xref: /linux-6.15/include/linux/mmzone.h (revision 4d07bbf2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_FREE_PAGES_BLOCKS,
142 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
143 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
144 	NR_ZONE_ACTIVE_ANON,
145 	NR_ZONE_INACTIVE_FILE,
146 	NR_ZONE_ACTIVE_FILE,
147 	NR_ZONE_UNEVICTABLE,
148 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
149 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
150 	/* Second 128 byte cacheline */
151 	NR_BOUNCE,
152 #if IS_ENABLED(CONFIG_ZSMALLOC)
153 	NR_ZSPAGES,		/* allocated in zsmalloc */
154 #endif
155 	NR_FREE_CMA_PAGES,
156 #ifdef CONFIG_UNACCEPTED_MEMORY
157 	NR_UNACCEPTED,
158 #endif
159 	NR_VM_ZONE_STAT_ITEMS };
160 
161 enum node_stat_item {
162 	NR_LRU_BASE,
163 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
164 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
165 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
166 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
167 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
168 	NR_SLAB_RECLAIMABLE_B,
169 	NR_SLAB_UNRECLAIMABLE_B,
170 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
171 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
172 	WORKINGSET_NODES,
173 	WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_FILE,
176 	WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_FILE,
179 	WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_FILE,
182 	WORKINGSET_NODERECLAIM,
183 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
184 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
185 			   only modified from process context */
186 	NR_FILE_PAGES,
187 	NR_FILE_DIRTY,
188 	NR_WRITEBACK,
189 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
190 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
191 	NR_SHMEM_THPS,
192 	NR_SHMEM_PMDMAPPED,
193 	NR_FILE_THPS,
194 	NR_FILE_PMDMAPPED,
195 	NR_ANON_THPS,
196 	NR_VMSCAN_WRITE,
197 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
198 	NR_DIRTIED,		/* page dirtyings since bootup */
199 	NR_WRITTEN,		/* page writings since bootup */
200 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
201 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
202 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
203 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
204 	NR_KERNEL_STACK_KB,	/* measured in KiB */
205 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
206 	NR_KERNEL_SCS_KB,	/* measured in KiB */
207 #endif
208 	NR_PAGETABLE,		/* used for pagetables */
209 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
210 #ifdef CONFIG_IOMMU_SUPPORT
211 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
212 #endif
213 #ifdef CONFIG_SWAP
214 	NR_SWAPCACHE,
215 #endif
216 #ifdef CONFIG_NUMA_BALANCING
217 	PGPROMOTE_SUCCESS,	/* promote successfully */
218 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
219 #endif
220 	/* PGDEMOTE_*: pages demoted */
221 	PGDEMOTE_KSWAPD,
222 	PGDEMOTE_DIRECT,
223 	PGDEMOTE_KHUGEPAGED,
224 	PGDEMOTE_PROACTIVE,
225 #ifdef CONFIG_HUGETLB_PAGE
226 	NR_HUGETLB,
227 #endif
228 	NR_BALLOON_PAGES,
229 	NR_VM_NODE_STAT_ITEMS
230 };
231 
232 /*
233  * Returns true if the item should be printed in THPs (/proc/vmstat
234  * currently prints number of anon, file and shmem THPs. But the item
235  * is charged in pages).
236  */
237 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
238 {
239 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
240 		return false;
241 
242 	return item == NR_ANON_THPS ||
243 	       item == NR_FILE_THPS ||
244 	       item == NR_SHMEM_THPS ||
245 	       item == NR_SHMEM_PMDMAPPED ||
246 	       item == NR_FILE_PMDMAPPED;
247 }
248 
249 /*
250  * Returns true if the value is measured in bytes (most vmstat values are
251  * measured in pages). This defines the API part, the internal representation
252  * might be different.
253  */
254 static __always_inline bool vmstat_item_in_bytes(int idx)
255 {
256 	/*
257 	 * Global and per-node slab counters track slab pages.
258 	 * It's expected that changes are multiples of PAGE_SIZE.
259 	 * Internally values are stored in pages.
260 	 *
261 	 * Per-memcg and per-lruvec counters track memory, consumed
262 	 * by individual slab objects. These counters are actually
263 	 * byte-precise.
264 	 */
265 	return (idx == NR_SLAB_RECLAIMABLE_B ||
266 		idx == NR_SLAB_UNRECLAIMABLE_B);
267 }
268 
269 /*
270  * We do arithmetic on the LRU lists in various places in the code,
271  * so it is important to keep the active lists LRU_ACTIVE higher in
272  * the array than the corresponding inactive lists, and to keep
273  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
274  *
275  * This has to be kept in sync with the statistics in zone_stat_item
276  * above and the descriptions in vmstat_text in mm/vmstat.c
277  */
278 #define LRU_BASE 0
279 #define LRU_ACTIVE 1
280 #define LRU_FILE 2
281 
282 enum lru_list {
283 	LRU_INACTIVE_ANON = LRU_BASE,
284 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
285 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
286 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
287 	LRU_UNEVICTABLE,
288 	NR_LRU_LISTS
289 };
290 
291 enum vmscan_throttle_state {
292 	VMSCAN_THROTTLE_WRITEBACK,
293 	VMSCAN_THROTTLE_ISOLATED,
294 	VMSCAN_THROTTLE_NOPROGRESS,
295 	VMSCAN_THROTTLE_CONGESTED,
296 	NR_VMSCAN_THROTTLE,
297 };
298 
299 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
300 
301 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
302 
303 static inline bool is_file_lru(enum lru_list lru)
304 {
305 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
306 }
307 
308 static inline bool is_active_lru(enum lru_list lru)
309 {
310 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
311 }
312 
313 #define WORKINGSET_ANON 0
314 #define WORKINGSET_FILE 1
315 #define ANON_AND_FILE 2
316 
317 enum lruvec_flags {
318 	/*
319 	 * An lruvec has many dirty pages backed by a congested BDI:
320 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
321 	 *    It can be cleared by cgroup reclaim or kswapd.
322 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
323 	 *    It can only be cleared by kswapd.
324 	 *
325 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
326 	 * reclaim, but not vice versa. This only applies to the root cgroup.
327 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
328 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
329 	 * by kswapd).
330 	 */
331 	LRUVEC_CGROUP_CONGESTED,
332 	LRUVEC_NODE_CONGESTED,
333 };
334 
335 #endif /* !__GENERATING_BOUNDS_H */
336 
337 /*
338  * Evictable folios are divided into multiple generations. The youngest and the
339  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
340  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
341  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
342  * corresponding generation. The gen counter in folio->flags stores gen+1 while
343  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
344  *
345  * After a folio is faulted in, the aging needs to check the accessed bit at
346  * least twice before handing this folio over to the eviction. The first check
347  * clears the accessed bit from the initial fault; the second check makes sure
348  * this folio hasn't been used since then. This process, AKA second chance,
349  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
350  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
351  * generations are considered active; the rest of generations, if they exist,
352  * are considered inactive. See lru_gen_is_active().
353  *
354  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
355  * that the sliding window needs not to worry about it. And it's set again when
356  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
357  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
358  *
359  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
360  * number of categories of the active/inactive LRU when keeping track of
361  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
362  * in folio->flags, masked by LRU_GEN_MASK.
363  */
364 #define MIN_NR_GENS		2U
365 #define MAX_NR_GENS		4U
366 
367 /*
368  * Each generation is divided into multiple tiers. A folio accessed N times
369  * through file descriptors is in tier order_base_2(N). A folio in the first
370  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
371  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
372  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
373  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
374  *
375  * In contrast to moving across generations which requires the LRU lock, moving
376  * across tiers only involves atomic operations on folio->flags and therefore
377  * has a negligible cost in the buffered access path. In the eviction path,
378  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
379  * infer whether folios accessed multiple times through file descriptors are
380  * statistically hot and thus worth protecting.
381  *
382  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
383  * number of categories of the active/inactive LRU when keeping track of
384  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
385  * folio->flags, masked by LRU_REFS_MASK.
386  */
387 #define MAX_NR_TIERS		4U
388 
389 #ifndef __GENERATING_BOUNDS_H
390 
391 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
392 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
393 
394 /*
395  * For folios accessed multiple times through file descriptors,
396  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
397  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
398  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
399  * promoted into the second oldest generation in the eviction path. And when
400  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
401  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
402  * only valid when PG_referenced is set.
403  *
404  * For folios accessed multiple times through page tables, folio_update_gen()
405  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
406  * PG_referenced after the accessed bit is cleared for the first time.
407  * Thereafter, those two paths set PG_workingset and promote folios to the
408  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
409  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
410  *
411  * For both cases above, after PG_workingset is set on a folio, it remains until
412  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
413  * can be set again if lru_gen_test_recent() returns true upon a refault.
414  */
415 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
416 
417 struct lruvec;
418 struct page_vma_mapped_walk;
419 
420 #ifdef CONFIG_LRU_GEN
421 
422 enum {
423 	LRU_GEN_ANON,
424 	LRU_GEN_FILE,
425 };
426 
427 enum {
428 	LRU_GEN_CORE,
429 	LRU_GEN_MM_WALK,
430 	LRU_GEN_NONLEAF_YOUNG,
431 	NR_LRU_GEN_CAPS
432 };
433 
434 #define MIN_LRU_BATCH		BITS_PER_LONG
435 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
436 
437 /* whether to keep historical stats from evicted generations */
438 #ifdef CONFIG_LRU_GEN_STATS
439 #define NR_HIST_GENS		MAX_NR_GENS
440 #else
441 #define NR_HIST_GENS		1U
442 #endif
443 
444 /*
445  * The youngest generation number is stored in max_seq for both anon and file
446  * types as they are aged on an equal footing. The oldest generation numbers are
447  * stored in min_seq[] separately for anon and file types so that they can be
448  * incremented independently. Ideally min_seq[] are kept in sync when both anon
449  * and file types are evictable. However, to adapt to situations like extreme
450  * swappiness, they are allowed to be out of sync by at most
451  * MAX_NR_GENS-MIN_NR_GENS-1.
452  *
453  * The number of pages in each generation is eventually consistent and therefore
454  * can be transiently negative when reset_batch_size() is pending.
455  */
456 struct lru_gen_folio {
457 	/* the aging increments the youngest generation number */
458 	unsigned long max_seq;
459 	/* the eviction increments the oldest generation numbers */
460 	unsigned long min_seq[ANON_AND_FILE];
461 	/* the birth time of each generation in jiffies */
462 	unsigned long timestamps[MAX_NR_GENS];
463 	/* the multi-gen LRU lists, lazily sorted on eviction */
464 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
465 	/* the multi-gen LRU sizes, eventually consistent */
466 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
467 	/* the exponential moving average of refaulted */
468 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
469 	/* the exponential moving average of evicted+protected */
470 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
471 	/* can only be modified under the LRU lock */
472 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
473 	/* can be modified without holding the LRU lock */
474 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
475 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
476 	/* whether the multi-gen LRU is enabled */
477 	bool enabled;
478 	/* the memcg generation this lru_gen_folio belongs to */
479 	u8 gen;
480 	/* the list segment this lru_gen_folio belongs to */
481 	u8 seg;
482 	/* per-node lru_gen_folio list for global reclaim */
483 	struct hlist_nulls_node list;
484 };
485 
486 enum {
487 	MM_LEAF_TOTAL,		/* total leaf entries */
488 	MM_LEAF_YOUNG,		/* young leaf entries */
489 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
490 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
491 	NR_MM_STATS
492 };
493 
494 /* double-buffering Bloom filters */
495 #define NR_BLOOM_FILTERS	2
496 
497 struct lru_gen_mm_state {
498 	/* synced with max_seq after each iteration */
499 	unsigned long seq;
500 	/* where the current iteration continues after */
501 	struct list_head *head;
502 	/* where the last iteration ended before */
503 	struct list_head *tail;
504 	/* Bloom filters flip after each iteration */
505 	unsigned long *filters[NR_BLOOM_FILTERS];
506 	/* the mm stats for debugging */
507 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
508 };
509 
510 struct lru_gen_mm_walk {
511 	/* the lruvec under reclaim */
512 	struct lruvec *lruvec;
513 	/* max_seq from lru_gen_folio: can be out of date */
514 	unsigned long seq;
515 	/* the next address within an mm to scan */
516 	unsigned long next_addr;
517 	/* to batch promoted pages */
518 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
519 	/* to batch the mm stats */
520 	int mm_stats[NR_MM_STATS];
521 	/* total batched items */
522 	int batched;
523 	int swappiness;
524 	bool force_scan;
525 };
526 
527 /*
528  * For each node, memcgs are divided into two generations: the old and the
529  * young. For each generation, memcgs are randomly sharded into multiple bins
530  * to improve scalability. For each bin, the hlist_nulls is virtually divided
531  * into three segments: the head, the tail and the default.
532  *
533  * An onlining memcg is added to the tail of a random bin in the old generation.
534  * The eviction starts at the head of a random bin in the old generation. The
535  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
536  * the old generation, is incremented when all its bins become empty.
537  *
538  * There are four operations:
539  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
540  *    current generation (old or young) and updates its "seg" to "head";
541  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
542  *    current generation (old or young) and updates its "seg" to "tail";
543  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
544  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
545  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
546  *    young generation, updates its "gen" to "young" and resets its "seg" to
547  *    "default".
548  *
549  * The events that trigger the above operations are:
550  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
551  * 2. The first attempt to reclaim a memcg below low, which triggers
552  *    MEMCG_LRU_TAIL;
553  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
554  *    threshold, which triggers MEMCG_LRU_TAIL;
555  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
556  *    threshold, which triggers MEMCG_LRU_YOUNG;
557  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
558  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
559  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
560  *
561  * Notes:
562  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
563  *    of their max_seq counters ensures the eventual fairness to all eligible
564  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
565  * 2. There are only two valid generations: old (seq) and young (seq+1).
566  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
567  *    locklessly, a stale value (seq-1) does not wraparound to young.
568  */
569 #define MEMCG_NR_GENS	3
570 #define MEMCG_NR_BINS	8
571 
572 struct lru_gen_memcg {
573 	/* the per-node memcg generation counter */
574 	unsigned long seq;
575 	/* each memcg has one lru_gen_folio per node */
576 	unsigned long nr_memcgs[MEMCG_NR_GENS];
577 	/* per-node lru_gen_folio list for global reclaim */
578 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
579 	/* protects the above */
580 	spinlock_t lock;
581 };
582 
583 void lru_gen_init_pgdat(struct pglist_data *pgdat);
584 void lru_gen_init_lruvec(struct lruvec *lruvec);
585 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
586 
587 void lru_gen_init_memcg(struct mem_cgroup *memcg);
588 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
589 void lru_gen_online_memcg(struct mem_cgroup *memcg);
590 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
591 void lru_gen_release_memcg(struct mem_cgroup *memcg);
592 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
593 
594 #else /* !CONFIG_LRU_GEN */
595 
596 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
597 {
598 }
599 
600 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
601 {
602 }
603 
604 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
605 {
606 	return false;
607 }
608 
609 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
610 {
611 }
612 
613 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
614 {
615 }
616 
617 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
618 {
619 }
620 
621 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
622 {
623 }
624 
625 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
626 {
627 }
628 
629 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
630 {
631 }
632 
633 #endif /* CONFIG_LRU_GEN */
634 
635 struct lruvec {
636 	struct list_head		lists[NR_LRU_LISTS];
637 	/* per lruvec lru_lock for memcg */
638 	spinlock_t			lru_lock;
639 	/*
640 	 * These track the cost of reclaiming one LRU - file or anon -
641 	 * over the other. As the observed cost of reclaiming one LRU
642 	 * increases, the reclaim scan balance tips toward the other.
643 	 */
644 	unsigned long			anon_cost;
645 	unsigned long			file_cost;
646 	/* Non-resident age, driven by LRU movement */
647 	atomic_long_t			nonresident_age;
648 	/* Refaults at the time of last reclaim cycle */
649 	unsigned long			refaults[ANON_AND_FILE];
650 	/* Various lruvec state flags (enum lruvec_flags) */
651 	unsigned long			flags;
652 #ifdef CONFIG_LRU_GEN
653 	/* evictable pages divided into generations */
654 	struct lru_gen_folio		lrugen;
655 #ifdef CONFIG_LRU_GEN_WALKS_MMU
656 	/* to concurrently iterate lru_gen_mm_list */
657 	struct lru_gen_mm_state		mm_state;
658 #endif
659 #endif /* CONFIG_LRU_GEN */
660 #ifdef CONFIG_MEMCG
661 	struct pglist_data *pgdat;
662 #endif
663 	struct zswap_lruvec_state zswap_lruvec_state;
664 };
665 
666 /* Isolate for asynchronous migration */
667 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
668 /* Isolate unevictable pages */
669 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
670 
671 /* LRU Isolation modes. */
672 typedef unsigned __bitwise isolate_mode_t;
673 
674 enum zone_watermarks {
675 	WMARK_MIN,
676 	WMARK_LOW,
677 	WMARK_HIGH,
678 	WMARK_PROMO,
679 	NR_WMARK
680 };
681 
682 /*
683  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
684  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
685  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
686  */
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 #define NR_PCP_THP 2
689 #else
690 #define NR_PCP_THP 0
691 #endif
692 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
693 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
694 
695 /*
696  * Flags used in pcp->flags field.
697  *
698  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
699  * previous page freeing.  To avoid to drain PCP for an accident
700  * high-order page freeing.
701  *
702  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
703  * draining PCP for consecutive high-order pages freeing without
704  * allocation if data cache slice of CPU is large enough.  To reduce
705  * zone lock contention and keep cache-hot pages reusing.
706  */
707 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
708 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
709 
710 struct per_cpu_pages {
711 	spinlock_t lock;	/* Protects lists field */
712 	int count;		/* number of pages in the list */
713 	int high;		/* high watermark, emptying needed */
714 	int high_min;		/* min high watermark */
715 	int high_max;		/* max high watermark */
716 	int batch;		/* chunk size for buddy add/remove */
717 	u8 flags;		/* protected by pcp->lock */
718 	u8 alloc_factor;	/* batch scaling factor during allocate */
719 #ifdef CONFIG_NUMA
720 	u8 expire;		/* When 0, remote pagesets are drained */
721 #endif
722 	short free_count;	/* consecutive free count */
723 
724 	/* Lists of pages, one per migrate type stored on the pcp-lists */
725 	struct list_head lists[NR_PCP_LISTS];
726 } ____cacheline_aligned_in_smp;
727 
728 struct per_cpu_zonestat {
729 #ifdef CONFIG_SMP
730 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
731 	s8 stat_threshold;
732 #endif
733 #ifdef CONFIG_NUMA
734 	/*
735 	 * Low priority inaccurate counters that are only folded
736 	 * on demand. Use a large type to avoid the overhead of
737 	 * folding during refresh_cpu_vm_stats.
738 	 */
739 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
740 #endif
741 };
742 
743 struct per_cpu_nodestat {
744 	s8 stat_threshold;
745 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
746 };
747 
748 #endif /* !__GENERATING_BOUNDS.H */
749 
750 enum zone_type {
751 	/*
752 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
753 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
754 	 * On architectures where this area covers the whole 32 bit address
755 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
756 	 * DMA addressing constraints. This distinction is important as a 32bit
757 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
758 	 * platforms may need both zones as they support peripherals with
759 	 * different DMA addressing limitations.
760 	 */
761 #ifdef CONFIG_ZONE_DMA
762 	ZONE_DMA,
763 #endif
764 #ifdef CONFIG_ZONE_DMA32
765 	ZONE_DMA32,
766 #endif
767 	/*
768 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
769 	 * performed on pages in ZONE_NORMAL if the DMA devices support
770 	 * transfers to all addressable memory.
771 	 */
772 	ZONE_NORMAL,
773 #ifdef CONFIG_HIGHMEM
774 	/*
775 	 * A memory area that is only addressable by the kernel through
776 	 * mapping portions into its own address space. This is for example
777 	 * used by i386 to allow the kernel to address the memory beyond
778 	 * 900MB. The kernel will set up special mappings (page
779 	 * table entries on i386) for each page that the kernel needs to
780 	 * access.
781 	 */
782 	ZONE_HIGHMEM,
783 #endif
784 	/*
785 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
786 	 * movable pages with few exceptional cases described below. Main use
787 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
788 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
789 	 * to increase the number of THP/huge pages. Notable special cases are:
790 	 *
791 	 * 1. Pinned pages: (long-term) pinning of movable pages might
792 	 *    essentially turn such pages unmovable. Therefore, we do not allow
793 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
794 	 *    faulted, they come from the right zone right away. However, it is
795 	 *    still possible that address space already has pages in
796 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
797 	 *    touches that memory before pinning). In such case we migrate them
798 	 *    to a different zone. When migration fails - pinning fails.
799 	 * 2. memblock allocations: kernelcore/movablecore setups might create
800 	 *    situations where ZONE_MOVABLE contains unmovable allocations
801 	 *    after boot. Memory offlining and allocations fail early.
802 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
803 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
804 	 *    for example, if we have sections that are only partially
805 	 *    populated. Memory offlining and allocations fail early.
806 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
807 	 *    memory offlining, such pages cannot be allocated.
808 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
809 	 *    hotplugged memory blocks might only partially be managed by the
810 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
811 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
812 	 *    some cases (virtio-mem), such pages can be skipped during
813 	 *    memory offlining, however, cannot be moved/allocated. These
814 	 *    techniques might use alloc_contig_range() to hide previously
815 	 *    exposed pages from the buddy again (e.g., to implement some sort
816 	 *    of memory unplug in virtio-mem).
817 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
818 	 *    situations where ZERO_PAGE(0) which is allocated differently
819 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
820 	 *    cannot be migrated.
821 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
822 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
823 	 *    such zone. Such pages cannot be really moved around as they are
824 	 *    self-stored in the range, but they are treated as movable when
825 	 *    the range they describe is about to be offlined.
826 	 *
827 	 * In general, no unmovable allocations that degrade memory offlining
828 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
829 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
830 	 * if has_unmovable_pages() states that there are no unmovable pages,
831 	 * there can be false negatives).
832 	 */
833 	ZONE_MOVABLE,
834 #ifdef CONFIG_ZONE_DEVICE
835 	ZONE_DEVICE,
836 #endif
837 	__MAX_NR_ZONES
838 
839 };
840 
841 #ifndef __GENERATING_BOUNDS_H
842 
843 #define ASYNC_AND_SYNC 2
844 
845 struct zone {
846 	/* Read-mostly fields */
847 
848 	/* zone watermarks, access with *_wmark_pages(zone) macros */
849 	unsigned long _watermark[NR_WMARK];
850 	unsigned long watermark_boost;
851 
852 	unsigned long nr_reserved_highatomic;
853 	unsigned long nr_free_highatomic;
854 
855 	/*
856 	 * We don't know if the memory that we're going to allocate will be
857 	 * freeable or/and it will be released eventually, so to avoid totally
858 	 * wasting several GB of ram we must reserve some of the lower zone
859 	 * memory (otherwise we risk to run OOM on the lower zones despite
860 	 * there being tons of freeable ram on the higher zones).  This array is
861 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
862 	 * changes.
863 	 */
864 	long lowmem_reserve[MAX_NR_ZONES];
865 
866 #ifdef CONFIG_NUMA
867 	int node;
868 #endif
869 	struct pglist_data	*zone_pgdat;
870 	struct per_cpu_pages	__percpu *per_cpu_pageset;
871 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
872 	/*
873 	 * the high and batch values are copied to individual pagesets for
874 	 * faster access
875 	 */
876 	int pageset_high_min;
877 	int pageset_high_max;
878 	int pageset_batch;
879 
880 #ifndef CONFIG_SPARSEMEM
881 	/*
882 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
883 	 * In SPARSEMEM, this map is stored in struct mem_section
884 	 */
885 	unsigned long		*pageblock_flags;
886 #endif /* CONFIG_SPARSEMEM */
887 
888 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
889 	unsigned long		zone_start_pfn;
890 
891 	/*
892 	 * spanned_pages is the total pages spanned by the zone, including
893 	 * holes, which is calculated as:
894 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
895 	 *
896 	 * present_pages is physical pages existing within the zone, which
897 	 * is calculated as:
898 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
899 	 *
900 	 * present_early_pages is present pages existing within the zone
901 	 * located on memory available since early boot, excluding hotplugged
902 	 * memory.
903 	 *
904 	 * managed_pages is present pages managed by the buddy system, which
905 	 * is calculated as (reserved_pages includes pages allocated by the
906 	 * bootmem allocator):
907 	 *	managed_pages = present_pages - reserved_pages;
908 	 *
909 	 * cma pages is present pages that are assigned for CMA use
910 	 * (MIGRATE_CMA).
911 	 *
912 	 * So present_pages may be used by memory hotplug or memory power
913 	 * management logic to figure out unmanaged pages by checking
914 	 * (present_pages - managed_pages). And managed_pages should be used
915 	 * by page allocator and vm scanner to calculate all kinds of watermarks
916 	 * and thresholds.
917 	 *
918 	 * Locking rules:
919 	 *
920 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
921 	 * It is a seqlock because it has to be read outside of zone->lock,
922 	 * and it is done in the main allocator path.  But, it is written
923 	 * quite infrequently.
924 	 *
925 	 * The span_seq lock is declared along with zone->lock because it is
926 	 * frequently read in proximity to zone->lock.  It's good to
927 	 * give them a chance of being in the same cacheline.
928 	 *
929 	 * Write access to present_pages at runtime should be protected by
930 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
931 	 * present_pages should use get_online_mems() to get a stable value.
932 	 */
933 	atomic_long_t		managed_pages;
934 	unsigned long		spanned_pages;
935 	unsigned long		present_pages;
936 #if defined(CONFIG_MEMORY_HOTPLUG)
937 	unsigned long		present_early_pages;
938 #endif
939 #ifdef CONFIG_CMA
940 	unsigned long		cma_pages;
941 #endif
942 
943 	const char		*name;
944 
945 #ifdef CONFIG_MEMORY_ISOLATION
946 	/*
947 	 * Number of isolated pageblock. It is used to solve incorrect
948 	 * freepage counting problem due to racy retrieving migratetype
949 	 * of pageblock. Protected by zone->lock.
950 	 */
951 	unsigned long		nr_isolate_pageblock;
952 #endif
953 
954 #ifdef CONFIG_MEMORY_HOTPLUG
955 	/* see spanned/present_pages for more description */
956 	seqlock_t		span_seqlock;
957 #endif
958 
959 	int initialized;
960 
961 	/* Write-intensive fields used from the page allocator */
962 	CACHELINE_PADDING(_pad1_);
963 
964 	/* free areas of different sizes */
965 	struct free_area	free_area[NR_PAGE_ORDERS];
966 
967 #ifdef CONFIG_UNACCEPTED_MEMORY
968 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
969 	struct list_head	unaccepted_pages;
970 #endif
971 
972 	/* zone flags, see below */
973 	unsigned long		flags;
974 
975 	/* Primarily protects free_area */
976 	spinlock_t		lock;
977 
978 	/* Pages to be freed when next trylock succeeds */
979 	struct llist_head	trylock_free_pages;
980 
981 	/* Write-intensive fields used by compaction and vmstats. */
982 	CACHELINE_PADDING(_pad2_);
983 
984 	/*
985 	 * When free pages are below this point, additional steps are taken
986 	 * when reading the number of free pages to avoid per-cpu counter
987 	 * drift allowing watermarks to be breached
988 	 */
989 	unsigned long percpu_drift_mark;
990 
991 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
992 	/* pfn where compaction free scanner should start */
993 	unsigned long		compact_cached_free_pfn;
994 	/* pfn where compaction migration scanner should start */
995 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
996 	unsigned long		compact_init_migrate_pfn;
997 	unsigned long		compact_init_free_pfn;
998 #endif
999 
1000 #ifdef CONFIG_COMPACTION
1001 	/*
1002 	 * On compaction failure, 1<<compact_defer_shift compactions
1003 	 * are skipped before trying again. The number attempted since
1004 	 * last failure is tracked with compact_considered.
1005 	 * compact_order_failed is the minimum compaction failed order.
1006 	 */
1007 	unsigned int		compact_considered;
1008 	unsigned int		compact_defer_shift;
1009 	int			compact_order_failed;
1010 #endif
1011 
1012 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1013 	/* Set to true when the PG_migrate_skip bits should be cleared */
1014 	bool			compact_blockskip_flush;
1015 #endif
1016 
1017 	bool			contiguous;
1018 
1019 	CACHELINE_PADDING(_pad3_);
1020 	/* Zone statistics */
1021 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1022 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1023 } ____cacheline_internodealigned_in_smp;
1024 
1025 enum pgdat_flags {
1026 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1027 					 * many dirty file pages at the tail
1028 					 * of the LRU.
1029 					 */
1030 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1031 					 * many pages under writeback
1032 					 */
1033 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1034 };
1035 
1036 enum zone_flags {
1037 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1038 					 * Cleared when kswapd is woken.
1039 					 */
1040 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1041 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1042 };
1043 
1044 static inline unsigned long wmark_pages(const struct zone *z,
1045 					enum zone_watermarks w)
1046 {
1047 	return z->_watermark[w] + z->watermark_boost;
1048 }
1049 
1050 static inline unsigned long min_wmark_pages(const struct zone *z)
1051 {
1052 	return wmark_pages(z, WMARK_MIN);
1053 }
1054 
1055 static inline unsigned long low_wmark_pages(const struct zone *z)
1056 {
1057 	return wmark_pages(z, WMARK_LOW);
1058 }
1059 
1060 static inline unsigned long high_wmark_pages(const struct zone *z)
1061 {
1062 	return wmark_pages(z, WMARK_HIGH);
1063 }
1064 
1065 static inline unsigned long promo_wmark_pages(const struct zone *z)
1066 {
1067 	return wmark_pages(z, WMARK_PROMO);
1068 }
1069 
1070 static inline unsigned long zone_managed_pages(struct zone *zone)
1071 {
1072 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1073 }
1074 
1075 static inline unsigned long zone_cma_pages(struct zone *zone)
1076 {
1077 #ifdef CONFIG_CMA
1078 	return zone->cma_pages;
1079 #else
1080 	return 0;
1081 #endif
1082 }
1083 
1084 static inline unsigned long zone_end_pfn(const struct zone *zone)
1085 {
1086 	return zone->zone_start_pfn + zone->spanned_pages;
1087 }
1088 
1089 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1090 {
1091 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1092 }
1093 
1094 static inline bool zone_is_initialized(struct zone *zone)
1095 {
1096 	return zone->initialized;
1097 }
1098 
1099 static inline bool zone_is_empty(struct zone *zone)
1100 {
1101 	return zone->spanned_pages == 0;
1102 }
1103 
1104 #ifndef BUILD_VDSO32_64
1105 /*
1106  * The zone field is never updated after free_area_init_core()
1107  * sets it, so none of the operations on it need to be atomic.
1108  */
1109 
1110 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1111 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1112 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1113 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1114 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1115 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1116 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1117 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1118 
1119 /*
1120  * Define the bit shifts to access each section.  For non-existent
1121  * sections we define the shift as 0; that plus a 0 mask ensures
1122  * the compiler will optimise away reference to them.
1123  */
1124 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1125 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1126 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1127 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1128 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1129 
1130 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1131 #ifdef NODE_NOT_IN_PAGE_FLAGS
1132 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1133 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1134 						SECTIONS_PGOFF : ZONES_PGOFF)
1135 #else
1136 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1137 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1138 						NODES_PGOFF : ZONES_PGOFF)
1139 #endif
1140 
1141 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1142 
1143 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1144 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1145 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1146 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1147 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1148 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1149 
1150 static inline enum zone_type page_zonenum(const struct page *page)
1151 {
1152 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1153 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1154 }
1155 
1156 static inline enum zone_type folio_zonenum(const struct folio *folio)
1157 {
1158 	return page_zonenum(&folio->page);
1159 }
1160 
1161 #ifdef CONFIG_ZONE_DEVICE
1162 static inline bool is_zone_device_page(const struct page *page)
1163 {
1164 	return page_zonenum(page) == ZONE_DEVICE;
1165 }
1166 
1167 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1168 {
1169 	VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1170 	return page_folio(page)->pgmap;
1171 }
1172 
1173 /*
1174  * Consecutive zone device pages should not be merged into the same sgl
1175  * or bvec segment with other types of pages or if they belong to different
1176  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1177  * without scanning the entire segment. This helper returns true either if
1178  * both pages are not zone device pages or both pages are zone device pages
1179  * with the same pgmap.
1180  */
1181 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1182 						     const struct page *b)
1183 {
1184 	if (is_zone_device_page(a) != is_zone_device_page(b))
1185 		return false;
1186 	if (!is_zone_device_page(a))
1187 		return true;
1188 	return page_pgmap(a) == page_pgmap(b);
1189 }
1190 
1191 extern void memmap_init_zone_device(struct zone *, unsigned long,
1192 				    unsigned long, struct dev_pagemap *);
1193 #else
1194 static inline bool is_zone_device_page(const struct page *page)
1195 {
1196 	return false;
1197 }
1198 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1199 						     const struct page *b)
1200 {
1201 	return true;
1202 }
1203 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1204 {
1205 	return NULL;
1206 }
1207 #endif
1208 
1209 static inline bool folio_is_zone_device(const struct folio *folio)
1210 {
1211 	return is_zone_device_page(&folio->page);
1212 }
1213 
1214 static inline bool is_zone_movable_page(const struct page *page)
1215 {
1216 	return page_zonenum(page) == ZONE_MOVABLE;
1217 }
1218 
1219 static inline bool folio_is_zone_movable(const struct folio *folio)
1220 {
1221 	return folio_zonenum(folio) == ZONE_MOVABLE;
1222 }
1223 #endif
1224 
1225 /*
1226  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1227  * intersection with the given zone
1228  */
1229 static inline bool zone_intersects(struct zone *zone,
1230 		unsigned long start_pfn, unsigned long nr_pages)
1231 {
1232 	if (zone_is_empty(zone))
1233 		return false;
1234 	if (start_pfn >= zone_end_pfn(zone) ||
1235 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1236 		return false;
1237 
1238 	return true;
1239 }
1240 
1241 /*
1242  * The "priority" of VM scanning is how much of the queues we will scan in one
1243  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1244  * queues ("queue_length >> 12") during an aging round.
1245  */
1246 #define DEF_PRIORITY 12
1247 
1248 /* Maximum number of zones on a zonelist */
1249 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1250 
1251 enum {
1252 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1253 #ifdef CONFIG_NUMA
1254 	/*
1255 	 * The NUMA zonelists are doubled because we need zonelists that
1256 	 * restrict the allocations to a single node for __GFP_THISNODE.
1257 	 */
1258 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1259 #endif
1260 	MAX_ZONELISTS
1261 };
1262 
1263 /*
1264  * This struct contains information about a zone in a zonelist. It is stored
1265  * here to avoid dereferences into large structures and lookups of tables
1266  */
1267 struct zoneref {
1268 	struct zone *zone;	/* Pointer to actual zone */
1269 	int zone_idx;		/* zone_idx(zoneref->zone) */
1270 };
1271 
1272 /*
1273  * One allocation request operates on a zonelist. A zonelist
1274  * is a list of zones, the first one is the 'goal' of the
1275  * allocation, the other zones are fallback zones, in decreasing
1276  * priority.
1277  *
1278  * To speed the reading of the zonelist, the zonerefs contain the zone index
1279  * of the entry being read. Helper functions to access information given
1280  * a struct zoneref are
1281  *
1282  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1283  * zonelist_zone_idx()	- Return the index of the zone for an entry
1284  * zonelist_node_idx()	- Return the index of the node for an entry
1285  */
1286 struct zonelist {
1287 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1288 };
1289 
1290 /*
1291  * The array of struct pages for flatmem.
1292  * It must be declared for SPARSEMEM as well because there are configurations
1293  * that rely on that.
1294  */
1295 extern struct page *mem_map;
1296 
1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 struct deferred_split {
1299 	spinlock_t split_queue_lock;
1300 	struct list_head split_queue;
1301 	unsigned long split_queue_len;
1302 };
1303 #endif
1304 
1305 #ifdef CONFIG_MEMORY_FAILURE
1306 /*
1307  * Per NUMA node memory failure handling statistics.
1308  */
1309 struct memory_failure_stats {
1310 	/*
1311 	 * Number of raw pages poisoned.
1312 	 * Cases not accounted: memory outside kernel control, offline page,
1313 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1314 	 * error events, and unpoison actions from hwpoison_unpoison.
1315 	 */
1316 	unsigned long total;
1317 	/*
1318 	 * Recovery results of poisoned raw pages handled by memory_failure,
1319 	 * in sync with mf_result.
1320 	 * total = ignored + failed + delayed + recovered.
1321 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1322 	 */
1323 	unsigned long ignored;
1324 	unsigned long failed;
1325 	unsigned long delayed;
1326 	unsigned long recovered;
1327 };
1328 #endif
1329 
1330 /*
1331  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1332  * it's memory layout. On UMA machines there is a single pglist_data which
1333  * describes the whole memory.
1334  *
1335  * Memory statistics and page replacement data structures are maintained on a
1336  * per-zone basis.
1337  */
1338 typedef struct pglist_data {
1339 	/*
1340 	 * node_zones contains just the zones for THIS node. Not all of the
1341 	 * zones may be populated, but it is the full list. It is referenced by
1342 	 * this node's node_zonelists as well as other node's node_zonelists.
1343 	 */
1344 	struct zone node_zones[MAX_NR_ZONES];
1345 
1346 	/*
1347 	 * node_zonelists contains references to all zones in all nodes.
1348 	 * Generally the first zones will be references to this node's
1349 	 * node_zones.
1350 	 */
1351 	struct zonelist node_zonelists[MAX_ZONELISTS];
1352 
1353 	int nr_zones; /* number of populated zones in this node */
1354 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1355 	struct page *node_mem_map;
1356 #ifdef CONFIG_PAGE_EXTENSION
1357 	struct page_ext *node_page_ext;
1358 #endif
1359 #endif
1360 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1361 	/*
1362 	 * Must be held any time you expect node_start_pfn,
1363 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1364 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1365 	 * init.
1366 	 *
1367 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1368 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1369 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1370 	 *
1371 	 * Nests above zone->lock and zone->span_seqlock
1372 	 */
1373 	spinlock_t node_size_lock;
1374 #endif
1375 	unsigned long node_start_pfn;
1376 	unsigned long node_present_pages; /* total number of physical pages */
1377 	unsigned long node_spanned_pages; /* total size of physical page
1378 					     range, including holes */
1379 	int node_id;
1380 	wait_queue_head_t kswapd_wait;
1381 	wait_queue_head_t pfmemalloc_wait;
1382 
1383 	/* workqueues for throttling reclaim for different reasons. */
1384 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1385 
1386 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1387 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1388 					 * when throttling started. */
1389 #ifdef CONFIG_MEMORY_HOTPLUG
1390 	struct mutex kswapd_lock;
1391 #endif
1392 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1393 	int kswapd_order;
1394 	enum zone_type kswapd_highest_zoneidx;
1395 
1396 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1397 
1398 #ifdef CONFIG_COMPACTION
1399 	int kcompactd_max_order;
1400 	enum zone_type kcompactd_highest_zoneidx;
1401 	wait_queue_head_t kcompactd_wait;
1402 	struct task_struct *kcompactd;
1403 	bool proactive_compact_trigger;
1404 #endif
1405 	/*
1406 	 * This is a per-node reserve of pages that are not available
1407 	 * to userspace allocations.
1408 	 */
1409 	unsigned long		totalreserve_pages;
1410 
1411 #ifdef CONFIG_NUMA
1412 	/*
1413 	 * node reclaim becomes active if more unmapped pages exist.
1414 	 */
1415 	unsigned long		min_unmapped_pages;
1416 	unsigned long		min_slab_pages;
1417 #endif /* CONFIG_NUMA */
1418 
1419 	/* Write-intensive fields used by page reclaim */
1420 	CACHELINE_PADDING(_pad1_);
1421 
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 	/*
1424 	 * If memory initialisation on large machines is deferred then this
1425 	 * is the first PFN that needs to be initialised.
1426 	 */
1427 	unsigned long first_deferred_pfn;
1428 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1429 
1430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1431 	struct deferred_split deferred_split_queue;
1432 #endif
1433 
1434 #ifdef CONFIG_NUMA_BALANCING
1435 	/* start time in ms of current promote rate limit period */
1436 	unsigned int nbp_rl_start;
1437 	/* number of promote candidate pages at start time of current rate limit period */
1438 	unsigned long nbp_rl_nr_cand;
1439 	/* promote threshold in ms */
1440 	unsigned int nbp_threshold;
1441 	/* start time in ms of current promote threshold adjustment period */
1442 	unsigned int nbp_th_start;
1443 	/*
1444 	 * number of promote candidate pages at start time of current promote
1445 	 * threshold adjustment period
1446 	 */
1447 	unsigned long nbp_th_nr_cand;
1448 #endif
1449 	/* Fields commonly accessed by the page reclaim scanner */
1450 
1451 	/*
1452 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1453 	 *
1454 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1455 	 */
1456 	struct lruvec		__lruvec;
1457 
1458 	unsigned long		flags;
1459 
1460 #ifdef CONFIG_LRU_GEN
1461 	/* kswap mm walk data */
1462 	struct lru_gen_mm_walk mm_walk;
1463 	/* lru_gen_folio list */
1464 	struct lru_gen_memcg memcg_lru;
1465 #endif
1466 
1467 	CACHELINE_PADDING(_pad2_);
1468 
1469 	/* Per-node vmstats */
1470 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1471 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1472 #ifdef CONFIG_NUMA
1473 	struct memory_tier __rcu *memtier;
1474 #endif
1475 #ifdef CONFIG_MEMORY_FAILURE
1476 	struct memory_failure_stats mf_stats;
1477 #endif
1478 } pg_data_t;
1479 
1480 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1481 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1482 
1483 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1484 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1485 
1486 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1487 {
1488 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1489 }
1490 
1491 #include <linux/memory_hotplug.h>
1492 
1493 void build_all_zonelists(pg_data_t *pgdat);
1494 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1495 		   enum zone_type highest_zoneidx);
1496 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1497 			 int highest_zoneidx, unsigned int alloc_flags,
1498 			 long free_pages);
1499 bool zone_watermark_ok(struct zone *z, unsigned int order,
1500 		unsigned long mark, int highest_zoneidx,
1501 		unsigned int alloc_flags);
1502 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1503 		unsigned long mark, int highest_zoneidx);
1504 /*
1505  * Memory initialization context, use to differentiate memory added by
1506  * the platform statically or via memory hotplug interface.
1507  */
1508 enum meminit_context {
1509 	MEMINIT_EARLY,
1510 	MEMINIT_HOTPLUG,
1511 };
1512 
1513 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1514 				     unsigned long size);
1515 
1516 extern void lruvec_init(struct lruvec *lruvec);
1517 
1518 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1519 {
1520 #ifdef CONFIG_MEMCG
1521 	return lruvec->pgdat;
1522 #else
1523 	return container_of(lruvec, struct pglist_data, __lruvec);
1524 #endif
1525 }
1526 
1527 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1528 int local_memory_node(int node_id);
1529 #else
1530 static inline int local_memory_node(int node_id) { return node_id; };
1531 #endif
1532 
1533 /*
1534  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1535  */
1536 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1537 
1538 #ifdef CONFIG_ZONE_DEVICE
1539 static inline bool zone_is_zone_device(struct zone *zone)
1540 {
1541 	return zone_idx(zone) == ZONE_DEVICE;
1542 }
1543 #else
1544 static inline bool zone_is_zone_device(struct zone *zone)
1545 {
1546 	return false;
1547 }
1548 #endif
1549 
1550 /*
1551  * Returns true if a zone has pages managed by the buddy allocator.
1552  * All the reclaim decisions have to use this function rather than
1553  * populated_zone(). If the whole zone is reserved then we can easily
1554  * end up with populated_zone() && !managed_zone().
1555  */
1556 static inline bool managed_zone(struct zone *zone)
1557 {
1558 	return zone_managed_pages(zone);
1559 }
1560 
1561 /* Returns true if a zone has memory */
1562 static inline bool populated_zone(struct zone *zone)
1563 {
1564 	return zone->present_pages;
1565 }
1566 
1567 #ifdef CONFIG_NUMA
1568 static inline int zone_to_nid(struct zone *zone)
1569 {
1570 	return zone->node;
1571 }
1572 
1573 static inline void zone_set_nid(struct zone *zone, int nid)
1574 {
1575 	zone->node = nid;
1576 }
1577 #else
1578 static inline int zone_to_nid(struct zone *zone)
1579 {
1580 	return 0;
1581 }
1582 
1583 static inline void zone_set_nid(struct zone *zone, int nid) {}
1584 #endif
1585 
1586 extern int movable_zone;
1587 
1588 static inline int is_highmem_idx(enum zone_type idx)
1589 {
1590 #ifdef CONFIG_HIGHMEM
1591 	return (idx == ZONE_HIGHMEM ||
1592 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1593 #else
1594 	return 0;
1595 #endif
1596 }
1597 
1598 /**
1599  * is_highmem - helper function to quickly check if a struct zone is a
1600  *              highmem zone or not.  This is an attempt to keep references
1601  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1602  * @zone: pointer to struct zone variable
1603  * Return: 1 for a highmem zone, 0 otherwise
1604  */
1605 static inline int is_highmem(struct zone *zone)
1606 {
1607 	return is_highmem_idx(zone_idx(zone));
1608 }
1609 
1610 #ifdef CONFIG_ZONE_DMA
1611 bool has_managed_dma(void);
1612 #else
1613 static inline bool has_managed_dma(void)
1614 {
1615 	return false;
1616 }
1617 #endif
1618 
1619 
1620 #ifndef CONFIG_NUMA
1621 
1622 extern struct pglist_data contig_page_data;
1623 static inline struct pglist_data *NODE_DATA(int nid)
1624 {
1625 	return &contig_page_data;
1626 }
1627 
1628 #else /* CONFIG_NUMA */
1629 
1630 #include <asm/mmzone.h>
1631 
1632 #endif /* !CONFIG_NUMA */
1633 
1634 extern struct pglist_data *first_online_pgdat(void);
1635 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1636 extern struct zone *next_zone(struct zone *zone);
1637 
1638 /**
1639  * for_each_online_pgdat - helper macro to iterate over all online nodes
1640  * @pgdat: pointer to a pg_data_t variable
1641  */
1642 #define for_each_online_pgdat(pgdat)			\
1643 	for (pgdat = first_online_pgdat();		\
1644 	     pgdat;					\
1645 	     pgdat = next_online_pgdat(pgdat))
1646 /**
1647  * for_each_zone - helper macro to iterate over all memory zones
1648  * @zone: pointer to struct zone variable
1649  *
1650  * The user only needs to declare the zone variable, for_each_zone
1651  * fills it in.
1652  */
1653 #define for_each_zone(zone)			        \
1654 	for (zone = (first_online_pgdat())->node_zones; \
1655 	     zone;					\
1656 	     zone = next_zone(zone))
1657 
1658 #define for_each_populated_zone(zone)		        \
1659 	for (zone = (first_online_pgdat())->node_zones; \
1660 	     zone;					\
1661 	     zone = next_zone(zone))			\
1662 		if (!populated_zone(zone))		\
1663 			; /* do nothing */		\
1664 		else
1665 
1666 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1667 {
1668 	return zoneref->zone;
1669 }
1670 
1671 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1672 {
1673 	return zoneref->zone_idx;
1674 }
1675 
1676 static inline int zonelist_node_idx(struct zoneref *zoneref)
1677 {
1678 	return zone_to_nid(zoneref->zone);
1679 }
1680 
1681 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1682 					enum zone_type highest_zoneidx,
1683 					nodemask_t *nodes);
1684 
1685 /**
1686  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1687  * @z: The cursor used as a starting point for the search
1688  * @highest_zoneidx: The zone index of the highest zone to return
1689  * @nodes: An optional nodemask to filter the zonelist with
1690  *
1691  * This function returns the next zone at or below a given zone index that is
1692  * within the allowed nodemask using a cursor as the starting point for the
1693  * search. The zoneref returned is a cursor that represents the current zone
1694  * being examined. It should be advanced by one before calling
1695  * next_zones_zonelist again.
1696  *
1697  * Return: the next zone at or below highest_zoneidx within the allowed
1698  * nodemask using a cursor within a zonelist as a starting point
1699  */
1700 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1701 					enum zone_type highest_zoneidx,
1702 					nodemask_t *nodes)
1703 {
1704 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1705 		return z;
1706 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1707 }
1708 
1709 /**
1710  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1711  * @zonelist: The zonelist to search for a suitable zone
1712  * @highest_zoneidx: The zone index of the highest zone to return
1713  * @nodes: An optional nodemask to filter the zonelist with
1714  *
1715  * This function returns the first zone at or below a given zone index that is
1716  * within the allowed nodemask. The zoneref returned is a cursor that can be
1717  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1718  * one before calling.
1719  *
1720  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1721  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1722  * update due to cpuset modification.
1723  *
1724  * Return: Zoneref pointer for the first suitable zone found
1725  */
1726 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1727 					enum zone_type highest_zoneidx,
1728 					nodemask_t *nodes)
1729 {
1730 	return next_zones_zonelist(zonelist->_zonerefs,
1731 							highest_zoneidx, nodes);
1732 }
1733 
1734 /**
1735  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1736  * @zone: The current zone in the iterator
1737  * @z: The current pointer within zonelist->_zonerefs being iterated
1738  * @zlist: The zonelist being iterated
1739  * @highidx: The zone index of the highest zone to return
1740  * @nodemask: Nodemask allowed by the allocator
1741  *
1742  * This iterator iterates though all zones at or below a given zone index and
1743  * within a given nodemask
1744  */
1745 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1746 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1747 		zone;							\
1748 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1749 			zone = zonelist_zone(z))
1750 
1751 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1752 	for (zone = zonelist_zone(z);	\
1753 		zone;							\
1754 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1755 			zone = zonelist_zone(z))
1756 
1757 
1758 /**
1759  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1760  * @zone: The current zone in the iterator
1761  * @z: The current pointer within zonelist->zones being iterated
1762  * @zlist: The zonelist being iterated
1763  * @highidx: The zone index of the highest zone to return
1764  *
1765  * This iterator iterates though all zones at or below a given zone index.
1766  */
1767 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1768 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1769 
1770 /* Whether the 'nodes' are all movable nodes */
1771 static inline bool movable_only_nodes(nodemask_t *nodes)
1772 {
1773 	struct zonelist *zonelist;
1774 	struct zoneref *z;
1775 	int nid;
1776 
1777 	if (nodes_empty(*nodes))
1778 		return false;
1779 
1780 	/*
1781 	 * We can chose arbitrary node from the nodemask to get a
1782 	 * zonelist as they are interlinked. We just need to find
1783 	 * at least one zone that can satisfy kernel allocations.
1784 	 */
1785 	nid = first_node(*nodes);
1786 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1787 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1788 	return (!zonelist_zone(z)) ? true : false;
1789 }
1790 
1791 
1792 #ifdef CONFIG_SPARSEMEM
1793 #include <asm/sparsemem.h>
1794 #endif
1795 
1796 #ifdef CONFIG_FLATMEM
1797 #define pfn_to_nid(pfn)		(0)
1798 #endif
1799 
1800 #ifdef CONFIG_SPARSEMEM
1801 
1802 /*
1803  * PA_SECTION_SHIFT		physical address to/from section number
1804  * PFN_SECTION_SHIFT		pfn to/from section number
1805  */
1806 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1807 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1808 
1809 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1810 
1811 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1812 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1813 
1814 #define SECTION_BLOCKFLAGS_BITS \
1815 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1816 
1817 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1818 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1819 #endif
1820 
1821 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1822 {
1823 	return pfn >> PFN_SECTION_SHIFT;
1824 }
1825 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1826 {
1827 	return sec << PFN_SECTION_SHIFT;
1828 }
1829 
1830 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1831 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1832 
1833 #define SUBSECTION_SHIFT 21
1834 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1835 
1836 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1837 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1838 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1839 
1840 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1841 #error Subsection size exceeds section size
1842 #else
1843 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1844 #endif
1845 
1846 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1847 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1848 
1849 struct mem_section_usage {
1850 	struct rcu_head rcu;
1851 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1852 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1853 #endif
1854 	/* See declaration of similar field in struct zone */
1855 	unsigned long pageblock_flags[0];
1856 };
1857 
1858 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1859 
1860 struct page;
1861 struct page_ext;
1862 struct mem_section {
1863 	/*
1864 	 * This is, logically, a pointer to an array of struct
1865 	 * pages.  However, it is stored with some other magic.
1866 	 * (see sparse.c::sparse_init_one_section())
1867 	 *
1868 	 * Additionally during early boot we encode node id of
1869 	 * the location of the section here to guide allocation.
1870 	 * (see sparse.c::memory_present())
1871 	 *
1872 	 * Making it a UL at least makes someone do a cast
1873 	 * before using it wrong.
1874 	 */
1875 	unsigned long section_mem_map;
1876 
1877 	struct mem_section_usage *usage;
1878 #ifdef CONFIG_PAGE_EXTENSION
1879 	/*
1880 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1881 	 * section. (see page_ext.h about this.)
1882 	 */
1883 	struct page_ext *page_ext;
1884 	unsigned long pad;
1885 #endif
1886 	/*
1887 	 * WARNING: mem_section must be a power-of-2 in size for the
1888 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1889 	 */
1890 };
1891 
1892 #ifdef CONFIG_SPARSEMEM_EXTREME
1893 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1894 #else
1895 #define SECTIONS_PER_ROOT	1
1896 #endif
1897 
1898 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1899 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1900 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1901 
1902 #ifdef CONFIG_SPARSEMEM_EXTREME
1903 extern struct mem_section **mem_section;
1904 #else
1905 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1906 #endif
1907 
1908 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1909 {
1910 	return ms->usage->pageblock_flags;
1911 }
1912 
1913 static inline struct mem_section *__nr_to_section(unsigned long nr)
1914 {
1915 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1916 
1917 	if (unlikely(root >= NR_SECTION_ROOTS))
1918 		return NULL;
1919 
1920 #ifdef CONFIG_SPARSEMEM_EXTREME
1921 	if (!mem_section || !mem_section[root])
1922 		return NULL;
1923 #endif
1924 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1925 }
1926 extern size_t mem_section_usage_size(void);
1927 
1928 /*
1929  * We use the lower bits of the mem_map pointer to store
1930  * a little bit of information.  The pointer is calculated
1931  * as mem_map - section_nr_to_pfn(pnum).  The result is
1932  * aligned to the minimum alignment of the two values:
1933  *   1. All mem_map arrays are page-aligned.
1934  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1935  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1936  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1937  *      worst combination is powerpc with 256k pages,
1938  *      which results in PFN_SECTION_SHIFT equal 6.
1939  * To sum it up, at least 6 bits are available on all architectures.
1940  * However, we can exceed 6 bits on some other architectures except
1941  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1942  * with the worst case of 64K pages on arm64) if we make sure the
1943  * exceeded bit is not applicable to powerpc.
1944  */
1945 enum {
1946 	SECTION_MARKED_PRESENT_BIT,
1947 	SECTION_HAS_MEM_MAP_BIT,
1948 	SECTION_IS_ONLINE_BIT,
1949 	SECTION_IS_EARLY_BIT,
1950 #ifdef CONFIG_ZONE_DEVICE
1951 	SECTION_TAINT_ZONE_DEVICE_BIT,
1952 #endif
1953 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1954 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1955 #endif
1956 	SECTION_MAP_LAST_BIT,
1957 };
1958 
1959 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1960 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1961 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1962 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1963 #ifdef CONFIG_ZONE_DEVICE
1964 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1965 #endif
1966 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1967 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1968 #endif
1969 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1970 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1971 
1972 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1973 {
1974 	unsigned long map = section->section_mem_map;
1975 	map &= SECTION_MAP_MASK;
1976 	return (struct page *)map;
1977 }
1978 
1979 static inline int present_section(struct mem_section *section)
1980 {
1981 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1982 }
1983 
1984 static inline int present_section_nr(unsigned long nr)
1985 {
1986 	return present_section(__nr_to_section(nr));
1987 }
1988 
1989 static inline int valid_section(struct mem_section *section)
1990 {
1991 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1992 }
1993 
1994 static inline int early_section(struct mem_section *section)
1995 {
1996 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1997 }
1998 
1999 static inline int valid_section_nr(unsigned long nr)
2000 {
2001 	return valid_section(__nr_to_section(nr));
2002 }
2003 
2004 static inline int online_section(struct mem_section *section)
2005 {
2006 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2007 }
2008 
2009 #ifdef CONFIG_ZONE_DEVICE
2010 static inline int online_device_section(struct mem_section *section)
2011 {
2012 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2013 
2014 	return section && ((section->section_mem_map & flags) == flags);
2015 }
2016 #else
2017 static inline int online_device_section(struct mem_section *section)
2018 {
2019 	return 0;
2020 }
2021 #endif
2022 
2023 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
2024 static inline int preinited_vmemmap_section(struct mem_section *section)
2025 {
2026 	return (section &&
2027 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2028 }
2029 
2030 void sparse_vmemmap_init_nid_early(int nid);
2031 void sparse_vmemmap_init_nid_late(int nid);
2032 
2033 #else
2034 static inline int preinited_vmemmap_section(struct mem_section *section)
2035 {
2036 	return 0;
2037 }
2038 static inline void sparse_vmemmap_init_nid_early(int nid)
2039 {
2040 }
2041 
2042 static inline void sparse_vmemmap_init_nid_late(int nid)
2043 {
2044 }
2045 #endif
2046 
2047 static inline int online_section_nr(unsigned long nr)
2048 {
2049 	return online_section(__nr_to_section(nr));
2050 }
2051 
2052 #ifdef CONFIG_MEMORY_HOTPLUG
2053 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2054 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2055 #endif
2056 
2057 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2058 {
2059 	return __nr_to_section(pfn_to_section_nr(pfn));
2060 }
2061 
2062 extern unsigned long __highest_present_section_nr;
2063 
2064 static inline int subsection_map_index(unsigned long pfn)
2065 {
2066 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2067 }
2068 
2069 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2070 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2071 {
2072 	int idx = subsection_map_index(pfn);
2073 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2074 
2075 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2076 }
2077 #else
2078 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2079 {
2080 	return 1;
2081 }
2082 #endif
2083 
2084 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2085 			       unsigned long flags);
2086 
2087 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2088 /**
2089  * pfn_valid - check if there is a valid memory map entry for a PFN
2090  * @pfn: the page frame number to check
2091  *
2092  * Check if there is a valid memory map entry aka struct page for the @pfn.
2093  * Note, that availability of the memory map entry does not imply that
2094  * there is actual usable memory at that @pfn. The struct page may
2095  * represent a hole or an unusable page frame.
2096  *
2097  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2098  */
2099 static inline int pfn_valid(unsigned long pfn)
2100 {
2101 	struct mem_section *ms;
2102 	int ret;
2103 
2104 	/*
2105 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2106 	 * pfn. Else it might lead to false positives when
2107 	 * some of the upper bits are set, but the lower bits
2108 	 * match a valid pfn.
2109 	 */
2110 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2111 		return 0;
2112 
2113 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2114 		return 0;
2115 	ms = __pfn_to_section(pfn);
2116 	rcu_read_lock_sched();
2117 	if (!valid_section(ms)) {
2118 		rcu_read_unlock_sched();
2119 		return 0;
2120 	}
2121 	/*
2122 	 * Traditionally early sections always returned pfn_valid() for
2123 	 * the entire section-sized span.
2124 	 */
2125 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2126 	rcu_read_unlock_sched();
2127 
2128 	return ret;
2129 }
2130 #endif
2131 
2132 static inline int pfn_in_present_section(unsigned long pfn)
2133 {
2134 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2135 		return 0;
2136 	return present_section(__pfn_to_section(pfn));
2137 }
2138 
2139 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2140 {
2141 	while (++section_nr <= __highest_present_section_nr) {
2142 		if (present_section_nr(section_nr))
2143 			return section_nr;
2144 	}
2145 
2146 	return -1;
2147 }
2148 
2149 #define for_each_present_section_nr(start, section_nr)		\
2150 	for (section_nr = next_present_section_nr(start - 1);	\
2151 	     section_nr != -1;					\
2152 	     section_nr = next_present_section_nr(section_nr))
2153 
2154 /*
2155  * These are _only_ used during initialisation, therefore they
2156  * can use __initdata ...  They could have names to indicate
2157  * this restriction.
2158  */
2159 #ifdef CONFIG_NUMA
2160 #define pfn_to_nid(pfn)							\
2161 ({									\
2162 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2163 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2164 })
2165 #else
2166 #define pfn_to_nid(pfn)		(0)
2167 #endif
2168 
2169 void sparse_init(void);
2170 #else
2171 #define sparse_init()	do {} while (0)
2172 #define sparse_index_init(_sec, _nid)  do {} while (0)
2173 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2174 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2175 #define pfn_in_present_section pfn_valid
2176 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2177 #endif /* CONFIG_SPARSEMEM */
2178 
2179 #endif /* !__GENERATING_BOUNDS.H */
2180 #endif /* !__ASSEMBLY__ */
2181 #endif /* _LINUX_MMZONE_H */
2182