xref: /linux-6.15/include/linux/mmzone.h (revision 42fda663)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
19 
20 /* Free memory management - zoned buddy allocator.  */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
27 
28 /*
29  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30  * costly to service.  That is between allocation orders which should
31  * coelesce naturally under reasonable reclaim pressure and those which
32  * will not.
33  */
34 #define PAGE_ALLOC_COSTLY_ORDER 3
35 
36 #define MIGRATE_UNMOVABLE     0
37 #define MIGRATE_RECLAIMABLE   1
38 #define MIGRATE_MOVABLE       2
39 #define MIGRATE_RESERVE       3
40 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
41 #define MIGRATE_TYPES         5
42 
43 #define for_each_migratetype_order(order, type) \
44 	for (order = 0; order < MAX_ORDER; order++) \
45 		for (type = 0; type < MIGRATE_TYPES; type++)
46 
47 extern int page_group_by_mobility_disabled;
48 
49 static inline int get_pageblock_migratetype(struct page *page)
50 {
51 	if (unlikely(page_group_by_mobility_disabled))
52 		return MIGRATE_UNMOVABLE;
53 
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_INACTIVE,
83 	NR_ACTIVE,
84 	NR_ANON_PAGES,	/* Mapped anonymous pages */
85 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
86 			   only modified from process context */
87 	NR_FILE_PAGES,
88 	NR_FILE_DIRTY,
89 	NR_WRITEBACK,
90 	/* Second 128 byte cacheline */
91 	NR_SLAB_RECLAIMABLE,
92 	NR_SLAB_UNRECLAIMABLE,
93 	NR_PAGETABLE,		/* used for pagetables */
94 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
95 	NR_BOUNCE,
96 	NR_VMSCAN_WRITE,
97 #ifdef CONFIG_NUMA
98 	NUMA_HIT,		/* allocated in intended node */
99 	NUMA_MISS,		/* allocated in non intended node */
100 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
101 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
102 	NUMA_LOCAL,		/* allocation from local node */
103 	NUMA_OTHER,		/* allocation from other node */
104 #endif
105 	NR_VM_ZONE_STAT_ITEMS };
106 
107 struct per_cpu_pages {
108 	int count;		/* number of pages in the list */
109 	int high;		/* high watermark, emptying needed */
110 	int batch;		/* chunk size for buddy add/remove */
111 	struct list_head list;	/* the list of pages */
112 };
113 
114 struct per_cpu_pageset {
115 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
116 #ifdef CONFIG_NUMA
117 	s8 expire;
118 #endif
119 #ifdef CONFIG_SMP
120 	s8 stat_threshold;
121 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
122 #endif
123 } ____cacheline_aligned_in_smp;
124 
125 #ifdef CONFIG_NUMA
126 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
127 #else
128 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
129 #endif
130 
131 enum zone_type {
132 #ifdef CONFIG_ZONE_DMA
133 	/*
134 	 * ZONE_DMA is used when there are devices that are not able
135 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
136 	 * carve out the portion of memory that is needed for these devices.
137 	 * The range is arch specific.
138 	 *
139 	 * Some examples
140 	 *
141 	 * Architecture		Limit
142 	 * ---------------------------
143 	 * parisc, ia64, sparc	<4G
144 	 * s390			<2G
145 	 * arm			Various
146 	 * alpha		Unlimited or 0-16MB.
147 	 *
148 	 * i386, x86_64 and multiple other arches
149 	 * 			<16M.
150 	 */
151 	ZONE_DMA,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 	/*
155 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
156 	 * only able to do DMA to the lower 16M but also 32 bit devices that
157 	 * can only do DMA areas below 4G.
158 	 */
159 	ZONE_DMA32,
160 #endif
161 	/*
162 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
163 	 * performed on pages in ZONE_NORMAL if the DMA devices support
164 	 * transfers to all addressable memory.
165 	 */
166 	ZONE_NORMAL,
167 #ifdef CONFIG_HIGHMEM
168 	/*
169 	 * A memory area that is only addressable by the kernel through
170 	 * mapping portions into its own address space. This is for example
171 	 * used by i386 to allow the kernel to address the memory beyond
172 	 * 900MB. The kernel will set up special mappings (page
173 	 * table entries on i386) for each page that the kernel needs to
174 	 * access.
175 	 */
176 	ZONE_HIGHMEM,
177 #endif
178 	ZONE_MOVABLE,
179 	MAX_NR_ZONES
180 };
181 
182 /*
183  * When a memory allocation must conform to specific limitations (such
184  * as being suitable for DMA) the caller will pass in hints to the
185  * allocator in the gfp_mask, in the zone modifier bits.  These bits
186  * are used to select a priority ordered list of memory zones which
187  * match the requested limits. See gfp_zone() in include/linux/gfp.h
188  */
189 
190 /*
191  * Count the active zones.  Note that the use of defined(X) outside
192  * #if and family is not necessarily defined so ensure we cannot use
193  * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
194  */
195 #define __ZONE_COUNT (			\
196 	  defined(CONFIG_ZONE_DMA)	\
197 	+ defined(CONFIG_ZONE_DMA32)	\
198 	+ 1				\
199 	+ defined(CONFIG_HIGHMEM)	\
200 	+ 1				\
201 )
202 #if __ZONE_COUNT < 2
203 #define ZONES_SHIFT 0
204 #elif __ZONE_COUNT <= 2
205 #define ZONES_SHIFT 1
206 #elif __ZONE_COUNT <= 4
207 #define ZONES_SHIFT 2
208 #else
209 #error ZONES_SHIFT -- too many zones configured adjust calculation
210 #endif
211 #undef __ZONE_COUNT
212 
213 struct zone {
214 	/* Fields commonly accessed by the page allocator */
215 	unsigned long		pages_min, pages_low, pages_high;
216 	/*
217 	 * We don't know if the memory that we're going to allocate will be freeable
218 	 * or/and it will be released eventually, so to avoid totally wasting several
219 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
220 	 * to run OOM on the lower zones despite there's tons of freeable ram
221 	 * on the higher zones). This array is recalculated at runtime if the
222 	 * sysctl_lowmem_reserve_ratio sysctl changes.
223 	 */
224 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
225 
226 #ifdef CONFIG_NUMA
227 	int node;
228 	/*
229 	 * zone reclaim becomes active if more unmapped pages exist.
230 	 */
231 	unsigned long		min_unmapped_pages;
232 	unsigned long		min_slab_pages;
233 	struct per_cpu_pageset	*pageset[NR_CPUS];
234 #else
235 	struct per_cpu_pageset	pageset[NR_CPUS];
236 #endif
237 	/*
238 	 * free areas of different sizes
239 	 */
240 	spinlock_t		lock;
241 #ifdef CONFIG_MEMORY_HOTPLUG
242 	/* see spanned/present_pages for more description */
243 	seqlock_t		span_seqlock;
244 #endif
245 	struct free_area	free_area[MAX_ORDER];
246 
247 #ifndef CONFIG_SPARSEMEM
248 	/*
249 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
250 	 * In SPARSEMEM, this map is stored in struct mem_section
251 	 */
252 	unsigned long		*pageblock_flags;
253 #endif /* CONFIG_SPARSEMEM */
254 
255 
256 	ZONE_PADDING(_pad1_)
257 
258 	/* Fields commonly accessed by the page reclaim scanner */
259 	spinlock_t		lru_lock;
260 	struct list_head	active_list;
261 	struct list_head	inactive_list;
262 	unsigned long		nr_scan_active;
263 	unsigned long		nr_scan_inactive;
264 	unsigned long		pages_scanned;	   /* since last reclaim */
265 	int			all_unreclaimable; /* All pages pinned */
266 
267 	/* A count of how many reclaimers are scanning this zone */
268 	atomic_t		reclaim_in_progress;
269 
270 	/* Zone statistics */
271 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
272 
273 	/*
274 	 * prev_priority holds the scanning priority for this zone.  It is
275 	 * defined as the scanning priority at which we achieved our reclaim
276 	 * target at the previous try_to_free_pages() or balance_pgdat()
277 	 * invokation.
278 	 *
279 	 * We use prev_priority as a measure of how much stress page reclaim is
280 	 * under - it drives the swappiness decision: whether to unmap mapped
281 	 * pages.
282 	 *
283 	 * Access to both this field is quite racy even on uniprocessor.  But
284 	 * it is expected to average out OK.
285 	 */
286 	int prev_priority;
287 
288 
289 	ZONE_PADDING(_pad2_)
290 	/* Rarely used or read-mostly fields */
291 
292 	/*
293 	 * wait_table		-- the array holding the hash table
294 	 * wait_table_hash_nr_entries	-- the size of the hash table array
295 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
296 	 *
297 	 * The purpose of all these is to keep track of the people
298 	 * waiting for a page to become available and make them
299 	 * runnable again when possible. The trouble is that this
300 	 * consumes a lot of space, especially when so few things
301 	 * wait on pages at a given time. So instead of using
302 	 * per-page waitqueues, we use a waitqueue hash table.
303 	 *
304 	 * The bucket discipline is to sleep on the same queue when
305 	 * colliding and wake all in that wait queue when removing.
306 	 * When something wakes, it must check to be sure its page is
307 	 * truly available, a la thundering herd. The cost of a
308 	 * collision is great, but given the expected load of the
309 	 * table, they should be so rare as to be outweighed by the
310 	 * benefits from the saved space.
311 	 *
312 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
313 	 * primary users of these fields, and in mm/page_alloc.c
314 	 * free_area_init_core() performs the initialization of them.
315 	 */
316 	wait_queue_head_t	* wait_table;
317 	unsigned long		wait_table_hash_nr_entries;
318 	unsigned long		wait_table_bits;
319 
320 	/*
321 	 * Discontig memory support fields.
322 	 */
323 	struct pglist_data	*zone_pgdat;
324 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
325 	unsigned long		zone_start_pfn;
326 
327 	/*
328 	 * zone_start_pfn, spanned_pages and present_pages are all
329 	 * protected by span_seqlock.  It is a seqlock because it has
330 	 * to be read outside of zone->lock, and it is done in the main
331 	 * allocator path.  But, it is written quite infrequently.
332 	 *
333 	 * The lock is declared along with zone->lock because it is
334 	 * frequently read in proximity to zone->lock.  It's good to
335 	 * give them a chance of being in the same cacheline.
336 	 */
337 	unsigned long		spanned_pages;	/* total size, including holes */
338 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
339 
340 	/*
341 	 * rarely used fields:
342 	 */
343 	const char		*name;
344 } ____cacheline_internodealigned_in_smp;
345 
346 /*
347  * The "priority" of VM scanning is how much of the queues we will scan in one
348  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
349  * queues ("queue_length >> 12") during an aging round.
350  */
351 #define DEF_PRIORITY 12
352 
353 /* Maximum number of zones on a zonelist */
354 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
355 
356 #ifdef CONFIG_NUMA
357 
358 /*
359  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
360  * allocations to a single node for GFP_THISNODE.
361  *
362  * [0 .. MAX_NR_ZONES -1] 		: Zonelists with fallback
363  * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1]  : No fallback (GFP_THISNODE)
364  */
365 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
366 
367 
368 /*
369  * We cache key information from each zonelist for smaller cache
370  * footprint when scanning for free pages in get_page_from_freelist().
371  *
372  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
373  *    up short of free memory since the last time (last_fullzone_zap)
374  *    we zero'd fullzones.
375  * 2) The array z_to_n[] maps each zone in the zonelist to its node
376  *    id, so that we can efficiently evaluate whether that node is
377  *    set in the current tasks mems_allowed.
378  *
379  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
380  * indexed by a zones offset in the zonelist zones[] array.
381  *
382  * The get_page_from_freelist() routine does two scans.  During the
383  * first scan, we skip zones whose corresponding bit in 'fullzones'
384  * is set or whose corresponding node in current->mems_allowed (which
385  * comes from cpusets) is not set.  During the second scan, we bypass
386  * this zonelist_cache, to ensure we look methodically at each zone.
387  *
388  * Once per second, we zero out (zap) fullzones, forcing us to
389  * reconsider nodes that might have regained more free memory.
390  * The field last_full_zap is the time we last zapped fullzones.
391  *
392  * This mechanism reduces the amount of time we waste repeatedly
393  * reexaming zones for free memory when they just came up low on
394  * memory momentarilly ago.
395  *
396  * The zonelist_cache struct members logically belong in struct
397  * zonelist.  However, the mempolicy zonelists constructed for
398  * MPOL_BIND are intentionally variable length (and usually much
399  * shorter).  A general purpose mechanism for handling structs with
400  * multiple variable length members is more mechanism than we want
401  * here.  We resort to some special case hackery instead.
402  *
403  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
404  * part because they are shorter), so we put the fixed length stuff
405  * at the front of the zonelist struct, ending in a variable length
406  * zones[], as is needed by MPOL_BIND.
407  *
408  * Then we put the optional zonelist cache on the end of the zonelist
409  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
410  * the fixed length portion at the front of the struct.  This pointer
411  * both enables us to find the zonelist cache, and in the case of
412  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
413  * to know that the zonelist cache is not there.
414  *
415  * The end result is that struct zonelists come in two flavors:
416  *  1) The full, fixed length version, shown below, and
417  *  2) The custom zonelists for MPOL_BIND.
418  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
419  *
420  * Even though there may be multiple CPU cores on a node modifying
421  * fullzones or last_full_zap in the same zonelist_cache at the same
422  * time, we don't lock it.  This is just hint data - if it is wrong now
423  * and then, the allocator will still function, perhaps a bit slower.
424  */
425 
426 
427 struct zonelist_cache {
428 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
429 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
430 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
431 };
432 #else
433 #define MAX_ZONELISTS MAX_NR_ZONES
434 struct zonelist_cache;
435 #endif
436 
437 /*
438  * One allocation request operates on a zonelist. A zonelist
439  * is a list of zones, the first one is the 'goal' of the
440  * allocation, the other zones are fallback zones, in decreasing
441  * priority.
442  *
443  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
444  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
445  */
446 
447 struct zonelist {
448 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
449 	struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
450 #ifdef CONFIG_NUMA
451 	struct zonelist_cache zlcache;			     // optional ...
452 #endif
453 };
454 
455 #ifdef CONFIG_NUMA
456 /*
457  * Only custom zonelists like MPOL_BIND need to be filtered as part of
458  * policies. As described in the comment for struct zonelist_cache, these
459  * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
460  * that to determine if the zonelists needs to be filtered or not.
461  */
462 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
463 {
464 	return !zonelist->zlcache_ptr;
465 }
466 #else
467 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
468 {
469 	return 0;
470 }
471 #endif /* CONFIG_NUMA */
472 
473 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
474 struct node_active_region {
475 	unsigned long start_pfn;
476 	unsigned long end_pfn;
477 	int nid;
478 };
479 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
480 
481 #ifndef CONFIG_DISCONTIGMEM
482 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
483 extern struct page *mem_map;
484 #endif
485 
486 /*
487  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
488  * (mostly NUMA machines?) to denote a higher-level memory zone than the
489  * zone denotes.
490  *
491  * On NUMA machines, each NUMA node would have a pg_data_t to describe
492  * it's memory layout.
493  *
494  * Memory statistics and page replacement data structures are maintained on a
495  * per-zone basis.
496  */
497 struct bootmem_data;
498 typedef struct pglist_data {
499 	struct zone node_zones[MAX_NR_ZONES];
500 	struct zonelist node_zonelists[MAX_ZONELISTS];
501 	int nr_zones;
502 #ifdef CONFIG_FLAT_NODE_MEM_MAP
503 	struct page *node_mem_map;
504 #endif
505 	struct bootmem_data *bdata;
506 #ifdef CONFIG_MEMORY_HOTPLUG
507 	/*
508 	 * Must be held any time you expect node_start_pfn, node_present_pages
509 	 * or node_spanned_pages stay constant.  Holding this will also
510 	 * guarantee that any pfn_valid() stays that way.
511 	 *
512 	 * Nests above zone->lock and zone->size_seqlock.
513 	 */
514 	spinlock_t node_size_lock;
515 #endif
516 	unsigned long node_start_pfn;
517 	unsigned long node_present_pages; /* total number of physical pages */
518 	unsigned long node_spanned_pages; /* total size of physical page
519 					     range, including holes */
520 	int node_id;
521 	wait_queue_head_t kswapd_wait;
522 	struct task_struct *kswapd;
523 	int kswapd_max_order;
524 } pg_data_t;
525 
526 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
527 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
529 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
530 #else
531 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
532 #endif
533 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
534 
535 #include <linux/memory_hotplug.h>
536 
537 void get_zone_counts(unsigned long *active, unsigned long *inactive,
538 			unsigned long *free);
539 void build_all_zonelists(void);
540 void wakeup_kswapd(struct zone *zone, int order);
541 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
542 		int classzone_idx, int alloc_flags);
543 enum memmap_context {
544 	MEMMAP_EARLY,
545 	MEMMAP_HOTPLUG,
546 };
547 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
548 				     unsigned long size,
549 				     enum memmap_context context);
550 
551 #ifdef CONFIG_HAVE_MEMORY_PRESENT
552 void memory_present(int nid, unsigned long start, unsigned long end);
553 #else
554 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
555 #endif
556 
557 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
558 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
559 #endif
560 
561 /*
562  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
563  */
564 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
565 
566 static inline int populated_zone(struct zone *zone)
567 {
568 	return (!!zone->present_pages);
569 }
570 
571 extern int movable_zone;
572 
573 static inline int zone_movable_is_highmem(void)
574 {
575 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
576 	return movable_zone == ZONE_HIGHMEM;
577 #else
578 	return 0;
579 #endif
580 }
581 
582 static inline int is_highmem_idx(enum zone_type idx)
583 {
584 #ifdef CONFIG_HIGHMEM
585 	return (idx == ZONE_HIGHMEM ||
586 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
587 #else
588 	return 0;
589 #endif
590 }
591 
592 static inline int is_normal_idx(enum zone_type idx)
593 {
594 	return (idx == ZONE_NORMAL);
595 }
596 
597 /**
598  * is_highmem - helper function to quickly check if a struct zone is a
599  *              highmem zone or not.  This is an attempt to keep references
600  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
601  * @zone - pointer to struct zone variable
602  */
603 static inline int is_highmem(struct zone *zone)
604 {
605 #ifdef CONFIG_HIGHMEM
606 	int zone_idx = zone - zone->zone_pgdat->node_zones;
607 	return zone_idx == ZONE_HIGHMEM ||
608 		(zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
609 #else
610 	return 0;
611 #endif
612 }
613 
614 static inline int is_normal(struct zone *zone)
615 {
616 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
617 }
618 
619 static inline int is_dma32(struct zone *zone)
620 {
621 #ifdef CONFIG_ZONE_DMA32
622 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
623 #else
624 	return 0;
625 #endif
626 }
627 
628 static inline int is_dma(struct zone *zone)
629 {
630 #ifdef CONFIG_ZONE_DMA
631 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
632 #else
633 	return 0;
634 #endif
635 }
636 
637 /* These two functions are used to setup the per zone pages min values */
638 struct ctl_table;
639 struct file;
640 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
641 					void __user *, size_t *, loff_t *);
642 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
643 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
644 					void __user *, size_t *, loff_t *);
645 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
646 					void __user *, size_t *, loff_t *);
647 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
648 			struct file *, void __user *, size_t *, loff_t *);
649 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
650 			struct file *, void __user *, size_t *, loff_t *);
651 
652 extern int numa_zonelist_order_handler(struct ctl_table *, int,
653 			struct file *, void __user *, size_t *, loff_t *);
654 extern char numa_zonelist_order[];
655 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
656 
657 #include <linux/topology.h>
658 /* Returns the number of the current Node. */
659 #ifndef numa_node_id
660 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
661 #endif
662 
663 #ifndef CONFIG_NEED_MULTIPLE_NODES
664 
665 extern struct pglist_data contig_page_data;
666 #define NODE_DATA(nid)		(&contig_page_data)
667 #define NODE_MEM_MAP(nid)	mem_map
668 #define MAX_NODES_SHIFT		1
669 
670 #else /* CONFIG_NEED_MULTIPLE_NODES */
671 
672 #include <asm/mmzone.h>
673 
674 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
675 
676 extern struct pglist_data *first_online_pgdat(void);
677 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
678 extern struct zone *next_zone(struct zone *zone);
679 
680 /**
681  * for_each_pgdat - helper macro to iterate over all nodes
682  * @pgdat - pointer to a pg_data_t variable
683  */
684 #define for_each_online_pgdat(pgdat)			\
685 	for (pgdat = first_online_pgdat();		\
686 	     pgdat;					\
687 	     pgdat = next_online_pgdat(pgdat))
688 /**
689  * for_each_zone - helper macro to iterate over all memory zones
690  * @zone - pointer to struct zone variable
691  *
692  * The user only needs to declare the zone variable, for_each_zone
693  * fills it in.
694  */
695 #define for_each_zone(zone)			        \
696 	for (zone = (first_online_pgdat())->node_zones; \
697 	     zone;					\
698 	     zone = next_zone(zone))
699 
700 #ifdef CONFIG_SPARSEMEM
701 #include <asm/sparsemem.h>
702 #endif
703 
704 #if BITS_PER_LONG == 32
705 /*
706  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
707  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
708  */
709 #define FLAGS_RESERVED		9
710 
711 #elif BITS_PER_LONG == 64
712 /*
713  * with 64 bit flags field, there's plenty of room.
714  */
715 #define FLAGS_RESERVED		32
716 
717 #else
718 
719 #error BITS_PER_LONG not defined
720 
721 #endif
722 
723 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
724 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
725 #define early_pfn_to_nid(nid)  (0UL)
726 #endif
727 
728 #ifdef CONFIG_FLATMEM
729 #define pfn_to_nid(pfn)		(0)
730 #endif
731 
732 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
733 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
734 
735 #ifdef CONFIG_SPARSEMEM
736 
737 /*
738  * SECTION_SHIFT    		#bits space required to store a section #
739  *
740  * PA_SECTION_SHIFT		physical address to/from section number
741  * PFN_SECTION_SHIFT		pfn to/from section number
742  */
743 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
744 
745 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
746 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
747 
748 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
749 
750 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
751 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
752 
753 #define SECTION_BLOCKFLAGS_BITS \
754 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
755 
756 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
757 #error Allocator MAX_ORDER exceeds SECTION_SIZE
758 #endif
759 
760 struct page;
761 struct mem_section {
762 	/*
763 	 * This is, logically, a pointer to an array of struct
764 	 * pages.  However, it is stored with some other magic.
765 	 * (see sparse.c::sparse_init_one_section())
766 	 *
767 	 * Additionally during early boot we encode node id of
768 	 * the location of the section here to guide allocation.
769 	 * (see sparse.c::memory_present())
770 	 *
771 	 * Making it a UL at least makes someone do a cast
772 	 * before using it wrong.
773 	 */
774 	unsigned long section_mem_map;
775 
776 	/* See declaration of similar field in struct zone */
777 	unsigned long *pageblock_flags;
778 };
779 
780 #ifdef CONFIG_SPARSEMEM_EXTREME
781 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
782 #else
783 #define SECTIONS_PER_ROOT	1
784 #endif
785 
786 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
787 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
788 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
789 
790 #ifdef CONFIG_SPARSEMEM_EXTREME
791 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
792 #else
793 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
794 #endif
795 
796 static inline struct mem_section *__nr_to_section(unsigned long nr)
797 {
798 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
799 		return NULL;
800 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
801 }
802 extern int __section_nr(struct mem_section* ms);
803 
804 /*
805  * We use the lower bits of the mem_map pointer to store
806  * a little bit of information.  There should be at least
807  * 3 bits here due to 32-bit alignment.
808  */
809 #define	SECTION_MARKED_PRESENT	(1UL<<0)
810 #define SECTION_HAS_MEM_MAP	(1UL<<1)
811 #define SECTION_MAP_LAST_BIT	(1UL<<2)
812 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
813 #define SECTION_NID_SHIFT	2
814 
815 static inline struct page *__section_mem_map_addr(struct mem_section *section)
816 {
817 	unsigned long map = section->section_mem_map;
818 	map &= SECTION_MAP_MASK;
819 	return (struct page *)map;
820 }
821 
822 static inline int present_section(struct mem_section *section)
823 {
824 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
825 }
826 
827 static inline int present_section_nr(unsigned long nr)
828 {
829 	return present_section(__nr_to_section(nr));
830 }
831 
832 static inline int valid_section(struct mem_section *section)
833 {
834 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
835 }
836 
837 static inline int valid_section_nr(unsigned long nr)
838 {
839 	return valid_section(__nr_to_section(nr));
840 }
841 
842 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
843 {
844 	return __nr_to_section(pfn_to_section_nr(pfn));
845 }
846 
847 static inline int pfn_valid(unsigned long pfn)
848 {
849 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
850 		return 0;
851 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
852 }
853 
854 static inline int pfn_present(unsigned long pfn)
855 {
856 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
857 		return 0;
858 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
859 }
860 
861 /*
862  * These are _only_ used during initialisation, therefore they
863  * can use __initdata ...  They could have names to indicate
864  * this restriction.
865  */
866 #ifdef CONFIG_NUMA
867 #define pfn_to_nid(pfn)							\
868 ({									\
869 	unsigned long __pfn_to_nid_pfn = (pfn);				\
870 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
871 })
872 #else
873 #define pfn_to_nid(pfn)		(0)
874 #endif
875 
876 #define early_pfn_valid(pfn)	pfn_valid(pfn)
877 void sparse_init(void);
878 #else
879 #define sparse_init()	do {} while (0)
880 #define sparse_index_init(_sec, _nid)  do {} while (0)
881 #endif /* CONFIG_SPARSEMEM */
882 
883 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
884 #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
885 #else
886 #define early_pfn_in_nid(pfn, nid)	(1)
887 #endif
888 
889 #ifndef early_pfn_valid
890 #define early_pfn_valid(pfn)	(1)
891 #endif
892 
893 void memory_present(int nid, unsigned long start, unsigned long end);
894 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
895 
896 /*
897  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
898  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
899  * pfn_valid_within() should be used in this case; we optimise this away
900  * when we have no holes within a MAX_ORDER_NR_PAGES block.
901  */
902 #ifdef CONFIG_HOLES_IN_ZONE
903 #define pfn_valid_within(pfn) pfn_valid(pfn)
904 #else
905 #define pfn_valid_within(pfn) (1)
906 #endif
907 
908 #endif /* !__ASSEMBLY__ */
909 #endif /* __KERNEL__ */
910 #endif /* _LINUX_MMZONE_H */
911