1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <linux/zswap.h> 26 #include <asm/page.h> 27 28 /* Free memory management - zoned buddy allocator. */ 29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 30 #define MAX_PAGE_ORDER 10 31 #else 32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 33 #endif 34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) 35 36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 37 38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) 39 40 /* 41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 42 * costly to service. That is between allocation orders which should 43 * coalesce naturally under reasonable reclaim pressure and those which 44 * will not. 45 */ 46 #define PAGE_ALLOC_COSTLY_ORDER 3 47 48 enum migratetype { 49 MIGRATE_UNMOVABLE, 50 MIGRATE_MOVABLE, 51 MIGRATE_RECLAIMABLE, 52 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 53 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 54 #ifdef CONFIG_CMA 55 /* 56 * MIGRATE_CMA migration type is designed to mimic the way 57 * ZONE_MOVABLE works. Only movable pages can be allocated 58 * from MIGRATE_CMA pageblocks and page allocator never 59 * implicitly change migration type of MIGRATE_CMA pageblock. 60 * 61 * The way to use it is to change migratetype of a range of 62 * pageblocks to MIGRATE_CMA which can be done by 63 * __free_pageblock_cma() function. 64 */ 65 MIGRATE_CMA, 66 #endif 67 #ifdef CONFIG_MEMORY_ISOLATION 68 MIGRATE_ISOLATE, /* can't allocate from here */ 69 #endif 70 MIGRATE_TYPES 71 }; 72 73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 74 extern const char * const migratetype_names[MIGRATE_TYPES]; 75 76 #ifdef CONFIG_CMA 77 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 78 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 79 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ 80 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) 81 #else 82 # define is_migrate_cma(migratetype) false 83 # define is_migrate_cma_page(_page) false 84 # define is_migrate_cma_folio(folio, pfn) false 85 #endif 86 87 static inline bool is_migrate_movable(int mt) 88 { 89 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 90 } 91 92 /* 93 * Check whether a migratetype can be merged with another migratetype. 94 * 95 * It is only mergeable when it can fall back to other migratetypes for 96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 97 */ 98 static inline bool migratetype_is_mergeable(int mt) 99 { 100 return mt < MIGRATE_PCPTYPES; 101 } 102 103 #define for_each_migratetype_order(order, type) \ 104 for (order = 0; order < NR_PAGE_ORDERS; order++) \ 105 for (type = 0; type < MIGRATE_TYPES; type++) 106 107 extern int page_group_by_mobility_disabled; 108 109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 110 111 #define get_pageblock_migratetype(page) \ 112 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 113 114 #define folio_migratetype(folio) \ 115 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 116 MIGRATETYPE_MASK) 117 struct free_area { 118 struct list_head free_list[MIGRATE_TYPES]; 119 unsigned long nr_free; 120 }; 121 122 struct pglist_data; 123 124 #ifdef CONFIG_NUMA 125 enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133 }; 134 #else 135 #define NR_VM_NUMA_EVENT_ITEMS 0 136 #endif 137 138 enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_FREE_PAGES_BLOCKS, 142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 144 NR_ZONE_ACTIVE_ANON, 145 NR_ZONE_INACTIVE_FILE, 146 NR_ZONE_ACTIVE_FILE, 147 NR_ZONE_UNEVICTABLE, 148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 150 /* Second 128 byte cacheline */ 151 NR_BOUNCE, 152 #if IS_ENABLED(CONFIG_ZSMALLOC) 153 NR_ZSPAGES, /* allocated in zsmalloc */ 154 #endif 155 NR_FREE_CMA_PAGES, 156 #ifdef CONFIG_UNACCEPTED_MEMORY 157 NR_UNACCEPTED, 158 #endif 159 NR_VM_ZONE_STAT_ITEMS }; 160 161 enum node_stat_item { 162 NR_LRU_BASE, 163 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 164 NR_ACTIVE_ANON, /* " " " " " */ 165 NR_INACTIVE_FILE, /* " " " " " */ 166 NR_ACTIVE_FILE, /* " " " " " */ 167 NR_UNEVICTABLE, /* " " " " " */ 168 NR_SLAB_RECLAIMABLE_B, 169 NR_SLAB_UNRECLAIMABLE_B, 170 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 171 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 172 WORKINGSET_NODES, 173 WORKINGSET_REFAULT_BASE, 174 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 175 WORKINGSET_REFAULT_FILE, 176 WORKINGSET_ACTIVATE_BASE, 177 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 178 WORKINGSET_ACTIVATE_FILE, 179 WORKINGSET_RESTORE_BASE, 180 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 181 WORKINGSET_RESTORE_FILE, 182 WORKINGSET_NODERECLAIM, 183 NR_ANON_MAPPED, /* Mapped anonymous pages */ 184 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 185 only modified from process context */ 186 NR_FILE_PAGES, 187 NR_FILE_DIRTY, 188 NR_WRITEBACK, 189 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 190 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 191 NR_SHMEM_THPS, 192 NR_SHMEM_PMDMAPPED, 193 NR_FILE_THPS, 194 NR_FILE_PMDMAPPED, 195 NR_ANON_THPS, 196 NR_VMSCAN_WRITE, 197 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 198 NR_DIRTIED, /* page dirtyings since bootup */ 199 NR_WRITTEN, /* page writings since bootup */ 200 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 204 NR_KERNEL_STACK_KB, /* measured in KiB */ 205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 206 NR_KERNEL_SCS_KB, /* measured in KiB */ 207 #endif 208 NR_PAGETABLE, /* used for pagetables */ 209 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ 210 #ifdef CONFIG_IOMMU_SUPPORT 211 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ 212 #endif 213 #ifdef CONFIG_SWAP 214 NR_SWAPCACHE, 215 #endif 216 #ifdef CONFIG_NUMA_BALANCING 217 PGPROMOTE_SUCCESS, /* promote successfully */ 218 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 219 #endif 220 /* PGDEMOTE_*: pages demoted */ 221 PGDEMOTE_KSWAPD, 222 PGDEMOTE_DIRECT, 223 PGDEMOTE_KHUGEPAGED, 224 PGDEMOTE_PROACTIVE, 225 #ifdef CONFIG_HUGETLB_PAGE 226 NR_HUGETLB, 227 #endif 228 NR_BALLOON_PAGES, 229 NR_VM_NODE_STAT_ITEMS 230 }; 231 232 /* 233 * Returns true if the item should be printed in THPs (/proc/vmstat 234 * currently prints number of anon, file and shmem THPs. But the item 235 * is charged in pages). 236 */ 237 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 238 { 239 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 240 return false; 241 242 return item == NR_ANON_THPS || 243 item == NR_FILE_THPS || 244 item == NR_SHMEM_THPS || 245 item == NR_SHMEM_PMDMAPPED || 246 item == NR_FILE_PMDMAPPED; 247 } 248 249 /* 250 * Returns true if the value is measured in bytes (most vmstat values are 251 * measured in pages). This defines the API part, the internal representation 252 * might be different. 253 */ 254 static __always_inline bool vmstat_item_in_bytes(int idx) 255 { 256 /* 257 * Global and per-node slab counters track slab pages. 258 * It's expected that changes are multiples of PAGE_SIZE. 259 * Internally values are stored in pages. 260 * 261 * Per-memcg and per-lruvec counters track memory, consumed 262 * by individual slab objects. These counters are actually 263 * byte-precise. 264 */ 265 return (idx == NR_SLAB_RECLAIMABLE_B || 266 idx == NR_SLAB_UNRECLAIMABLE_B); 267 } 268 269 /* 270 * We do arithmetic on the LRU lists in various places in the code, 271 * so it is important to keep the active lists LRU_ACTIVE higher in 272 * the array than the corresponding inactive lists, and to keep 273 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 274 * 275 * This has to be kept in sync with the statistics in zone_stat_item 276 * above and the descriptions in vmstat_text in mm/vmstat.c 277 */ 278 #define LRU_BASE 0 279 #define LRU_ACTIVE 1 280 #define LRU_FILE 2 281 282 enum lru_list { 283 LRU_INACTIVE_ANON = LRU_BASE, 284 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 285 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 286 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 287 LRU_UNEVICTABLE, 288 NR_LRU_LISTS 289 }; 290 291 enum vmscan_throttle_state { 292 VMSCAN_THROTTLE_WRITEBACK, 293 VMSCAN_THROTTLE_ISOLATED, 294 VMSCAN_THROTTLE_NOPROGRESS, 295 VMSCAN_THROTTLE_CONGESTED, 296 NR_VMSCAN_THROTTLE, 297 }; 298 299 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 300 301 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 302 303 static inline bool is_file_lru(enum lru_list lru) 304 { 305 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 306 } 307 308 static inline bool is_active_lru(enum lru_list lru) 309 { 310 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 311 } 312 313 #define WORKINGSET_ANON 0 314 #define WORKINGSET_FILE 1 315 #define ANON_AND_FILE 2 316 317 enum lruvec_flags { 318 /* 319 * An lruvec has many dirty pages backed by a congested BDI: 320 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 321 * It can be cleared by cgroup reclaim or kswapd. 322 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 323 * It can only be cleared by kswapd. 324 * 325 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 326 * reclaim, but not vice versa. This only applies to the root cgroup. 327 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 328 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 329 * by kswapd). 330 */ 331 LRUVEC_CGROUP_CONGESTED, 332 LRUVEC_NODE_CONGESTED, 333 }; 334 335 #endif /* !__GENERATING_BOUNDS_H */ 336 337 /* 338 * Evictable folios are divided into multiple generations. The youngest and the 339 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 340 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 341 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 342 * corresponding generation. The gen counter in folio->flags stores gen+1 while 343 * a folio is on one of lrugen->folios[]. Otherwise it stores 0. 344 * 345 * After a folio is faulted in, the aging needs to check the accessed bit at 346 * least twice before handing this folio over to the eviction. The first check 347 * clears the accessed bit from the initial fault; the second check makes sure 348 * this folio hasn't been used since then. This process, AKA second chance, 349 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI 350 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two 351 * generations are considered active; the rest of generations, if they exist, 352 * are considered inactive. See lru_gen_is_active(). 353 * 354 * PG_active is always cleared while a folio is on one of lrugen->folios[] so 355 * that the sliding window needs not to worry about it. And it's set again when 356 * a folio considered active is isolated for non-reclaiming purposes, e.g., 357 * migration. See lru_gen_add_folio() and lru_gen_del_folio(). 358 * 359 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 360 * number of categories of the active/inactive LRU when keeping track of 361 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 362 * in folio->flags, masked by LRU_GEN_MASK. 363 */ 364 #define MIN_NR_GENS 2U 365 #define MAX_NR_GENS 4U 366 367 /* 368 * Each generation is divided into multiple tiers. A folio accessed N times 369 * through file descriptors is in tier order_base_2(N). A folio in the first 370 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page 371 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by 372 * PG_workingset. A folio in any other tier (1<N<5) between the first and last 373 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. 374 * 375 * In contrast to moving across generations which requires the LRU lock, moving 376 * across tiers only involves atomic operations on folio->flags and therefore 377 * has a negligible cost in the buffered access path. In the eviction path, 378 * comparisons of refaulted/(evicted+protected) from the first tier and the rest 379 * infer whether folios accessed multiple times through file descriptors are 380 * statistically hot and thus worth protecting. 381 * 382 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 383 * number of categories of the active/inactive LRU when keeping track of 384 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 385 * folio->flags, masked by LRU_REFS_MASK. 386 */ 387 #define MAX_NR_TIERS 4U 388 389 #ifndef __GENERATING_BOUNDS_H 390 391 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 392 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 393 394 /* 395 * For folios accessed multiple times through file descriptors, 396 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags 397 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its 398 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily 399 * promoted into the second oldest generation in the eviction path. And when 400 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that 401 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is 402 * only valid when PG_referenced is set. 403 * 404 * For folios accessed multiple times through page tables, folio_update_gen() 405 * from a page table walk or lru_gen_set_refs() from a rmap walk sets 406 * PG_referenced after the accessed bit is cleared for the first time. 407 * Thereafter, those two paths set PG_workingset and promote folios to the 408 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears 409 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. 410 * 411 * For both cases above, after PG_workingset is set on a folio, it remains until 412 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It 413 * can be set again if lru_gen_test_recent() returns true upon a refault. 414 */ 415 #define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) 416 417 struct lruvec; 418 struct page_vma_mapped_walk; 419 420 #ifdef CONFIG_LRU_GEN 421 422 enum { 423 LRU_GEN_ANON, 424 LRU_GEN_FILE, 425 }; 426 427 enum { 428 LRU_GEN_CORE, 429 LRU_GEN_MM_WALK, 430 LRU_GEN_NONLEAF_YOUNG, 431 NR_LRU_GEN_CAPS 432 }; 433 434 #define MIN_LRU_BATCH BITS_PER_LONG 435 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 436 437 /* whether to keep historical stats from evicted generations */ 438 #ifdef CONFIG_LRU_GEN_STATS 439 #define NR_HIST_GENS MAX_NR_GENS 440 #else 441 #define NR_HIST_GENS 1U 442 #endif 443 444 /* 445 * The youngest generation number is stored in max_seq for both anon and file 446 * types as they are aged on an equal footing. The oldest generation numbers are 447 * stored in min_seq[] separately for anon and file types so that they can be 448 * incremented independently. Ideally min_seq[] are kept in sync when both anon 449 * and file types are evictable. However, to adapt to situations like extreme 450 * swappiness, they are allowed to be out of sync by at most 451 * MAX_NR_GENS-MIN_NR_GENS-1. 452 * 453 * The number of pages in each generation is eventually consistent and therefore 454 * can be transiently negative when reset_batch_size() is pending. 455 */ 456 struct lru_gen_folio { 457 /* the aging increments the youngest generation number */ 458 unsigned long max_seq; 459 /* the eviction increments the oldest generation numbers */ 460 unsigned long min_seq[ANON_AND_FILE]; 461 /* the birth time of each generation in jiffies */ 462 unsigned long timestamps[MAX_NR_GENS]; 463 /* the multi-gen LRU lists, lazily sorted on eviction */ 464 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 465 /* the multi-gen LRU sizes, eventually consistent */ 466 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 467 /* the exponential moving average of refaulted */ 468 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 469 /* the exponential moving average of evicted+protected */ 470 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 471 /* can only be modified under the LRU lock */ 472 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 473 /* can be modified without holding the LRU lock */ 474 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 475 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 476 /* whether the multi-gen LRU is enabled */ 477 bool enabled; 478 /* the memcg generation this lru_gen_folio belongs to */ 479 u8 gen; 480 /* the list segment this lru_gen_folio belongs to */ 481 u8 seg; 482 /* per-node lru_gen_folio list for global reclaim */ 483 struct hlist_nulls_node list; 484 }; 485 486 enum { 487 MM_LEAF_TOTAL, /* total leaf entries */ 488 MM_LEAF_YOUNG, /* young leaf entries */ 489 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 490 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 491 NR_MM_STATS 492 }; 493 494 /* double-buffering Bloom filters */ 495 #define NR_BLOOM_FILTERS 2 496 497 struct lru_gen_mm_state { 498 /* synced with max_seq after each iteration */ 499 unsigned long seq; 500 /* where the current iteration continues after */ 501 struct list_head *head; 502 /* where the last iteration ended before */ 503 struct list_head *tail; 504 /* Bloom filters flip after each iteration */ 505 unsigned long *filters[NR_BLOOM_FILTERS]; 506 /* the mm stats for debugging */ 507 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 508 }; 509 510 struct lru_gen_mm_walk { 511 /* the lruvec under reclaim */ 512 struct lruvec *lruvec; 513 /* max_seq from lru_gen_folio: can be out of date */ 514 unsigned long seq; 515 /* the next address within an mm to scan */ 516 unsigned long next_addr; 517 /* to batch promoted pages */ 518 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 519 /* to batch the mm stats */ 520 int mm_stats[NR_MM_STATS]; 521 /* total batched items */ 522 int batched; 523 int swappiness; 524 bool force_scan; 525 }; 526 527 /* 528 * For each node, memcgs are divided into two generations: the old and the 529 * young. For each generation, memcgs are randomly sharded into multiple bins 530 * to improve scalability. For each bin, the hlist_nulls is virtually divided 531 * into three segments: the head, the tail and the default. 532 * 533 * An onlining memcg is added to the tail of a random bin in the old generation. 534 * The eviction starts at the head of a random bin in the old generation. The 535 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 536 * the old generation, is incremented when all its bins become empty. 537 * 538 * There are four operations: 539 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its 540 * current generation (old or young) and updates its "seg" to "head"; 541 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its 542 * current generation (old or young) and updates its "seg" to "tail"; 543 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old 544 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 545 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the 546 * young generation, updates its "gen" to "young" and resets its "seg" to 547 * "default". 548 * 549 * The events that trigger the above operations are: 550 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 551 * 2. The first attempt to reclaim a memcg below low, which triggers 552 * MEMCG_LRU_TAIL; 553 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size 554 * threshold, which triggers MEMCG_LRU_TAIL; 555 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size 556 * threshold, which triggers MEMCG_LRU_YOUNG; 557 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; 558 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 559 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. 560 * 561 * Notes: 562 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing 563 * of their max_seq counters ensures the eventual fairness to all eligible 564 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 565 * 2. There are only two valid generations: old (seq) and young (seq+1). 566 * MEMCG_NR_GENS is set to three so that when reading the generation counter 567 * locklessly, a stale value (seq-1) does not wraparound to young. 568 */ 569 #define MEMCG_NR_GENS 3 570 #define MEMCG_NR_BINS 8 571 572 struct lru_gen_memcg { 573 /* the per-node memcg generation counter */ 574 unsigned long seq; 575 /* each memcg has one lru_gen_folio per node */ 576 unsigned long nr_memcgs[MEMCG_NR_GENS]; 577 /* per-node lru_gen_folio list for global reclaim */ 578 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 579 /* protects the above */ 580 spinlock_t lock; 581 }; 582 583 void lru_gen_init_pgdat(struct pglist_data *pgdat); 584 void lru_gen_init_lruvec(struct lruvec *lruvec); 585 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 586 587 void lru_gen_init_memcg(struct mem_cgroup *memcg); 588 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 589 void lru_gen_online_memcg(struct mem_cgroup *memcg); 590 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 591 void lru_gen_release_memcg(struct mem_cgroup *memcg); 592 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 593 594 #else /* !CONFIG_LRU_GEN */ 595 596 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 597 { 598 } 599 600 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 601 { 602 } 603 604 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 605 { 606 return false; 607 } 608 609 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 610 { 611 } 612 613 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 614 { 615 } 616 617 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 618 { 619 } 620 621 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 622 { 623 } 624 625 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 626 { 627 } 628 629 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 630 { 631 } 632 633 #endif /* CONFIG_LRU_GEN */ 634 635 struct lruvec { 636 struct list_head lists[NR_LRU_LISTS]; 637 /* per lruvec lru_lock for memcg */ 638 spinlock_t lru_lock; 639 /* 640 * These track the cost of reclaiming one LRU - file or anon - 641 * over the other. As the observed cost of reclaiming one LRU 642 * increases, the reclaim scan balance tips toward the other. 643 */ 644 unsigned long anon_cost; 645 unsigned long file_cost; 646 /* Non-resident age, driven by LRU movement */ 647 atomic_long_t nonresident_age; 648 /* Refaults at the time of last reclaim cycle */ 649 unsigned long refaults[ANON_AND_FILE]; 650 /* Various lruvec state flags (enum lruvec_flags) */ 651 unsigned long flags; 652 #ifdef CONFIG_LRU_GEN 653 /* evictable pages divided into generations */ 654 struct lru_gen_folio lrugen; 655 #ifdef CONFIG_LRU_GEN_WALKS_MMU 656 /* to concurrently iterate lru_gen_mm_list */ 657 struct lru_gen_mm_state mm_state; 658 #endif 659 #endif /* CONFIG_LRU_GEN */ 660 #ifdef CONFIG_MEMCG 661 struct pglist_data *pgdat; 662 #endif 663 struct zswap_lruvec_state zswap_lruvec_state; 664 }; 665 666 /* Isolate for asynchronous migration */ 667 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 668 /* Isolate unevictable pages */ 669 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 670 671 /* LRU Isolation modes. */ 672 typedef unsigned __bitwise isolate_mode_t; 673 674 enum zone_watermarks { 675 WMARK_MIN, 676 WMARK_LOW, 677 WMARK_HIGH, 678 WMARK_PROMO, 679 NR_WMARK 680 }; 681 682 /* 683 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists 684 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list 685 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. 686 */ 687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 688 #define NR_PCP_THP 2 689 #else 690 #define NR_PCP_THP 0 691 #endif 692 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 693 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 694 695 /* 696 * Flags used in pcp->flags field. 697 * 698 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 699 * previous page freeing. To avoid to drain PCP for an accident 700 * high-order page freeing. 701 * 702 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 703 * draining PCP for consecutive high-order pages freeing without 704 * allocation if data cache slice of CPU is large enough. To reduce 705 * zone lock contention and keep cache-hot pages reusing. 706 */ 707 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 708 #define PCPF_FREE_HIGH_BATCH BIT(1) 709 710 struct per_cpu_pages { 711 spinlock_t lock; /* Protects lists field */ 712 int count; /* number of pages in the list */ 713 int high; /* high watermark, emptying needed */ 714 int high_min; /* min high watermark */ 715 int high_max; /* max high watermark */ 716 int batch; /* chunk size for buddy add/remove */ 717 u8 flags; /* protected by pcp->lock */ 718 u8 alloc_factor; /* batch scaling factor during allocate */ 719 #ifdef CONFIG_NUMA 720 u8 expire; /* When 0, remote pagesets are drained */ 721 #endif 722 short free_count; /* consecutive free count */ 723 724 /* Lists of pages, one per migrate type stored on the pcp-lists */ 725 struct list_head lists[NR_PCP_LISTS]; 726 } ____cacheline_aligned_in_smp; 727 728 struct per_cpu_zonestat { 729 #ifdef CONFIG_SMP 730 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 731 s8 stat_threshold; 732 #endif 733 #ifdef CONFIG_NUMA 734 /* 735 * Low priority inaccurate counters that are only folded 736 * on demand. Use a large type to avoid the overhead of 737 * folding during refresh_cpu_vm_stats. 738 */ 739 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 740 #endif 741 }; 742 743 struct per_cpu_nodestat { 744 s8 stat_threshold; 745 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 746 }; 747 748 #endif /* !__GENERATING_BOUNDS.H */ 749 750 enum zone_type { 751 /* 752 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 753 * to DMA to all of the addressable memory (ZONE_NORMAL). 754 * On architectures where this area covers the whole 32 bit address 755 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 756 * DMA addressing constraints. This distinction is important as a 32bit 757 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 758 * platforms may need both zones as they support peripherals with 759 * different DMA addressing limitations. 760 */ 761 #ifdef CONFIG_ZONE_DMA 762 ZONE_DMA, 763 #endif 764 #ifdef CONFIG_ZONE_DMA32 765 ZONE_DMA32, 766 #endif 767 /* 768 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 769 * performed on pages in ZONE_NORMAL if the DMA devices support 770 * transfers to all addressable memory. 771 */ 772 ZONE_NORMAL, 773 #ifdef CONFIG_HIGHMEM 774 /* 775 * A memory area that is only addressable by the kernel through 776 * mapping portions into its own address space. This is for example 777 * used by i386 to allow the kernel to address the memory beyond 778 * 900MB. The kernel will set up special mappings (page 779 * table entries on i386) for each page that the kernel needs to 780 * access. 781 */ 782 ZONE_HIGHMEM, 783 #endif 784 /* 785 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 786 * movable pages with few exceptional cases described below. Main use 787 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 788 * likely to succeed, and to locally limit unmovable allocations - e.g., 789 * to increase the number of THP/huge pages. Notable special cases are: 790 * 791 * 1. Pinned pages: (long-term) pinning of movable pages might 792 * essentially turn such pages unmovable. Therefore, we do not allow 793 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 794 * faulted, they come from the right zone right away. However, it is 795 * still possible that address space already has pages in 796 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 797 * touches that memory before pinning). In such case we migrate them 798 * to a different zone. When migration fails - pinning fails. 799 * 2. memblock allocations: kernelcore/movablecore setups might create 800 * situations where ZONE_MOVABLE contains unmovable allocations 801 * after boot. Memory offlining and allocations fail early. 802 * 3. Memory holes: kernelcore/movablecore setups might create very rare 803 * situations where ZONE_MOVABLE contains memory holes after boot, 804 * for example, if we have sections that are only partially 805 * populated. Memory offlining and allocations fail early. 806 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 807 * memory offlining, such pages cannot be allocated. 808 * 5. Unmovable PG_offline pages: in paravirtualized environments, 809 * hotplugged memory blocks might only partially be managed by the 810 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 811 * parts not manged by the buddy are unmovable PG_offline pages. In 812 * some cases (virtio-mem), such pages can be skipped during 813 * memory offlining, however, cannot be moved/allocated. These 814 * techniques might use alloc_contig_range() to hide previously 815 * exposed pages from the buddy again (e.g., to implement some sort 816 * of memory unplug in virtio-mem). 817 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 818 * situations where ZERO_PAGE(0) which is allocated differently 819 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 820 * cannot be migrated. 821 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 822 * memory to the MOVABLE zone, the vmemmap pages are also placed in 823 * such zone. Such pages cannot be really moved around as they are 824 * self-stored in the range, but they are treated as movable when 825 * the range they describe is about to be offlined. 826 * 827 * In general, no unmovable allocations that degrade memory offlining 828 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 829 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 830 * if has_unmovable_pages() states that there are no unmovable pages, 831 * there can be false negatives). 832 */ 833 ZONE_MOVABLE, 834 #ifdef CONFIG_ZONE_DEVICE 835 ZONE_DEVICE, 836 #endif 837 __MAX_NR_ZONES 838 839 }; 840 841 #ifndef __GENERATING_BOUNDS_H 842 843 #define ASYNC_AND_SYNC 2 844 845 struct zone { 846 /* Read-mostly fields */ 847 848 /* zone watermarks, access with *_wmark_pages(zone) macros */ 849 unsigned long _watermark[NR_WMARK]; 850 unsigned long watermark_boost; 851 852 unsigned long nr_reserved_highatomic; 853 unsigned long nr_free_highatomic; 854 855 /* 856 * We don't know if the memory that we're going to allocate will be 857 * freeable or/and it will be released eventually, so to avoid totally 858 * wasting several GB of ram we must reserve some of the lower zone 859 * memory (otherwise we risk to run OOM on the lower zones despite 860 * there being tons of freeable ram on the higher zones). This array is 861 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 862 * changes. 863 */ 864 long lowmem_reserve[MAX_NR_ZONES]; 865 866 #ifdef CONFIG_NUMA 867 int node; 868 #endif 869 struct pglist_data *zone_pgdat; 870 struct per_cpu_pages __percpu *per_cpu_pageset; 871 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 872 /* 873 * the high and batch values are copied to individual pagesets for 874 * faster access 875 */ 876 int pageset_high_min; 877 int pageset_high_max; 878 int pageset_batch; 879 880 #ifndef CONFIG_SPARSEMEM 881 /* 882 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 883 * In SPARSEMEM, this map is stored in struct mem_section 884 */ 885 unsigned long *pageblock_flags; 886 #endif /* CONFIG_SPARSEMEM */ 887 888 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 889 unsigned long zone_start_pfn; 890 891 /* 892 * spanned_pages is the total pages spanned by the zone, including 893 * holes, which is calculated as: 894 * spanned_pages = zone_end_pfn - zone_start_pfn; 895 * 896 * present_pages is physical pages existing within the zone, which 897 * is calculated as: 898 * present_pages = spanned_pages - absent_pages(pages in holes); 899 * 900 * present_early_pages is present pages existing within the zone 901 * located on memory available since early boot, excluding hotplugged 902 * memory. 903 * 904 * managed_pages is present pages managed by the buddy system, which 905 * is calculated as (reserved_pages includes pages allocated by the 906 * bootmem allocator): 907 * managed_pages = present_pages - reserved_pages; 908 * 909 * cma pages is present pages that are assigned for CMA use 910 * (MIGRATE_CMA). 911 * 912 * So present_pages may be used by memory hotplug or memory power 913 * management logic to figure out unmanaged pages by checking 914 * (present_pages - managed_pages). And managed_pages should be used 915 * by page allocator and vm scanner to calculate all kinds of watermarks 916 * and thresholds. 917 * 918 * Locking rules: 919 * 920 * zone_start_pfn and spanned_pages are protected by span_seqlock. 921 * It is a seqlock because it has to be read outside of zone->lock, 922 * and it is done in the main allocator path. But, it is written 923 * quite infrequently. 924 * 925 * The span_seq lock is declared along with zone->lock because it is 926 * frequently read in proximity to zone->lock. It's good to 927 * give them a chance of being in the same cacheline. 928 * 929 * Write access to present_pages at runtime should be protected by 930 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 931 * present_pages should use get_online_mems() to get a stable value. 932 */ 933 atomic_long_t managed_pages; 934 unsigned long spanned_pages; 935 unsigned long present_pages; 936 #if defined(CONFIG_MEMORY_HOTPLUG) 937 unsigned long present_early_pages; 938 #endif 939 #ifdef CONFIG_CMA 940 unsigned long cma_pages; 941 #endif 942 943 const char *name; 944 945 #ifdef CONFIG_MEMORY_ISOLATION 946 /* 947 * Number of isolated pageblock. It is used to solve incorrect 948 * freepage counting problem due to racy retrieving migratetype 949 * of pageblock. Protected by zone->lock. 950 */ 951 unsigned long nr_isolate_pageblock; 952 #endif 953 954 #ifdef CONFIG_MEMORY_HOTPLUG 955 /* see spanned/present_pages for more description */ 956 seqlock_t span_seqlock; 957 #endif 958 959 int initialized; 960 961 /* Write-intensive fields used from the page allocator */ 962 CACHELINE_PADDING(_pad1_); 963 964 /* free areas of different sizes */ 965 struct free_area free_area[NR_PAGE_ORDERS]; 966 967 #ifdef CONFIG_UNACCEPTED_MEMORY 968 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ 969 struct list_head unaccepted_pages; 970 #endif 971 972 /* zone flags, see below */ 973 unsigned long flags; 974 975 /* Primarily protects free_area */ 976 spinlock_t lock; 977 978 /* Pages to be freed when next trylock succeeds */ 979 struct llist_head trylock_free_pages; 980 981 /* Write-intensive fields used by compaction and vmstats. */ 982 CACHELINE_PADDING(_pad2_); 983 984 /* 985 * When free pages are below this point, additional steps are taken 986 * when reading the number of free pages to avoid per-cpu counter 987 * drift allowing watermarks to be breached 988 */ 989 unsigned long percpu_drift_mark; 990 991 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 992 /* pfn where compaction free scanner should start */ 993 unsigned long compact_cached_free_pfn; 994 /* pfn where compaction migration scanner should start */ 995 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 996 unsigned long compact_init_migrate_pfn; 997 unsigned long compact_init_free_pfn; 998 #endif 999 1000 #ifdef CONFIG_COMPACTION 1001 /* 1002 * On compaction failure, 1<<compact_defer_shift compactions 1003 * are skipped before trying again. The number attempted since 1004 * last failure is tracked with compact_considered. 1005 * compact_order_failed is the minimum compaction failed order. 1006 */ 1007 unsigned int compact_considered; 1008 unsigned int compact_defer_shift; 1009 int compact_order_failed; 1010 #endif 1011 1012 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 1013 /* Set to true when the PG_migrate_skip bits should be cleared */ 1014 bool compact_blockskip_flush; 1015 #endif 1016 1017 bool contiguous; 1018 1019 CACHELINE_PADDING(_pad3_); 1020 /* Zone statistics */ 1021 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1022 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1023 } ____cacheline_internodealigned_in_smp; 1024 1025 enum pgdat_flags { 1026 PGDAT_DIRTY, /* reclaim scanning has recently found 1027 * many dirty file pages at the tail 1028 * of the LRU. 1029 */ 1030 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1031 * many pages under writeback 1032 */ 1033 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1034 }; 1035 1036 enum zone_flags { 1037 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1038 * Cleared when kswapd is woken. 1039 */ 1040 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1041 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1042 }; 1043 1044 static inline unsigned long wmark_pages(const struct zone *z, 1045 enum zone_watermarks w) 1046 { 1047 return z->_watermark[w] + z->watermark_boost; 1048 } 1049 1050 static inline unsigned long min_wmark_pages(const struct zone *z) 1051 { 1052 return wmark_pages(z, WMARK_MIN); 1053 } 1054 1055 static inline unsigned long low_wmark_pages(const struct zone *z) 1056 { 1057 return wmark_pages(z, WMARK_LOW); 1058 } 1059 1060 static inline unsigned long high_wmark_pages(const struct zone *z) 1061 { 1062 return wmark_pages(z, WMARK_HIGH); 1063 } 1064 1065 static inline unsigned long promo_wmark_pages(const struct zone *z) 1066 { 1067 return wmark_pages(z, WMARK_PROMO); 1068 } 1069 1070 static inline unsigned long zone_managed_pages(struct zone *zone) 1071 { 1072 return (unsigned long)atomic_long_read(&zone->managed_pages); 1073 } 1074 1075 static inline unsigned long zone_cma_pages(struct zone *zone) 1076 { 1077 #ifdef CONFIG_CMA 1078 return zone->cma_pages; 1079 #else 1080 return 0; 1081 #endif 1082 } 1083 1084 static inline unsigned long zone_end_pfn(const struct zone *zone) 1085 { 1086 return zone->zone_start_pfn + zone->spanned_pages; 1087 } 1088 1089 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1090 { 1091 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1092 } 1093 1094 static inline bool zone_is_initialized(struct zone *zone) 1095 { 1096 return zone->initialized; 1097 } 1098 1099 static inline bool zone_is_empty(struct zone *zone) 1100 { 1101 return zone->spanned_pages == 0; 1102 } 1103 1104 #ifndef BUILD_VDSO32_64 1105 /* 1106 * The zone field is never updated after free_area_init_core() 1107 * sets it, so none of the operations on it need to be atomic. 1108 */ 1109 1110 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1111 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1112 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1113 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1114 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1115 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1116 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1117 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1118 1119 /* 1120 * Define the bit shifts to access each section. For non-existent 1121 * sections we define the shift as 0; that plus a 0 mask ensures 1122 * the compiler will optimise away reference to them. 1123 */ 1124 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1125 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1126 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1127 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1128 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1129 1130 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1131 #ifdef NODE_NOT_IN_PAGE_FLAGS 1132 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1133 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1134 SECTIONS_PGOFF : ZONES_PGOFF) 1135 #else 1136 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1137 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1138 NODES_PGOFF : ZONES_PGOFF) 1139 #endif 1140 1141 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1142 1143 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1144 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1145 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1146 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1147 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1148 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1149 1150 static inline enum zone_type page_zonenum(const struct page *page) 1151 { 1152 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1153 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1154 } 1155 1156 static inline enum zone_type folio_zonenum(const struct folio *folio) 1157 { 1158 return page_zonenum(&folio->page); 1159 } 1160 1161 #ifdef CONFIG_ZONE_DEVICE 1162 static inline bool is_zone_device_page(const struct page *page) 1163 { 1164 return page_zonenum(page) == ZONE_DEVICE; 1165 } 1166 1167 static inline struct dev_pagemap *page_pgmap(const struct page *page) 1168 { 1169 VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page); 1170 return page_folio(page)->pgmap; 1171 } 1172 1173 /* 1174 * Consecutive zone device pages should not be merged into the same sgl 1175 * or bvec segment with other types of pages or if they belong to different 1176 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1177 * without scanning the entire segment. This helper returns true either if 1178 * both pages are not zone device pages or both pages are zone device pages 1179 * with the same pgmap. 1180 */ 1181 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1182 const struct page *b) 1183 { 1184 if (is_zone_device_page(a) != is_zone_device_page(b)) 1185 return false; 1186 if (!is_zone_device_page(a)) 1187 return true; 1188 return page_pgmap(a) == page_pgmap(b); 1189 } 1190 1191 extern void memmap_init_zone_device(struct zone *, unsigned long, 1192 unsigned long, struct dev_pagemap *); 1193 #else 1194 static inline bool is_zone_device_page(const struct page *page) 1195 { 1196 return false; 1197 } 1198 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1199 const struct page *b) 1200 { 1201 return true; 1202 } 1203 static inline struct dev_pagemap *page_pgmap(const struct page *page) 1204 { 1205 return NULL; 1206 } 1207 #endif 1208 1209 static inline bool folio_is_zone_device(const struct folio *folio) 1210 { 1211 return is_zone_device_page(&folio->page); 1212 } 1213 1214 static inline bool is_zone_movable_page(const struct page *page) 1215 { 1216 return page_zonenum(page) == ZONE_MOVABLE; 1217 } 1218 1219 static inline bool folio_is_zone_movable(const struct folio *folio) 1220 { 1221 return folio_zonenum(folio) == ZONE_MOVABLE; 1222 } 1223 #endif 1224 1225 /* 1226 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1227 * intersection with the given zone 1228 */ 1229 static inline bool zone_intersects(struct zone *zone, 1230 unsigned long start_pfn, unsigned long nr_pages) 1231 { 1232 if (zone_is_empty(zone)) 1233 return false; 1234 if (start_pfn >= zone_end_pfn(zone) || 1235 start_pfn + nr_pages <= zone->zone_start_pfn) 1236 return false; 1237 1238 return true; 1239 } 1240 1241 /* 1242 * The "priority" of VM scanning is how much of the queues we will scan in one 1243 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1244 * queues ("queue_length >> 12") during an aging round. 1245 */ 1246 #define DEF_PRIORITY 12 1247 1248 /* Maximum number of zones on a zonelist */ 1249 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1250 1251 enum { 1252 ZONELIST_FALLBACK, /* zonelist with fallback */ 1253 #ifdef CONFIG_NUMA 1254 /* 1255 * The NUMA zonelists are doubled because we need zonelists that 1256 * restrict the allocations to a single node for __GFP_THISNODE. 1257 */ 1258 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1259 #endif 1260 MAX_ZONELISTS 1261 }; 1262 1263 /* 1264 * This struct contains information about a zone in a zonelist. It is stored 1265 * here to avoid dereferences into large structures and lookups of tables 1266 */ 1267 struct zoneref { 1268 struct zone *zone; /* Pointer to actual zone */ 1269 int zone_idx; /* zone_idx(zoneref->zone) */ 1270 }; 1271 1272 /* 1273 * One allocation request operates on a zonelist. A zonelist 1274 * is a list of zones, the first one is the 'goal' of the 1275 * allocation, the other zones are fallback zones, in decreasing 1276 * priority. 1277 * 1278 * To speed the reading of the zonelist, the zonerefs contain the zone index 1279 * of the entry being read. Helper functions to access information given 1280 * a struct zoneref are 1281 * 1282 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1283 * zonelist_zone_idx() - Return the index of the zone for an entry 1284 * zonelist_node_idx() - Return the index of the node for an entry 1285 */ 1286 struct zonelist { 1287 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1288 }; 1289 1290 /* 1291 * The array of struct pages for flatmem. 1292 * It must be declared for SPARSEMEM as well because there are configurations 1293 * that rely on that. 1294 */ 1295 extern struct page *mem_map; 1296 1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1298 struct deferred_split { 1299 spinlock_t split_queue_lock; 1300 struct list_head split_queue; 1301 unsigned long split_queue_len; 1302 }; 1303 #endif 1304 1305 #ifdef CONFIG_MEMORY_FAILURE 1306 /* 1307 * Per NUMA node memory failure handling statistics. 1308 */ 1309 struct memory_failure_stats { 1310 /* 1311 * Number of raw pages poisoned. 1312 * Cases not accounted: memory outside kernel control, offline page, 1313 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1314 * error events, and unpoison actions from hwpoison_unpoison. 1315 */ 1316 unsigned long total; 1317 /* 1318 * Recovery results of poisoned raw pages handled by memory_failure, 1319 * in sync with mf_result. 1320 * total = ignored + failed + delayed + recovered. 1321 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1322 */ 1323 unsigned long ignored; 1324 unsigned long failed; 1325 unsigned long delayed; 1326 unsigned long recovered; 1327 }; 1328 #endif 1329 1330 /* 1331 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1332 * it's memory layout. On UMA machines there is a single pglist_data which 1333 * describes the whole memory. 1334 * 1335 * Memory statistics and page replacement data structures are maintained on a 1336 * per-zone basis. 1337 */ 1338 typedef struct pglist_data { 1339 /* 1340 * node_zones contains just the zones for THIS node. Not all of the 1341 * zones may be populated, but it is the full list. It is referenced by 1342 * this node's node_zonelists as well as other node's node_zonelists. 1343 */ 1344 struct zone node_zones[MAX_NR_ZONES]; 1345 1346 /* 1347 * node_zonelists contains references to all zones in all nodes. 1348 * Generally the first zones will be references to this node's 1349 * node_zones. 1350 */ 1351 struct zonelist node_zonelists[MAX_ZONELISTS]; 1352 1353 int nr_zones; /* number of populated zones in this node */ 1354 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1355 struct page *node_mem_map; 1356 #ifdef CONFIG_PAGE_EXTENSION 1357 struct page_ext *node_page_ext; 1358 #endif 1359 #endif 1360 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1361 /* 1362 * Must be held any time you expect node_start_pfn, 1363 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1364 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1365 * init. 1366 * 1367 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1368 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1369 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1370 * 1371 * Nests above zone->lock and zone->span_seqlock 1372 */ 1373 spinlock_t node_size_lock; 1374 #endif 1375 unsigned long node_start_pfn; 1376 unsigned long node_present_pages; /* total number of physical pages */ 1377 unsigned long node_spanned_pages; /* total size of physical page 1378 range, including holes */ 1379 int node_id; 1380 wait_queue_head_t kswapd_wait; 1381 wait_queue_head_t pfmemalloc_wait; 1382 1383 /* workqueues for throttling reclaim for different reasons. */ 1384 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1385 1386 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1387 unsigned long nr_reclaim_start; /* nr pages written while throttled 1388 * when throttling started. */ 1389 #ifdef CONFIG_MEMORY_HOTPLUG 1390 struct mutex kswapd_lock; 1391 #endif 1392 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1393 int kswapd_order; 1394 enum zone_type kswapd_highest_zoneidx; 1395 1396 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1397 1398 #ifdef CONFIG_COMPACTION 1399 int kcompactd_max_order; 1400 enum zone_type kcompactd_highest_zoneidx; 1401 wait_queue_head_t kcompactd_wait; 1402 struct task_struct *kcompactd; 1403 bool proactive_compact_trigger; 1404 #endif 1405 /* 1406 * This is a per-node reserve of pages that are not available 1407 * to userspace allocations. 1408 */ 1409 unsigned long totalreserve_pages; 1410 1411 #ifdef CONFIG_NUMA 1412 /* 1413 * node reclaim becomes active if more unmapped pages exist. 1414 */ 1415 unsigned long min_unmapped_pages; 1416 unsigned long min_slab_pages; 1417 #endif /* CONFIG_NUMA */ 1418 1419 /* Write-intensive fields used by page reclaim */ 1420 CACHELINE_PADDING(_pad1_); 1421 1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1423 /* 1424 * If memory initialisation on large machines is deferred then this 1425 * is the first PFN that needs to be initialised. 1426 */ 1427 unsigned long first_deferred_pfn; 1428 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1429 1430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1431 struct deferred_split deferred_split_queue; 1432 #endif 1433 1434 #ifdef CONFIG_NUMA_BALANCING 1435 /* start time in ms of current promote rate limit period */ 1436 unsigned int nbp_rl_start; 1437 /* number of promote candidate pages at start time of current rate limit period */ 1438 unsigned long nbp_rl_nr_cand; 1439 /* promote threshold in ms */ 1440 unsigned int nbp_threshold; 1441 /* start time in ms of current promote threshold adjustment period */ 1442 unsigned int nbp_th_start; 1443 /* 1444 * number of promote candidate pages at start time of current promote 1445 * threshold adjustment period 1446 */ 1447 unsigned long nbp_th_nr_cand; 1448 #endif 1449 /* Fields commonly accessed by the page reclaim scanner */ 1450 1451 /* 1452 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1453 * 1454 * Use mem_cgroup_lruvec() to look up lruvecs. 1455 */ 1456 struct lruvec __lruvec; 1457 1458 unsigned long flags; 1459 1460 #ifdef CONFIG_LRU_GEN 1461 /* kswap mm walk data */ 1462 struct lru_gen_mm_walk mm_walk; 1463 /* lru_gen_folio list */ 1464 struct lru_gen_memcg memcg_lru; 1465 #endif 1466 1467 CACHELINE_PADDING(_pad2_); 1468 1469 /* Per-node vmstats */ 1470 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1471 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1472 #ifdef CONFIG_NUMA 1473 struct memory_tier __rcu *memtier; 1474 #endif 1475 #ifdef CONFIG_MEMORY_FAILURE 1476 struct memory_failure_stats mf_stats; 1477 #endif 1478 } pg_data_t; 1479 1480 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1481 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1482 1483 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1484 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1485 1486 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1487 { 1488 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1489 } 1490 1491 #include <linux/memory_hotplug.h> 1492 1493 void build_all_zonelists(pg_data_t *pgdat); 1494 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1495 enum zone_type highest_zoneidx); 1496 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1497 int highest_zoneidx, unsigned int alloc_flags, 1498 long free_pages); 1499 bool zone_watermark_ok(struct zone *z, unsigned int order, 1500 unsigned long mark, int highest_zoneidx, 1501 unsigned int alloc_flags); 1502 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1503 unsigned long mark, int highest_zoneidx); 1504 /* 1505 * Memory initialization context, use to differentiate memory added by 1506 * the platform statically or via memory hotplug interface. 1507 */ 1508 enum meminit_context { 1509 MEMINIT_EARLY, 1510 MEMINIT_HOTPLUG, 1511 }; 1512 1513 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1514 unsigned long size); 1515 1516 extern void lruvec_init(struct lruvec *lruvec); 1517 1518 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1519 { 1520 #ifdef CONFIG_MEMCG 1521 return lruvec->pgdat; 1522 #else 1523 return container_of(lruvec, struct pglist_data, __lruvec); 1524 #endif 1525 } 1526 1527 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1528 int local_memory_node(int node_id); 1529 #else 1530 static inline int local_memory_node(int node_id) { return node_id; }; 1531 #endif 1532 1533 /* 1534 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1535 */ 1536 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1537 1538 #ifdef CONFIG_ZONE_DEVICE 1539 static inline bool zone_is_zone_device(struct zone *zone) 1540 { 1541 return zone_idx(zone) == ZONE_DEVICE; 1542 } 1543 #else 1544 static inline bool zone_is_zone_device(struct zone *zone) 1545 { 1546 return false; 1547 } 1548 #endif 1549 1550 /* 1551 * Returns true if a zone has pages managed by the buddy allocator. 1552 * All the reclaim decisions have to use this function rather than 1553 * populated_zone(). If the whole zone is reserved then we can easily 1554 * end up with populated_zone() && !managed_zone(). 1555 */ 1556 static inline bool managed_zone(struct zone *zone) 1557 { 1558 return zone_managed_pages(zone); 1559 } 1560 1561 /* Returns true if a zone has memory */ 1562 static inline bool populated_zone(struct zone *zone) 1563 { 1564 return zone->present_pages; 1565 } 1566 1567 #ifdef CONFIG_NUMA 1568 static inline int zone_to_nid(struct zone *zone) 1569 { 1570 return zone->node; 1571 } 1572 1573 static inline void zone_set_nid(struct zone *zone, int nid) 1574 { 1575 zone->node = nid; 1576 } 1577 #else 1578 static inline int zone_to_nid(struct zone *zone) 1579 { 1580 return 0; 1581 } 1582 1583 static inline void zone_set_nid(struct zone *zone, int nid) {} 1584 #endif 1585 1586 extern int movable_zone; 1587 1588 static inline int is_highmem_idx(enum zone_type idx) 1589 { 1590 #ifdef CONFIG_HIGHMEM 1591 return (idx == ZONE_HIGHMEM || 1592 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1593 #else 1594 return 0; 1595 #endif 1596 } 1597 1598 /** 1599 * is_highmem - helper function to quickly check if a struct zone is a 1600 * highmem zone or not. This is an attempt to keep references 1601 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1602 * @zone: pointer to struct zone variable 1603 * Return: 1 for a highmem zone, 0 otherwise 1604 */ 1605 static inline int is_highmem(struct zone *zone) 1606 { 1607 return is_highmem_idx(zone_idx(zone)); 1608 } 1609 1610 #ifdef CONFIG_ZONE_DMA 1611 bool has_managed_dma(void); 1612 #else 1613 static inline bool has_managed_dma(void) 1614 { 1615 return false; 1616 } 1617 #endif 1618 1619 1620 #ifndef CONFIG_NUMA 1621 1622 extern struct pglist_data contig_page_data; 1623 static inline struct pglist_data *NODE_DATA(int nid) 1624 { 1625 return &contig_page_data; 1626 } 1627 1628 #else /* CONFIG_NUMA */ 1629 1630 #include <asm/mmzone.h> 1631 1632 #endif /* !CONFIG_NUMA */ 1633 1634 extern struct pglist_data *first_online_pgdat(void); 1635 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1636 extern struct zone *next_zone(struct zone *zone); 1637 1638 /** 1639 * for_each_online_pgdat - helper macro to iterate over all online nodes 1640 * @pgdat: pointer to a pg_data_t variable 1641 */ 1642 #define for_each_online_pgdat(pgdat) \ 1643 for (pgdat = first_online_pgdat(); \ 1644 pgdat; \ 1645 pgdat = next_online_pgdat(pgdat)) 1646 /** 1647 * for_each_zone - helper macro to iterate over all memory zones 1648 * @zone: pointer to struct zone variable 1649 * 1650 * The user only needs to declare the zone variable, for_each_zone 1651 * fills it in. 1652 */ 1653 #define for_each_zone(zone) \ 1654 for (zone = (first_online_pgdat())->node_zones; \ 1655 zone; \ 1656 zone = next_zone(zone)) 1657 1658 #define for_each_populated_zone(zone) \ 1659 for (zone = (first_online_pgdat())->node_zones; \ 1660 zone; \ 1661 zone = next_zone(zone)) \ 1662 if (!populated_zone(zone)) \ 1663 ; /* do nothing */ \ 1664 else 1665 1666 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1667 { 1668 return zoneref->zone; 1669 } 1670 1671 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1672 { 1673 return zoneref->zone_idx; 1674 } 1675 1676 static inline int zonelist_node_idx(struct zoneref *zoneref) 1677 { 1678 return zone_to_nid(zoneref->zone); 1679 } 1680 1681 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1682 enum zone_type highest_zoneidx, 1683 nodemask_t *nodes); 1684 1685 /** 1686 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1687 * @z: The cursor used as a starting point for the search 1688 * @highest_zoneidx: The zone index of the highest zone to return 1689 * @nodes: An optional nodemask to filter the zonelist with 1690 * 1691 * This function returns the next zone at or below a given zone index that is 1692 * within the allowed nodemask using a cursor as the starting point for the 1693 * search. The zoneref returned is a cursor that represents the current zone 1694 * being examined. It should be advanced by one before calling 1695 * next_zones_zonelist again. 1696 * 1697 * Return: the next zone at or below highest_zoneidx within the allowed 1698 * nodemask using a cursor within a zonelist as a starting point 1699 */ 1700 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1701 enum zone_type highest_zoneidx, 1702 nodemask_t *nodes) 1703 { 1704 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1705 return z; 1706 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1707 } 1708 1709 /** 1710 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1711 * @zonelist: The zonelist to search for a suitable zone 1712 * @highest_zoneidx: The zone index of the highest zone to return 1713 * @nodes: An optional nodemask to filter the zonelist with 1714 * 1715 * This function returns the first zone at or below a given zone index that is 1716 * within the allowed nodemask. The zoneref returned is a cursor that can be 1717 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1718 * one before calling. 1719 * 1720 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1721 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1722 * update due to cpuset modification. 1723 * 1724 * Return: Zoneref pointer for the first suitable zone found 1725 */ 1726 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1727 enum zone_type highest_zoneidx, 1728 nodemask_t *nodes) 1729 { 1730 return next_zones_zonelist(zonelist->_zonerefs, 1731 highest_zoneidx, nodes); 1732 } 1733 1734 /** 1735 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1736 * @zone: The current zone in the iterator 1737 * @z: The current pointer within zonelist->_zonerefs being iterated 1738 * @zlist: The zonelist being iterated 1739 * @highidx: The zone index of the highest zone to return 1740 * @nodemask: Nodemask allowed by the allocator 1741 * 1742 * This iterator iterates though all zones at or below a given zone index and 1743 * within a given nodemask 1744 */ 1745 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1746 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1747 zone; \ 1748 z = next_zones_zonelist(++z, highidx, nodemask), \ 1749 zone = zonelist_zone(z)) 1750 1751 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1752 for (zone = zonelist_zone(z); \ 1753 zone; \ 1754 z = next_zones_zonelist(++z, highidx, nodemask), \ 1755 zone = zonelist_zone(z)) 1756 1757 1758 /** 1759 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1760 * @zone: The current zone in the iterator 1761 * @z: The current pointer within zonelist->zones being iterated 1762 * @zlist: The zonelist being iterated 1763 * @highidx: The zone index of the highest zone to return 1764 * 1765 * This iterator iterates though all zones at or below a given zone index. 1766 */ 1767 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1768 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1769 1770 /* Whether the 'nodes' are all movable nodes */ 1771 static inline bool movable_only_nodes(nodemask_t *nodes) 1772 { 1773 struct zonelist *zonelist; 1774 struct zoneref *z; 1775 int nid; 1776 1777 if (nodes_empty(*nodes)) 1778 return false; 1779 1780 /* 1781 * We can chose arbitrary node from the nodemask to get a 1782 * zonelist as they are interlinked. We just need to find 1783 * at least one zone that can satisfy kernel allocations. 1784 */ 1785 nid = first_node(*nodes); 1786 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1787 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1788 return (!zonelist_zone(z)) ? true : false; 1789 } 1790 1791 1792 #ifdef CONFIG_SPARSEMEM 1793 #include <asm/sparsemem.h> 1794 #endif 1795 1796 #ifdef CONFIG_FLATMEM 1797 #define pfn_to_nid(pfn) (0) 1798 #endif 1799 1800 #ifdef CONFIG_SPARSEMEM 1801 1802 /* 1803 * PA_SECTION_SHIFT physical address to/from section number 1804 * PFN_SECTION_SHIFT pfn to/from section number 1805 */ 1806 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1807 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1808 1809 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1810 1811 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1812 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1813 1814 #define SECTION_BLOCKFLAGS_BITS \ 1815 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1816 1817 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1818 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE 1819 #endif 1820 1821 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1822 { 1823 return pfn >> PFN_SECTION_SHIFT; 1824 } 1825 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1826 { 1827 return sec << PFN_SECTION_SHIFT; 1828 } 1829 1830 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1831 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1832 1833 #define SUBSECTION_SHIFT 21 1834 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1835 1836 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1837 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1838 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1839 1840 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1841 #error Subsection size exceeds section size 1842 #else 1843 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1844 #endif 1845 1846 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1847 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1848 1849 struct mem_section_usage { 1850 struct rcu_head rcu; 1851 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1852 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1853 #endif 1854 /* See declaration of similar field in struct zone */ 1855 unsigned long pageblock_flags[0]; 1856 }; 1857 1858 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1859 1860 struct page; 1861 struct page_ext; 1862 struct mem_section { 1863 /* 1864 * This is, logically, a pointer to an array of struct 1865 * pages. However, it is stored with some other magic. 1866 * (see sparse.c::sparse_init_one_section()) 1867 * 1868 * Additionally during early boot we encode node id of 1869 * the location of the section here to guide allocation. 1870 * (see sparse.c::memory_present()) 1871 * 1872 * Making it a UL at least makes someone do a cast 1873 * before using it wrong. 1874 */ 1875 unsigned long section_mem_map; 1876 1877 struct mem_section_usage *usage; 1878 #ifdef CONFIG_PAGE_EXTENSION 1879 /* 1880 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1881 * section. (see page_ext.h about this.) 1882 */ 1883 struct page_ext *page_ext; 1884 unsigned long pad; 1885 #endif 1886 /* 1887 * WARNING: mem_section must be a power-of-2 in size for the 1888 * calculation and use of SECTION_ROOT_MASK to make sense. 1889 */ 1890 }; 1891 1892 #ifdef CONFIG_SPARSEMEM_EXTREME 1893 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1894 #else 1895 #define SECTIONS_PER_ROOT 1 1896 #endif 1897 1898 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1899 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1900 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1901 1902 #ifdef CONFIG_SPARSEMEM_EXTREME 1903 extern struct mem_section **mem_section; 1904 #else 1905 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1906 #endif 1907 1908 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1909 { 1910 return ms->usage->pageblock_flags; 1911 } 1912 1913 static inline struct mem_section *__nr_to_section(unsigned long nr) 1914 { 1915 unsigned long root = SECTION_NR_TO_ROOT(nr); 1916 1917 if (unlikely(root >= NR_SECTION_ROOTS)) 1918 return NULL; 1919 1920 #ifdef CONFIG_SPARSEMEM_EXTREME 1921 if (!mem_section || !mem_section[root]) 1922 return NULL; 1923 #endif 1924 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1925 } 1926 extern size_t mem_section_usage_size(void); 1927 1928 /* 1929 * We use the lower bits of the mem_map pointer to store 1930 * a little bit of information. The pointer is calculated 1931 * as mem_map - section_nr_to_pfn(pnum). The result is 1932 * aligned to the minimum alignment of the two values: 1933 * 1. All mem_map arrays are page-aligned. 1934 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1935 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1936 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1937 * worst combination is powerpc with 256k pages, 1938 * which results in PFN_SECTION_SHIFT equal 6. 1939 * To sum it up, at least 6 bits are available on all architectures. 1940 * However, we can exceed 6 bits on some other architectures except 1941 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1942 * with the worst case of 64K pages on arm64) if we make sure the 1943 * exceeded bit is not applicable to powerpc. 1944 */ 1945 enum { 1946 SECTION_MARKED_PRESENT_BIT, 1947 SECTION_HAS_MEM_MAP_BIT, 1948 SECTION_IS_ONLINE_BIT, 1949 SECTION_IS_EARLY_BIT, 1950 #ifdef CONFIG_ZONE_DEVICE 1951 SECTION_TAINT_ZONE_DEVICE_BIT, 1952 #endif 1953 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1954 SECTION_IS_VMEMMAP_PREINIT_BIT, 1955 #endif 1956 SECTION_MAP_LAST_BIT, 1957 }; 1958 1959 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1960 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1961 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1962 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1963 #ifdef CONFIG_ZONE_DEVICE 1964 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1965 #endif 1966 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 1967 #define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) 1968 #endif 1969 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1970 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1971 1972 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1973 { 1974 unsigned long map = section->section_mem_map; 1975 map &= SECTION_MAP_MASK; 1976 return (struct page *)map; 1977 } 1978 1979 static inline int present_section(struct mem_section *section) 1980 { 1981 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1982 } 1983 1984 static inline int present_section_nr(unsigned long nr) 1985 { 1986 return present_section(__nr_to_section(nr)); 1987 } 1988 1989 static inline int valid_section(struct mem_section *section) 1990 { 1991 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1992 } 1993 1994 static inline int early_section(struct mem_section *section) 1995 { 1996 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1997 } 1998 1999 static inline int valid_section_nr(unsigned long nr) 2000 { 2001 return valid_section(__nr_to_section(nr)); 2002 } 2003 2004 static inline int online_section(struct mem_section *section) 2005 { 2006 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 2007 } 2008 2009 #ifdef CONFIG_ZONE_DEVICE 2010 static inline int online_device_section(struct mem_section *section) 2011 { 2012 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 2013 2014 return section && ((section->section_mem_map & flags) == flags); 2015 } 2016 #else 2017 static inline int online_device_section(struct mem_section *section) 2018 { 2019 return 0; 2020 } 2021 #endif 2022 2023 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT 2024 static inline int preinited_vmemmap_section(struct mem_section *section) 2025 { 2026 return (section && 2027 (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); 2028 } 2029 2030 void sparse_vmemmap_init_nid_early(int nid); 2031 void sparse_vmemmap_init_nid_late(int nid); 2032 2033 #else 2034 static inline int preinited_vmemmap_section(struct mem_section *section) 2035 { 2036 return 0; 2037 } 2038 static inline void sparse_vmemmap_init_nid_early(int nid) 2039 { 2040 } 2041 2042 static inline void sparse_vmemmap_init_nid_late(int nid) 2043 { 2044 } 2045 #endif 2046 2047 static inline int online_section_nr(unsigned long nr) 2048 { 2049 return online_section(__nr_to_section(nr)); 2050 } 2051 2052 #ifdef CONFIG_MEMORY_HOTPLUG 2053 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2054 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 2055 #endif 2056 2057 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 2058 { 2059 return __nr_to_section(pfn_to_section_nr(pfn)); 2060 } 2061 2062 extern unsigned long __highest_present_section_nr; 2063 2064 static inline int subsection_map_index(unsigned long pfn) 2065 { 2066 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 2067 } 2068 2069 #ifdef CONFIG_SPARSEMEM_VMEMMAP 2070 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2071 { 2072 int idx = subsection_map_index(pfn); 2073 struct mem_section_usage *usage = READ_ONCE(ms->usage); 2074 2075 return usage ? test_bit(idx, usage->subsection_map) : 0; 2076 } 2077 #else 2078 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 2079 { 2080 return 1; 2081 } 2082 #endif 2083 2084 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, 2085 unsigned long flags); 2086 2087 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 2088 /** 2089 * pfn_valid - check if there is a valid memory map entry for a PFN 2090 * @pfn: the page frame number to check 2091 * 2092 * Check if there is a valid memory map entry aka struct page for the @pfn. 2093 * Note, that availability of the memory map entry does not imply that 2094 * there is actual usable memory at that @pfn. The struct page may 2095 * represent a hole or an unusable page frame. 2096 * 2097 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2098 */ 2099 static inline int pfn_valid(unsigned long pfn) 2100 { 2101 struct mem_section *ms; 2102 int ret; 2103 2104 /* 2105 * Ensure the upper PAGE_SHIFT bits are clear in the 2106 * pfn. Else it might lead to false positives when 2107 * some of the upper bits are set, but the lower bits 2108 * match a valid pfn. 2109 */ 2110 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2111 return 0; 2112 2113 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2114 return 0; 2115 ms = __pfn_to_section(pfn); 2116 rcu_read_lock_sched(); 2117 if (!valid_section(ms)) { 2118 rcu_read_unlock_sched(); 2119 return 0; 2120 } 2121 /* 2122 * Traditionally early sections always returned pfn_valid() for 2123 * the entire section-sized span. 2124 */ 2125 ret = early_section(ms) || pfn_section_valid(ms, pfn); 2126 rcu_read_unlock_sched(); 2127 2128 return ret; 2129 } 2130 #endif 2131 2132 static inline int pfn_in_present_section(unsigned long pfn) 2133 { 2134 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2135 return 0; 2136 return present_section(__pfn_to_section(pfn)); 2137 } 2138 2139 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2140 { 2141 while (++section_nr <= __highest_present_section_nr) { 2142 if (present_section_nr(section_nr)) 2143 return section_nr; 2144 } 2145 2146 return -1; 2147 } 2148 2149 #define for_each_present_section_nr(start, section_nr) \ 2150 for (section_nr = next_present_section_nr(start - 1); \ 2151 section_nr != -1; \ 2152 section_nr = next_present_section_nr(section_nr)) 2153 2154 /* 2155 * These are _only_ used during initialisation, therefore they 2156 * can use __initdata ... They could have names to indicate 2157 * this restriction. 2158 */ 2159 #ifdef CONFIG_NUMA 2160 #define pfn_to_nid(pfn) \ 2161 ({ \ 2162 unsigned long __pfn_to_nid_pfn = (pfn); \ 2163 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2164 }) 2165 #else 2166 #define pfn_to_nid(pfn) (0) 2167 #endif 2168 2169 void sparse_init(void); 2170 #else 2171 #define sparse_init() do {} while (0) 2172 #define sparse_index_init(_sec, _nid) do {} while (0) 2173 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) 2174 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0) 2175 #define pfn_in_present_section pfn_valid 2176 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2177 #endif /* CONFIG_SPARSEMEM */ 2178 2179 #endif /* !__GENERATING_BOUNDS.H */ 2180 #endif /* !__ASSEMBLY__ */ 2181 #endif /* _LINUX_MMZONE_H */ 2182