1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 93 94 #define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 96 PB_migrate_end, MIGRATETYPE_MASK) 97 98 struct free_area { 99 struct list_head free_list[MIGRATE_TYPES]; 100 unsigned long nr_free; 101 }; 102 103 static inline struct page *get_page_from_free_area(struct free_area *area, 104 int migratetype) 105 { 106 return list_first_entry_or_null(&area->free_list[migratetype], 107 struct page, lru); 108 } 109 110 static inline bool free_area_empty(struct free_area *area, int migratetype) 111 { 112 return list_empty(&area->free_list[migratetype]); 113 } 114 115 struct pglist_data; 116 117 /* 118 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 119 * So add a wild amount of padding here to ensure that they fall into separate 120 * cachelines. There are very few zone structures in the machine, so space 121 * consumption is not a concern here. 122 */ 123 #if defined(CONFIG_SMP) 124 struct zone_padding { 125 char x[0]; 126 } ____cacheline_internodealigned_in_smp; 127 #define ZONE_PADDING(name) struct zone_padding name; 128 #else 129 #define ZONE_PADDING(name) 130 #endif 131 132 #ifdef CONFIG_NUMA 133 enum numa_stat_item { 134 NUMA_HIT, /* allocated in intended node */ 135 NUMA_MISS, /* allocated in non intended node */ 136 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 137 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 138 NUMA_LOCAL, /* allocation from local node */ 139 NUMA_OTHER, /* allocation from other node */ 140 NR_VM_NUMA_STAT_ITEMS 141 }; 142 #else 143 #define NR_VM_NUMA_STAT_ITEMS 0 144 #endif 145 146 enum zone_stat_item { 147 /* First 128 byte cacheline (assuming 64 bit words) */ 148 NR_FREE_PAGES, 149 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 150 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 151 NR_ZONE_ACTIVE_ANON, 152 NR_ZONE_INACTIVE_FILE, 153 NR_ZONE_ACTIVE_FILE, 154 NR_ZONE_UNEVICTABLE, 155 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 156 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 157 NR_PAGETABLE, /* used for pagetables */ 158 NR_KERNEL_STACK_KB, /* measured in KiB */ 159 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 160 NR_KERNEL_SCS_KB, /* measured in KiB */ 161 #endif 162 /* Second 128 byte cacheline */ 163 NR_BOUNCE, 164 #if IS_ENABLED(CONFIG_ZSMALLOC) 165 NR_ZSPAGES, /* allocated in zsmalloc */ 166 #endif 167 NR_FREE_CMA_PAGES, 168 NR_VM_ZONE_STAT_ITEMS }; 169 170 enum node_stat_item { 171 NR_LRU_BASE, 172 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 173 NR_ACTIVE_ANON, /* " " " " " */ 174 NR_INACTIVE_FILE, /* " " " " " */ 175 NR_ACTIVE_FILE, /* " " " " " */ 176 NR_UNEVICTABLE, /* " " " " " */ 177 NR_SLAB_RECLAIMABLE, 178 NR_SLAB_UNRECLAIMABLE, 179 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 180 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 181 WORKINGSET_NODES, 182 WORKINGSET_REFAULT, 183 WORKINGSET_ACTIVATE, 184 WORKINGSET_RESTORE, 185 WORKINGSET_NODERECLAIM, 186 NR_ANON_MAPPED, /* Mapped anonymous pages */ 187 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 188 only modified from process context */ 189 NR_FILE_PAGES, 190 NR_FILE_DIRTY, 191 NR_WRITEBACK, 192 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 193 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 194 NR_SHMEM_THPS, 195 NR_SHMEM_PMDMAPPED, 196 NR_FILE_THPS, 197 NR_FILE_PMDMAPPED, 198 NR_ANON_THPS, 199 NR_VMSCAN_WRITE, 200 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 201 NR_DIRTIED, /* page dirtyings since bootup */ 202 NR_WRITTEN, /* page writings since bootup */ 203 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 204 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 205 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 206 NR_VM_NODE_STAT_ITEMS 207 }; 208 209 /* 210 * We do arithmetic on the LRU lists in various places in the code, 211 * so it is important to keep the active lists LRU_ACTIVE higher in 212 * the array than the corresponding inactive lists, and to keep 213 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 214 * 215 * This has to be kept in sync with the statistics in zone_stat_item 216 * above and the descriptions in vmstat_text in mm/vmstat.c 217 */ 218 #define LRU_BASE 0 219 #define LRU_ACTIVE 1 220 #define LRU_FILE 2 221 222 enum lru_list { 223 LRU_INACTIVE_ANON = LRU_BASE, 224 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 225 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 226 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 227 LRU_UNEVICTABLE, 228 NR_LRU_LISTS 229 }; 230 231 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 232 233 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 234 235 static inline bool is_file_lru(enum lru_list lru) 236 { 237 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 238 } 239 240 static inline bool is_active_lru(enum lru_list lru) 241 { 242 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 243 } 244 245 enum lruvec_flags { 246 LRUVEC_CONGESTED, /* lruvec has many dirty pages 247 * backed by a congested BDI 248 */ 249 }; 250 251 struct lruvec { 252 struct list_head lists[NR_LRU_LISTS]; 253 /* 254 * These track the cost of reclaiming one LRU - file or anon - 255 * over the other. As the observed cost of reclaiming one LRU 256 * increases, the reclaim scan balance tips toward the other. 257 */ 258 unsigned long anon_cost; 259 unsigned long file_cost; 260 /* Evictions & activations on the inactive file list */ 261 atomic_long_t inactive_age; 262 /* Refaults at the time of last reclaim cycle */ 263 unsigned long refaults; 264 /* Various lruvec state flags (enum lruvec_flags) */ 265 unsigned long flags; 266 #ifdef CONFIG_MEMCG 267 struct pglist_data *pgdat; 268 #endif 269 }; 270 271 /* Isolate unmapped pages */ 272 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 273 /* Isolate for asynchronous migration */ 274 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 275 /* Isolate unevictable pages */ 276 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 277 278 /* LRU Isolation modes. */ 279 typedef unsigned __bitwise isolate_mode_t; 280 281 enum zone_watermarks { 282 WMARK_MIN, 283 WMARK_LOW, 284 WMARK_HIGH, 285 NR_WMARK 286 }; 287 288 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 289 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 290 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 291 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 292 293 struct per_cpu_pages { 294 int count; /* number of pages in the list */ 295 int high; /* high watermark, emptying needed */ 296 int batch; /* chunk size for buddy add/remove */ 297 298 /* Lists of pages, one per migrate type stored on the pcp-lists */ 299 struct list_head lists[MIGRATE_PCPTYPES]; 300 }; 301 302 struct per_cpu_pageset { 303 struct per_cpu_pages pcp; 304 #ifdef CONFIG_NUMA 305 s8 expire; 306 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 307 #endif 308 #ifdef CONFIG_SMP 309 s8 stat_threshold; 310 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 311 #endif 312 }; 313 314 struct per_cpu_nodestat { 315 s8 stat_threshold; 316 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 317 }; 318 319 #endif /* !__GENERATING_BOUNDS.H */ 320 321 enum zone_type { 322 /* 323 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 324 * to DMA to all of the addressable memory (ZONE_NORMAL). 325 * On architectures where this area covers the whole 32 bit address 326 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 327 * DMA addressing constraints. This distinction is important as a 32bit 328 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 329 * platforms may need both zones as they support peripherals with 330 * different DMA addressing limitations. 331 * 332 * Some examples: 333 * 334 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 335 * rest of the lower 4G. 336 * 337 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 338 * the specific device. 339 * 340 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 341 * lower 4G. 342 * 343 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 344 * depending on the specific device. 345 * 346 * - s390 uses ZONE_DMA fixed to the lower 2G. 347 * 348 * - ia64 and riscv only use ZONE_DMA32. 349 * 350 * - parisc uses neither. 351 */ 352 #ifdef CONFIG_ZONE_DMA 353 ZONE_DMA, 354 #endif 355 #ifdef CONFIG_ZONE_DMA32 356 ZONE_DMA32, 357 #endif 358 /* 359 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 360 * performed on pages in ZONE_NORMAL if the DMA devices support 361 * transfers to all addressable memory. 362 */ 363 ZONE_NORMAL, 364 #ifdef CONFIG_HIGHMEM 365 /* 366 * A memory area that is only addressable by the kernel through 367 * mapping portions into its own address space. This is for example 368 * used by i386 to allow the kernel to address the memory beyond 369 * 900MB. The kernel will set up special mappings (page 370 * table entries on i386) for each page that the kernel needs to 371 * access. 372 */ 373 ZONE_HIGHMEM, 374 #endif 375 ZONE_MOVABLE, 376 #ifdef CONFIG_ZONE_DEVICE 377 ZONE_DEVICE, 378 #endif 379 __MAX_NR_ZONES 380 381 }; 382 383 #ifndef __GENERATING_BOUNDS_H 384 385 struct zone { 386 /* Read-mostly fields */ 387 388 /* zone watermarks, access with *_wmark_pages(zone) macros */ 389 unsigned long _watermark[NR_WMARK]; 390 unsigned long watermark_boost; 391 392 unsigned long nr_reserved_highatomic; 393 394 /* 395 * We don't know if the memory that we're going to allocate will be 396 * freeable or/and it will be released eventually, so to avoid totally 397 * wasting several GB of ram we must reserve some of the lower zone 398 * memory (otherwise we risk to run OOM on the lower zones despite 399 * there being tons of freeable ram on the higher zones). This array is 400 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 401 * changes. 402 */ 403 long lowmem_reserve[MAX_NR_ZONES]; 404 405 #ifdef CONFIG_NUMA 406 int node; 407 #endif 408 struct pglist_data *zone_pgdat; 409 struct per_cpu_pageset __percpu *pageset; 410 411 #ifndef CONFIG_SPARSEMEM 412 /* 413 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 414 * In SPARSEMEM, this map is stored in struct mem_section 415 */ 416 unsigned long *pageblock_flags; 417 #endif /* CONFIG_SPARSEMEM */ 418 419 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 420 unsigned long zone_start_pfn; 421 422 /* 423 * spanned_pages is the total pages spanned by the zone, including 424 * holes, which is calculated as: 425 * spanned_pages = zone_end_pfn - zone_start_pfn; 426 * 427 * present_pages is physical pages existing within the zone, which 428 * is calculated as: 429 * present_pages = spanned_pages - absent_pages(pages in holes); 430 * 431 * managed_pages is present pages managed by the buddy system, which 432 * is calculated as (reserved_pages includes pages allocated by the 433 * bootmem allocator): 434 * managed_pages = present_pages - reserved_pages; 435 * 436 * So present_pages may be used by memory hotplug or memory power 437 * management logic to figure out unmanaged pages by checking 438 * (present_pages - managed_pages). And managed_pages should be used 439 * by page allocator and vm scanner to calculate all kinds of watermarks 440 * and thresholds. 441 * 442 * Locking rules: 443 * 444 * zone_start_pfn and spanned_pages are protected by span_seqlock. 445 * It is a seqlock because it has to be read outside of zone->lock, 446 * and it is done in the main allocator path. But, it is written 447 * quite infrequently. 448 * 449 * The span_seq lock is declared along with zone->lock because it is 450 * frequently read in proximity to zone->lock. It's good to 451 * give them a chance of being in the same cacheline. 452 * 453 * Write access to present_pages at runtime should be protected by 454 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 455 * present_pages should get_online_mems() to get a stable value. 456 */ 457 atomic_long_t managed_pages; 458 unsigned long spanned_pages; 459 unsigned long present_pages; 460 461 const char *name; 462 463 #ifdef CONFIG_MEMORY_ISOLATION 464 /* 465 * Number of isolated pageblock. It is used to solve incorrect 466 * freepage counting problem due to racy retrieving migratetype 467 * of pageblock. Protected by zone->lock. 468 */ 469 unsigned long nr_isolate_pageblock; 470 #endif 471 472 #ifdef CONFIG_MEMORY_HOTPLUG 473 /* see spanned/present_pages for more description */ 474 seqlock_t span_seqlock; 475 #endif 476 477 int initialized; 478 479 /* Write-intensive fields used from the page allocator */ 480 ZONE_PADDING(_pad1_) 481 482 /* free areas of different sizes */ 483 struct free_area free_area[MAX_ORDER]; 484 485 /* zone flags, see below */ 486 unsigned long flags; 487 488 /* Primarily protects free_area */ 489 spinlock_t lock; 490 491 /* Write-intensive fields used by compaction and vmstats. */ 492 ZONE_PADDING(_pad2_) 493 494 /* 495 * When free pages are below this point, additional steps are taken 496 * when reading the number of free pages to avoid per-cpu counter 497 * drift allowing watermarks to be breached 498 */ 499 unsigned long percpu_drift_mark; 500 501 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 502 /* pfn where compaction free scanner should start */ 503 unsigned long compact_cached_free_pfn; 504 /* pfn where async and sync compaction migration scanner should start */ 505 unsigned long compact_cached_migrate_pfn[2]; 506 unsigned long compact_init_migrate_pfn; 507 unsigned long compact_init_free_pfn; 508 #endif 509 510 #ifdef CONFIG_COMPACTION 511 /* 512 * On compaction failure, 1<<compact_defer_shift compactions 513 * are skipped before trying again. The number attempted since 514 * last failure is tracked with compact_considered. 515 */ 516 unsigned int compact_considered; 517 unsigned int compact_defer_shift; 518 int compact_order_failed; 519 #endif 520 521 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 522 /* Set to true when the PG_migrate_skip bits should be cleared */ 523 bool compact_blockskip_flush; 524 #endif 525 526 bool contiguous; 527 528 ZONE_PADDING(_pad3_) 529 /* Zone statistics */ 530 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 531 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 532 } ____cacheline_internodealigned_in_smp; 533 534 enum pgdat_flags { 535 PGDAT_DIRTY, /* reclaim scanning has recently found 536 * many dirty file pages at the tail 537 * of the LRU. 538 */ 539 PGDAT_WRITEBACK, /* reclaim scanning has recently found 540 * many pages under writeback 541 */ 542 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 543 }; 544 545 enum zone_flags { 546 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 547 * Cleared when kswapd is woken. 548 */ 549 }; 550 551 static inline unsigned long zone_managed_pages(struct zone *zone) 552 { 553 return (unsigned long)atomic_long_read(&zone->managed_pages); 554 } 555 556 static inline unsigned long zone_end_pfn(const struct zone *zone) 557 { 558 return zone->zone_start_pfn + zone->spanned_pages; 559 } 560 561 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 562 { 563 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 564 } 565 566 static inline bool zone_is_initialized(struct zone *zone) 567 { 568 return zone->initialized; 569 } 570 571 static inline bool zone_is_empty(struct zone *zone) 572 { 573 return zone->spanned_pages == 0; 574 } 575 576 /* 577 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 578 * intersection with the given zone 579 */ 580 static inline bool zone_intersects(struct zone *zone, 581 unsigned long start_pfn, unsigned long nr_pages) 582 { 583 if (zone_is_empty(zone)) 584 return false; 585 if (start_pfn >= zone_end_pfn(zone) || 586 start_pfn + nr_pages <= zone->zone_start_pfn) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * The "priority" of VM scanning is how much of the queues we will scan in one 594 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 595 * queues ("queue_length >> 12") during an aging round. 596 */ 597 #define DEF_PRIORITY 12 598 599 /* Maximum number of zones on a zonelist */ 600 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 601 602 enum { 603 ZONELIST_FALLBACK, /* zonelist with fallback */ 604 #ifdef CONFIG_NUMA 605 /* 606 * The NUMA zonelists are doubled because we need zonelists that 607 * restrict the allocations to a single node for __GFP_THISNODE. 608 */ 609 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 610 #endif 611 MAX_ZONELISTS 612 }; 613 614 /* 615 * This struct contains information about a zone in a zonelist. It is stored 616 * here to avoid dereferences into large structures and lookups of tables 617 */ 618 struct zoneref { 619 struct zone *zone; /* Pointer to actual zone */ 620 int zone_idx; /* zone_idx(zoneref->zone) */ 621 }; 622 623 /* 624 * One allocation request operates on a zonelist. A zonelist 625 * is a list of zones, the first one is the 'goal' of the 626 * allocation, the other zones are fallback zones, in decreasing 627 * priority. 628 * 629 * To speed the reading of the zonelist, the zonerefs contain the zone index 630 * of the entry being read. Helper functions to access information given 631 * a struct zoneref are 632 * 633 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 634 * zonelist_zone_idx() - Return the index of the zone for an entry 635 * zonelist_node_idx() - Return the index of the node for an entry 636 */ 637 struct zonelist { 638 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 639 }; 640 641 #ifndef CONFIG_DISCONTIGMEM 642 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 643 extern struct page *mem_map; 644 #endif 645 646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 647 struct deferred_split { 648 spinlock_t split_queue_lock; 649 struct list_head split_queue; 650 unsigned long split_queue_len; 651 }; 652 #endif 653 654 /* 655 * On NUMA machines, each NUMA node would have a pg_data_t to describe 656 * it's memory layout. On UMA machines there is a single pglist_data which 657 * describes the whole memory. 658 * 659 * Memory statistics and page replacement data structures are maintained on a 660 * per-zone basis. 661 */ 662 typedef struct pglist_data { 663 /* 664 * node_zones contains just the zones for THIS node. Not all of the 665 * zones may be populated, but it is the full list. It is referenced by 666 * this node's node_zonelists as well as other node's node_zonelists. 667 */ 668 struct zone node_zones[MAX_NR_ZONES]; 669 670 /* 671 * node_zonelists contains references to all zones in all nodes. 672 * Generally the first zones will be references to this node's 673 * node_zones. 674 */ 675 struct zonelist node_zonelists[MAX_ZONELISTS]; 676 677 int nr_zones; /* number of populated zones in this node */ 678 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 679 struct page *node_mem_map; 680 #ifdef CONFIG_PAGE_EXTENSION 681 struct page_ext *node_page_ext; 682 #endif 683 #endif 684 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 685 /* 686 * Must be held any time you expect node_start_pfn, 687 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 688 * Also synchronizes pgdat->first_deferred_pfn during deferred page 689 * init. 690 * 691 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 692 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 693 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 694 * 695 * Nests above zone->lock and zone->span_seqlock 696 */ 697 spinlock_t node_size_lock; 698 #endif 699 unsigned long node_start_pfn; 700 unsigned long node_present_pages; /* total number of physical pages */ 701 unsigned long node_spanned_pages; /* total size of physical page 702 range, including holes */ 703 int node_id; 704 wait_queue_head_t kswapd_wait; 705 wait_queue_head_t pfmemalloc_wait; 706 struct task_struct *kswapd; /* Protected by 707 mem_hotplug_begin/end() */ 708 int kswapd_order; 709 enum zone_type kswapd_highest_zoneidx; 710 711 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 712 713 #ifdef CONFIG_COMPACTION 714 int kcompactd_max_order; 715 enum zone_type kcompactd_highest_zoneidx; 716 wait_queue_head_t kcompactd_wait; 717 struct task_struct *kcompactd; 718 #endif 719 /* 720 * This is a per-node reserve of pages that are not available 721 * to userspace allocations. 722 */ 723 unsigned long totalreserve_pages; 724 725 #ifdef CONFIG_NUMA 726 /* 727 * node reclaim becomes active if more unmapped pages exist. 728 */ 729 unsigned long min_unmapped_pages; 730 unsigned long min_slab_pages; 731 #endif /* CONFIG_NUMA */ 732 733 /* Write-intensive fields used by page reclaim */ 734 ZONE_PADDING(_pad1_) 735 spinlock_t lru_lock; 736 737 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 738 /* 739 * If memory initialisation on large machines is deferred then this 740 * is the first PFN that needs to be initialised. 741 */ 742 unsigned long first_deferred_pfn; 743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 744 745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 746 struct deferred_split deferred_split_queue; 747 #endif 748 749 /* Fields commonly accessed by the page reclaim scanner */ 750 751 /* 752 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 753 * 754 * Use mem_cgroup_lruvec() to look up lruvecs. 755 */ 756 struct lruvec __lruvec; 757 758 unsigned long flags; 759 760 ZONE_PADDING(_pad2_) 761 762 /* Per-node vmstats */ 763 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 764 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 765 } pg_data_t; 766 767 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 768 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 769 #ifdef CONFIG_FLAT_NODE_MEM_MAP 770 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 771 #else 772 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 773 #endif 774 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 775 776 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 777 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 778 779 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 780 { 781 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 782 } 783 784 static inline bool pgdat_is_empty(pg_data_t *pgdat) 785 { 786 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 787 } 788 789 #include <linux/memory_hotplug.h> 790 791 void build_all_zonelists(pg_data_t *pgdat); 792 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 793 enum zone_type highest_zoneidx); 794 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 795 int highest_zoneidx, unsigned int alloc_flags, 796 long free_pages); 797 bool zone_watermark_ok(struct zone *z, unsigned int order, 798 unsigned long mark, int highest_zoneidx, 799 unsigned int alloc_flags); 800 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 801 unsigned long mark, int highest_zoneidx); 802 enum memmap_context { 803 MEMMAP_EARLY, 804 MEMMAP_HOTPLUG, 805 }; 806 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 807 unsigned long size); 808 809 extern void lruvec_init(struct lruvec *lruvec); 810 811 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 812 { 813 #ifdef CONFIG_MEMCG 814 return lruvec->pgdat; 815 #else 816 return container_of(lruvec, struct pglist_data, __lruvec); 817 #endif 818 } 819 820 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 821 822 #ifdef CONFIG_HAVE_MEMORY_PRESENT 823 void memory_present(int nid, unsigned long start, unsigned long end); 824 #else 825 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 826 #endif 827 828 #if defined(CONFIG_SPARSEMEM) 829 void memblocks_present(void); 830 #else 831 static inline void memblocks_present(void) {} 832 #endif 833 834 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 835 int local_memory_node(int node_id); 836 #else 837 static inline int local_memory_node(int node_id) { return node_id; }; 838 #endif 839 840 /* 841 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 842 */ 843 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 844 845 /* 846 * Returns true if a zone has pages managed by the buddy allocator. 847 * All the reclaim decisions have to use this function rather than 848 * populated_zone(). If the whole zone is reserved then we can easily 849 * end up with populated_zone() && !managed_zone(). 850 */ 851 static inline bool managed_zone(struct zone *zone) 852 { 853 return zone_managed_pages(zone); 854 } 855 856 /* Returns true if a zone has memory */ 857 static inline bool populated_zone(struct zone *zone) 858 { 859 return zone->present_pages; 860 } 861 862 #ifdef CONFIG_NUMA 863 static inline int zone_to_nid(struct zone *zone) 864 { 865 return zone->node; 866 } 867 868 static inline void zone_set_nid(struct zone *zone, int nid) 869 { 870 zone->node = nid; 871 } 872 #else 873 static inline int zone_to_nid(struct zone *zone) 874 { 875 return 0; 876 } 877 878 static inline void zone_set_nid(struct zone *zone, int nid) {} 879 #endif 880 881 extern int movable_zone; 882 883 #ifdef CONFIG_HIGHMEM 884 static inline int zone_movable_is_highmem(void) 885 { 886 #ifdef CONFIG_NEED_MULTIPLE_NODES 887 return movable_zone == ZONE_HIGHMEM; 888 #else 889 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 890 #endif 891 } 892 #endif 893 894 static inline int is_highmem_idx(enum zone_type idx) 895 { 896 #ifdef CONFIG_HIGHMEM 897 return (idx == ZONE_HIGHMEM || 898 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 899 #else 900 return 0; 901 #endif 902 } 903 904 /** 905 * is_highmem - helper function to quickly check if a struct zone is a 906 * highmem zone or not. This is an attempt to keep references 907 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 908 * @zone - pointer to struct zone variable 909 */ 910 static inline int is_highmem(struct zone *zone) 911 { 912 #ifdef CONFIG_HIGHMEM 913 return is_highmem_idx(zone_idx(zone)); 914 #else 915 return 0; 916 #endif 917 } 918 919 /* These two functions are used to setup the per zone pages min values */ 920 struct ctl_table; 921 922 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 923 loff_t *); 924 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 925 size_t *, loff_t *); 926 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 927 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 928 size_t *, loff_t *); 929 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 930 void *, size_t *, loff_t *); 931 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 932 void *, size_t *, loff_t *); 933 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 934 void *, size_t *, loff_t *); 935 int numa_zonelist_order_handler(struct ctl_table *, int, 936 void *, size_t *, loff_t *); 937 extern int percpu_pagelist_fraction; 938 extern char numa_zonelist_order[]; 939 #define NUMA_ZONELIST_ORDER_LEN 16 940 941 #ifndef CONFIG_NEED_MULTIPLE_NODES 942 943 extern struct pglist_data contig_page_data; 944 #define NODE_DATA(nid) (&contig_page_data) 945 #define NODE_MEM_MAP(nid) mem_map 946 947 #else /* CONFIG_NEED_MULTIPLE_NODES */ 948 949 #include <asm/mmzone.h> 950 951 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 952 953 extern struct pglist_data *first_online_pgdat(void); 954 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 955 extern struct zone *next_zone(struct zone *zone); 956 957 /** 958 * for_each_online_pgdat - helper macro to iterate over all online nodes 959 * @pgdat - pointer to a pg_data_t variable 960 */ 961 #define for_each_online_pgdat(pgdat) \ 962 for (pgdat = first_online_pgdat(); \ 963 pgdat; \ 964 pgdat = next_online_pgdat(pgdat)) 965 /** 966 * for_each_zone - helper macro to iterate over all memory zones 967 * @zone - pointer to struct zone variable 968 * 969 * The user only needs to declare the zone variable, for_each_zone 970 * fills it in. 971 */ 972 #define for_each_zone(zone) \ 973 for (zone = (first_online_pgdat())->node_zones; \ 974 zone; \ 975 zone = next_zone(zone)) 976 977 #define for_each_populated_zone(zone) \ 978 for (zone = (first_online_pgdat())->node_zones; \ 979 zone; \ 980 zone = next_zone(zone)) \ 981 if (!populated_zone(zone)) \ 982 ; /* do nothing */ \ 983 else 984 985 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 986 { 987 return zoneref->zone; 988 } 989 990 static inline int zonelist_zone_idx(struct zoneref *zoneref) 991 { 992 return zoneref->zone_idx; 993 } 994 995 static inline int zonelist_node_idx(struct zoneref *zoneref) 996 { 997 return zone_to_nid(zoneref->zone); 998 } 999 1000 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1001 enum zone_type highest_zoneidx, 1002 nodemask_t *nodes); 1003 1004 /** 1005 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1006 * @z - The cursor used as a starting point for the search 1007 * @highest_zoneidx - The zone index of the highest zone to return 1008 * @nodes - An optional nodemask to filter the zonelist with 1009 * 1010 * This function returns the next zone at or below a given zone index that is 1011 * within the allowed nodemask using a cursor as the starting point for the 1012 * search. The zoneref returned is a cursor that represents the current zone 1013 * being examined. It should be advanced by one before calling 1014 * next_zones_zonelist again. 1015 */ 1016 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1017 enum zone_type highest_zoneidx, 1018 nodemask_t *nodes) 1019 { 1020 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1021 return z; 1022 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1023 } 1024 1025 /** 1026 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1027 * @zonelist - The zonelist to search for a suitable zone 1028 * @highest_zoneidx - The zone index of the highest zone to return 1029 * @nodes - An optional nodemask to filter the zonelist with 1030 * @return - Zoneref pointer for the first suitable zone found (see below) 1031 * 1032 * This function returns the first zone at or below a given zone index that is 1033 * within the allowed nodemask. The zoneref returned is a cursor that can be 1034 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1035 * one before calling. 1036 * 1037 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1038 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1039 * update due to cpuset modification. 1040 */ 1041 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1042 enum zone_type highest_zoneidx, 1043 nodemask_t *nodes) 1044 { 1045 return next_zones_zonelist(zonelist->_zonerefs, 1046 highest_zoneidx, nodes); 1047 } 1048 1049 /** 1050 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1051 * @zone - The current zone in the iterator 1052 * @z - The current pointer within zonelist->_zonerefs being iterated 1053 * @zlist - The zonelist being iterated 1054 * @highidx - The zone index of the highest zone to return 1055 * @nodemask - Nodemask allowed by the allocator 1056 * 1057 * This iterator iterates though all zones at or below a given zone index and 1058 * within a given nodemask 1059 */ 1060 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1061 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1062 zone; \ 1063 z = next_zones_zonelist(++z, highidx, nodemask), \ 1064 zone = zonelist_zone(z)) 1065 1066 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1067 for (zone = z->zone; \ 1068 zone; \ 1069 z = next_zones_zonelist(++z, highidx, nodemask), \ 1070 zone = zonelist_zone(z)) 1071 1072 1073 /** 1074 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1075 * @zone - The current zone in the iterator 1076 * @z - The current pointer within zonelist->zones being iterated 1077 * @zlist - The zonelist being iterated 1078 * @highidx - The zone index of the highest zone to return 1079 * 1080 * This iterator iterates though all zones at or below a given zone index. 1081 */ 1082 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1083 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1084 1085 #ifdef CONFIG_SPARSEMEM 1086 #include <asm/sparsemem.h> 1087 #endif 1088 1089 #ifdef CONFIG_FLATMEM 1090 #define pfn_to_nid(pfn) (0) 1091 #endif 1092 1093 #ifdef CONFIG_SPARSEMEM 1094 1095 /* 1096 * SECTION_SHIFT #bits space required to store a section # 1097 * 1098 * PA_SECTION_SHIFT physical address to/from section number 1099 * PFN_SECTION_SHIFT pfn to/from section number 1100 */ 1101 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1102 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1103 1104 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1105 1106 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1107 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1108 1109 #define SECTION_BLOCKFLAGS_BITS \ 1110 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1111 1112 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1113 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1114 #endif 1115 1116 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1117 { 1118 return pfn >> PFN_SECTION_SHIFT; 1119 } 1120 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1121 { 1122 return sec << PFN_SECTION_SHIFT; 1123 } 1124 1125 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1126 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1127 1128 #define SUBSECTION_SHIFT 21 1129 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1130 1131 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1132 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1133 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1134 1135 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1136 #error Subsection size exceeds section size 1137 #else 1138 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1139 #endif 1140 1141 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1142 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1143 1144 struct mem_section_usage { 1145 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1146 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1147 #endif 1148 /* See declaration of similar field in struct zone */ 1149 unsigned long pageblock_flags[0]; 1150 }; 1151 1152 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1153 1154 struct page; 1155 struct page_ext; 1156 struct mem_section { 1157 /* 1158 * This is, logically, a pointer to an array of struct 1159 * pages. However, it is stored with some other magic. 1160 * (see sparse.c::sparse_init_one_section()) 1161 * 1162 * Additionally during early boot we encode node id of 1163 * the location of the section here to guide allocation. 1164 * (see sparse.c::memory_present()) 1165 * 1166 * Making it a UL at least makes someone do a cast 1167 * before using it wrong. 1168 */ 1169 unsigned long section_mem_map; 1170 1171 struct mem_section_usage *usage; 1172 #ifdef CONFIG_PAGE_EXTENSION 1173 /* 1174 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1175 * section. (see page_ext.h about this.) 1176 */ 1177 struct page_ext *page_ext; 1178 unsigned long pad; 1179 #endif 1180 /* 1181 * WARNING: mem_section must be a power-of-2 in size for the 1182 * calculation and use of SECTION_ROOT_MASK to make sense. 1183 */ 1184 }; 1185 1186 #ifdef CONFIG_SPARSEMEM_EXTREME 1187 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1188 #else 1189 #define SECTIONS_PER_ROOT 1 1190 #endif 1191 1192 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1193 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1194 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1195 1196 #ifdef CONFIG_SPARSEMEM_EXTREME 1197 extern struct mem_section **mem_section; 1198 #else 1199 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1200 #endif 1201 1202 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1203 { 1204 return ms->usage->pageblock_flags; 1205 } 1206 1207 static inline struct mem_section *__nr_to_section(unsigned long nr) 1208 { 1209 #ifdef CONFIG_SPARSEMEM_EXTREME 1210 if (!mem_section) 1211 return NULL; 1212 #endif 1213 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1214 return NULL; 1215 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1216 } 1217 extern unsigned long __section_nr(struct mem_section *ms); 1218 extern size_t mem_section_usage_size(void); 1219 1220 /* 1221 * We use the lower bits of the mem_map pointer to store 1222 * a little bit of information. The pointer is calculated 1223 * as mem_map - section_nr_to_pfn(pnum). The result is 1224 * aligned to the minimum alignment of the two values: 1225 * 1. All mem_map arrays are page-aligned. 1226 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1227 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1228 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1229 * worst combination is powerpc with 256k pages, 1230 * which results in PFN_SECTION_SHIFT equal 6. 1231 * To sum it up, at least 6 bits are available. 1232 */ 1233 #define SECTION_MARKED_PRESENT (1UL<<0) 1234 #define SECTION_HAS_MEM_MAP (1UL<<1) 1235 #define SECTION_IS_ONLINE (1UL<<2) 1236 #define SECTION_IS_EARLY (1UL<<3) 1237 #define SECTION_MAP_LAST_BIT (1UL<<4) 1238 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1239 #define SECTION_NID_SHIFT 3 1240 1241 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1242 { 1243 unsigned long map = section->section_mem_map; 1244 map &= SECTION_MAP_MASK; 1245 return (struct page *)map; 1246 } 1247 1248 static inline int present_section(struct mem_section *section) 1249 { 1250 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1251 } 1252 1253 static inline int present_section_nr(unsigned long nr) 1254 { 1255 return present_section(__nr_to_section(nr)); 1256 } 1257 1258 static inline int valid_section(struct mem_section *section) 1259 { 1260 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1261 } 1262 1263 static inline int early_section(struct mem_section *section) 1264 { 1265 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1266 } 1267 1268 static inline int valid_section_nr(unsigned long nr) 1269 { 1270 return valid_section(__nr_to_section(nr)); 1271 } 1272 1273 static inline int online_section(struct mem_section *section) 1274 { 1275 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1276 } 1277 1278 static inline int online_section_nr(unsigned long nr) 1279 { 1280 return online_section(__nr_to_section(nr)); 1281 } 1282 1283 #ifdef CONFIG_MEMORY_HOTPLUG 1284 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1285 #ifdef CONFIG_MEMORY_HOTREMOVE 1286 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1287 #endif 1288 #endif 1289 1290 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1291 { 1292 return __nr_to_section(pfn_to_section_nr(pfn)); 1293 } 1294 1295 extern unsigned long __highest_present_section_nr; 1296 1297 static inline int subsection_map_index(unsigned long pfn) 1298 { 1299 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1300 } 1301 1302 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1303 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1304 { 1305 int idx = subsection_map_index(pfn); 1306 1307 return test_bit(idx, ms->usage->subsection_map); 1308 } 1309 #else 1310 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1311 { 1312 return 1; 1313 } 1314 #endif 1315 1316 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1317 static inline int pfn_valid(unsigned long pfn) 1318 { 1319 struct mem_section *ms; 1320 1321 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1322 return 0; 1323 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1324 if (!valid_section(ms)) 1325 return 0; 1326 /* 1327 * Traditionally early sections always returned pfn_valid() for 1328 * the entire section-sized span. 1329 */ 1330 return early_section(ms) || pfn_section_valid(ms, pfn); 1331 } 1332 #endif 1333 1334 static inline int pfn_in_present_section(unsigned long pfn) 1335 { 1336 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1337 return 0; 1338 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1339 } 1340 1341 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1342 { 1343 while (++section_nr <= __highest_present_section_nr) { 1344 if (present_section_nr(section_nr)) 1345 return section_nr; 1346 } 1347 1348 return -1; 1349 } 1350 1351 /* 1352 * These are _only_ used during initialisation, therefore they 1353 * can use __initdata ... They could have names to indicate 1354 * this restriction. 1355 */ 1356 #ifdef CONFIG_NUMA 1357 #define pfn_to_nid(pfn) \ 1358 ({ \ 1359 unsigned long __pfn_to_nid_pfn = (pfn); \ 1360 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1361 }) 1362 #else 1363 #define pfn_to_nid(pfn) (0) 1364 #endif 1365 1366 #define early_pfn_valid(pfn) pfn_valid(pfn) 1367 void sparse_init(void); 1368 #else 1369 #define sparse_init() do {} while (0) 1370 #define sparse_index_init(_sec, _nid) do {} while (0) 1371 #define pfn_in_present_section pfn_valid 1372 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1373 #endif /* CONFIG_SPARSEMEM */ 1374 1375 /* 1376 * During memory init memblocks map pfns to nids. The search is expensive and 1377 * this caches recent lookups. The implementation of __early_pfn_to_nid 1378 * may treat start/end as pfns or sections. 1379 */ 1380 struct mminit_pfnnid_cache { 1381 unsigned long last_start; 1382 unsigned long last_end; 1383 int last_nid; 1384 }; 1385 1386 #ifndef early_pfn_valid 1387 #define early_pfn_valid(pfn) (1) 1388 #endif 1389 1390 void memory_present(int nid, unsigned long start, unsigned long end); 1391 1392 /* 1393 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1394 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1395 * pfn_valid_within() should be used in this case; we optimise this away 1396 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1397 */ 1398 #ifdef CONFIG_HOLES_IN_ZONE 1399 #define pfn_valid_within(pfn) pfn_valid(pfn) 1400 #else 1401 #define pfn_valid_within(pfn) (1) 1402 #endif 1403 1404 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1405 /* 1406 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1407 * associated with it or not. This means that a struct page exists for this 1408 * pfn. The caller cannot assume the page is fully initialized in general. 1409 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1410 * will ensure the struct page is fully online and initialized. Special pages 1411 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1412 * 1413 * In FLATMEM, it is expected that holes always have valid memmap as long as 1414 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1415 * that a valid section has a memmap for the entire section. 1416 * 1417 * However, an ARM, and maybe other embedded architectures in the future 1418 * free memmap backing holes to save memory on the assumption the memmap is 1419 * never used. The page_zone linkages are then broken even though pfn_valid() 1420 * returns true. A walker of the full memmap must then do this additional 1421 * check to ensure the memmap they are looking at is sane by making sure 1422 * the zone and PFN linkages are still valid. This is expensive, but walkers 1423 * of the full memmap are extremely rare. 1424 */ 1425 bool memmap_valid_within(unsigned long pfn, 1426 struct page *page, struct zone *zone); 1427 #else 1428 static inline bool memmap_valid_within(unsigned long pfn, 1429 struct page *page, struct zone *zone) 1430 { 1431 return true; 1432 } 1433 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1434 1435 #endif /* !__GENERATING_BOUNDS.H */ 1436 #endif /* !__ASSEMBLY__ */ 1437 #endif /* _LINUX_MMZONE_H */ 1438