1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifdef __KERNEL__ 5 #ifndef __ASSEMBLY__ 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <asm/atomic.h> 19 #include <asm/page.h> 20 21 /* Free memory management - zoned buddy allocator. */ 22 #ifndef CONFIG_FORCE_MAX_ZONEORDER 23 #define MAX_ORDER 11 24 #else 25 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 26 #endif 27 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 28 29 /* 30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 31 * costly to service. That is between allocation orders which should 32 * coelesce naturally under reasonable reclaim pressure and those which 33 * will not. 34 */ 35 #define PAGE_ALLOC_COSTLY_ORDER 3 36 37 #define MIGRATE_UNMOVABLE 0 38 #define MIGRATE_RECLAIMABLE 1 39 #define MIGRATE_MOVABLE 2 40 #define MIGRATE_RESERVE 3 41 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 42 #define MIGRATE_TYPES 5 43 44 #define for_each_migratetype_order(order, type) \ 45 for (order = 0; order < MAX_ORDER; order++) \ 46 for (type = 0; type < MIGRATE_TYPES; type++) 47 48 extern int page_group_by_mobility_disabled; 49 50 static inline int get_pageblock_migratetype(struct page *page) 51 { 52 if (unlikely(page_group_by_mobility_disabled)) 53 return MIGRATE_UNMOVABLE; 54 55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 56 } 57 58 struct free_area { 59 struct list_head free_list[MIGRATE_TYPES]; 60 unsigned long nr_free; 61 }; 62 63 struct pglist_data; 64 65 /* 66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 67 * So add a wild amount of padding here to ensure that they fall into separate 68 * cachelines. There are very few zone structures in the machine, so space 69 * consumption is not a concern here. 70 */ 71 #if defined(CONFIG_SMP) 72 struct zone_padding { 73 char x[0]; 74 } ____cacheline_internodealigned_in_smp; 75 #define ZONE_PADDING(name) struct zone_padding name; 76 #else 77 #define ZONE_PADDING(name) 78 #endif 79 80 enum zone_stat_item { 81 /* First 128 byte cacheline (assuming 64 bit words) */ 82 NR_FREE_PAGES, 83 NR_INACTIVE, 84 NR_ACTIVE, 85 NR_ANON_PAGES, /* Mapped anonymous pages */ 86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 87 only modified from process context */ 88 NR_FILE_PAGES, 89 NR_FILE_DIRTY, 90 NR_WRITEBACK, 91 /* Second 128 byte cacheline */ 92 NR_SLAB_RECLAIMABLE, 93 NR_SLAB_UNRECLAIMABLE, 94 NR_PAGETABLE, /* used for pagetables */ 95 NR_UNSTABLE_NFS, /* NFS unstable pages */ 96 NR_BOUNCE, 97 NR_VMSCAN_WRITE, 98 #ifdef CONFIG_NUMA 99 NUMA_HIT, /* allocated in intended node */ 100 NUMA_MISS, /* allocated in non intended node */ 101 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 103 NUMA_LOCAL, /* allocation from local node */ 104 NUMA_OTHER, /* allocation from other node */ 105 #endif 106 NR_VM_ZONE_STAT_ITEMS }; 107 108 struct per_cpu_pages { 109 int count; /* number of pages in the list */ 110 int high; /* high watermark, emptying needed */ 111 int batch; /* chunk size for buddy add/remove */ 112 struct list_head list; /* the list of pages */ 113 }; 114 115 struct per_cpu_pageset { 116 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 117 #ifdef CONFIG_NUMA 118 s8 expire; 119 #endif 120 #ifdef CONFIG_SMP 121 s8 stat_threshold; 122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 123 #endif 124 } ____cacheline_aligned_in_smp; 125 126 #ifdef CONFIG_NUMA 127 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 128 #else 129 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 130 #endif 131 132 enum zone_type { 133 #ifdef CONFIG_ZONE_DMA 134 /* 135 * ZONE_DMA is used when there are devices that are not able 136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 137 * carve out the portion of memory that is needed for these devices. 138 * The range is arch specific. 139 * 140 * Some examples 141 * 142 * Architecture Limit 143 * --------------------------- 144 * parisc, ia64, sparc <4G 145 * s390 <2G 146 * arm Various 147 * alpha Unlimited or 0-16MB. 148 * 149 * i386, x86_64 and multiple other arches 150 * <16M. 151 */ 152 ZONE_DMA, 153 #endif 154 #ifdef CONFIG_ZONE_DMA32 155 /* 156 * x86_64 needs two ZONE_DMAs because it supports devices that are 157 * only able to do DMA to the lower 16M but also 32 bit devices that 158 * can only do DMA areas below 4G. 159 */ 160 ZONE_DMA32, 161 #endif 162 /* 163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 164 * performed on pages in ZONE_NORMAL if the DMA devices support 165 * transfers to all addressable memory. 166 */ 167 ZONE_NORMAL, 168 #ifdef CONFIG_HIGHMEM 169 /* 170 * A memory area that is only addressable by the kernel through 171 * mapping portions into its own address space. This is for example 172 * used by i386 to allow the kernel to address the memory beyond 173 * 900MB. The kernel will set up special mappings (page 174 * table entries on i386) for each page that the kernel needs to 175 * access. 176 */ 177 ZONE_HIGHMEM, 178 #endif 179 ZONE_MOVABLE, 180 MAX_NR_ZONES 181 }; 182 183 /* 184 * When a memory allocation must conform to specific limitations (such 185 * as being suitable for DMA) the caller will pass in hints to the 186 * allocator in the gfp_mask, in the zone modifier bits. These bits 187 * are used to select a priority ordered list of memory zones which 188 * match the requested limits. See gfp_zone() in include/linux/gfp.h 189 */ 190 191 /* 192 * Count the active zones. Note that the use of defined(X) outside 193 * #if and family is not necessarily defined so ensure we cannot use 194 * it later. Use __ZONE_COUNT to work out how many shift bits we need. 195 */ 196 #define __ZONE_COUNT ( \ 197 defined(CONFIG_ZONE_DMA) \ 198 + defined(CONFIG_ZONE_DMA32) \ 199 + 1 \ 200 + defined(CONFIG_HIGHMEM) \ 201 + 1 \ 202 ) 203 #if __ZONE_COUNT < 2 204 #define ZONES_SHIFT 0 205 #elif __ZONE_COUNT <= 2 206 #define ZONES_SHIFT 1 207 #elif __ZONE_COUNT <= 4 208 #define ZONES_SHIFT 2 209 #else 210 #error ZONES_SHIFT -- too many zones configured adjust calculation 211 #endif 212 #undef __ZONE_COUNT 213 214 struct zone { 215 /* Fields commonly accessed by the page allocator */ 216 unsigned long pages_min, pages_low, pages_high; 217 /* 218 * We don't know if the memory that we're going to allocate will be freeable 219 * or/and it will be released eventually, so to avoid totally wasting several 220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 221 * to run OOM on the lower zones despite there's tons of freeable ram 222 * on the higher zones). This array is recalculated at runtime if the 223 * sysctl_lowmem_reserve_ratio sysctl changes. 224 */ 225 unsigned long lowmem_reserve[MAX_NR_ZONES]; 226 227 #ifdef CONFIG_NUMA 228 int node; 229 /* 230 * zone reclaim becomes active if more unmapped pages exist. 231 */ 232 unsigned long min_unmapped_pages; 233 unsigned long min_slab_pages; 234 struct per_cpu_pageset *pageset[NR_CPUS]; 235 #else 236 struct per_cpu_pageset pageset[NR_CPUS]; 237 #endif 238 /* 239 * free areas of different sizes 240 */ 241 spinlock_t lock; 242 #ifdef CONFIG_MEMORY_HOTPLUG 243 /* see spanned/present_pages for more description */ 244 seqlock_t span_seqlock; 245 #endif 246 struct free_area free_area[MAX_ORDER]; 247 248 #ifndef CONFIG_SPARSEMEM 249 /* 250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 251 * In SPARSEMEM, this map is stored in struct mem_section 252 */ 253 unsigned long *pageblock_flags; 254 #endif /* CONFIG_SPARSEMEM */ 255 256 257 ZONE_PADDING(_pad1_) 258 259 /* Fields commonly accessed by the page reclaim scanner */ 260 spinlock_t lru_lock; 261 struct list_head active_list; 262 struct list_head inactive_list; 263 unsigned long nr_scan_active; 264 unsigned long nr_scan_inactive; 265 unsigned long pages_scanned; /* since last reclaim */ 266 unsigned long flags; /* zone flags, see below */ 267 268 /* Zone statistics */ 269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 270 271 /* 272 * prev_priority holds the scanning priority for this zone. It is 273 * defined as the scanning priority at which we achieved our reclaim 274 * target at the previous try_to_free_pages() or balance_pgdat() 275 * invokation. 276 * 277 * We use prev_priority as a measure of how much stress page reclaim is 278 * under - it drives the swappiness decision: whether to unmap mapped 279 * pages. 280 * 281 * Access to both this field is quite racy even on uniprocessor. But 282 * it is expected to average out OK. 283 */ 284 int prev_priority; 285 286 287 ZONE_PADDING(_pad2_) 288 /* Rarely used or read-mostly fields */ 289 290 /* 291 * wait_table -- the array holding the hash table 292 * wait_table_hash_nr_entries -- the size of the hash table array 293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 294 * 295 * The purpose of all these is to keep track of the people 296 * waiting for a page to become available and make them 297 * runnable again when possible. The trouble is that this 298 * consumes a lot of space, especially when so few things 299 * wait on pages at a given time. So instead of using 300 * per-page waitqueues, we use a waitqueue hash table. 301 * 302 * The bucket discipline is to sleep on the same queue when 303 * colliding and wake all in that wait queue when removing. 304 * When something wakes, it must check to be sure its page is 305 * truly available, a la thundering herd. The cost of a 306 * collision is great, but given the expected load of the 307 * table, they should be so rare as to be outweighed by the 308 * benefits from the saved space. 309 * 310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 311 * primary users of these fields, and in mm/page_alloc.c 312 * free_area_init_core() performs the initialization of them. 313 */ 314 wait_queue_head_t * wait_table; 315 unsigned long wait_table_hash_nr_entries; 316 unsigned long wait_table_bits; 317 318 /* 319 * Discontig memory support fields. 320 */ 321 struct pglist_data *zone_pgdat; 322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 323 unsigned long zone_start_pfn; 324 325 /* 326 * zone_start_pfn, spanned_pages and present_pages are all 327 * protected by span_seqlock. It is a seqlock because it has 328 * to be read outside of zone->lock, and it is done in the main 329 * allocator path. But, it is written quite infrequently. 330 * 331 * The lock is declared along with zone->lock because it is 332 * frequently read in proximity to zone->lock. It's good to 333 * give them a chance of being in the same cacheline. 334 */ 335 unsigned long spanned_pages; /* total size, including holes */ 336 unsigned long present_pages; /* amount of memory (excluding holes) */ 337 338 /* 339 * rarely used fields: 340 */ 341 const char *name; 342 } ____cacheline_internodealigned_in_smp; 343 344 typedef enum { 345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 347 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 348 } zone_flags_t; 349 350 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 351 { 352 set_bit(flag, &zone->flags); 353 } 354 355 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 356 { 357 return test_and_set_bit(flag, &zone->flags); 358 } 359 360 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 361 { 362 clear_bit(flag, &zone->flags); 363 } 364 365 static inline int zone_is_all_unreclaimable(const struct zone *zone) 366 { 367 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 368 } 369 370 static inline int zone_is_reclaim_locked(const struct zone *zone) 371 { 372 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 373 } 374 375 static inline int zone_is_oom_locked(const struct zone *zone) 376 { 377 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 378 } 379 380 /* 381 * The "priority" of VM scanning is how much of the queues we will scan in one 382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 383 * queues ("queue_length >> 12") during an aging round. 384 */ 385 #define DEF_PRIORITY 12 386 387 /* Maximum number of zones on a zonelist */ 388 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 389 390 #ifdef CONFIG_NUMA 391 392 /* 393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 394 * allocations to a single node for GFP_THISNODE. 395 * 396 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback 397 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE) 398 */ 399 #define MAX_ZONELISTS (2 * MAX_NR_ZONES) 400 401 402 /* 403 * We cache key information from each zonelist for smaller cache 404 * footprint when scanning for free pages in get_page_from_freelist(). 405 * 406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 407 * up short of free memory since the last time (last_fullzone_zap) 408 * we zero'd fullzones. 409 * 2) The array z_to_n[] maps each zone in the zonelist to its node 410 * id, so that we can efficiently evaluate whether that node is 411 * set in the current tasks mems_allowed. 412 * 413 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 414 * indexed by a zones offset in the zonelist zones[] array. 415 * 416 * The get_page_from_freelist() routine does two scans. During the 417 * first scan, we skip zones whose corresponding bit in 'fullzones' 418 * is set or whose corresponding node in current->mems_allowed (which 419 * comes from cpusets) is not set. During the second scan, we bypass 420 * this zonelist_cache, to ensure we look methodically at each zone. 421 * 422 * Once per second, we zero out (zap) fullzones, forcing us to 423 * reconsider nodes that might have regained more free memory. 424 * The field last_full_zap is the time we last zapped fullzones. 425 * 426 * This mechanism reduces the amount of time we waste repeatedly 427 * reexaming zones for free memory when they just came up low on 428 * memory momentarilly ago. 429 * 430 * The zonelist_cache struct members logically belong in struct 431 * zonelist. However, the mempolicy zonelists constructed for 432 * MPOL_BIND are intentionally variable length (and usually much 433 * shorter). A general purpose mechanism for handling structs with 434 * multiple variable length members is more mechanism than we want 435 * here. We resort to some special case hackery instead. 436 * 437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 438 * part because they are shorter), so we put the fixed length stuff 439 * at the front of the zonelist struct, ending in a variable length 440 * zones[], as is needed by MPOL_BIND. 441 * 442 * Then we put the optional zonelist cache on the end of the zonelist 443 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 444 * the fixed length portion at the front of the struct. This pointer 445 * both enables us to find the zonelist cache, and in the case of 446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 447 * to know that the zonelist cache is not there. 448 * 449 * The end result is that struct zonelists come in two flavors: 450 * 1) The full, fixed length version, shown below, and 451 * 2) The custom zonelists for MPOL_BIND. 452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 453 * 454 * Even though there may be multiple CPU cores on a node modifying 455 * fullzones or last_full_zap in the same zonelist_cache at the same 456 * time, we don't lock it. This is just hint data - if it is wrong now 457 * and then, the allocator will still function, perhaps a bit slower. 458 */ 459 460 461 struct zonelist_cache { 462 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 463 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 464 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 465 }; 466 #else 467 #define MAX_ZONELISTS MAX_NR_ZONES 468 struct zonelist_cache; 469 #endif 470 471 /* 472 * One allocation request operates on a zonelist. A zonelist 473 * is a list of zones, the first one is the 'goal' of the 474 * allocation, the other zones are fallback zones, in decreasing 475 * priority. 476 * 477 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 478 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 479 */ 480 481 struct zonelist { 482 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 483 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited 484 #ifdef CONFIG_NUMA 485 struct zonelist_cache zlcache; // optional ... 486 #endif 487 }; 488 489 #ifdef CONFIG_NUMA 490 /* 491 * Only custom zonelists like MPOL_BIND need to be filtered as part of 492 * policies. As described in the comment for struct zonelist_cache, these 493 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use 494 * that to determine if the zonelists needs to be filtered or not. 495 */ 496 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist) 497 { 498 return !zonelist->zlcache_ptr; 499 } 500 #else 501 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist) 502 { 503 return 0; 504 } 505 #endif /* CONFIG_NUMA */ 506 507 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 508 struct node_active_region { 509 unsigned long start_pfn; 510 unsigned long end_pfn; 511 int nid; 512 }; 513 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 514 515 #ifndef CONFIG_DISCONTIGMEM 516 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 517 extern struct page *mem_map; 518 #endif 519 520 /* 521 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 522 * (mostly NUMA machines?) to denote a higher-level memory zone than the 523 * zone denotes. 524 * 525 * On NUMA machines, each NUMA node would have a pg_data_t to describe 526 * it's memory layout. 527 * 528 * Memory statistics and page replacement data structures are maintained on a 529 * per-zone basis. 530 */ 531 struct bootmem_data; 532 typedef struct pglist_data { 533 struct zone node_zones[MAX_NR_ZONES]; 534 struct zonelist node_zonelists[MAX_ZONELISTS]; 535 int nr_zones; 536 #ifdef CONFIG_FLAT_NODE_MEM_MAP 537 struct page *node_mem_map; 538 #endif 539 struct bootmem_data *bdata; 540 #ifdef CONFIG_MEMORY_HOTPLUG 541 /* 542 * Must be held any time you expect node_start_pfn, node_present_pages 543 * or node_spanned_pages stay constant. Holding this will also 544 * guarantee that any pfn_valid() stays that way. 545 * 546 * Nests above zone->lock and zone->size_seqlock. 547 */ 548 spinlock_t node_size_lock; 549 #endif 550 unsigned long node_start_pfn; 551 unsigned long node_present_pages; /* total number of physical pages */ 552 unsigned long node_spanned_pages; /* total size of physical page 553 range, including holes */ 554 int node_id; 555 wait_queue_head_t kswapd_wait; 556 struct task_struct *kswapd; 557 int kswapd_max_order; 558 } pg_data_t; 559 560 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 561 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 562 #ifdef CONFIG_FLAT_NODE_MEM_MAP 563 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 564 #else 565 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 566 #endif 567 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 568 569 #include <linux/memory_hotplug.h> 570 571 void get_zone_counts(unsigned long *active, unsigned long *inactive, 572 unsigned long *free); 573 void build_all_zonelists(void); 574 void wakeup_kswapd(struct zone *zone, int order); 575 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 576 int classzone_idx, int alloc_flags); 577 enum memmap_context { 578 MEMMAP_EARLY, 579 MEMMAP_HOTPLUG, 580 }; 581 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 582 unsigned long size, 583 enum memmap_context context); 584 585 #ifdef CONFIG_HAVE_MEMORY_PRESENT 586 void memory_present(int nid, unsigned long start, unsigned long end); 587 #else 588 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 589 #endif 590 591 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 592 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 593 #endif 594 595 /* 596 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 597 */ 598 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 599 600 static inline int populated_zone(struct zone *zone) 601 { 602 return (!!zone->present_pages); 603 } 604 605 extern int movable_zone; 606 607 static inline int zone_movable_is_highmem(void) 608 { 609 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 610 return movable_zone == ZONE_HIGHMEM; 611 #else 612 return 0; 613 #endif 614 } 615 616 static inline int is_highmem_idx(enum zone_type idx) 617 { 618 #ifdef CONFIG_HIGHMEM 619 return (idx == ZONE_HIGHMEM || 620 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 621 #else 622 return 0; 623 #endif 624 } 625 626 static inline int is_normal_idx(enum zone_type idx) 627 { 628 return (idx == ZONE_NORMAL); 629 } 630 631 /** 632 * is_highmem - helper function to quickly check if a struct zone is a 633 * highmem zone or not. This is an attempt to keep references 634 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 635 * @zone - pointer to struct zone variable 636 */ 637 static inline int is_highmem(struct zone *zone) 638 { 639 #ifdef CONFIG_HIGHMEM 640 int zone_idx = zone - zone->zone_pgdat->node_zones; 641 return zone_idx == ZONE_HIGHMEM || 642 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem()); 643 #else 644 return 0; 645 #endif 646 } 647 648 static inline int is_normal(struct zone *zone) 649 { 650 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 651 } 652 653 static inline int is_dma32(struct zone *zone) 654 { 655 #ifdef CONFIG_ZONE_DMA32 656 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 657 #else 658 return 0; 659 #endif 660 } 661 662 static inline int is_dma(struct zone *zone) 663 { 664 #ifdef CONFIG_ZONE_DMA 665 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 666 #else 667 return 0; 668 #endif 669 } 670 671 /* These two functions are used to setup the per zone pages min values */ 672 struct ctl_table; 673 struct file; 674 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 675 void __user *, size_t *, loff_t *); 676 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 677 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 678 void __user *, size_t *, loff_t *); 679 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 680 void __user *, size_t *, loff_t *); 681 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 682 struct file *, void __user *, size_t *, loff_t *); 683 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 684 struct file *, void __user *, size_t *, loff_t *); 685 686 extern int numa_zonelist_order_handler(struct ctl_table *, int, 687 struct file *, void __user *, size_t *, loff_t *); 688 extern char numa_zonelist_order[]; 689 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 690 691 #include <linux/topology.h> 692 /* Returns the number of the current Node. */ 693 #ifndef numa_node_id 694 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 695 #endif 696 697 #ifndef CONFIG_NEED_MULTIPLE_NODES 698 699 extern struct pglist_data contig_page_data; 700 #define NODE_DATA(nid) (&contig_page_data) 701 #define NODE_MEM_MAP(nid) mem_map 702 #define MAX_NODES_SHIFT 1 703 704 #else /* CONFIG_NEED_MULTIPLE_NODES */ 705 706 #include <asm/mmzone.h> 707 708 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 709 710 extern struct pglist_data *first_online_pgdat(void); 711 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 712 extern struct zone *next_zone(struct zone *zone); 713 714 /** 715 * for_each_pgdat - helper macro to iterate over all nodes 716 * @pgdat - pointer to a pg_data_t variable 717 */ 718 #define for_each_online_pgdat(pgdat) \ 719 for (pgdat = first_online_pgdat(); \ 720 pgdat; \ 721 pgdat = next_online_pgdat(pgdat)) 722 /** 723 * for_each_zone - helper macro to iterate over all memory zones 724 * @zone - pointer to struct zone variable 725 * 726 * The user only needs to declare the zone variable, for_each_zone 727 * fills it in. 728 */ 729 #define for_each_zone(zone) \ 730 for (zone = (first_online_pgdat())->node_zones; \ 731 zone; \ 732 zone = next_zone(zone)) 733 734 #ifdef CONFIG_SPARSEMEM 735 #include <asm/sparsemem.h> 736 #endif 737 738 #if BITS_PER_LONG == 32 739 /* 740 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 741 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 742 */ 743 #define FLAGS_RESERVED 9 744 745 #elif BITS_PER_LONG == 64 746 /* 747 * with 64 bit flags field, there's plenty of room. 748 */ 749 #define FLAGS_RESERVED 32 750 751 #else 752 753 #error BITS_PER_LONG not defined 754 755 #endif 756 757 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 758 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 759 #define early_pfn_to_nid(nid) (0UL) 760 #endif 761 762 #ifdef CONFIG_FLATMEM 763 #define pfn_to_nid(pfn) (0) 764 #endif 765 766 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 767 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 768 769 #ifdef CONFIG_SPARSEMEM 770 771 /* 772 * SECTION_SHIFT #bits space required to store a section # 773 * 774 * PA_SECTION_SHIFT physical address to/from section number 775 * PFN_SECTION_SHIFT pfn to/from section number 776 */ 777 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 778 779 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 780 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 781 782 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 783 784 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 785 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 786 787 #define SECTION_BLOCKFLAGS_BITS \ 788 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 789 790 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 791 #error Allocator MAX_ORDER exceeds SECTION_SIZE 792 #endif 793 794 struct page; 795 struct mem_section { 796 /* 797 * This is, logically, a pointer to an array of struct 798 * pages. However, it is stored with some other magic. 799 * (see sparse.c::sparse_init_one_section()) 800 * 801 * Additionally during early boot we encode node id of 802 * the location of the section here to guide allocation. 803 * (see sparse.c::memory_present()) 804 * 805 * Making it a UL at least makes someone do a cast 806 * before using it wrong. 807 */ 808 unsigned long section_mem_map; 809 810 /* See declaration of similar field in struct zone */ 811 unsigned long *pageblock_flags; 812 }; 813 814 #ifdef CONFIG_SPARSEMEM_EXTREME 815 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 816 #else 817 #define SECTIONS_PER_ROOT 1 818 #endif 819 820 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 821 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 822 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 823 824 #ifdef CONFIG_SPARSEMEM_EXTREME 825 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 826 #else 827 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 828 #endif 829 830 static inline struct mem_section *__nr_to_section(unsigned long nr) 831 { 832 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 833 return NULL; 834 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 835 } 836 extern int __section_nr(struct mem_section* ms); 837 838 /* 839 * We use the lower bits of the mem_map pointer to store 840 * a little bit of information. There should be at least 841 * 3 bits here due to 32-bit alignment. 842 */ 843 #define SECTION_MARKED_PRESENT (1UL<<0) 844 #define SECTION_HAS_MEM_MAP (1UL<<1) 845 #define SECTION_MAP_LAST_BIT (1UL<<2) 846 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 847 #define SECTION_NID_SHIFT 2 848 849 static inline struct page *__section_mem_map_addr(struct mem_section *section) 850 { 851 unsigned long map = section->section_mem_map; 852 map &= SECTION_MAP_MASK; 853 return (struct page *)map; 854 } 855 856 static inline int present_section(struct mem_section *section) 857 { 858 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 859 } 860 861 static inline int present_section_nr(unsigned long nr) 862 { 863 return present_section(__nr_to_section(nr)); 864 } 865 866 static inline int valid_section(struct mem_section *section) 867 { 868 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 869 } 870 871 static inline int valid_section_nr(unsigned long nr) 872 { 873 return valid_section(__nr_to_section(nr)); 874 } 875 876 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 877 { 878 return __nr_to_section(pfn_to_section_nr(pfn)); 879 } 880 881 static inline int pfn_valid(unsigned long pfn) 882 { 883 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 884 return 0; 885 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 886 } 887 888 static inline int pfn_present(unsigned long pfn) 889 { 890 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 891 return 0; 892 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 893 } 894 895 /* 896 * These are _only_ used during initialisation, therefore they 897 * can use __initdata ... They could have names to indicate 898 * this restriction. 899 */ 900 #ifdef CONFIG_NUMA 901 #define pfn_to_nid(pfn) \ 902 ({ \ 903 unsigned long __pfn_to_nid_pfn = (pfn); \ 904 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 905 }) 906 #else 907 #define pfn_to_nid(pfn) (0) 908 #endif 909 910 #define early_pfn_valid(pfn) pfn_valid(pfn) 911 void sparse_init(void); 912 #else 913 #define sparse_init() do {} while (0) 914 #define sparse_index_init(_sec, _nid) do {} while (0) 915 #endif /* CONFIG_SPARSEMEM */ 916 917 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 918 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 919 #else 920 #define early_pfn_in_nid(pfn, nid) (1) 921 #endif 922 923 #ifndef early_pfn_valid 924 #define early_pfn_valid(pfn) (1) 925 #endif 926 927 void memory_present(int nid, unsigned long start, unsigned long end); 928 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 929 930 /* 931 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 932 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 933 * pfn_valid_within() should be used in this case; we optimise this away 934 * when we have no holes within a MAX_ORDER_NR_PAGES block. 935 */ 936 #ifdef CONFIG_HOLES_IN_ZONE 937 #define pfn_valid_within(pfn) pfn_valid(pfn) 938 #else 939 #define pfn_valid_within(pfn) (1) 940 #endif 941 942 #endif /* !__ASSEMBLY__ */ 943 #endif /* __KERNEL__ */ 944 #endif /* _LINUX_MMZONE_H */ 945