xref: /linux-6.15/include/linux/mmzone.h (revision 4e108d4f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 static inline struct page *get_page_from_free_area(struct free_area *area,
104 					    int migratetype)
105 {
106 	return list_first_entry_or_null(&area->free_list[migratetype],
107 					struct page, lru);
108 }
109 
110 static inline bool free_area_empty(struct free_area *area, int migratetype)
111 {
112 	return list_empty(&area->free_list[migratetype]);
113 }
114 
115 struct pglist_data;
116 
117 /*
118  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
119  * So add a wild amount of padding here to ensure that they fall into separate
120  * cachelines.  There are very few zone structures in the machine, so space
121  * consumption is not a concern here.
122  */
123 #if defined(CONFIG_SMP)
124 struct zone_padding {
125 	char x[0];
126 } ____cacheline_internodealigned_in_smp;
127 #define ZONE_PADDING(name)	struct zone_padding name;
128 #else
129 #define ZONE_PADDING(name)
130 #endif
131 
132 #ifdef CONFIG_NUMA
133 enum numa_stat_item {
134 	NUMA_HIT,		/* allocated in intended node */
135 	NUMA_MISS,		/* allocated in non intended node */
136 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
137 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
138 	NUMA_LOCAL,		/* allocation from local node */
139 	NUMA_OTHER,		/* allocation from other node */
140 	NR_VM_NUMA_STAT_ITEMS
141 };
142 #else
143 #define NR_VM_NUMA_STAT_ITEMS 0
144 #endif
145 
146 enum zone_stat_item {
147 	/* First 128 byte cacheline (assuming 64 bit words) */
148 	NR_FREE_PAGES,
149 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
150 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
151 	NR_ZONE_ACTIVE_ANON,
152 	NR_ZONE_INACTIVE_FILE,
153 	NR_ZONE_ACTIVE_FILE,
154 	NR_ZONE_UNEVICTABLE,
155 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
156 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
157 	NR_PAGETABLE,		/* used for pagetables */
158 	NR_KERNEL_STACK_KB,	/* measured in KiB */
159 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
160 	NR_KERNEL_SCS_KB,	/* measured in KiB */
161 #endif
162 	/* Second 128 byte cacheline */
163 	NR_BOUNCE,
164 #if IS_ENABLED(CONFIG_ZSMALLOC)
165 	NR_ZSPAGES,		/* allocated in zsmalloc */
166 #endif
167 	NR_FREE_CMA_PAGES,
168 	NR_VM_ZONE_STAT_ITEMS };
169 
170 enum node_stat_item {
171 	NR_LRU_BASE,
172 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
173 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
174 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
175 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
176 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
177 	NR_SLAB_RECLAIMABLE,
178 	NR_SLAB_UNRECLAIMABLE,
179 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
180 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
181 	WORKINGSET_NODES,
182 	WORKINGSET_REFAULT,
183 	WORKINGSET_ACTIVATE,
184 	WORKINGSET_RESTORE,
185 	WORKINGSET_NODERECLAIM,
186 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
187 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
188 			   only modified from process context */
189 	NR_FILE_PAGES,
190 	NR_FILE_DIRTY,
191 	NR_WRITEBACK,
192 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
193 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
194 	NR_SHMEM_THPS,
195 	NR_SHMEM_PMDMAPPED,
196 	NR_FILE_THPS,
197 	NR_FILE_PMDMAPPED,
198 	NR_ANON_THPS,
199 	NR_VMSCAN_WRITE,
200 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
201 	NR_DIRTIED,		/* page dirtyings since bootup */
202 	NR_WRITTEN,		/* page writings since bootup */
203 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
204 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
205 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
206 	NR_VM_NODE_STAT_ITEMS
207 };
208 
209 /*
210  * We do arithmetic on the LRU lists in various places in the code,
211  * so it is important to keep the active lists LRU_ACTIVE higher in
212  * the array than the corresponding inactive lists, and to keep
213  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
214  *
215  * This has to be kept in sync with the statistics in zone_stat_item
216  * above and the descriptions in vmstat_text in mm/vmstat.c
217  */
218 #define LRU_BASE 0
219 #define LRU_ACTIVE 1
220 #define LRU_FILE 2
221 
222 enum lru_list {
223 	LRU_INACTIVE_ANON = LRU_BASE,
224 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
225 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
226 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
227 	LRU_UNEVICTABLE,
228 	NR_LRU_LISTS
229 };
230 
231 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
232 
233 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
234 
235 static inline bool is_file_lru(enum lru_list lru)
236 {
237 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
238 }
239 
240 static inline bool is_active_lru(enum lru_list lru)
241 {
242 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
243 }
244 
245 enum lruvec_flags {
246 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
247 					 * backed by a congested BDI
248 					 */
249 };
250 
251 struct lruvec {
252 	struct list_head		lists[NR_LRU_LISTS];
253 	/*
254 	 * These track the cost of reclaiming one LRU - file or anon -
255 	 * over the other. As the observed cost of reclaiming one LRU
256 	 * increases, the reclaim scan balance tips toward the other.
257 	 */
258 	unsigned long			anon_cost;
259 	unsigned long			file_cost;
260 	/* Evictions & activations on the inactive file list */
261 	atomic_long_t			inactive_age;
262 	/* Refaults at the time of last reclaim cycle */
263 	unsigned long			refaults;
264 	/* Various lruvec state flags (enum lruvec_flags) */
265 	unsigned long			flags;
266 #ifdef CONFIG_MEMCG
267 	struct pglist_data *pgdat;
268 #endif
269 };
270 
271 /* Isolate unmapped pages */
272 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
273 /* Isolate for asynchronous migration */
274 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
275 /* Isolate unevictable pages */
276 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
277 
278 /* LRU Isolation modes. */
279 typedef unsigned __bitwise isolate_mode_t;
280 
281 enum zone_watermarks {
282 	WMARK_MIN,
283 	WMARK_LOW,
284 	WMARK_HIGH,
285 	NR_WMARK
286 };
287 
288 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
289 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
290 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
291 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
292 
293 struct per_cpu_pages {
294 	int count;		/* number of pages in the list */
295 	int high;		/* high watermark, emptying needed */
296 	int batch;		/* chunk size for buddy add/remove */
297 
298 	/* Lists of pages, one per migrate type stored on the pcp-lists */
299 	struct list_head lists[MIGRATE_PCPTYPES];
300 };
301 
302 struct per_cpu_pageset {
303 	struct per_cpu_pages pcp;
304 #ifdef CONFIG_NUMA
305 	s8 expire;
306 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
307 #endif
308 #ifdef CONFIG_SMP
309 	s8 stat_threshold;
310 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
311 #endif
312 };
313 
314 struct per_cpu_nodestat {
315 	s8 stat_threshold;
316 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
317 };
318 
319 #endif /* !__GENERATING_BOUNDS.H */
320 
321 enum zone_type {
322 	/*
323 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
324 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
325 	 * On architectures where this area covers the whole 32 bit address
326 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
327 	 * DMA addressing constraints. This distinction is important as a 32bit
328 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
329 	 * platforms may need both zones as they support peripherals with
330 	 * different DMA addressing limitations.
331 	 *
332 	 * Some examples:
333 	 *
334 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
335 	 *    rest of the lower 4G.
336 	 *
337 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
338 	 *    the specific device.
339 	 *
340 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
341 	 *    lower 4G.
342 	 *
343 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
344 	 *    depending on the specific device.
345 	 *
346 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
347 	 *
348 	 *  - ia64 and riscv only use ZONE_DMA32.
349 	 *
350 	 *  - parisc uses neither.
351 	 */
352 #ifdef CONFIG_ZONE_DMA
353 	ZONE_DMA,
354 #endif
355 #ifdef CONFIG_ZONE_DMA32
356 	ZONE_DMA32,
357 #endif
358 	/*
359 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
360 	 * performed on pages in ZONE_NORMAL if the DMA devices support
361 	 * transfers to all addressable memory.
362 	 */
363 	ZONE_NORMAL,
364 #ifdef CONFIG_HIGHMEM
365 	/*
366 	 * A memory area that is only addressable by the kernel through
367 	 * mapping portions into its own address space. This is for example
368 	 * used by i386 to allow the kernel to address the memory beyond
369 	 * 900MB. The kernel will set up special mappings (page
370 	 * table entries on i386) for each page that the kernel needs to
371 	 * access.
372 	 */
373 	ZONE_HIGHMEM,
374 #endif
375 	ZONE_MOVABLE,
376 #ifdef CONFIG_ZONE_DEVICE
377 	ZONE_DEVICE,
378 #endif
379 	__MAX_NR_ZONES
380 
381 };
382 
383 #ifndef __GENERATING_BOUNDS_H
384 
385 struct zone {
386 	/* Read-mostly fields */
387 
388 	/* zone watermarks, access with *_wmark_pages(zone) macros */
389 	unsigned long _watermark[NR_WMARK];
390 	unsigned long watermark_boost;
391 
392 	unsigned long nr_reserved_highatomic;
393 
394 	/*
395 	 * We don't know if the memory that we're going to allocate will be
396 	 * freeable or/and it will be released eventually, so to avoid totally
397 	 * wasting several GB of ram we must reserve some of the lower zone
398 	 * memory (otherwise we risk to run OOM on the lower zones despite
399 	 * there being tons of freeable ram on the higher zones).  This array is
400 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
401 	 * changes.
402 	 */
403 	long lowmem_reserve[MAX_NR_ZONES];
404 
405 #ifdef CONFIG_NUMA
406 	int node;
407 #endif
408 	struct pglist_data	*zone_pgdat;
409 	struct per_cpu_pageset __percpu *pageset;
410 
411 #ifndef CONFIG_SPARSEMEM
412 	/*
413 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
414 	 * In SPARSEMEM, this map is stored in struct mem_section
415 	 */
416 	unsigned long		*pageblock_flags;
417 #endif /* CONFIG_SPARSEMEM */
418 
419 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
420 	unsigned long		zone_start_pfn;
421 
422 	/*
423 	 * spanned_pages is the total pages spanned by the zone, including
424 	 * holes, which is calculated as:
425 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
426 	 *
427 	 * present_pages is physical pages existing within the zone, which
428 	 * is calculated as:
429 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
430 	 *
431 	 * managed_pages is present pages managed by the buddy system, which
432 	 * is calculated as (reserved_pages includes pages allocated by the
433 	 * bootmem allocator):
434 	 *	managed_pages = present_pages - reserved_pages;
435 	 *
436 	 * So present_pages may be used by memory hotplug or memory power
437 	 * management logic to figure out unmanaged pages by checking
438 	 * (present_pages - managed_pages). And managed_pages should be used
439 	 * by page allocator and vm scanner to calculate all kinds of watermarks
440 	 * and thresholds.
441 	 *
442 	 * Locking rules:
443 	 *
444 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
445 	 * It is a seqlock because it has to be read outside of zone->lock,
446 	 * and it is done in the main allocator path.  But, it is written
447 	 * quite infrequently.
448 	 *
449 	 * The span_seq lock is declared along with zone->lock because it is
450 	 * frequently read in proximity to zone->lock.  It's good to
451 	 * give them a chance of being in the same cacheline.
452 	 *
453 	 * Write access to present_pages at runtime should be protected by
454 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
455 	 * present_pages should get_online_mems() to get a stable value.
456 	 */
457 	atomic_long_t		managed_pages;
458 	unsigned long		spanned_pages;
459 	unsigned long		present_pages;
460 
461 	const char		*name;
462 
463 #ifdef CONFIG_MEMORY_ISOLATION
464 	/*
465 	 * Number of isolated pageblock. It is used to solve incorrect
466 	 * freepage counting problem due to racy retrieving migratetype
467 	 * of pageblock. Protected by zone->lock.
468 	 */
469 	unsigned long		nr_isolate_pageblock;
470 #endif
471 
472 #ifdef CONFIG_MEMORY_HOTPLUG
473 	/* see spanned/present_pages for more description */
474 	seqlock_t		span_seqlock;
475 #endif
476 
477 	int initialized;
478 
479 	/* Write-intensive fields used from the page allocator */
480 	ZONE_PADDING(_pad1_)
481 
482 	/* free areas of different sizes */
483 	struct free_area	free_area[MAX_ORDER];
484 
485 	/* zone flags, see below */
486 	unsigned long		flags;
487 
488 	/* Primarily protects free_area */
489 	spinlock_t		lock;
490 
491 	/* Write-intensive fields used by compaction and vmstats. */
492 	ZONE_PADDING(_pad2_)
493 
494 	/*
495 	 * When free pages are below this point, additional steps are taken
496 	 * when reading the number of free pages to avoid per-cpu counter
497 	 * drift allowing watermarks to be breached
498 	 */
499 	unsigned long percpu_drift_mark;
500 
501 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
502 	/* pfn where compaction free scanner should start */
503 	unsigned long		compact_cached_free_pfn;
504 	/* pfn where async and sync compaction migration scanner should start */
505 	unsigned long		compact_cached_migrate_pfn[2];
506 	unsigned long		compact_init_migrate_pfn;
507 	unsigned long		compact_init_free_pfn;
508 #endif
509 
510 #ifdef CONFIG_COMPACTION
511 	/*
512 	 * On compaction failure, 1<<compact_defer_shift compactions
513 	 * are skipped before trying again. The number attempted since
514 	 * last failure is tracked with compact_considered.
515 	 */
516 	unsigned int		compact_considered;
517 	unsigned int		compact_defer_shift;
518 	int			compact_order_failed;
519 #endif
520 
521 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
522 	/* Set to true when the PG_migrate_skip bits should be cleared */
523 	bool			compact_blockskip_flush;
524 #endif
525 
526 	bool			contiguous;
527 
528 	ZONE_PADDING(_pad3_)
529 	/* Zone statistics */
530 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
531 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
532 } ____cacheline_internodealigned_in_smp;
533 
534 enum pgdat_flags {
535 	PGDAT_DIRTY,			/* reclaim scanning has recently found
536 					 * many dirty file pages at the tail
537 					 * of the LRU.
538 					 */
539 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
540 					 * many pages under writeback
541 					 */
542 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
543 };
544 
545 enum zone_flags {
546 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
547 					 * Cleared when kswapd is woken.
548 					 */
549 };
550 
551 static inline unsigned long zone_managed_pages(struct zone *zone)
552 {
553 	return (unsigned long)atomic_long_read(&zone->managed_pages);
554 }
555 
556 static inline unsigned long zone_end_pfn(const struct zone *zone)
557 {
558 	return zone->zone_start_pfn + zone->spanned_pages;
559 }
560 
561 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
562 {
563 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
564 }
565 
566 static inline bool zone_is_initialized(struct zone *zone)
567 {
568 	return zone->initialized;
569 }
570 
571 static inline bool zone_is_empty(struct zone *zone)
572 {
573 	return zone->spanned_pages == 0;
574 }
575 
576 /*
577  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
578  * intersection with the given zone
579  */
580 static inline bool zone_intersects(struct zone *zone,
581 		unsigned long start_pfn, unsigned long nr_pages)
582 {
583 	if (zone_is_empty(zone))
584 		return false;
585 	if (start_pfn >= zone_end_pfn(zone) ||
586 	    start_pfn + nr_pages <= zone->zone_start_pfn)
587 		return false;
588 
589 	return true;
590 }
591 
592 /*
593  * The "priority" of VM scanning is how much of the queues we will scan in one
594  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
595  * queues ("queue_length >> 12") during an aging round.
596  */
597 #define DEF_PRIORITY 12
598 
599 /* Maximum number of zones on a zonelist */
600 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
601 
602 enum {
603 	ZONELIST_FALLBACK,	/* zonelist with fallback */
604 #ifdef CONFIG_NUMA
605 	/*
606 	 * The NUMA zonelists are doubled because we need zonelists that
607 	 * restrict the allocations to a single node for __GFP_THISNODE.
608 	 */
609 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
610 #endif
611 	MAX_ZONELISTS
612 };
613 
614 /*
615  * This struct contains information about a zone in a zonelist. It is stored
616  * here to avoid dereferences into large structures and lookups of tables
617  */
618 struct zoneref {
619 	struct zone *zone;	/* Pointer to actual zone */
620 	int zone_idx;		/* zone_idx(zoneref->zone) */
621 };
622 
623 /*
624  * One allocation request operates on a zonelist. A zonelist
625  * is a list of zones, the first one is the 'goal' of the
626  * allocation, the other zones are fallback zones, in decreasing
627  * priority.
628  *
629  * To speed the reading of the zonelist, the zonerefs contain the zone index
630  * of the entry being read. Helper functions to access information given
631  * a struct zoneref are
632  *
633  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
634  * zonelist_zone_idx()	- Return the index of the zone for an entry
635  * zonelist_node_idx()	- Return the index of the node for an entry
636  */
637 struct zonelist {
638 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
639 };
640 
641 #ifndef CONFIG_DISCONTIGMEM
642 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
643 extern struct page *mem_map;
644 #endif
645 
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct deferred_split {
648 	spinlock_t split_queue_lock;
649 	struct list_head split_queue;
650 	unsigned long split_queue_len;
651 };
652 #endif
653 
654 /*
655  * On NUMA machines, each NUMA node would have a pg_data_t to describe
656  * it's memory layout. On UMA machines there is a single pglist_data which
657  * describes the whole memory.
658  *
659  * Memory statistics and page replacement data structures are maintained on a
660  * per-zone basis.
661  */
662 typedef struct pglist_data {
663 	/*
664 	 * node_zones contains just the zones for THIS node. Not all of the
665 	 * zones may be populated, but it is the full list. It is referenced by
666 	 * this node's node_zonelists as well as other node's node_zonelists.
667 	 */
668 	struct zone node_zones[MAX_NR_ZONES];
669 
670 	/*
671 	 * node_zonelists contains references to all zones in all nodes.
672 	 * Generally the first zones will be references to this node's
673 	 * node_zones.
674 	 */
675 	struct zonelist node_zonelists[MAX_ZONELISTS];
676 
677 	int nr_zones; /* number of populated zones in this node */
678 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
679 	struct page *node_mem_map;
680 #ifdef CONFIG_PAGE_EXTENSION
681 	struct page_ext *node_page_ext;
682 #endif
683 #endif
684 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
685 	/*
686 	 * Must be held any time you expect node_start_pfn,
687 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
688 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
689 	 * init.
690 	 *
691 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
692 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
693 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
694 	 *
695 	 * Nests above zone->lock and zone->span_seqlock
696 	 */
697 	spinlock_t node_size_lock;
698 #endif
699 	unsigned long node_start_pfn;
700 	unsigned long node_present_pages; /* total number of physical pages */
701 	unsigned long node_spanned_pages; /* total size of physical page
702 					     range, including holes */
703 	int node_id;
704 	wait_queue_head_t kswapd_wait;
705 	wait_queue_head_t pfmemalloc_wait;
706 	struct task_struct *kswapd;	/* Protected by
707 					   mem_hotplug_begin/end() */
708 	int kswapd_order;
709 	enum zone_type kswapd_highest_zoneidx;
710 
711 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
712 
713 #ifdef CONFIG_COMPACTION
714 	int kcompactd_max_order;
715 	enum zone_type kcompactd_highest_zoneidx;
716 	wait_queue_head_t kcompactd_wait;
717 	struct task_struct *kcompactd;
718 #endif
719 	/*
720 	 * This is a per-node reserve of pages that are not available
721 	 * to userspace allocations.
722 	 */
723 	unsigned long		totalreserve_pages;
724 
725 #ifdef CONFIG_NUMA
726 	/*
727 	 * node reclaim becomes active if more unmapped pages exist.
728 	 */
729 	unsigned long		min_unmapped_pages;
730 	unsigned long		min_slab_pages;
731 #endif /* CONFIG_NUMA */
732 
733 	/* Write-intensive fields used by page reclaim */
734 	ZONE_PADDING(_pad1_)
735 	spinlock_t		lru_lock;
736 
737 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
738 	/*
739 	 * If memory initialisation on large machines is deferred then this
740 	 * is the first PFN that needs to be initialised.
741 	 */
742 	unsigned long first_deferred_pfn;
743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
744 
745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
746 	struct deferred_split deferred_split_queue;
747 #endif
748 
749 	/* Fields commonly accessed by the page reclaim scanner */
750 
751 	/*
752 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
753 	 *
754 	 * Use mem_cgroup_lruvec() to look up lruvecs.
755 	 */
756 	struct lruvec		__lruvec;
757 
758 	unsigned long		flags;
759 
760 	ZONE_PADDING(_pad2_)
761 
762 	/* Per-node vmstats */
763 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
764 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
765 } pg_data_t;
766 
767 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
768 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
769 #ifdef CONFIG_FLAT_NODE_MEM_MAP
770 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
771 #else
772 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
773 #endif
774 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
775 
776 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
777 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
778 
779 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
780 {
781 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
782 }
783 
784 static inline bool pgdat_is_empty(pg_data_t *pgdat)
785 {
786 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
787 }
788 
789 #include <linux/memory_hotplug.h>
790 
791 void build_all_zonelists(pg_data_t *pgdat);
792 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
793 		   enum zone_type highest_zoneidx);
794 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
795 			 int highest_zoneidx, unsigned int alloc_flags,
796 			 long free_pages);
797 bool zone_watermark_ok(struct zone *z, unsigned int order,
798 		unsigned long mark, int highest_zoneidx,
799 		unsigned int alloc_flags);
800 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
801 		unsigned long mark, int highest_zoneidx);
802 enum memmap_context {
803 	MEMMAP_EARLY,
804 	MEMMAP_HOTPLUG,
805 };
806 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
807 				     unsigned long size);
808 
809 extern void lruvec_init(struct lruvec *lruvec);
810 
811 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
812 {
813 #ifdef CONFIG_MEMCG
814 	return lruvec->pgdat;
815 #else
816 	return container_of(lruvec, struct pglist_data, __lruvec);
817 #endif
818 }
819 
820 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
821 
822 #ifdef CONFIG_HAVE_MEMORY_PRESENT
823 void memory_present(int nid, unsigned long start, unsigned long end);
824 #else
825 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
826 #endif
827 
828 #if defined(CONFIG_SPARSEMEM)
829 void memblocks_present(void);
830 #else
831 static inline void memblocks_present(void) {}
832 #endif
833 
834 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
835 int local_memory_node(int node_id);
836 #else
837 static inline int local_memory_node(int node_id) { return node_id; };
838 #endif
839 
840 /*
841  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
842  */
843 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
844 
845 /*
846  * Returns true if a zone has pages managed by the buddy allocator.
847  * All the reclaim decisions have to use this function rather than
848  * populated_zone(). If the whole zone is reserved then we can easily
849  * end up with populated_zone() && !managed_zone().
850  */
851 static inline bool managed_zone(struct zone *zone)
852 {
853 	return zone_managed_pages(zone);
854 }
855 
856 /* Returns true if a zone has memory */
857 static inline bool populated_zone(struct zone *zone)
858 {
859 	return zone->present_pages;
860 }
861 
862 #ifdef CONFIG_NUMA
863 static inline int zone_to_nid(struct zone *zone)
864 {
865 	return zone->node;
866 }
867 
868 static inline void zone_set_nid(struct zone *zone, int nid)
869 {
870 	zone->node = nid;
871 }
872 #else
873 static inline int zone_to_nid(struct zone *zone)
874 {
875 	return 0;
876 }
877 
878 static inline void zone_set_nid(struct zone *zone, int nid) {}
879 #endif
880 
881 extern int movable_zone;
882 
883 #ifdef CONFIG_HIGHMEM
884 static inline int zone_movable_is_highmem(void)
885 {
886 #ifdef CONFIG_NEED_MULTIPLE_NODES
887 	return movable_zone == ZONE_HIGHMEM;
888 #else
889 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
890 #endif
891 }
892 #endif
893 
894 static inline int is_highmem_idx(enum zone_type idx)
895 {
896 #ifdef CONFIG_HIGHMEM
897 	return (idx == ZONE_HIGHMEM ||
898 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
899 #else
900 	return 0;
901 #endif
902 }
903 
904 /**
905  * is_highmem - helper function to quickly check if a struct zone is a
906  *              highmem zone or not.  This is an attempt to keep references
907  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
908  * @zone - pointer to struct zone variable
909  */
910 static inline int is_highmem(struct zone *zone)
911 {
912 #ifdef CONFIG_HIGHMEM
913 	return is_highmem_idx(zone_idx(zone));
914 #else
915 	return 0;
916 #endif
917 }
918 
919 /* These two functions are used to setup the per zone pages min values */
920 struct ctl_table;
921 
922 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
923 		loff_t *);
924 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
925 		size_t *, loff_t *);
926 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
927 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
928 		size_t *, loff_t *);
929 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
930 		void *, size_t *, loff_t *);
931 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
932 		void *, size_t *, loff_t *);
933 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
934 		void *, size_t *, loff_t *);
935 int numa_zonelist_order_handler(struct ctl_table *, int,
936 		void *, size_t *, loff_t *);
937 extern int percpu_pagelist_fraction;
938 extern char numa_zonelist_order[];
939 #define NUMA_ZONELIST_ORDER_LEN	16
940 
941 #ifndef CONFIG_NEED_MULTIPLE_NODES
942 
943 extern struct pglist_data contig_page_data;
944 #define NODE_DATA(nid)		(&contig_page_data)
945 #define NODE_MEM_MAP(nid)	mem_map
946 
947 #else /* CONFIG_NEED_MULTIPLE_NODES */
948 
949 #include <asm/mmzone.h>
950 
951 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
952 
953 extern struct pglist_data *first_online_pgdat(void);
954 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
955 extern struct zone *next_zone(struct zone *zone);
956 
957 /**
958  * for_each_online_pgdat - helper macro to iterate over all online nodes
959  * @pgdat - pointer to a pg_data_t variable
960  */
961 #define for_each_online_pgdat(pgdat)			\
962 	for (pgdat = first_online_pgdat();		\
963 	     pgdat;					\
964 	     pgdat = next_online_pgdat(pgdat))
965 /**
966  * for_each_zone - helper macro to iterate over all memory zones
967  * @zone - pointer to struct zone variable
968  *
969  * The user only needs to declare the zone variable, for_each_zone
970  * fills it in.
971  */
972 #define for_each_zone(zone)			        \
973 	for (zone = (first_online_pgdat())->node_zones; \
974 	     zone;					\
975 	     zone = next_zone(zone))
976 
977 #define for_each_populated_zone(zone)		        \
978 	for (zone = (first_online_pgdat())->node_zones; \
979 	     zone;					\
980 	     zone = next_zone(zone))			\
981 		if (!populated_zone(zone))		\
982 			; /* do nothing */		\
983 		else
984 
985 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
986 {
987 	return zoneref->zone;
988 }
989 
990 static inline int zonelist_zone_idx(struct zoneref *zoneref)
991 {
992 	return zoneref->zone_idx;
993 }
994 
995 static inline int zonelist_node_idx(struct zoneref *zoneref)
996 {
997 	return zone_to_nid(zoneref->zone);
998 }
999 
1000 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1001 					enum zone_type highest_zoneidx,
1002 					nodemask_t *nodes);
1003 
1004 /**
1005  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1006  * @z - The cursor used as a starting point for the search
1007  * @highest_zoneidx - The zone index of the highest zone to return
1008  * @nodes - An optional nodemask to filter the zonelist with
1009  *
1010  * This function returns the next zone at or below a given zone index that is
1011  * within the allowed nodemask using a cursor as the starting point for the
1012  * search. The zoneref returned is a cursor that represents the current zone
1013  * being examined. It should be advanced by one before calling
1014  * next_zones_zonelist again.
1015  */
1016 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1017 					enum zone_type highest_zoneidx,
1018 					nodemask_t *nodes)
1019 {
1020 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1021 		return z;
1022 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1023 }
1024 
1025 /**
1026  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1027  * @zonelist - The zonelist to search for a suitable zone
1028  * @highest_zoneidx - The zone index of the highest zone to return
1029  * @nodes - An optional nodemask to filter the zonelist with
1030  * @return - Zoneref pointer for the first suitable zone found (see below)
1031  *
1032  * This function returns the first zone at or below a given zone index that is
1033  * within the allowed nodemask. The zoneref returned is a cursor that can be
1034  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1035  * one before calling.
1036  *
1037  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1038  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1039  * update due to cpuset modification.
1040  */
1041 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1042 					enum zone_type highest_zoneidx,
1043 					nodemask_t *nodes)
1044 {
1045 	return next_zones_zonelist(zonelist->_zonerefs,
1046 							highest_zoneidx, nodes);
1047 }
1048 
1049 /**
1050  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1051  * @zone - The current zone in the iterator
1052  * @z - The current pointer within zonelist->_zonerefs being iterated
1053  * @zlist - The zonelist being iterated
1054  * @highidx - The zone index of the highest zone to return
1055  * @nodemask - Nodemask allowed by the allocator
1056  *
1057  * This iterator iterates though all zones at or below a given zone index and
1058  * within a given nodemask
1059  */
1060 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1061 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1062 		zone;							\
1063 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1064 			zone = zonelist_zone(z))
1065 
1066 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1067 	for (zone = z->zone;	\
1068 		zone;							\
1069 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1070 			zone = zonelist_zone(z))
1071 
1072 
1073 /**
1074  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1075  * @zone - The current zone in the iterator
1076  * @z - The current pointer within zonelist->zones being iterated
1077  * @zlist - The zonelist being iterated
1078  * @highidx - The zone index of the highest zone to return
1079  *
1080  * This iterator iterates though all zones at or below a given zone index.
1081  */
1082 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1083 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1084 
1085 #ifdef CONFIG_SPARSEMEM
1086 #include <asm/sparsemem.h>
1087 #endif
1088 
1089 #ifdef CONFIG_FLATMEM
1090 #define pfn_to_nid(pfn)		(0)
1091 #endif
1092 
1093 #ifdef CONFIG_SPARSEMEM
1094 
1095 /*
1096  * SECTION_SHIFT    		#bits space required to store a section #
1097  *
1098  * PA_SECTION_SHIFT		physical address to/from section number
1099  * PFN_SECTION_SHIFT		pfn to/from section number
1100  */
1101 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1102 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1103 
1104 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1105 
1106 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1107 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1108 
1109 #define SECTION_BLOCKFLAGS_BITS \
1110 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1111 
1112 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1113 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1114 #endif
1115 
1116 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1117 {
1118 	return pfn >> PFN_SECTION_SHIFT;
1119 }
1120 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1121 {
1122 	return sec << PFN_SECTION_SHIFT;
1123 }
1124 
1125 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1126 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1127 
1128 #define SUBSECTION_SHIFT 21
1129 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1130 
1131 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1132 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1133 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1134 
1135 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1136 #error Subsection size exceeds section size
1137 #else
1138 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1139 #endif
1140 
1141 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1142 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1143 
1144 struct mem_section_usage {
1145 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1146 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1147 #endif
1148 	/* See declaration of similar field in struct zone */
1149 	unsigned long pageblock_flags[0];
1150 };
1151 
1152 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1153 
1154 struct page;
1155 struct page_ext;
1156 struct mem_section {
1157 	/*
1158 	 * This is, logically, a pointer to an array of struct
1159 	 * pages.  However, it is stored with some other magic.
1160 	 * (see sparse.c::sparse_init_one_section())
1161 	 *
1162 	 * Additionally during early boot we encode node id of
1163 	 * the location of the section here to guide allocation.
1164 	 * (see sparse.c::memory_present())
1165 	 *
1166 	 * Making it a UL at least makes someone do a cast
1167 	 * before using it wrong.
1168 	 */
1169 	unsigned long section_mem_map;
1170 
1171 	struct mem_section_usage *usage;
1172 #ifdef CONFIG_PAGE_EXTENSION
1173 	/*
1174 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1175 	 * section. (see page_ext.h about this.)
1176 	 */
1177 	struct page_ext *page_ext;
1178 	unsigned long pad;
1179 #endif
1180 	/*
1181 	 * WARNING: mem_section must be a power-of-2 in size for the
1182 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1183 	 */
1184 };
1185 
1186 #ifdef CONFIG_SPARSEMEM_EXTREME
1187 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1188 #else
1189 #define SECTIONS_PER_ROOT	1
1190 #endif
1191 
1192 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1193 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1194 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1195 
1196 #ifdef CONFIG_SPARSEMEM_EXTREME
1197 extern struct mem_section **mem_section;
1198 #else
1199 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1200 #endif
1201 
1202 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1203 {
1204 	return ms->usage->pageblock_flags;
1205 }
1206 
1207 static inline struct mem_section *__nr_to_section(unsigned long nr)
1208 {
1209 #ifdef CONFIG_SPARSEMEM_EXTREME
1210 	if (!mem_section)
1211 		return NULL;
1212 #endif
1213 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1214 		return NULL;
1215 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1216 }
1217 extern unsigned long __section_nr(struct mem_section *ms);
1218 extern size_t mem_section_usage_size(void);
1219 
1220 /*
1221  * We use the lower bits of the mem_map pointer to store
1222  * a little bit of information.  The pointer is calculated
1223  * as mem_map - section_nr_to_pfn(pnum).  The result is
1224  * aligned to the minimum alignment of the two values:
1225  *   1. All mem_map arrays are page-aligned.
1226  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1227  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1228  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1229  *      worst combination is powerpc with 256k pages,
1230  *      which results in PFN_SECTION_SHIFT equal 6.
1231  * To sum it up, at least 6 bits are available.
1232  */
1233 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1234 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1235 #define SECTION_IS_ONLINE	(1UL<<2)
1236 #define SECTION_IS_EARLY	(1UL<<3)
1237 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1238 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1239 #define SECTION_NID_SHIFT	3
1240 
1241 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1242 {
1243 	unsigned long map = section->section_mem_map;
1244 	map &= SECTION_MAP_MASK;
1245 	return (struct page *)map;
1246 }
1247 
1248 static inline int present_section(struct mem_section *section)
1249 {
1250 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1251 }
1252 
1253 static inline int present_section_nr(unsigned long nr)
1254 {
1255 	return present_section(__nr_to_section(nr));
1256 }
1257 
1258 static inline int valid_section(struct mem_section *section)
1259 {
1260 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1261 }
1262 
1263 static inline int early_section(struct mem_section *section)
1264 {
1265 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1266 }
1267 
1268 static inline int valid_section_nr(unsigned long nr)
1269 {
1270 	return valid_section(__nr_to_section(nr));
1271 }
1272 
1273 static inline int online_section(struct mem_section *section)
1274 {
1275 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1276 }
1277 
1278 static inline int online_section_nr(unsigned long nr)
1279 {
1280 	return online_section(__nr_to_section(nr));
1281 }
1282 
1283 #ifdef CONFIG_MEMORY_HOTPLUG
1284 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1285 #ifdef CONFIG_MEMORY_HOTREMOVE
1286 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1287 #endif
1288 #endif
1289 
1290 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1291 {
1292 	return __nr_to_section(pfn_to_section_nr(pfn));
1293 }
1294 
1295 extern unsigned long __highest_present_section_nr;
1296 
1297 static inline int subsection_map_index(unsigned long pfn)
1298 {
1299 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1300 }
1301 
1302 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1303 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1304 {
1305 	int idx = subsection_map_index(pfn);
1306 
1307 	return test_bit(idx, ms->usage->subsection_map);
1308 }
1309 #else
1310 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1311 {
1312 	return 1;
1313 }
1314 #endif
1315 
1316 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1317 static inline int pfn_valid(unsigned long pfn)
1318 {
1319 	struct mem_section *ms;
1320 
1321 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1322 		return 0;
1323 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1324 	if (!valid_section(ms))
1325 		return 0;
1326 	/*
1327 	 * Traditionally early sections always returned pfn_valid() for
1328 	 * the entire section-sized span.
1329 	 */
1330 	return early_section(ms) || pfn_section_valid(ms, pfn);
1331 }
1332 #endif
1333 
1334 static inline int pfn_in_present_section(unsigned long pfn)
1335 {
1336 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1337 		return 0;
1338 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1339 }
1340 
1341 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1342 {
1343 	while (++section_nr <= __highest_present_section_nr) {
1344 		if (present_section_nr(section_nr))
1345 			return section_nr;
1346 	}
1347 
1348 	return -1;
1349 }
1350 
1351 /*
1352  * These are _only_ used during initialisation, therefore they
1353  * can use __initdata ...  They could have names to indicate
1354  * this restriction.
1355  */
1356 #ifdef CONFIG_NUMA
1357 #define pfn_to_nid(pfn)							\
1358 ({									\
1359 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1360 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1361 })
1362 #else
1363 #define pfn_to_nid(pfn)		(0)
1364 #endif
1365 
1366 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1367 void sparse_init(void);
1368 #else
1369 #define sparse_init()	do {} while (0)
1370 #define sparse_index_init(_sec, _nid)  do {} while (0)
1371 #define pfn_in_present_section pfn_valid
1372 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1373 #endif /* CONFIG_SPARSEMEM */
1374 
1375 /*
1376  * During memory init memblocks map pfns to nids. The search is expensive and
1377  * this caches recent lookups. The implementation of __early_pfn_to_nid
1378  * may treat start/end as pfns or sections.
1379  */
1380 struct mminit_pfnnid_cache {
1381 	unsigned long last_start;
1382 	unsigned long last_end;
1383 	int last_nid;
1384 };
1385 
1386 #ifndef early_pfn_valid
1387 #define early_pfn_valid(pfn)	(1)
1388 #endif
1389 
1390 void memory_present(int nid, unsigned long start, unsigned long end);
1391 
1392 /*
1393  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1394  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1395  * pfn_valid_within() should be used in this case; we optimise this away
1396  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1397  */
1398 #ifdef CONFIG_HOLES_IN_ZONE
1399 #define pfn_valid_within(pfn) pfn_valid(pfn)
1400 #else
1401 #define pfn_valid_within(pfn) (1)
1402 #endif
1403 
1404 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1405 /*
1406  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1407  * associated with it or not. This means that a struct page exists for this
1408  * pfn. The caller cannot assume the page is fully initialized in general.
1409  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1410  * will ensure the struct page is fully online and initialized. Special pages
1411  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1412  *
1413  * In FLATMEM, it is expected that holes always have valid memmap as long as
1414  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1415  * that a valid section has a memmap for the entire section.
1416  *
1417  * However, an ARM, and maybe other embedded architectures in the future
1418  * free memmap backing holes to save memory on the assumption the memmap is
1419  * never used. The page_zone linkages are then broken even though pfn_valid()
1420  * returns true. A walker of the full memmap must then do this additional
1421  * check to ensure the memmap they are looking at is sane by making sure
1422  * the zone and PFN linkages are still valid. This is expensive, but walkers
1423  * of the full memmap are extremely rare.
1424  */
1425 bool memmap_valid_within(unsigned long pfn,
1426 					struct page *page, struct zone *zone);
1427 #else
1428 static inline bool memmap_valid_within(unsigned long pfn,
1429 					struct page *page, struct zone *zone)
1430 {
1431 	return true;
1432 }
1433 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1434 
1435 #endif /* !__GENERATING_BOUNDS.H */
1436 #endif /* !__ASSEMBLY__ */
1437 #endif /* _LINUX_MMZONE_H */
1438