1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifdef __KERNEL__ 5 #ifndef __ASSEMBLY__ 6 7 #include <linux/config.h> 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <asm/atomic.h> 17 18 /* Free memory management - zoned buddy allocator. */ 19 #ifndef CONFIG_FORCE_MAX_ZONEORDER 20 #define MAX_ORDER 11 21 #else 22 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 23 #endif 24 25 struct free_area { 26 struct list_head free_list; 27 unsigned long nr_free; 28 }; 29 30 struct pglist_data; 31 32 /* 33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 34 * So add a wild amount of padding here to ensure that they fall into separate 35 * cachelines. There are very few zone structures in the machine, so space 36 * consumption is not a concern here. 37 */ 38 #if defined(CONFIG_SMP) 39 struct zone_padding { 40 char x[0]; 41 } ____cacheline_maxaligned_in_smp; 42 #define ZONE_PADDING(name) struct zone_padding name; 43 #else 44 #define ZONE_PADDING(name) 45 #endif 46 47 struct per_cpu_pages { 48 int count; /* number of pages in the list */ 49 int low; /* low watermark, refill needed */ 50 int high; /* high watermark, emptying needed */ 51 int batch; /* chunk size for buddy add/remove */ 52 struct list_head list; /* the list of pages */ 53 }; 54 55 struct per_cpu_pageset { 56 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 57 #ifdef CONFIG_NUMA 58 unsigned long numa_hit; /* allocated in intended node */ 59 unsigned long numa_miss; /* allocated in non intended node */ 60 unsigned long numa_foreign; /* was intended here, hit elsewhere */ 61 unsigned long interleave_hit; /* interleaver prefered this zone */ 62 unsigned long local_node; /* allocation from local node */ 63 unsigned long other_node; /* allocation from other node */ 64 #endif 65 } ____cacheline_aligned_in_smp; 66 67 #ifdef CONFIG_NUMA 68 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 69 #else 70 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 71 #endif 72 73 #define ZONE_DMA 0 74 #define ZONE_NORMAL 1 75 #define ZONE_HIGHMEM 2 76 77 #define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */ 78 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ 79 80 81 /* 82 * When a memory allocation must conform to specific limitations (such 83 * as being suitable for DMA) the caller will pass in hints to the 84 * allocator in the gfp_mask, in the zone modifier bits. These bits 85 * are used to select a priority ordered list of memory zones which 86 * match the requested limits. GFP_ZONEMASK defines which bits within 87 * the gfp_mask should be considered as zone modifiers. Each valid 88 * combination of the zone modifier bits has a corresponding list 89 * of zones (in node_zonelists). Thus for two zone modifiers there 90 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will 91 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible 92 * combinations of zone modifiers in "zone modifier space". 93 */ 94 #define GFP_ZONEMASK 0x03 95 /* 96 * As an optimisation any zone modifier bits which are only valid when 97 * no other zone modifier bits are set (loners) should be placed in 98 * the highest order bits of this field. This allows us to reduce the 99 * extent of the zonelists thus saving space. For example in the case 100 * of three zone modifier bits, we could require up to eight zonelists. 101 * If the left most zone modifier is a "loner" then the highest valid 102 * zonelist would be four allowing us to allocate only five zonelists. 103 * Use the first form when the left most bit is not a "loner", otherwise 104 * use the second. 105 */ 106 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */ 107 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */ 108 109 /* 110 * On machines where it is needed (eg PCs) we divide physical memory 111 * into multiple physical zones. On a PC we have 3 zones: 112 * 113 * ZONE_DMA < 16 MB ISA DMA capable memory 114 * ZONE_NORMAL 16-896 MB direct mapped by the kernel 115 * ZONE_HIGHMEM > 896 MB only page cache and user processes 116 */ 117 118 struct zone { 119 /* Fields commonly accessed by the page allocator */ 120 unsigned long free_pages; 121 unsigned long pages_min, pages_low, pages_high; 122 /* 123 * We don't know if the memory that we're going to allocate will be freeable 124 * or/and it will be released eventually, so to avoid totally wasting several 125 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 126 * to run OOM on the lower zones despite there's tons of freeable ram 127 * on the higher zones). This array is recalculated at runtime if the 128 * sysctl_lowmem_reserve_ratio sysctl changes. 129 */ 130 unsigned long lowmem_reserve[MAX_NR_ZONES]; 131 132 #ifdef CONFIG_NUMA 133 struct per_cpu_pageset *pageset[NR_CPUS]; 134 #else 135 struct per_cpu_pageset pageset[NR_CPUS]; 136 #endif 137 /* 138 * free areas of different sizes 139 */ 140 spinlock_t lock; 141 #ifdef CONFIG_MEMORY_HOTPLUG 142 /* see spanned/present_pages for more description */ 143 seqlock_t span_seqlock; 144 #endif 145 struct free_area free_area[MAX_ORDER]; 146 147 148 ZONE_PADDING(_pad1_) 149 150 /* Fields commonly accessed by the page reclaim scanner */ 151 spinlock_t lru_lock; 152 struct list_head active_list; 153 struct list_head inactive_list; 154 unsigned long nr_scan_active; 155 unsigned long nr_scan_inactive; 156 unsigned long nr_active; 157 unsigned long nr_inactive; 158 unsigned long pages_scanned; /* since last reclaim */ 159 int all_unreclaimable; /* All pages pinned */ 160 161 /* 162 * Does the allocator try to reclaim pages from the zone as soon 163 * as it fails a watermark_ok() in __alloc_pages? 164 */ 165 int reclaim_pages; 166 /* A count of how many reclaimers are scanning this zone */ 167 atomic_t reclaim_in_progress; 168 169 /* 170 * prev_priority holds the scanning priority for this zone. It is 171 * defined as the scanning priority at which we achieved our reclaim 172 * target at the previous try_to_free_pages() or balance_pgdat() 173 * invokation. 174 * 175 * We use prev_priority as a measure of how much stress page reclaim is 176 * under - it drives the swappiness decision: whether to unmap mapped 177 * pages. 178 * 179 * temp_priority is used to remember the scanning priority at which 180 * this zone was successfully refilled to free_pages == pages_high. 181 * 182 * Access to both these fields is quite racy even on uniprocessor. But 183 * it is expected to average out OK. 184 */ 185 int temp_priority; 186 int prev_priority; 187 188 189 ZONE_PADDING(_pad2_) 190 /* Rarely used or read-mostly fields */ 191 192 /* 193 * wait_table -- the array holding the hash table 194 * wait_table_size -- the size of the hash table array 195 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 196 * 197 * The purpose of all these is to keep track of the people 198 * waiting for a page to become available and make them 199 * runnable again when possible. The trouble is that this 200 * consumes a lot of space, especially when so few things 201 * wait on pages at a given time. So instead of using 202 * per-page waitqueues, we use a waitqueue hash table. 203 * 204 * The bucket discipline is to sleep on the same queue when 205 * colliding and wake all in that wait queue when removing. 206 * When something wakes, it must check to be sure its page is 207 * truly available, a la thundering herd. The cost of a 208 * collision is great, but given the expected load of the 209 * table, they should be so rare as to be outweighed by the 210 * benefits from the saved space. 211 * 212 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 213 * primary users of these fields, and in mm/page_alloc.c 214 * free_area_init_core() performs the initialization of them. 215 */ 216 wait_queue_head_t * wait_table; 217 unsigned long wait_table_size; 218 unsigned long wait_table_bits; 219 220 /* 221 * Discontig memory support fields. 222 */ 223 struct pglist_data *zone_pgdat; 224 struct page *zone_mem_map; 225 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 226 unsigned long zone_start_pfn; 227 228 /* 229 * zone_start_pfn, spanned_pages and present_pages are all 230 * protected by span_seqlock. It is a seqlock because it has 231 * to be read outside of zone->lock, and it is done in the main 232 * allocator path. But, it is written quite infrequently. 233 * 234 * The lock is declared along with zone->lock because it is 235 * frequently read in proximity to zone->lock. It's good to 236 * give them a chance of being in the same cacheline. 237 */ 238 unsigned long spanned_pages; /* total size, including holes */ 239 unsigned long present_pages; /* amount of memory (excluding holes) */ 240 241 /* 242 * rarely used fields: 243 */ 244 char *name; 245 } ____cacheline_maxaligned_in_smp; 246 247 248 /* 249 * The "priority" of VM scanning is how much of the queues we will scan in one 250 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 251 * queues ("queue_length >> 12") during an aging round. 252 */ 253 #define DEF_PRIORITY 12 254 255 /* 256 * One allocation request operates on a zonelist. A zonelist 257 * is a list of zones, the first one is the 'goal' of the 258 * allocation, the other zones are fallback zones, in decreasing 259 * priority. 260 * 261 * Right now a zonelist takes up less than a cacheline. We never 262 * modify it apart from boot-up, and only a few indices are used, 263 * so despite the zonelist table being relatively big, the cache 264 * footprint of this construct is very small. 265 */ 266 struct zonelist { 267 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited 268 }; 269 270 271 /* 272 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 273 * (mostly NUMA machines?) to denote a higher-level memory zone than the 274 * zone denotes. 275 * 276 * On NUMA machines, each NUMA node would have a pg_data_t to describe 277 * it's memory layout. 278 * 279 * Memory statistics and page replacement data structures are maintained on a 280 * per-zone basis. 281 */ 282 struct bootmem_data; 283 typedef struct pglist_data { 284 struct zone node_zones[MAX_NR_ZONES]; 285 struct zonelist node_zonelists[GFP_ZONETYPES]; 286 int nr_zones; 287 #ifdef CONFIG_FLAT_NODE_MEM_MAP 288 struct page *node_mem_map; 289 #endif 290 struct bootmem_data *bdata; 291 #ifdef CONFIG_MEMORY_HOTPLUG 292 /* 293 * Must be held any time you expect node_start_pfn, node_present_pages 294 * or node_spanned_pages stay constant. Holding this will also 295 * guarantee that any pfn_valid() stays that way. 296 * 297 * Nests above zone->lock and zone->size_seqlock. 298 */ 299 spinlock_t node_size_lock; 300 #endif 301 unsigned long node_start_pfn; 302 unsigned long node_present_pages; /* total number of physical pages */ 303 unsigned long node_spanned_pages; /* total size of physical page 304 range, including holes */ 305 int node_id; 306 struct pglist_data *pgdat_next; 307 wait_queue_head_t kswapd_wait; 308 struct task_struct *kswapd; 309 int kswapd_max_order; 310 } pg_data_t; 311 312 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 313 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 314 #ifdef CONFIG_FLAT_NODE_MEM_MAP 315 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 316 #else 317 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 318 #endif 319 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 320 321 #include <linux/memory_hotplug.h> 322 323 extern struct pglist_data *pgdat_list; 324 325 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 326 unsigned long *free, struct pglist_data *pgdat); 327 void get_zone_counts(unsigned long *active, unsigned long *inactive, 328 unsigned long *free); 329 void build_all_zonelists(void); 330 void wakeup_kswapd(struct zone *zone, int order); 331 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 332 int alloc_type, int can_try_harder, gfp_t gfp_high); 333 334 #ifdef CONFIG_HAVE_MEMORY_PRESENT 335 void memory_present(int nid, unsigned long start, unsigned long end); 336 #else 337 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 338 #endif 339 340 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 341 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 342 #endif 343 344 /* 345 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 346 */ 347 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 348 349 /** 350 * for_each_pgdat - helper macro to iterate over all nodes 351 * @pgdat - pointer to a pg_data_t variable 352 * 353 * Meant to help with common loops of the form 354 * pgdat = pgdat_list; 355 * while(pgdat) { 356 * ... 357 * pgdat = pgdat->pgdat_next; 358 * } 359 */ 360 #define for_each_pgdat(pgdat) \ 361 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next) 362 363 /* 364 * next_zone - helper magic for for_each_zone() 365 * Thanks to William Lee Irwin III for this piece of ingenuity. 366 */ 367 static inline struct zone *next_zone(struct zone *zone) 368 { 369 pg_data_t *pgdat = zone->zone_pgdat; 370 371 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1) 372 zone++; 373 else if (pgdat->pgdat_next) { 374 pgdat = pgdat->pgdat_next; 375 zone = pgdat->node_zones; 376 } else 377 zone = NULL; 378 379 return zone; 380 } 381 382 /** 383 * for_each_zone - helper macro to iterate over all memory zones 384 * @zone - pointer to struct zone variable 385 * 386 * The user only needs to declare the zone variable, for_each_zone 387 * fills it in. This basically means for_each_zone() is an 388 * easier to read version of this piece of code: 389 * 390 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next) 391 * for (i = 0; i < MAX_NR_ZONES; ++i) { 392 * struct zone * z = pgdat->node_zones + i; 393 * ... 394 * } 395 * } 396 */ 397 #define for_each_zone(zone) \ 398 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone)) 399 400 static inline int is_highmem_idx(int idx) 401 { 402 return (idx == ZONE_HIGHMEM); 403 } 404 405 static inline int is_normal_idx(int idx) 406 { 407 return (idx == ZONE_NORMAL); 408 } 409 /** 410 * is_highmem - helper function to quickly check if a struct zone is a 411 * highmem zone or not. This is an attempt to keep references 412 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 413 * @zone - pointer to struct zone variable 414 */ 415 static inline int is_highmem(struct zone *zone) 416 { 417 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 418 } 419 420 static inline int is_normal(struct zone *zone) 421 { 422 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 423 } 424 425 /* These two functions are used to setup the per zone pages min values */ 426 struct ctl_table; 427 struct file; 428 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 429 void __user *, size_t *, loff_t *); 430 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 431 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 432 void __user *, size_t *, loff_t *); 433 434 #include <linux/topology.h> 435 /* Returns the number of the current Node. */ 436 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 437 438 #ifndef CONFIG_NEED_MULTIPLE_NODES 439 440 extern struct pglist_data contig_page_data; 441 #define NODE_DATA(nid) (&contig_page_data) 442 #define NODE_MEM_MAP(nid) mem_map 443 #define MAX_NODES_SHIFT 1 444 #define pfn_to_nid(pfn) (0) 445 446 #else /* CONFIG_NEED_MULTIPLE_NODES */ 447 448 #include <asm/mmzone.h> 449 450 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 451 452 #ifdef CONFIG_SPARSEMEM 453 #include <asm/sparsemem.h> 454 #endif 455 456 #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED) 457 /* 458 * with 32 bit page->flags field, we reserve 8 bits for node/zone info. 459 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes. 460 */ 461 #define FLAGS_RESERVED 8 462 463 #elif BITS_PER_LONG == 64 464 /* 465 * with 64 bit flags field, there's plenty of room. 466 */ 467 #define FLAGS_RESERVED 32 468 469 #else 470 471 #error BITS_PER_LONG not defined 472 473 #endif 474 475 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 476 #define early_pfn_to_nid(nid) (0UL) 477 #endif 478 479 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 480 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 481 482 #ifdef CONFIG_SPARSEMEM 483 484 /* 485 * SECTION_SHIFT #bits space required to store a section # 486 * 487 * PA_SECTION_SHIFT physical address to/from section number 488 * PFN_SECTION_SHIFT pfn to/from section number 489 */ 490 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 491 492 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 493 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 494 495 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 496 497 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 498 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 499 500 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 501 #error Allocator MAX_ORDER exceeds SECTION_SIZE 502 #endif 503 504 struct page; 505 struct mem_section { 506 /* 507 * This is, logically, a pointer to an array of struct 508 * pages. However, it is stored with some other magic. 509 * (see sparse.c::sparse_init_one_section()) 510 * 511 * Making it a UL at least makes someone do a cast 512 * before using it wrong. 513 */ 514 unsigned long section_mem_map; 515 }; 516 517 #ifdef CONFIG_SPARSEMEM_EXTREME 518 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 519 #else 520 #define SECTIONS_PER_ROOT 1 521 #endif 522 523 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 524 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 525 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 526 527 #ifdef CONFIG_SPARSEMEM_EXTREME 528 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 529 #else 530 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 531 #endif 532 533 static inline struct mem_section *__nr_to_section(unsigned long nr) 534 { 535 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 536 return NULL; 537 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 538 } 539 extern int __section_nr(struct mem_section* ms); 540 541 /* 542 * We use the lower bits of the mem_map pointer to store 543 * a little bit of information. There should be at least 544 * 3 bits here due to 32-bit alignment. 545 */ 546 #define SECTION_MARKED_PRESENT (1UL<<0) 547 #define SECTION_HAS_MEM_MAP (1UL<<1) 548 #define SECTION_MAP_LAST_BIT (1UL<<2) 549 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 550 551 static inline struct page *__section_mem_map_addr(struct mem_section *section) 552 { 553 unsigned long map = section->section_mem_map; 554 map &= SECTION_MAP_MASK; 555 return (struct page *)map; 556 } 557 558 static inline int valid_section(struct mem_section *section) 559 { 560 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 561 } 562 563 static inline int section_has_mem_map(struct mem_section *section) 564 { 565 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 566 } 567 568 static inline int valid_section_nr(unsigned long nr) 569 { 570 return valid_section(__nr_to_section(nr)); 571 } 572 573 /* 574 * Given a kernel address, find the home node of the underlying memory. 575 */ 576 #define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT) 577 578 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 579 { 580 return __nr_to_section(pfn_to_section_nr(pfn)); 581 } 582 583 #define pfn_to_page(pfn) \ 584 ({ \ 585 unsigned long __pfn = (pfn); \ 586 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \ 587 }) 588 #define page_to_pfn(page) \ 589 ({ \ 590 page - __section_mem_map_addr(__nr_to_section( \ 591 page_to_section(page))); \ 592 }) 593 594 static inline int pfn_valid(unsigned long pfn) 595 { 596 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 597 return 0; 598 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 599 } 600 601 /* 602 * These are _only_ used during initialisation, therefore they 603 * can use __initdata ... They could have names to indicate 604 * this restriction. 605 */ 606 #ifdef CONFIG_NUMA 607 #define pfn_to_nid early_pfn_to_nid 608 #endif 609 610 #define pfn_to_pgdat(pfn) \ 611 ({ \ 612 NODE_DATA(pfn_to_nid(pfn)); \ 613 }) 614 615 #define early_pfn_valid(pfn) pfn_valid(pfn) 616 void sparse_init(void); 617 #else 618 #define sparse_init() do {} while (0) 619 #define sparse_index_init(_sec, _nid) do {} while (0) 620 #endif /* CONFIG_SPARSEMEM */ 621 622 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 623 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 624 #else 625 #define early_pfn_in_nid(pfn, nid) (1) 626 #endif 627 628 #ifndef early_pfn_valid 629 #define early_pfn_valid(pfn) (1) 630 #endif 631 632 void memory_present(int nid, unsigned long start, unsigned long end); 633 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 634 635 #endif /* !__ASSEMBLY__ */ 636 #endif /* __KERNEL__ */ 637 #endif /* _LINUX_MMZONE_H */ 638