zone and PFN linkages are still valid. This is expensive, but walkers 1110 * of the full memmap are extremely rare. 1111 */ 1112 int memmap_valid_within(unsigned long pfn, 1113 struct page *page, struct zone *zone); 1114 #else 1115 static inline int memmap_valid_within(unsigned long pfn, 1116 struct page *page, struct zone *zone) 1117 { 1118 return 1; 1119 } 1120 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1121 1122 #endif /* !__GENERATING_BOUNDS.H */ 1123 #endif /* !__ASSEMBLY__ */ 1124 #endif /* _LINUX_MMZONE_H */ 1125