xref: /linux-6.15/include/linux/mmzone.h (revision 615c36f5)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
104 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
105 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
106 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
107 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
108 	NR_DIRTIED,		/* page dirtyings since bootup */
109 	NR_WRITTEN,		/* page writings since bootup */
110 #ifdef CONFIG_NUMA
111 	NUMA_HIT,		/* allocated in intended node */
112 	NUMA_MISS,		/* allocated in non intended node */
113 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
114 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
115 	NUMA_LOCAL,		/* allocation from local node */
116 	NUMA_OTHER,		/* allocation from other node */
117 #endif
118 	NR_ANON_TRANSPARENT_HUGEPAGES,
119 	NR_VM_ZONE_STAT_ITEMS };
120 
121 /*
122  * We do arithmetic on the LRU lists in various places in the code,
123  * so it is important to keep the active lists LRU_ACTIVE higher in
124  * the array than the corresponding inactive lists, and to keep
125  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126  *
127  * This has to be kept in sync with the statistics in zone_stat_item
128  * above and the descriptions in vmstat_text in mm/vmstat.c
129  */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133 
134 enum lru_list {
135 	LRU_INACTIVE_ANON = LRU_BASE,
136 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139 	LRU_UNEVICTABLE,
140 	NR_LRU_LISTS
141 };
142 
143 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144 
145 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146 
147 static inline int is_file_lru(enum lru_list l)
148 {
149 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150 }
151 
152 static inline int is_active_lru(enum lru_list l)
153 {
154 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
155 }
156 
157 static inline int is_unevictable_lru(enum lru_list l)
158 {
159 	return (l == LRU_UNEVICTABLE);
160 }
161 
162 /* Mask used at gathering information at once (see memcontrol.c) */
163 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
164 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
165 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
166 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
167 
168 /* Isolate inactive pages */
169 #define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
170 /* Isolate active pages */
171 #define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
172 /* Isolate clean file */
173 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
174 /* Isolate unmapped file */
175 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
176 
177 /* LRU Isolation modes. */
178 typedef unsigned __bitwise__ isolate_mode_t;
179 
180 enum zone_watermarks {
181 	WMARK_MIN,
182 	WMARK_LOW,
183 	WMARK_HIGH,
184 	NR_WMARK
185 };
186 
187 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
188 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
189 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
190 
191 struct per_cpu_pages {
192 	int count;		/* number of pages in the list */
193 	int high;		/* high watermark, emptying needed */
194 	int batch;		/* chunk size for buddy add/remove */
195 
196 	/* Lists of pages, one per migrate type stored on the pcp-lists */
197 	struct list_head lists[MIGRATE_PCPTYPES];
198 };
199 
200 struct per_cpu_pageset {
201 	struct per_cpu_pages pcp;
202 #ifdef CONFIG_NUMA
203 	s8 expire;
204 #endif
205 #ifdef CONFIG_SMP
206 	s8 stat_threshold;
207 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
208 #endif
209 };
210 
211 #endif /* !__GENERATING_BOUNDS.H */
212 
213 enum zone_type {
214 #ifdef CONFIG_ZONE_DMA
215 	/*
216 	 * ZONE_DMA is used when there are devices that are not able
217 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
218 	 * carve out the portion of memory that is needed for these devices.
219 	 * The range is arch specific.
220 	 *
221 	 * Some examples
222 	 *
223 	 * Architecture		Limit
224 	 * ---------------------------
225 	 * parisc, ia64, sparc	<4G
226 	 * s390			<2G
227 	 * arm			Various
228 	 * alpha		Unlimited or 0-16MB.
229 	 *
230 	 * i386, x86_64 and multiple other arches
231 	 * 			<16M.
232 	 */
233 	ZONE_DMA,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	/*
237 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
238 	 * only able to do DMA to the lower 16M but also 32 bit devices that
239 	 * can only do DMA areas below 4G.
240 	 */
241 	ZONE_DMA32,
242 #endif
243 	/*
244 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
245 	 * performed on pages in ZONE_NORMAL if the DMA devices support
246 	 * transfers to all addressable memory.
247 	 */
248 	ZONE_NORMAL,
249 #ifdef CONFIG_HIGHMEM
250 	/*
251 	 * A memory area that is only addressable by the kernel through
252 	 * mapping portions into its own address space. This is for example
253 	 * used by i386 to allow the kernel to address the memory beyond
254 	 * 900MB. The kernel will set up special mappings (page
255 	 * table entries on i386) for each page that the kernel needs to
256 	 * access.
257 	 */
258 	ZONE_HIGHMEM,
259 #endif
260 	ZONE_MOVABLE,
261 	__MAX_NR_ZONES
262 };
263 
264 #ifndef __GENERATING_BOUNDS_H
265 
266 /*
267  * When a memory allocation must conform to specific limitations (such
268  * as being suitable for DMA) the caller will pass in hints to the
269  * allocator in the gfp_mask, in the zone modifier bits.  These bits
270  * are used to select a priority ordered list of memory zones which
271  * match the requested limits. See gfp_zone() in include/linux/gfp.h
272  */
273 
274 #if MAX_NR_ZONES < 2
275 #define ZONES_SHIFT 0
276 #elif MAX_NR_ZONES <= 2
277 #define ZONES_SHIFT 1
278 #elif MAX_NR_ZONES <= 4
279 #define ZONES_SHIFT 2
280 #else
281 #error ZONES_SHIFT -- too many zones configured adjust calculation
282 #endif
283 
284 struct zone_reclaim_stat {
285 	/*
286 	 * The pageout code in vmscan.c keeps track of how many of the
287 	 * mem/swap backed and file backed pages are refeferenced.
288 	 * The higher the rotated/scanned ratio, the more valuable
289 	 * that cache is.
290 	 *
291 	 * The anon LRU stats live in [0], file LRU stats in [1]
292 	 */
293 	unsigned long		recent_rotated[2];
294 	unsigned long		recent_scanned[2];
295 };
296 
297 struct zone {
298 	/* Fields commonly accessed by the page allocator */
299 
300 	/* zone watermarks, access with *_wmark_pages(zone) macros */
301 	unsigned long watermark[NR_WMARK];
302 
303 	/*
304 	 * When free pages are below this point, additional steps are taken
305 	 * when reading the number of free pages to avoid per-cpu counter
306 	 * drift allowing watermarks to be breached
307 	 */
308 	unsigned long percpu_drift_mark;
309 
310 	/*
311 	 * We don't know if the memory that we're going to allocate will be freeable
312 	 * or/and it will be released eventually, so to avoid totally wasting several
313 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
314 	 * to run OOM on the lower zones despite there's tons of freeable ram
315 	 * on the higher zones). This array is recalculated at runtime if the
316 	 * sysctl_lowmem_reserve_ratio sysctl changes.
317 	 */
318 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
319 
320 #ifdef CONFIG_NUMA
321 	int node;
322 	/*
323 	 * zone reclaim becomes active if more unmapped pages exist.
324 	 */
325 	unsigned long		min_unmapped_pages;
326 	unsigned long		min_slab_pages;
327 #endif
328 	struct per_cpu_pageset __percpu *pageset;
329 	/*
330 	 * free areas of different sizes
331 	 */
332 	spinlock_t		lock;
333 	int                     all_unreclaimable; /* All pages pinned */
334 #ifdef CONFIG_MEMORY_HOTPLUG
335 	/* see spanned/present_pages for more description */
336 	seqlock_t		span_seqlock;
337 #endif
338 	struct free_area	free_area[MAX_ORDER];
339 
340 #ifndef CONFIG_SPARSEMEM
341 	/*
342 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
343 	 * In SPARSEMEM, this map is stored in struct mem_section
344 	 */
345 	unsigned long		*pageblock_flags;
346 #endif /* CONFIG_SPARSEMEM */
347 
348 #ifdef CONFIG_COMPACTION
349 	/*
350 	 * On compaction failure, 1<<compact_defer_shift compactions
351 	 * are skipped before trying again. The number attempted since
352 	 * last failure is tracked with compact_considered.
353 	 */
354 	unsigned int		compact_considered;
355 	unsigned int		compact_defer_shift;
356 #endif
357 
358 	ZONE_PADDING(_pad1_)
359 
360 	/* Fields commonly accessed by the page reclaim scanner */
361 	spinlock_t		lru_lock;
362 	struct zone_lru {
363 		struct list_head list;
364 	} lru[NR_LRU_LISTS];
365 
366 	struct zone_reclaim_stat reclaim_stat;
367 
368 	unsigned long		pages_scanned;	   /* since last reclaim */
369 	unsigned long		flags;		   /* zone flags, see below */
370 
371 	/* Zone statistics */
372 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
373 
374 	/*
375 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
376 	 * this zone's LRU.  Maintained by the pageout code.
377 	 */
378 	unsigned int inactive_ratio;
379 
380 
381 	ZONE_PADDING(_pad2_)
382 	/* Rarely used or read-mostly fields */
383 
384 	/*
385 	 * wait_table		-- the array holding the hash table
386 	 * wait_table_hash_nr_entries	-- the size of the hash table array
387 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
388 	 *
389 	 * The purpose of all these is to keep track of the people
390 	 * waiting for a page to become available and make them
391 	 * runnable again when possible. The trouble is that this
392 	 * consumes a lot of space, especially when so few things
393 	 * wait on pages at a given time. So instead of using
394 	 * per-page waitqueues, we use a waitqueue hash table.
395 	 *
396 	 * The bucket discipline is to sleep on the same queue when
397 	 * colliding and wake all in that wait queue when removing.
398 	 * When something wakes, it must check to be sure its page is
399 	 * truly available, a la thundering herd. The cost of a
400 	 * collision is great, but given the expected load of the
401 	 * table, they should be so rare as to be outweighed by the
402 	 * benefits from the saved space.
403 	 *
404 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
405 	 * primary users of these fields, and in mm/page_alloc.c
406 	 * free_area_init_core() performs the initialization of them.
407 	 */
408 	wait_queue_head_t	* wait_table;
409 	unsigned long		wait_table_hash_nr_entries;
410 	unsigned long		wait_table_bits;
411 
412 	/*
413 	 * Discontig memory support fields.
414 	 */
415 	struct pglist_data	*zone_pgdat;
416 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
417 	unsigned long		zone_start_pfn;
418 
419 	/*
420 	 * zone_start_pfn, spanned_pages and present_pages are all
421 	 * protected by span_seqlock.  It is a seqlock because it has
422 	 * to be read outside of zone->lock, and it is done in the main
423 	 * allocator path.  But, it is written quite infrequently.
424 	 *
425 	 * The lock is declared along with zone->lock because it is
426 	 * frequently read in proximity to zone->lock.  It's good to
427 	 * give them a chance of being in the same cacheline.
428 	 */
429 	unsigned long		spanned_pages;	/* total size, including holes */
430 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
431 
432 	/*
433 	 * rarely used fields:
434 	 */
435 	const char		*name;
436 } ____cacheline_internodealigned_in_smp;
437 
438 typedef enum {
439 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
440 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
441 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
442 					 * a congested BDI
443 					 */
444 } zone_flags_t;
445 
446 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
447 {
448 	set_bit(flag, &zone->flags);
449 }
450 
451 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
452 {
453 	return test_and_set_bit(flag, &zone->flags);
454 }
455 
456 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
457 {
458 	clear_bit(flag, &zone->flags);
459 }
460 
461 static inline int zone_is_reclaim_congested(const struct zone *zone)
462 {
463 	return test_bit(ZONE_CONGESTED, &zone->flags);
464 }
465 
466 static inline int zone_is_reclaim_locked(const struct zone *zone)
467 {
468 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
469 }
470 
471 static inline int zone_is_oom_locked(const struct zone *zone)
472 {
473 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
474 }
475 
476 /*
477  * The "priority" of VM scanning is how much of the queues we will scan in one
478  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
479  * queues ("queue_length >> 12") during an aging round.
480  */
481 #define DEF_PRIORITY 12
482 
483 /* Maximum number of zones on a zonelist */
484 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
485 
486 #ifdef CONFIG_NUMA
487 
488 /*
489  * The NUMA zonelists are doubled because we need zonelists that restrict the
490  * allocations to a single node for GFP_THISNODE.
491  *
492  * [0]	: Zonelist with fallback
493  * [1]	: No fallback (GFP_THISNODE)
494  */
495 #define MAX_ZONELISTS 2
496 
497 
498 /*
499  * We cache key information from each zonelist for smaller cache
500  * footprint when scanning for free pages in get_page_from_freelist().
501  *
502  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
503  *    up short of free memory since the last time (last_fullzone_zap)
504  *    we zero'd fullzones.
505  * 2) The array z_to_n[] maps each zone in the zonelist to its node
506  *    id, so that we can efficiently evaluate whether that node is
507  *    set in the current tasks mems_allowed.
508  *
509  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
510  * indexed by a zones offset in the zonelist zones[] array.
511  *
512  * The get_page_from_freelist() routine does two scans.  During the
513  * first scan, we skip zones whose corresponding bit in 'fullzones'
514  * is set or whose corresponding node in current->mems_allowed (which
515  * comes from cpusets) is not set.  During the second scan, we bypass
516  * this zonelist_cache, to ensure we look methodically at each zone.
517  *
518  * Once per second, we zero out (zap) fullzones, forcing us to
519  * reconsider nodes that might have regained more free memory.
520  * The field last_full_zap is the time we last zapped fullzones.
521  *
522  * This mechanism reduces the amount of time we waste repeatedly
523  * reexaming zones for free memory when they just came up low on
524  * memory momentarilly ago.
525  *
526  * The zonelist_cache struct members logically belong in struct
527  * zonelist.  However, the mempolicy zonelists constructed for
528  * MPOL_BIND are intentionally variable length (and usually much
529  * shorter).  A general purpose mechanism for handling structs with
530  * multiple variable length members is more mechanism than we want
531  * here.  We resort to some special case hackery instead.
532  *
533  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
534  * part because they are shorter), so we put the fixed length stuff
535  * at the front of the zonelist struct, ending in a variable length
536  * zones[], as is needed by MPOL_BIND.
537  *
538  * Then we put the optional zonelist cache on the end of the zonelist
539  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
540  * the fixed length portion at the front of the struct.  This pointer
541  * both enables us to find the zonelist cache, and in the case of
542  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
543  * to know that the zonelist cache is not there.
544  *
545  * The end result is that struct zonelists come in two flavors:
546  *  1) The full, fixed length version, shown below, and
547  *  2) The custom zonelists for MPOL_BIND.
548  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
549  *
550  * Even though there may be multiple CPU cores on a node modifying
551  * fullzones or last_full_zap in the same zonelist_cache at the same
552  * time, we don't lock it.  This is just hint data - if it is wrong now
553  * and then, the allocator will still function, perhaps a bit slower.
554  */
555 
556 
557 struct zonelist_cache {
558 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
559 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
560 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
561 };
562 #else
563 #define MAX_ZONELISTS 1
564 struct zonelist_cache;
565 #endif
566 
567 /*
568  * This struct contains information about a zone in a zonelist. It is stored
569  * here to avoid dereferences into large structures and lookups of tables
570  */
571 struct zoneref {
572 	struct zone *zone;	/* Pointer to actual zone */
573 	int zone_idx;		/* zone_idx(zoneref->zone) */
574 };
575 
576 /*
577  * One allocation request operates on a zonelist. A zonelist
578  * is a list of zones, the first one is the 'goal' of the
579  * allocation, the other zones are fallback zones, in decreasing
580  * priority.
581  *
582  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
583  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
584  * *
585  * To speed the reading of the zonelist, the zonerefs contain the zone index
586  * of the entry being read. Helper functions to access information given
587  * a struct zoneref are
588  *
589  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
590  * zonelist_zone_idx()	- Return the index of the zone for an entry
591  * zonelist_node_idx()	- Return the index of the node for an entry
592  */
593 struct zonelist {
594 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
595 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
596 #ifdef CONFIG_NUMA
597 	struct zonelist_cache zlcache;			     // optional ...
598 #endif
599 };
600 
601 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
602 struct node_active_region {
603 	unsigned long start_pfn;
604 	unsigned long end_pfn;
605 	int nid;
606 };
607 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
608 
609 #ifndef CONFIG_DISCONTIGMEM
610 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
611 extern struct page *mem_map;
612 #endif
613 
614 /*
615  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
616  * (mostly NUMA machines?) to denote a higher-level memory zone than the
617  * zone denotes.
618  *
619  * On NUMA machines, each NUMA node would have a pg_data_t to describe
620  * it's memory layout.
621  *
622  * Memory statistics and page replacement data structures are maintained on a
623  * per-zone basis.
624  */
625 struct bootmem_data;
626 typedef struct pglist_data {
627 	struct zone node_zones[MAX_NR_ZONES];
628 	struct zonelist node_zonelists[MAX_ZONELISTS];
629 	int nr_zones;
630 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
631 	struct page *node_mem_map;
632 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
633 	struct page_cgroup *node_page_cgroup;
634 #endif
635 #endif
636 #ifndef CONFIG_NO_BOOTMEM
637 	struct bootmem_data *bdata;
638 #endif
639 #ifdef CONFIG_MEMORY_HOTPLUG
640 	/*
641 	 * Must be held any time you expect node_start_pfn, node_present_pages
642 	 * or node_spanned_pages stay constant.  Holding this will also
643 	 * guarantee that any pfn_valid() stays that way.
644 	 *
645 	 * Nests above zone->lock and zone->size_seqlock.
646 	 */
647 	spinlock_t node_size_lock;
648 #endif
649 	unsigned long node_start_pfn;
650 	unsigned long node_present_pages; /* total number of physical pages */
651 	unsigned long node_spanned_pages; /* total size of physical page
652 					     range, including holes */
653 	int node_id;
654 	wait_queue_head_t kswapd_wait;
655 	struct task_struct *kswapd;
656 	int kswapd_max_order;
657 	enum zone_type classzone_idx;
658 } pg_data_t;
659 
660 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
661 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
662 #ifdef CONFIG_FLAT_NODE_MEM_MAP
663 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
664 #else
665 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
666 #endif
667 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
668 
669 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
670 
671 #define node_end_pfn(nid) ({\
672 	pg_data_t *__pgdat = NODE_DATA(nid);\
673 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
674 })
675 
676 #include <linux/memory_hotplug.h>
677 
678 extern struct mutex zonelists_mutex;
679 void build_all_zonelists(void *data);
680 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
682 		int classzone_idx, int alloc_flags);
683 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
684 		int classzone_idx, int alloc_flags);
685 enum memmap_context {
686 	MEMMAP_EARLY,
687 	MEMMAP_HOTPLUG,
688 };
689 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
690 				     unsigned long size,
691 				     enum memmap_context context);
692 
693 #ifdef CONFIG_HAVE_MEMORY_PRESENT
694 void memory_present(int nid, unsigned long start, unsigned long end);
695 #else
696 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
697 #endif
698 
699 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
700 int local_memory_node(int node_id);
701 #else
702 static inline int local_memory_node(int node_id) { return node_id; };
703 #endif
704 
705 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
706 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
707 #endif
708 
709 /*
710  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
711  */
712 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
713 
714 static inline int populated_zone(struct zone *zone)
715 {
716 	return (!!zone->present_pages);
717 }
718 
719 extern int movable_zone;
720 
721 static inline int zone_movable_is_highmem(void)
722 {
723 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
724 	return movable_zone == ZONE_HIGHMEM;
725 #else
726 	return 0;
727 #endif
728 }
729 
730 static inline int is_highmem_idx(enum zone_type idx)
731 {
732 #ifdef CONFIG_HIGHMEM
733 	return (idx == ZONE_HIGHMEM ||
734 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
735 #else
736 	return 0;
737 #endif
738 }
739 
740 static inline int is_normal_idx(enum zone_type idx)
741 {
742 	return (idx == ZONE_NORMAL);
743 }
744 
745 /**
746  * is_highmem - helper function to quickly check if a struct zone is a
747  *              highmem zone or not.  This is an attempt to keep references
748  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
749  * @zone - pointer to struct zone variable
750  */
751 static inline int is_highmem(struct zone *zone)
752 {
753 #ifdef CONFIG_HIGHMEM
754 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
755 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
756 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
757 		zone_movable_is_highmem());
758 #else
759 	return 0;
760 #endif
761 }
762 
763 static inline int is_normal(struct zone *zone)
764 {
765 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
766 }
767 
768 static inline int is_dma32(struct zone *zone)
769 {
770 #ifdef CONFIG_ZONE_DMA32
771 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
772 #else
773 	return 0;
774 #endif
775 }
776 
777 static inline int is_dma(struct zone *zone)
778 {
779 #ifdef CONFIG_ZONE_DMA
780 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
781 #else
782 	return 0;
783 #endif
784 }
785 
786 /* These two functions are used to setup the per zone pages min values */
787 struct ctl_table;
788 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
789 					void __user *, size_t *, loff_t *);
790 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
791 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
792 					void __user *, size_t *, loff_t *);
793 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
794 					void __user *, size_t *, loff_t *);
795 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
796 			void __user *, size_t *, loff_t *);
797 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
798 			void __user *, size_t *, loff_t *);
799 
800 extern int numa_zonelist_order_handler(struct ctl_table *, int,
801 			void __user *, size_t *, loff_t *);
802 extern char numa_zonelist_order[];
803 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
804 
805 #ifndef CONFIG_NEED_MULTIPLE_NODES
806 
807 extern struct pglist_data contig_page_data;
808 #define NODE_DATA(nid)		(&contig_page_data)
809 #define NODE_MEM_MAP(nid)	mem_map
810 
811 #else /* CONFIG_NEED_MULTIPLE_NODES */
812 
813 #include <asm/mmzone.h>
814 
815 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
816 
817 extern struct pglist_data *first_online_pgdat(void);
818 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
819 extern struct zone *next_zone(struct zone *zone);
820 
821 /**
822  * for_each_online_pgdat - helper macro to iterate over all online nodes
823  * @pgdat - pointer to a pg_data_t variable
824  */
825 #define for_each_online_pgdat(pgdat)			\
826 	for (pgdat = first_online_pgdat();		\
827 	     pgdat;					\
828 	     pgdat = next_online_pgdat(pgdat))
829 /**
830  * for_each_zone - helper macro to iterate over all memory zones
831  * @zone - pointer to struct zone variable
832  *
833  * The user only needs to declare the zone variable, for_each_zone
834  * fills it in.
835  */
836 #define for_each_zone(zone)			        \
837 	for (zone = (first_online_pgdat())->node_zones; \
838 	     zone;					\
839 	     zone = next_zone(zone))
840 
841 #define for_each_populated_zone(zone)		        \
842 	for (zone = (first_online_pgdat())->node_zones; \
843 	     zone;					\
844 	     zone = next_zone(zone))			\
845 		if (!populated_zone(zone))		\
846 			; /* do nothing */		\
847 		else
848 
849 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
850 {
851 	return zoneref->zone;
852 }
853 
854 static inline int zonelist_zone_idx(struct zoneref *zoneref)
855 {
856 	return zoneref->zone_idx;
857 }
858 
859 static inline int zonelist_node_idx(struct zoneref *zoneref)
860 {
861 #ifdef CONFIG_NUMA
862 	/* zone_to_nid not available in this context */
863 	return zoneref->zone->node;
864 #else
865 	return 0;
866 #endif /* CONFIG_NUMA */
867 }
868 
869 /**
870  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
871  * @z - The cursor used as a starting point for the search
872  * @highest_zoneidx - The zone index of the highest zone to return
873  * @nodes - An optional nodemask to filter the zonelist with
874  * @zone - The first suitable zone found is returned via this parameter
875  *
876  * This function returns the next zone at or below a given zone index that is
877  * within the allowed nodemask using a cursor as the starting point for the
878  * search. The zoneref returned is a cursor that represents the current zone
879  * being examined. It should be advanced by one before calling
880  * next_zones_zonelist again.
881  */
882 struct zoneref *next_zones_zonelist(struct zoneref *z,
883 					enum zone_type highest_zoneidx,
884 					nodemask_t *nodes,
885 					struct zone **zone);
886 
887 /**
888  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
889  * @zonelist - The zonelist to search for a suitable zone
890  * @highest_zoneidx - The zone index of the highest zone to return
891  * @nodes - An optional nodemask to filter the zonelist with
892  * @zone - The first suitable zone found is returned via this parameter
893  *
894  * This function returns the first zone at or below a given zone index that is
895  * within the allowed nodemask. The zoneref returned is a cursor that can be
896  * used to iterate the zonelist with next_zones_zonelist by advancing it by
897  * one before calling.
898  */
899 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
900 					enum zone_type highest_zoneidx,
901 					nodemask_t *nodes,
902 					struct zone **zone)
903 {
904 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
905 								zone);
906 }
907 
908 /**
909  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
910  * @zone - The current zone in the iterator
911  * @z - The current pointer within zonelist->zones being iterated
912  * @zlist - The zonelist being iterated
913  * @highidx - The zone index of the highest zone to return
914  * @nodemask - Nodemask allowed by the allocator
915  *
916  * This iterator iterates though all zones at or below a given zone index and
917  * within a given nodemask
918  */
919 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
920 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
921 		zone;							\
922 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
923 
924 /**
925  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
926  * @zone - The current zone in the iterator
927  * @z - The current pointer within zonelist->zones being iterated
928  * @zlist - The zonelist being iterated
929  * @highidx - The zone index of the highest zone to return
930  *
931  * This iterator iterates though all zones at or below a given zone index.
932  */
933 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
934 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
935 
936 #ifdef CONFIG_SPARSEMEM
937 #include <asm/sparsemem.h>
938 #endif
939 
940 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
941 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
942 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
943 {
944 	return 0;
945 }
946 #endif
947 
948 #ifdef CONFIG_FLATMEM
949 #define pfn_to_nid(pfn)		(0)
950 #endif
951 
952 #ifdef CONFIG_SPARSEMEM
953 
954 /*
955  * SECTION_SHIFT    		#bits space required to store a section #
956  *
957  * PA_SECTION_SHIFT		physical address to/from section number
958  * PFN_SECTION_SHIFT		pfn to/from section number
959  */
960 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
961 
962 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
963 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
964 
965 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
966 
967 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
968 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
969 
970 #define SECTION_BLOCKFLAGS_BITS \
971 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
972 
973 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
974 #error Allocator MAX_ORDER exceeds SECTION_SIZE
975 #endif
976 
977 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
978 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
979 
980 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
981 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
982 
983 struct page;
984 struct page_cgroup;
985 struct mem_section {
986 	/*
987 	 * This is, logically, a pointer to an array of struct
988 	 * pages.  However, it is stored with some other magic.
989 	 * (see sparse.c::sparse_init_one_section())
990 	 *
991 	 * Additionally during early boot we encode node id of
992 	 * the location of the section here to guide allocation.
993 	 * (see sparse.c::memory_present())
994 	 *
995 	 * Making it a UL at least makes someone do a cast
996 	 * before using it wrong.
997 	 */
998 	unsigned long section_mem_map;
999 
1000 	/* See declaration of similar field in struct zone */
1001 	unsigned long *pageblock_flags;
1002 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1003 	/*
1004 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1005 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1006 	 */
1007 	struct page_cgroup *page_cgroup;
1008 	unsigned long pad;
1009 #endif
1010 };
1011 
1012 #ifdef CONFIG_SPARSEMEM_EXTREME
1013 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1014 #else
1015 #define SECTIONS_PER_ROOT	1
1016 #endif
1017 
1018 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1019 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1020 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1021 
1022 #ifdef CONFIG_SPARSEMEM_EXTREME
1023 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1024 #else
1025 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1026 #endif
1027 
1028 static inline struct mem_section *__nr_to_section(unsigned long nr)
1029 {
1030 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1031 		return NULL;
1032 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1033 }
1034 extern int __section_nr(struct mem_section* ms);
1035 extern unsigned long usemap_size(void);
1036 
1037 /*
1038  * We use the lower bits of the mem_map pointer to store
1039  * a little bit of information.  There should be at least
1040  * 3 bits here due to 32-bit alignment.
1041  */
1042 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1043 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1044 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1045 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1046 #define SECTION_NID_SHIFT	2
1047 
1048 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1049 {
1050 	unsigned long map = section->section_mem_map;
1051 	map &= SECTION_MAP_MASK;
1052 	return (struct page *)map;
1053 }
1054 
1055 static inline int present_section(struct mem_section *section)
1056 {
1057 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1058 }
1059 
1060 static inline int present_section_nr(unsigned long nr)
1061 {
1062 	return present_section(__nr_to_section(nr));
1063 }
1064 
1065 static inline int valid_section(struct mem_section *section)
1066 {
1067 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1068 }
1069 
1070 static inline int valid_section_nr(unsigned long nr)
1071 {
1072 	return valid_section(__nr_to_section(nr));
1073 }
1074 
1075 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1076 {
1077 	return __nr_to_section(pfn_to_section_nr(pfn));
1078 }
1079 
1080 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1081 static inline int pfn_valid(unsigned long pfn)
1082 {
1083 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1084 		return 0;
1085 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1086 }
1087 #endif
1088 
1089 static inline int pfn_present(unsigned long pfn)
1090 {
1091 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1092 		return 0;
1093 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1094 }
1095 
1096 /*
1097  * These are _only_ used during initialisation, therefore they
1098  * can use __initdata ...  They could have names to indicate
1099  * this restriction.
1100  */
1101 #ifdef CONFIG_NUMA
1102 #define pfn_to_nid(pfn)							\
1103 ({									\
1104 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1105 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1106 })
1107 #else
1108 #define pfn_to_nid(pfn)		(0)
1109 #endif
1110 
1111 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1112 void sparse_init(void);
1113 #else
1114 #define sparse_init()	do {} while (0)
1115 #define sparse_index_init(_sec, _nid)  do {} while (0)
1116 #endif /* CONFIG_SPARSEMEM */
1117 
1118 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1119 bool early_pfn_in_nid(unsigned long pfn, int nid);
1120 #else
1121 #define early_pfn_in_nid(pfn, nid)	(1)
1122 #endif
1123 
1124 #ifndef early_pfn_valid
1125 #define early_pfn_valid(pfn)	(1)
1126 #endif
1127 
1128 void memory_present(int nid, unsigned long start, unsigned long end);
1129 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1130 
1131 /*
1132  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1133  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1134  * pfn_valid_within() should be used in this case; we optimise this away
1135  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1136  */
1137 #ifdef CONFIG_HOLES_IN_ZONE
1138 #define pfn_valid_within(pfn) pfn_valid(pfn)
1139 #else
1140 #define pfn_valid_within(pfn) (1)
1141 #endif
1142 
1143 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1144 /*
1145  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1146  * associated with it or not. In FLATMEM, it is expected that holes always
1147  * have valid memmap as long as there is valid PFNs either side of the hole.
1148  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1149  * entire section.
1150  *
1151  * However, an ARM, and maybe other embedded architectures in the future
1152  * free memmap backing holes to save memory on the assumption the memmap is
1153  * never used. The page_zone linkages are then broken even though pfn_valid()
1154  * returns true. A walker of the full memmap must then do this additional
1155  * check to ensure the memmap they are looking at is sane by making sure
1156  * the zone and PFN linkages are still valid. This is expensive, but walkers
1157  * of the full memmap are extremely rare.
1158  */
1159 int memmap_valid_within(unsigned long pfn,
1160 					struct page *page, struct zone *zone);
1161 #else
1162 static inline int memmap_valid_within(unsigned long pfn,
1163 					struct page *page, struct zone *zone)
1164 {
1165 	return 1;
1166 }
1167 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1168 
1169 #endif /* !__GENERATING_BOUNDS.H */
1170 #endif /* !__ASSEMBLY__ */
1171 #endif /* _LINUX_MMZONE_H */
1172