xref: /linux-6.15/include/linux/mmzone.h (revision 5d4a2e29)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
104 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
105 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 	NUMA_HIT,		/* allocated in intended node */
109 	NUMA_MISS,		/* allocated in non intended node */
110 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
111 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
112 	NUMA_LOCAL,		/* allocation from local node */
113 	NUMA_OTHER,		/* allocation from other node */
114 #endif
115 	NR_VM_ZONE_STAT_ITEMS };
116 
117 /*
118  * We do arithmetic on the LRU lists in various places in the code,
119  * so it is important to keep the active lists LRU_ACTIVE higher in
120  * the array than the corresponding inactive lists, and to keep
121  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122  *
123  * This has to be kept in sync with the statistics in zone_stat_item
124  * above and the descriptions in vmstat_text in mm/vmstat.c
125  */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129 
130 enum lru_list {
131 	LRU_INACTIVE_ANON = LRU_BASE,
132 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 	LRU_UNEVICTABLE,
136 	NR_LRU_LISTS
137 };
138 
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140 
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142 
143 static inline int is_file_lru(enum lru_list l)
144 {
145 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146 }
147 
148 static inline int is_active_lru(enum lru_list l)
149 {
150 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 }
152 
153 static inline int is_unevictable_lru(enum lru_list l)
154 {
155 	return (l == LRU_UNEVICTABLE);
156 }
157 
158 enum zone_watermarks {
159 	WMARK_MIN,
160 	WMARK_LOW,
161 	WMARK_HIGH,
162 	NR_WMARK
163 };
164 
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168 
169 struct per_cpu_pages {
170 	int count;		/* number of pages in the list */
171 	int high;		/* high watermark, emptying needed */
172 	int batch;		/* chunk size for buddy add/remove */
173 
174 	/* Lists of pages, one per migrate type stored on the pcp-lists */
175 	struct list_head lists[MIGRATE_PCPTYPES];
176 };
177 
178 struct per_cpu_pageset {
179 	struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 	s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 	s8 stat_threshold;
185 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 };
188 
189 #endif /* !__GENERATING_BOUNDS.H */
190 
191 enum zone_type {
192 #ifdef CONFIG_ZONE_DMA
193 	/*
194 	 * ZONE_DMA is used when there are devices that are not able
195 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 	 * carve out the portion of memory that is needed for these devices.
197 	 * The range is arch specific.
198 	 *
199 	 * Some examples
200 	 *
201 	 * Architecture		Limit
202 	 * ---------------------------
203 	 * parisc, ia64, sparc	<4G
204 	 * s390			<2G
205 	 * arm			Various
206 	 * alpha		Unlimited or 0-16MB.
207 	 *
208 	 * i386, x86_64 and multiple other arches
209 	 * 			<16M.
210 	 */
211 	ZONE_DMA,
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	/*
215 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 	 * only able to do DMA to the lower 16M but also 32 bit devices that
217 	 * can only do DMA areas below 4G.
218 	 */
219 	ZONE_DMA32,
220 #endif
221 	/*
222 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 	 * performed on pages in ZONE_NORMAL if the DMA devices support
224 	 * transfers to all addressable memory.
225 	 */
226 	ZONE_NORMAL,
227 #ifdef CONFIG_HIGHMEM
228 	/*
229 	 * A memory area that is only addressable by the kernel through
230 	 * mapping portions into its own address space. This is for example
231 	 * used by i386 to allow the kernel to address the memory beyond
232 	 * 900MB. The kernel will set up special mappings (page
233 	 * table entries on i386) for each page that the kernel needs to
234 	 * access.
235 	 */
236 	ZONE_HIGHMEM,
237 #endif
238 	ZONE_MOVABLE,
239 	__MAX_NR_ZONES
240 };
241 
242 #ifndef __GENERATING_BOUNDS_H
243 
244 /*
245  * When a memory allocation must conform to specific limitations (such
246  * as being suitable for DMA) the caller will pass in hints to the
247  * allocator in the gfp_mask, in the zone modifier bits.  These bits
248  * are used to select a priority ordered list of memory zones which
249  * match the requested limits. See gfp_zone() in include/linux/gfp.h
250  */
251 
252 #if MAX_NR_ZONES < 2
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
258 #else
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
260 #endif
261 
262 struct zone_reclaim_stat {
263 	/*
264 	 * The pageout code in vmscan.c keeps track of how many of the
265 	 * mem/swap backed and file backed pages are refeferenced.
266 	 * The higher the rotated/scanned ratio, the more valuable
267 	 * that cache is.
268 	 *
269 	 * The anon LRU stats live in [0], file LRU stats in [1]
270 	 */
271 	unsigned long		recent_rotated[2];
272 	unsigned long		recent_scanned[2];
273 
274 	/*
275 	 * accumulated for batching
276 	 */
277 	unsigned long		nr_saved_scan[NR_LRU_LISTS];
278 };
279 
280 struct zone {
281 	/* Fields commonly accessed by the page allocator */
282 
283 	/* zone watermarks, access with *_wmark_pages(zone) macros */
284 	unsigned long watermark[NR_WMARK];
285 
286 	/*
287 	 * We don't know if the memory that we're going to allocate will be freeable
288 	 * or/and it will be released eventually, so to avoid totally wasting several
289 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 	 * to run OOM on the lower zones despite there's tons of freeable ram
291 	 * on the higher zones). This array is recalculated at runtime if the
292 	 * sysctl_lowmem_reserve_ratio sysctl changes.
293 	 */
294 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
295 
296 #ifdef CONFIG_NUMA
297 	int node;
298 	/*
299 	 * zone reclaim becomes active if more unmapped pages exist.
300 	 */
301 	unsigned long		min_unmapped_pages;
302 	unsigned long		min_slab_pages;
303 #endif
304 	struct per_cpu_pageset __percpu *pageset;
305 	/*
306 	 * free areas of different sizes
307 	 */
308 	spinlock_t		lock;
309 	int                     all_unreclaimable; /* All pages pinned */
310 #ifdef CONFIG_MEMORY_HOTPLUG
311 	/* see spanned/present_pages for more description */
312 	seqlock_t		span_seqlock;
313 #endif
314 	struct free_area	free_area[MAX_ORDER];
315 
316 #ifndef CONFIG_SPARSEMEM
317 	/*
318 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
319 	 * In SPARSEMEM, this map is stored in struct mem_section
320 	 */
321 	unsigned long		*pageblock_flags;
322 #endif /* CONFIG_SPARSEMEM */
323 
324 #ifdef CONFIG_COMPACTION
325 	/*
326 	 * On compaction failure, 1<<compact_defer_shift compactions
327 	 * are skipped before trying again. The number attempted since
328 	 * last failure is tracked with compact_considered.
329 	 */
330 	unsigned int		compact_considered;
331 	unsigned int		compact_defer_shift;
332 #endif
333 
334 	ZONE_PADDING(_pad1_)
335 
336 	/* Fields commonly accessed by the page reclaim scanner */
337 	spinlock_t		lru_lock;
338 	struct zone_lru {
339 		struct list_head list;
340 	} lru[NR_LRU_LISTS];
341 
342 	struct zone_reclaim_stat reclaim_stat;
343 
344 	unsigned long		pages_scanned;	   /* since last reclaim */
345 	unsigned long		flags;		   /* zone flags, see below */
346 
347 	/* Zone statistics */
348 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
349 
350 	/*
351 	 * prev_priority holds the scanning priority for this zone.  It is
352 	 * defined as the scanning priority at which we achieved our reclaim
353 	 * target at the previous try_to_free_pages() or balance_pgdat()
354 	 * invocation.
355 	 *
356 	 * We use prev_priority as a measure of how much stress page reclaim is
357 	 * under - it drives the swappiness decision: whether to unmap mapped
358 	 * pages.
359 	 *
360 	 * Access to both this field is quite racy even on uniprocessor.  But
361 	 * it is expected to average out OK.
362 	 */
363 	int prev_priority;
364 
365 	/*
366 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
367 	 * this zone's LRU.  Maintained by the pageout code.
368 	 */
369 	unsigned int inactive_ratio;
370 
371 
372 	ZONE_PADDING(_pad2_)
373 	/* Rarely used or read-mostly fields */
374 
375 	/*
376 	 * wait_table		-- the array holding the hash table
377 	 * wait_table_hash_nr_entries	-- the size of the hash table array
378 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
379 	 *
380 	 * The purpose of all these is to keep track of the people
381 	 * waiting for a page to become available and make them
382 	 * runnable again when possible. The trouble is that this
383 	 * consumes a lot of space, especially when so few things
384 	 * wait on pages at a given time. So instead of using
385 	 * per-page waitqueues, we use a waitqueue hash table.
386 	 *
387 	 * The bucket discipline is to sleep on the same queue when
388 	 * colliding and wake all in that wait queue when removing.
389 	 * When something wakes, it must check to be sure its page is
390 	 * truly available, a la thundering herd. The cost of a
391 	 * collision is great, but given the expected load of the
392 	 * table, they should be so rare as to be outweighed by the
393 	 * benefits from the saved space.
394 	 *
395 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
396 	 * primary users of these fields, and in mm/page_alloc.c
397 	 * free_area_init_core() performs the initialization of them.
398 	 */
399 	wait_queue_head_t	* wait_table;
400 	unsigned long		wait_table_hash_nr_entries;
401 	unsigned long		wait_table_bits;
402 
403 	/*
404 	 * Discontig memory support fields.
405 	 */
406 	struct pglist_data	*zone_pgdat;
407 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
408 	unsigned long		zone_start_pfn;
409 
410 	/*
411 	 * zone_start_pfn, spanned_pages and present_pages are all
412 	 * protected by span_seqlock.  It is a seqlock because it has
413 	 * to be read outside of zone->lock, and it is done in the main
414 	 * allocator path.  But, it is written quite infrequently.
415 	 *
416 	 * The lock is declared along with zone->lock because it is
417 	 * frequently read in proximity to zone->lock.  It's good to
418 	 * give them a chance of being in the same cacheline.
419 	 */
420 	unsigned long		spanned_pages;	/* total size, including holes */
421 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
422 
423 	/*
424 	 * rarely used fields:
425 	 */
426 	const char		*name;
427 } ____cacheline_internodealigned_in_smp;
428 
429 typedef enum {
430 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
431 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
432 } zone_flags_t;
433 
434 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
435 {
436 	set_bit(flag, &zone->flags);
437 }
438 
439 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
440 {
441 	return test_and_set_bit(flag, &zone->flags);
442 }
443 
444 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
445 {
446 	clear_bit(flag, &zone->flags);
447 }
448 
449 static inline int zone_is_reclaim_locked(const struct zone *zone)
450 {
451 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
452 }
453 
454 static inline int zone_is_oom_locked(const struct zone *zone)
455 {
456 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
457 }
458 
459 /*
460  * The "priority" of VM scanning is how much of the queues we will scan in one
461  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
462  * queues ("queue_length >> 12") during an aging round.
463  */
464 #define DEF_PRIORITY 12
465 
466 /* Maximum number of zones on a zonelist */
467 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
468 
469 #ifdef CONFIG_NUMA
470 
471 /*
472  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
473  * allocations to a single node for GFP_THISNODE.
474  *
475  * [0]	: Zonelist with fallback
476  * [1]	: No fallback (GFP_THISNODE)
477  */
478 #define MAX_ZONELISTS 2
479 
480 
481 /*
482  * We cache key information from each zonelist for smaller cache
483  * footprint when scanning for free pages in get_page_from_freelist().
484  *
485  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
486  *    up short of free memory since the last time (last_fullzone_zap)
487  *    we zero'd fullzones.
488  * 2) The array z_to_n[] maps each zone in the zonelist to its node
489  *    id, so that we can efficiently evaluate whether that node is
490  *    set in the current tasks mems_allowed.
491  *
492  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
493  * indexed by a zones offset in the zonelist zones[] array.
494  *
495  * The get_page_from_freelist() routine does two scans.  During the
496  * first scan, we skip zones whose corresponding bit in 'fullzones'
497  * is set or whose corresponding node in current->mems_allowed (which
498  * comes from cpusets) is not set.  During the second scan, we bypass
499  * this zonelist_cache, to ensure we look methodically at each zone.
500  *
501  * Once per second, we zero out (zap) fullzones, forcing us to
502  * reconsider nodes that might have regained more free memory.
503  * The field last_full_zap is the time we last zapped fullzones.
504  *
505  * This mechanism reduces the amount of time we waste repeatedly
506  * reexaming zones for free memory when they just came up low on
507  * memory momentarilly ago.
508  *
509  * The zonelist_cache struct members logically belong in struct
510  * zonelist.  However, the mempolicy zonelists constructed for
511  * MPOL_BIND are intentionally variable length (and usually much
512  * shorter).  A general purpose mechanism for handling structs with
513  * multiple variable length members is more mechanism than we want
514  * here.  We resort to some special case hackery instead.
515  *
516  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
517  * part because they are shorter), so we put the fixed length stuff
518  * at the front of the zonelist struct, ending in a variable length
519  * zones[], as is needed by MPOL_BIND.
520  *
521  * Then we put the optional zonelist cache on the end of the zonelist
522  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
523  * the fixed length portion at the front of the struct.  This pointer
524  * both enables us to find the zonelist cache, and in the case of
525  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
526  * to know that the zonelist cache is not there.
527  *
528  * The end result is that struct zonelists come in two flavors:
529  *  1) The full, fixed length version, shown below, and
530  *  2) The custom zonelists for MPOL_BIND.
531  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
532  *
533  * Even though there may be multiple CPU cores on a node modifying
534  * fullzones or last_full_zap in the same zonelist_cache at the same
535  * time, we don't lock it.  This is just hint data - if it is wrong now
536  * and then, the allocator will still function, perhaps a bit slower.
537  */
538 
539 
540 struct zonelist_cache {
541 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
542 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
543 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
544 };
545 #else
546 #define MAX_ZONELISTS 1
547 struct zonelist_cache;
548 #endif
549 
550 /*
551  * This struct contains information about a zone in a zonelist. It is stored
552  * here to avoid dereferences into large structures and lookups of tables
553  */
554 struct zoneref {
555 	struct zone *zone;	/* Pointer to actual zone */
556 	int zone_idx;		/* zone_idx(zoneref->zone) */
557 };
558 
559 /*
560  * One allocation request operates on a zonelist. A zonelist
561  * is a list of zones, the first one is the 'goal' of the
562  * allocation, the other zones are fallback zones, in decreasing
563  * priority.
564  *
565  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
566  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
567  * *
568  * To speed the reading of the zonelist, the zonerefs contain the zone index
569  * of the entry being read. Helper functions to access information given
570  * a struct zoneref are
571  *
572  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
573  * zonelist_zone_idx()	- Return the index of the zone for an entry
574  * zonelist_node_idx()	- Return the index of the node for an entry
575  */
576 struct zonelist {
577 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
578 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
579 #ifdef CONFIG_NUMA
580 	struct zonelist_cache zlcache;			     // optional ...
581 #endif
582 };
583 
584 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
585 struct node_active_region {
586 	unsigned long start_pfn;
587 	unsigned long end_pfn;
588 	int nid;
589 };
590 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
591 
592 #ifndef CONFIG_DISCONTIGMEM
593 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
594 extern struct page *mem_map;
595 #endif
596 
597 /*
598  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
599  * (mostly NUMA machines?) to denote a higher-level memory zone than the
600  * zone denotes.
601  *
602  * On NUMA machines, each NUMA node would have a pg_data_t to describe
603  * it's memory layout.
604  *
605  * Memory statistics and page replacement data structures are maintained on a
606  * per-zone basis.
607  */
608 struct bootmem_data;
609 typedef struct pglist_data {
610 	struct zone node_zones[MAX_NR_ZONES];
611 	struct zonelist node_zonelists[MAX_ZONELISTS];
612 	int nr_zones;
613 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
614 	struct page *node_mem_map;
615 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
616 	struct page_cgroup *node_page_cgroup;
617 #endif
618 #endif
619 #ifndef CONFIG_NO_BOOTMEM
620 	struct bootmem_data *bdata;
621 #endif
622 #ifdef CONFIG_MEMORY_HOTPLUG
623 	/*
624 	 * Must be held any time you expect node_start_pfn, node_present_pages
625 	 * or node_spanned_pages stay constant.  Holding this will also
626 	 * guarantee that any pfn_valid() stays that way.
627 	 *
628 	 * Nests above zone->lock and zone->size_seqlock.
629 	 */
630 	spinlock_t node_size_lock;
631 #endif
632 	unsigned long node_start_pfn;
633 	unsigned long node_present_pages; /* total number of physical pages */
634 	unsigned long node_spanned_pages; /* total size of physical page
635 					     range, including holes */
636 	int node_id;
637 	wait_queue_head_t kswapd_wait;
638 	struct task_struct *kswapd;
639 	int kswapd_max_order;
640 } pg_data_t;
641 
642 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
643 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
644 #ifdef CONFIG_FLAT_NODE_MEM_MAP
645 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
646 #else
647 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
648 #endif
649 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
650 
651 #include <linux/memory_hotplug.h>
652 
653 extern struct mutex zonelists_mutex;
654 void get_zone_counts(unsigned long *active, unsigned long *inactive,
655 			unsigned long *free);
656 void build_all_zonelists(void *data);
657 void wakeup_kswapd(struct zone *zone, int order);
658 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
659 		int classzone_idx, int alloc_flags);
660 enum memmap_context {
661 	MEMMAP_EARLY,
662 	MEMMAP_HOTPLUG,
663 };
664 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
665 				     unsigned long size,
666 				     enum memmap_context context);
667 
668 #ifdef CONFIG_HAVE_MEMORY_PRESENT
669 void memory_present(int nid, unsigned long start, unsigned long end);
670 #else
671 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
672 #endif
673 
674 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
675 int local_memory_node(int node_id);
676 #else
677 static inline int local_memory_node(int node_id) { return node_id; };
678 #endif
679 
680 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
681 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
682 #endif
683 
684 /*
685  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
686  */
687 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
688 
689 static inline int populated_zone(struct zone *zone)
690 {
691 	return (!!zone->present_pages);
692 }
693 
694 extern int movable_zone;
695 
696 static inline int zone_movable_is_highmem(void)
697 {
698 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
699 	return movable_zone == ZONE_HIGHMEM;
700 #else
701 	return 0;
702 #endif
703 }
704 
705 static inline int is_highmem_idx(enum zone_type idx)
706 {
707 #ifdef CONFIG_HIGHMEM
708 	return (idx == ZONE_HIGHMEM ||
709 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
710 #else
711 	return 0;
712 #endif
713 }
714 
715 static inline int is_normal_idx(enum zone_type idx)
716 {
717 	return (idx == ZONE_NORMAL);
718 }
719 
720 /**
721  * is_highmem - helper function to quickly check if a struct zone is a
722  *              highmem zone or not.  This is an attempt to keep references
723  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
724  * @zone - pointer to struct zone variable
725  */
726 static inline int is_highmem(struct zone *zone)
727 {
728 #ifdef CONFIG_HIGHMEM
729 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
730 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
731 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
732 		zone_movable_is_highmem());
733 #else
734 	return 0;
735 #endif
736 }
737 
738 static inline int is_normal(struct zone *zone)
739 {
740 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
741 }
742 
743 static inline int is_dma32(struct zone *zone)
744 {
745 #ifdef CONFIG_ZONE_DMA32
746 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
747 #else
748 	return 0;
749 #endif
750 }
751 
752 static inline int is_dma(struct zone *zone)
753 {
754 #ifdef CONFIG_ZONE_DMA
755 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
756 #else
757 	return 0;
758 #endif
759 }
760 
761 /* These two functions are used to setup the per zone pages min values */
762 struct ctl_table;
763 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
764 					void __user *, size_t *, loff_t *);
765 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
766 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
767 					void __user *, size_t *, loff_t *);
768 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
769 					void __user *, size_t *, loff_t *);
770 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
771 			void __user *, size_t *, loff_t *);
772 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
773 			void __user *, size_t *, loff_t *);
774 
775 extern int numa_zonelist_order_handler(struct ctl_table *, int,
776 			void __user *, size_t *, loff_t *);
777 extern char numa_zonelist_order[];
778 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
779 
780 #ifndef CONFIG_NEED_MULTIPLE_NODES
781 
782 extern struct pglist_data contig_page_data;
783 #define NODE_DATA(nid)		(&contig_page_data)
784 #define NODE_MEM_MAP(nid)	mem_map
785 
786 #else /* CONFIG_NEED_MULTIPLE_NODES */
787 
788 #include <asm/mmzone.h>
789 
790 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
791 
792 extern struct pglist_data *first_online_pgdat(void);
793 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
794 extern struct zone *next_zone(struct zone *zone);
795 
796 /**
797  * for_each_online_pgdat - helper macro to iterate over all online nodes
798  * @pgdat - pointer to a pg_data_t variable
799  */
800 #define for_each_online_pgdat(pgdat)			\
801 	for (pgdat = first_online_pgdat();		\
802 	     pgdat;					\
803 	     pgdat = next_online_pgdat(pgdat))
804 /**
805  * for_each_zone - helper macro to iterate over all memory zones
806  * @zone - pointer to struct zone variable
807  *
808  * The user only needs to declare the zone variable, for_each_zone
809  * fills it in.
810  */
811 #define for_each_zone(zone)			        \
812 	for (zone = (first_online_pgdat())->node_zones; \
813 	     zone;					\
814 	     zone = next_zone(zone))
815 
816 #define for_each_populated_zone(zone)		        \
817 	for (zone = (first_online_pgdat())->node_zones; \
818 	     zone;					\
819 	     zone = next_zone(zone))			\
820 		if (!populated_zone(zone))		\
821 			; /* do nothing */		\
822 		else
823 
824 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
825 {
826 	return zoneref->zone;
827 }
828 
829 static inline int zonelist_zone_idx(struct zoneref *zoneref)
830 {
831 	return zoneref->zone_idx;
832 }
833 
834 static inline int zonelist_node_idx(struct zoneref *zoneref)
835 {
836 #ifdef CONFIG_NUMA
837 	/* zone_to_nid not available in this context */
838 	return zoneref->zone->node;
839 #else
840 	return 0;
841 #endif /* CONFIG_NUMA */
842 }
843 
844 /**
845  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
846  * @z - The cursor used as a starting point for the search
847  * @highest_zoneidx - The zone index of the highest zone to return
848  * @nodes - An optional nodemask to filter the zonelist with
849  * @zone - The first suitable zone found is returned via this parameter
850  *
851  * This function returns the next zone at or below a given zone index that is
852  * within the allowed nodemask using a cursor as the starting point for the
853  * search. The zoneref returned is a cursor that represents the current zone
854  * being examined. It should be advanced by one before calling
855  * next_zones_zonelist again.
856  */
857 struct zoneref *next_zones_zonelist(struct zoneref *z,
858 					enum zone_type highest_zoneidx,
859 					nodemask_t *nodes,
860 					struct zone **zone);
861 
862 /**
863  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
864  * @zonelist - The zonelist to search for a suitable zone
865  * @highest_zoneidx - The zone index of the highest zone to return
866  * @nodes - An optional nodemask to filter the zonelist with
867  * @zone - The first suitable zone found is returned via this parameter
868  *
869  * This function returns the first zone at or below a given zone index that is
870  * within the allowed nodemask. The zoneref returned is a cursor that can be
871  * used to iterate the zonelist with next_zones_zonelist by advancing it by
872  * one before calling.
873  */
874 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
875 					enum zone_type highest_zoneidx,
876 					nodemask_t *nodes,
877 					struct zone **zone)
878 {
879 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
880 								zone);
881 }
882 
883 /**
884  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
885  * @zone - The current zone in the iterator
886  * @z - The current pointer within zonelist->zones being iterated
887  * @zlist - The zonelist being iterated
888  * @highidx - The zone index of the highest zone to return
889  * @nodemask - Nodemask allowed by the allocator
890  *
891  * This iterator iterates though all zones at or below a given zone index and
892  * within a given nodemask
893  */
894 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
895 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
896 		zone;							\
897 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
898 
899 /**
900  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
901  * @zone - The current zone in the iterator
902  * @z - The current pointer within zonelist->zones being iterated
903  * @zlist - The zonelist being iterated
904  * @highidx - The zone index of the highest zone to return
905  *
906  * This iterator iterates though all zones at or below a given zone index.
907  */
908 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
909 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
910 
911 #ifdef CONFIG_SPARSEMEM
912 #include <asm/sparsemem.h>
913 #endif
914 
915 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
916 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
917 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
918 {
919 	return 0;
920 }
921 #endif
922 
923 #ifdef CONFIG_FLATMEM
924 #define pfn_to_nid(pfn)		(0)
925 #endif
926 
927 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
928 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
929 
930 #ifdef CONFIG_SPARSEMEM
931 
932 /*
933  * SECTION_SHIFT    		#bits space required to store a section #
934  *
935  * PA_SECTION_SHIFT		physical address to/from section number
936  * PFN_SECTION_SHIFT		pfn to/from section number
937  */
938 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
939 
940 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
941 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
942 
943 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
944 
945 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
946 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
947 
948 #define SECTION_BLOCKFLAGS_BITS \
949 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
950 
951 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
952 #error Allocator MAX_ORDER exceeds SECTION_SIZE
953 #endif
954 
955 struct page;
956 struct page_cgroup;
957 struct mem_section {
958 	/*
959 	 * This is, logically, a pointer to an array of struct
960 	 * pages.  However, it is stored with some other magic.
961 	 * (see sparse.c::sparse_init_one_section())
962 	 *
963 	 * Additionally during early boot we encode node id of
964 	 * the location of the section here to guide allocation.
965 	 * (see sparse.c::memory_present())
966 	 *
967 	 * Making it a UL at least makes someone do a cast
968 	 * before using it wrong.
969 	 */
970 	unsigned long section_mem_map;
971 
972 	/* See declaration of similar field in struct zone */
973 	unsigned long *pageblock_flags;
974 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
975 	/*
976 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
977 	 * section. (see memcontrol.h/page_cgroup.h about this.)
978 	 */
979 	struct page_cgroup *page_cgroup;
980 	unsigned long pad;
981 #endif
982 };
983 
984 #ifdef CONFIG_SPARSEMEM_EXTREME
985 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
986 #else
987 #define SECTIONS_PER_ROOT	1
988 #endif
989 
990 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
991 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
992 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
993 
994 #ifdef CONFIG_SPARSEMEM_EXTREME
995 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
996 #else
997 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
998 #endif
999 
1000 static inline struct mem_section *__nr_to_section(unsigned long nr)
1001 {
1002 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1003 		return NULL;
1004 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1005 }
1006 extern int __section_nr(struct mem_section* ms);
1007 extern unsigned long usemap_size(void);
1008 
1009 /*
1010  * We use the lower bits of the mem_map pointer to store
1011  * a little bit of information.  There should be at least
1012  * 3 bits here due to 32-bit alignment.
1013  */
1014 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1015 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1016 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1017 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1018 #define SECTION_NID_SHIFT	2
1019 
1020 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1021 {
1022 	unsigned long map = section->section_mem_map;
1023 	map &= SECTION_MAP_MASK;
1024 	return (struct page *)map;
1025 }
1026 
1027 static inline int present_section(struct mem_section *section)
1028 {
1029 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1030 }
1031 
1032 static inline int present_section_nr(unsigned long nr)
1033 {
1034 	return present_section(__nr_to_section(nr));
1035 }
1036 
1037 static inline int valid_section(struct mem_section *section)
1038 {
1039 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1040 }
1041 
1042 static inline int valid_section_nr(unsigned long nr)
1043 {
1044 	return valid_section(__nr_to_section(nr));
1045 }
1046 
1047 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1048 {
1049 	return __nr_to_section(pfn_to_section_nr(pfn));
1050 }
1051 
1052 static inline int pfn_valid(unsigned long pfn)
1053 {
1054 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1055 		return 0;
1056 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1057 }
1058 
1059 static inline int pfn_present(unsigned long pfn)
1060 {
1061 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1062 		return 0;
1063 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1064 }
1065 
1066 /*
1067  * These are _only_ used during initialisation, therefore they
1068  * can use __initdata ...  They could have names to indicate
1069  * this restriction.
1070  */
1071 #ifdef CONFIG_NUMA
1072 #define pfn_to_nid(pfn)							\
1073 ({									\
1074 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1075 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1076 })
1077 #else
1078 #define pfn_to_nid(pfn)		(0)
1079 #endif
1080 
1081 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1082 void sparse_init(void);
1083 #else
1084 #define sparse_init()	do {} while (0)
1085 #define sparse_index_init(_sec, _nid)  do {} while (0)
1086 #endif /* CONFIG_SPARSEMEM */
1087 
1088 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1089 bool early_pfn_in_nid(unsigned long pfn, int nid);
1090 #else
1091 #define early_pfn_in_nid(pfn, nid)	(1)
1092 #endif
1093 
1094 #ifndef early_pfn_valid
1095 #define early_pfn_valid(pfn)	(1)
1096 #endif
1097 
1098 void memory_present(int nid, unsigned long start, unsigned long end);
1099 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1100 
1101 /*
1102  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1103  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1104  * pfn_valid_within() should be used in this case; we optimise this away
1105  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1106  */
1107 #ifdef CONFIG_HOLES_IN_ZONE
1108 #define pfn_valid_within(pfn) pfn_valid(pfn)
1109 #else
1110 #define pfn_valid_within(pfn) (1)
1111 #endif
1112 
1113 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1114 /*
1115  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1116  * associated with it or not. In FLATMEM, it is expected that holes always
1117  * have valid memmap as long as there is valid PFNs either side of the hole.
1118  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1119  * entire section.
1120  *
1121  * However, an ARM, and maybe other embedded architectures in the future
1122  * free memmap backing holes to save memory on the assumption the memmap is
1123  * never used. The page_zone linkages are then broken even though pfn_valid()
1124  * returns true. A walker of the full memmap must then do this additional
1125  * check to ensure the memmap they are looking at is sane by making sure
1126  * the zone and PFN linkages are still valid. This is expensive, but walkers
1127  * of the full memmap are extremely rare.
1128  */
1129 int memmap_valid_within(unsigned long pfn,
1130 					struct page *page, struct zone *zone);
1131 #else
1132 static inline int memmap_valid_within(unsigned long pfn,
1133 					struct page *page, struct zone *zone)
1134 {
1135 	return 1;
1136 }
1137 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1138 
1139 #endif /* !__GENERATING_BOUNDS.H */
1140 #endif /* !__ASSEMBLY__ */
1141 #endif /* _LINUX_MMZONE_H */
1142