xref: /linux-6.15/include/linux/mmzone.h (revision 4e57b681)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <asm/atomic.h>
17 
18 /* Free memory management - zoned buddy allocator.  */
19 #ifndef CONFIG_FORCE_MAX_ZONEORDER
20 #define MAX_ORDER 11
21 #else
22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23 #endif
24 
25 struct free_area {
26 	struct list_head	free_list;
27 	unsigned long		nr_free;
28 };
29 
30 struct pglist_data;
31 
32 /*
33  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34  * So add a wild amount of padding here to ensure that they fall into separate
35  * cachelines.  There are very few zone structures in the machine, so space
36  * consumption is not a concern here.
37  */
38 #if defined(CONFIG_SMP)
39 struct zone_padding {
40 	char x[0];
41 } ____cacheline_maxaligned_in_smp;
42 #define ZONE_PADDING(name)	struct zone_padding name;
43 #else
44 #define ZONE_PADDING(name)
45 #endif
46 
47 struct per_cpu_pages {
48 	int count;		/* number of pages in the list */
49 	int low;		/* low watermark, refill needed */
50 	int high;		/* high watermark, emptying needed */
51 	int batch;		/* chunk size for buddy add/remove */
52 	struct list_head list;	/* the list of pages */
53 };
54 
55 struct per_cpu_pageset {
56 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
57 #ifdef CONFIG_NUMA
58 	unsigned long numa_hit;		/* allocated in intended node */
59 	unsigned long numa_miss;	/* allocated in non intended node */
60 	unsigned long numa_foreign;	/* was intended here, hit elsewhere */
61 	unsigned long interleave_hit; 	/* interleaver prefered this zone */
62 	unsigned long local_node;	/* allocation from local node */
63 	unsigned long other_node;	/* allocation from other node */
64 #endif
65 } ____cacheline_aligned_in_smp;
66 
67 #ifdef CONFIG_NUMA
68 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69 #else
70 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
71 #endif
72 
73 #define ZONE_DMA		0
74 #define ZONE_NORMAL		1
75 #define ZONE_HIGHMEM		2
76 
77 #define MAX_NR_ZONES		3	/* Sync this with ZONES_SHIFT */
78 #define ZONES_SHIFT		2	/* ceil(log2(MAX_NR_ZONES)) */
79 
80 
81 /*
82  * When a memory allocation must conform to specific limitations (such
83  * as being suitable for DMA) the caller will pass in hints to the
84  * allocator in the gfp_mask, in the zone modifier bits.  These bits
85  * are used to select a priority ordered list of memory zones which
86  * match the requested limits.  GFP_ZONEMASK defines which bits within
87  * the gfp_mask should be considered as zone modifiers.  Each valid
88  * combination of the zone modifier bits has a corresponding list
89  * of zones (in node_zonelists).  Thus for two zone modifiers there
90  * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
91  * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible
92  * combinations of zone modifiers in "zone modifier space".
93  */
94 #define GFP_ZONEMASK	0x03
95 /*
96  * As an optimisation any zone modifier bits which are only valid when
97  * no other zone modifier bits are set (loners) should be placed in
98  * the highest order bits of this field.  This allows us to reduce the
99  * extent of the zonelists thus saving space.  For example in the case
100  * of three zone modifier bits, we could require up to eight zonelists.
101  * If the left most zone modifier is a "loner" then the highest valid
102  * zonelist would be four allowing us to allocate only five zonelists.
103  * Use the first form when the left most bit is not a "loner", otherwise
104  * use the second.
105  */
106 /* #define GFP_ZONETYPES	(GFP_ZONEMASK + 1) */		/* Non-loner */
107 #define GFP_ZONETYPES	((GFP_ZONEMASK + 1) / 2 + 1)		/* Loner */
108 
109 /*
110  * On machines where it is needed (eg PCs) we divide physical memory
111  * into multiple physical zones. On a PC we have 3 zones:
112  *
113  * ZONE_DMA	  < 16 MB	ISA DMA capable memory
114  * ZONE_NORMAL	16-896 MB	direct mapped by the kernel
115  * ZONE_HIGHMEM	 > 896 MB	only page cache and user processes
116  */
117 
118 struct zone {
119 	/* Fields commonly accessed by the page allocator */
120 	unsigned long		free_pages;
121 	unsigned long		pages_min, pages_low, pages_high;
122 	/*
123 	 * We don't know if the memory that we're going to allocate will be freeable
124 	 * or/and it will be released eventually, so to avoid totally wasting several
125 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
126 	 * to run OOM on the lower zones despite there's tons of freeable ram
127 	 * on the higher zones). This array is recalculated at runtime if the
128 	 * sysctl_lowmem_reserve_ratio sysctl changes.
129 	 */
130 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
131 
132 #ifdef CONFIG_NUMA
133 	struct per_cpu_pageset	*pageset[NR_CPUS];
134 #else
135 	struct per_cpu_pageset	pageset[NR_CPUS];
136 #endif
137 	/*
138 	 * free areas of different sizes
139 	 */
140 	spinlock_t		lock;
141 #ifdef CONFIG_MEMORY_HOTPLUG
142 	/* see spanned/present_pages for more description */
143 	seqlock_t		span_seqlock;
144 #endif
145 	struct free_area	free_area[MAX_ORDER];
146 
147 
148 	ZONE_PADDING(_pad1_)
149 
150 	/* Fields commonly accessed by the page reclaim scanner */
151 	spinlock_t		lru_lock;
152 	struct list_head	active_list;
153 	struct list_head	inactive_list;
154 	unsigned long		nr_scan_active;
155 	unsigned long		nr_scan_inactive;
156 	unsigned long		nr_active;
157 	unsigned long		nr_inactive;
158 	unsigned long		pages_scanned;	   /* since last reclaim */
159 	int			all_unreclaimable; /* All pages pinned */
160 
161 	/*
162 	 * Does the allocator try to reclaim pages from the zone as soon
163 	 * as it fails a watermark_ok() in __alloc_pages?
164 	 */
165 	int			reclaim_pages;
166 	/* A count of how many reclaimers are scanning this zone */
167 	atomic_t		reclaim_in_progress;
168 
169 	/*
170 	 * prev_priority holds the scanning priority for this zone.  It is
171 	 * defined as the scanning priority at which we achieved our reclaim
172 	 * target at the previous try_to_free_pages() or balance_pgdat()
173 	 * invokation.
174 	 *
175 	 * We use prev_priority as a measure of how much stress page reclaim is
176 	 * under - it drives the swappiness decision: whether to unmap mapped
177 	 * pages.
178 	 *
179 	 * temp_priority is used to remember the scanning priority at which
180 	 * this zone was successfully refilled to free_pages == pages_high.
181 	 *
182 	 * Access to both these fields is quite racy even on uniprocessor.  But
183 	 * it is expected to average out OK.
184 	 */
185 	int temp_priority;
186 	int prev_priority;
187 
188 
189 	ZONE_PADDING(_pad2_)
190 	/* Rarely used or read-mostly fields */
191 
192 	/*
193 	 * wait_table		-- the array holding the hash table
194 	 * wait_table_size	-- the size of the hash table array
195 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
196 	 *
197 	 * The purpose of all these is to keep track of the people
198 	 * waiting for a page to become available and make them
199 	 * runnable again when possible. The trouble is that this
200 	 * consumes a lot of space, especially when so few things
201 	 * wait on pages at a given time. So instead of using
202 	 * per-page waitqueues, we use a waitqueue hash table.
203 	 *
204 	 * The bucket discipline is to sleep on the same queue when
205 	 * colliding and wake all in that wait queue when removing.
206 	 * When something wakes, it must check to be sure its page is
207 	 * truly available, a la thundering herd. The cost of a
208 	 * collision is great, but given the expected load of the
209 	 * table, they should be so rare as to be outweighed by the
210 	 * benefits from the saved space.
211 	 *
212 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
213 	 * primary users of these fields, and in mm/page_alloc.c
214 	 * free_area_init_core() performs the initialization of them.
215 	 */
216 	wait_queue_head_t	* wait_table;
217 	unsigned long		wait_table_size;
218 	unsigned long		wait_table_bits;
219 
220 	/*
221 	 * Discontig memory support fields.
222 	 */
223 	struct pglist_data	*zone_pgdat;
224 	struct page		*zone_mem_map;
225 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
226 	unsigned long		zone_start_pfn;
227 
228 	/*
229 	 * zone_start_pfn, spanned_pages and present_pages are all
230 	 * protected by span_seqlock.  It is a seqlock because it has
231 	 * to be read outside of zone->lock, and it is done in the main
232 	 * allocator path.  But, it is written quite infrequently.
233 	 *
234 	 * The lock is declared along with zone->lock because it is
235 	 * frequently read in proximity to zone->lock.  It's good to
236 	 * give them a chance of being in the same cacheline.
237 	 */
238 	unsigned long		spanned_pages;	/* total size, including holes */
239 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
240 
241 	/*
242 	 * rarely used fields:
243 	 */
244 	char			*name;
245 } ____cacheline_maxaligned_in_smp;
246 
247 
248 /*
249  * The "priority" of VM scanning is how much of the queues we will scan in one
250  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
251  * queues ("queue_length >> 12") during an aging round.
252  */
253 #define DEF_PRIORITY 12
254 
255 /*
256  * One allocation request operates on a zonelist. A zonelist
257  * is a list of zones, the first one is the 'goal' of the
258  * allocation, the other zones are fallback zones, in decreasing
259  * priority.
260  *
261  * Right now a zonelist takes up less than a cacheline. We never
262  * modify it apart from boot-up, and only a few indices are used,
263  * so despite the zonelist table being relatively big, the cache
264  * footprint of this construct is very small.
265  */
266 struct zonelist {
267 	struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
268 };
269 
270 
271 /*
272  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
273  * (mostly NUMA machines?) to denote a higher-level memory zone than the
274  * zone denotes.
275  *
276  * On NUMA machines, each NUMA node would have a pg_data_t to describe
277  * it's memory layout.
278  *
279  * Memory statistics and page replacement data structures are maintained on a
280  * per-zone basis.
281  */
282 struct bootmem_data;
283 typedef struct pglist_data {
284 	struct zone node_zones[MAX_NR_ZONES];
285 	struct zonelist node_zonelists[GFP_ZONETYPES];
286 	int nr_zones;
287 #ifdef CONFIG_FLAT_NODE_MEM_MAP
288 	struct page *node_mem_map;
289 #endif
290 	struct bootmem_data *bdata;
291 #ifdef CONFIG_MEMORY_HOTPLUG
292 	/*
293 	 * Must be held any time you expect node_start_pfn, node_present_pages
294 	 * or node_spanned_pages stay constant.  Holding this will also
295 	 * guarantee that any pfn_valid() stays that way.
296 	 *
297 	 * Nests above zone->lock and zone->size_seqlock.
298 	 */
299 	spinlock_t node_size_lock;
300 #endif
301 	unsigned long node_start_pfn;
302 	unsigned long node_present_pages; /* total number of physical pages */
303 	unsigned long node_spanned_pages; /* total size of physical page
304 					     range, including holes */
305 	int node_id;
306 	struct pglist_data *pgdat_next;
307 	wait_queue_head_t kswapd_wait;
308 	struct task_struct *kswapd;
309 	int kswapd_max_order;
310 } pg_data_t;
311 
312 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
313 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
314 #ifdef CONFIG_FLAT_NODE_MEM_MAP
315 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
316 #else
317 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
318 #endif
319 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
320 
321 #include <linux/memory_hotplug.h>
322 
323 extern struct pglist_data *pgdat_list;
324 
325 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
326 			unsigned long *free, struct pglist_data *pgdat);
327 void get_zone_counts(unsigned long *active, unsigned long *inactive,
328 			unsigned long *free);
329 void build_all_zonelists(void);
330 void wakeup_kswapd(struct zone *zone, int order);
331 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
332 		int alloc_type, int can_try_harder, gfp_t gfp_high);
333 
334 #ifdef CONFIG_HAVE_MEMORY_PRESENT
335 void memory_present(int nid, unsigned long start, unsigned long end);
336 #else
337 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
338 #endif
339 
340 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
341 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
342 #endif
343 
344 /*
345  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
346  */
347 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
348 
349 /**
350  * for_each_pgdat - helper macro to iterate over all nodes
351  * @pgdat - pointer to a pg_data_t variable
352  *
353  * Meant to help with common loops of the form
354  * pgdat = pgdat_list;
355  * while(pgdat) {
356  * 	...
357  * 	pgdat = pgdat->pgdat_next;
358  * }
359  */
360 #define for_each_pgdat(pgdat) \
361 	for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
362 
363 /*
364  * next_zone - helper magic for for_each_zone()
365  * Thanks to William Lee Irwin III for this piece of ingenuity.
366  */
367 static inline struct zone *next_zone(struct zone *zone)
368 {
369 	pg_data_t *pgdat = zone->zone_pgdat;
370 
371 	if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
372 		zone++;
373 	else if (pgdat->pgdat_next) {
374 		pgdat = pgdat->pgdat_next;
375 		zone = pgdat->node_zones;
376 	} else
377 		zone = NULL;
378 
379 	return zone;
380 }
381 
382 /**
383  * for_each_zone - helper macro to iterate over all memory zones
384  * @zone - pointer to struct zone variable
385  *
386  * The user only needs to declare the zone variable, for_each_zone
387  * fills it in. This basically means for_each_zone() is an
388  * easier to read version of this piece of code:
389  *
390  * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
391  * 	for (i = 0; i < MAX_NR_ZONES; ++i) {
392  * 		struct zone * z = pgdat->node_zones + i;
393  * 		...
394  * 	}
395  * }
396  */
397 #define for_each_zone(zone) \
398 	for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
399 
400 static inline int is_highmem_idx(int idx)
401 {
402 	return (idx == ZONE_HIGHMEM);
403 }
404 
405 static inline int is_normal_idx(int idx)
406 {
407 	return (idx == ZONE_NORMAL);
408 }
409 /**
410  * is_highmem - helper function to quickly check if a struct zone is a
411  *              highmem zone or not.  This is an attempt to keep references
412  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
413  * @zone - pointer to struct zone variable
414  */
415 static inline int is_highmem(struct zone *zone)
416 {
417 	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
418 }
419 
420 static inline int is_normal(struct zone *zone)
421 {
422 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
423 }
424 
425 /* These two functions are used to setup the per zone pages min values */
426 struct ctl_table;
427 struct file;
428 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
429 					void __user *, size_t *, loff_t *);
430 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
431 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
432 					void __user *, size_t *, loff_t *);
433 
434 #include <linux/topology.h>
435 /* Returns the number of the current Node. */
436 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
437 
438 #ifndef CONFIG_NEED_MULTIPLE_NODES
439 
440 extern struct pglist_data contig_page_data;
441 #define NODE_DATA(nid)		(&contig_page_data)
442 #define NODE_MEM_MAP(nid)	mem_map
443 #define MAX_NODES_SHIFT		1
444 #define pfn_to_nid(pfn)		(0)
445 
446 #else /* CONFIG_NEED_MULTIPLE_NODES */
447 
448 #include <asm/mmzone.h>
449 
450 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
451 
452 #ifdef CONFIG_SPARSEMEM
453 #include <asm/sparsemem.h>
454 #endif
455 
456 #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
457 /*
458  * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
459  * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
460  */
461 #define FLAGS_RESERVED		8
462 
463 #elif BITS_PER_LONG == 64
464 /*
465  * with 64 bit flags field, there's plenty of room.
466  */
467 #define FLAGS_RESERVED		32
468 
469 #else
470 
471 #error BITS_PER_LONG not defined
472 
473 #endif
474 
475 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
476 #define early_pfn_to_nid(nid)  (0UL)
477 #endif
478 
479 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
480 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
481 
482 #ifdef CONFIG_SPARSEMEM
483 
484 /*
485  * SECTION_SHIFT    		#bits space required to store a section #
486  *
487  * PA_SECTION_SHIFT		physical address to/from section number
488  * PFN_SECTION_SHIFT		pfn to/from section number
489  */
490 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
491 
492 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
493 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
494 
495 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
496 
497 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
498 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
499 
500 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
501 #error Allocator MAX_ORDER exceeds SECTION_SIZE
502 #endif
503 
504 struct page;
505 struct mem_section {
506 	/*
507 	 * This is, logically, a pointer to an array of struct
508 	 * pages.  However, it is stored with some other magic.
509 	 * (see sparse.c::sparse_init_one_section())
510 	 *
511 	 * Making it a UL at least makes someone do a cast
512 	 * before using it wrong.
513 	 */
514 	unsigned long section_mem_map;
515 };
516 
517 #ifdef CONFIG_SPARSEMEM_EXTREME
518 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
519 #else
520 #define SECTIONS_PER_ROOT	1
521 #endif
522 
523 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
524 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
525 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
526 
527 #ifdef CONFIG_SPARSEMEM_EXTREME
528 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
529 #else
530 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
531 #endif
532 
533 static inline struct mem_section *__nr_to_section(unsigned long nr)
534 {
535 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
536 		return NULL;
537 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
538 }
539 extern int __section_nr(struct mem_section* ms);
540 
541 /*
542  * We use the lower bits of the mem_map pointer to store
543  * a little bit of information.  There should be at least
544  * 3 bits here due to 32-bit alignment.
545  */
546 #define	SECTION_MARKED_PRESENT	(1UL<<0)
547 #define SECTION_HAS_MEM_MAP	(1UL<<1)
548 #define SECTION_MAP_LAST_BIT	(1UL<<2)
549 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
550 
551 static inline struct page *__section_mem_map_addr(struct mem_section *section)
552 {
553 	unsigned long map = section->section_mem_map;
554 	map &= SECTION_MAP_MASK;
555 	return (struct page *)map;
556 }
557 
558 static inline int valid_section(struct mem_section *section)
559 {
560 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
561 }
562 
563 static inline int section_has_mem_map(struct mem_section *section)
564 {
565 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
566 }
567 
568 static inline int valid_section_nr(unsigned long nr)
569 {
570 	return valid_section(__nr_to_section(nr));
571 }
572 
573 /*
574  * Given a kernel address, find the home node of the underlying memory.
575  */
576 #define kvaddr_to_nid(kaddr)	pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT)
577 
578 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
579 {
580 	return __nr_to_section(pfn_to_section_nr(pfn));
581 }
582 
583 #define pfn_to_page(pfn) 						\
584 ({ 									\
585 	unsigned long __pfn = (pfn);					\
586 	__section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn;	\
587 })
588 #define page_to_pfn(page)						\
589 ({									\
590 	page - __section_mem_map_addr(__nr_to_section(			\
591 		page_to_section(page)));				\
592 })
593 
594 static inline int pfn_valid(unsigned long pfn)
595 {
596 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
597 		return 0;
598 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
599 }
600 
601 /*
602  * These are _only_ used during initialisation, therefore they
603  * can use __initdata ...  They could have names to indicate
604  * this restriction.
605  */
606 #ifdef CONFIG_NUMA
607 #define pfn_to_nid		early_pfn_to_nid
608 #endif
609 
610 #define pfn_to_pgdat(pfn)						\
611 ({									\
612 	NODE_DATA(pfn_to_nid(pfn));					\
613 })
614 
615 #define early_pfn_valid(pfn)	pfn_valid(pfn)
616 void sparse_init(void);
617 #else
618 #define sparse_init()	do {} while (0)
619 #define sparse_index_init(_sec, _nid)  do {} while (0)
620 #endif /* CONFIG_SPARSEMEM */
621 
622 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
623 #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
624 #else
625 #define early_pfn_in_nid(pfn, nid)	(1)
626 #endif
627 
628 #ifndef early_pfn_valid
629 #define early_pfn_valid(pfn)	(1)
630 #endif
631 
632 void memory_present(int nid, unsigned long start, unsigned long end);
633 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
634 
635 #endif /* !__ASSEMBLY__ */
636 #endif /* __KERNEL__ */
637 #endif /* _LINUX_MMZONE_H */
638