xref: /linux-6.15/include/linux/mmzone.h (revision 35386dfd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22 
23 /* Free memory management - zoned buddy allocator.  */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 
31 /*
32  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33  * costly to service.  That is between allocation orders which should
34  * coalesce naturally under reasonable reclaim pressure and those which
35  * will not.
36  */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38 
39 enum migratetype {
40 	MIGRATE_UNMOVABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_RECLAIMABLE,
43 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
44 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 	/*
47 	 * MIGRATE_CMA migration type is designed to mimic the way
48 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
49 	 * from MIGRATE_CMA pageblocks and page allocator never
50 	 * implicitly change migration type of MIGRATE_CMA pageblock.
51 	 *
52 	 * The way to use it is to change migratetype of a range of
53 	 * pageblocks to MIGRATE_CMA which can be done by
54 	 * __free_pageblock_cma() function.  What is important though
55 	 * is that a range of pageblocks must be aligned to
56 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 	 * a single pageblock.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 #define for_each_migratetype_order(order, type) \
84 	for (order = 0; order < MAX_ORDER; order++) \
85 		for (type = 0; type < MIGRATE_TYPES; type++)
86 
87 extern int page_group_by_mobility_disabled;
88 
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 
92 #define get_pageblock_migratetype(page)					\
93 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
94 			PB_migrate_end, MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 struct pglist_data;
102 
103 /*
104  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105  * So add a wild amount of padding here to ensure that they fall into separate
106  * cachelines.  There are very few zone structures in the machine, so space
107  * consumption is not a concern here.
108  */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 	char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name)	struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	NR_PAGETABLE,		/* used for pagetables */
144 	NR_KERNEL_STACK_KB,	/* measured in KiB */
145 	/* Second 128 byte cacheline */
146 	NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 	NR_ZSPAGES,		/* allocated in zsmalloc */
149 #endif
150 	NR_FREE_CMA_PAGES,
151 	NR_VM_ZONE_STAT_ITEMS };
152 
153 enum node_stat_item {
154 	NR_LRU_BASE,
155 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
157 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
158 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
159 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
160 	NR_SLAB_RECLAIMABLE,
161 	NR_SLAB_UNRECLAIMABLE,
162 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
163 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
164 	WORKINGSET_REFAULT,
165 	WORKINGSET_ACTIVATE,
166 	WORKINGSET_NODERECLAIM,
167 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
168 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
169 			   only modified from process context */
170 	NR_FILE_PAGES,
171 	NR_FILE_DIRTY,
172 	NR_WRITEBACK,
173 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
174 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
175 	NR_SHMEM_THPS,
176 	NR_SHMEM_PMDMAPPED,
177 	NR_ANON_THPS,
178 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
179 	NR_VMSCAN_WRITE,
180 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
181 	NR_DIRTIED,		/* page dirtyings since bootup */
182 	NR_WRITTEN,		/* page writings since bootup */
183 	NR_INDIRECTLY_RECLAIMABLE_BYTES, /* measured in bytes */
184 	NR_VM_NODE_STAT_ITEMS
185 };
186 
187 /*
188  * We do arithmetic on the LRU lists in various places in the code,
189  * so it is important to keep the active lists LRU_ACTIVE higher in
190  * the array than the corresponding inactive lists, and to keep
191  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
192  *
193  * This has to be kept in sync with the statistics in zone_stat_item
194  * above and the descriptions in vmstat_text in mm/vmstat.c
195  */
196 #define LRU_BASE 0
197 #define LRU_ACTIVE 1
198 #define LRU_FILE 2
199 
200 enum lru_list {
201 	LRU_INACTIVE_ANON = LRU_BASE,
202 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
203 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
204 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
205 	LRU_UNEVICTABLE,
206 	NR_LRU_LISTS
207 };
208 
209 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
210 
211 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
212 
213 static inline int is_file_lru(enum lru_list lru)
214 {
215 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
216 }
217 
218 static inline int is_active_lru(enum lru_list lru)
219 {
220 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
221 }
222 
223 struct zone_reclaim_stat {
224 	/*
225 	 * The pageout code in vmscan.c keeps track of how many of the
226 	 * mem/swap backed and file backed pages are referenced.
227 	 * The higher the rotated/scanned ratio, the more valuable
228 	 * that cache is.
229 	 *
230 	 * The anon LRU stats live in [0], file LRU stats in [1]
231 	 */
232 	unsigned long		recent_rotated[2];
233 	unsigned long		recent_scanned[2];
234 };
235 
236 struct lruvec {
237 	struct list_head		lists[NR_LRU_LISTS];
238 	struct zone_reclaim_stat	reclaim_stat;
239 	/* Evictions & activations on the inactive file list */
240 	atomic_long_t			inactive_age;
241 	/* Refaults at the time of last reclaim cycle */
242 	unsigned long			refaults;
243 #ifdef CONFIG_MEMCG
244 	struct pglist_data *pgdat;
245 #endif
246 };
247 
248 /* Mask used at gathering information at once (see memcontrol.c) */
249 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
250 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
251 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
252 
253 /* Isolate unmapped file */
254 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
255 /* Isolate for asynchronous migration */
256 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
257 /* Isolate unevictable pages */
258 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
259 
260 /* LRU Isolation modes. */
261 typedef unsigned __bitwise isolate_mode_t;
262 
263 enum zone_watermarks {
264 	WMARK_MIN,
265 	WMARK_LOW,
266 	WMARK_HIGH,
267 	NR_WMARK
268 };
269 
270 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
271 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
272 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
273 
274 struct per_cpu_pages {
275 	int count;		/* number of pages in the list */
276 	int high;		/* high watermark, emptying needed */
277 	int batch;		/* chunk size for buddy add/remove */
278 
279 	/* Lists of pages, one per migrate type stored on the pcp-lists */
280 	struct list_head lists[MIGRATE_PCPTYPES];
281 };
282 
283 struct per_cpu_pageset {
284 	struct per_cpu_pages pcp;
285 #ifdef CONFIG_NUMA
286 	s8 expire;
287 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
288 #endif
289 #ifdef CONFIG_SMP
290 	s8 stat_threshold;
291 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
292 #endif
293 };
294 
295 struct per_cpu_nodestat {
296 	s8 stat_threshold;
297 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
298 };
299 
300 #endif /* !__GENERATING_BOUNDS.H */
301 
302 enum zone_type {
303 #ifdef CONFIG_ZONE_DMA
304 	/*
305 	 * ZONE_DMA is used when there are devices that are not able
306 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
307 	 * carve out the portion of memory that is needed for these devices.
308 	 * The range is arch specific.
309 	 *
310 	 * Some examples
311 	 *
312 	 * Architecture		Limit
313 	 * ---------------------------
314 	 * parisc, ia64, sparc	<4G
315 	 * s390			<2G
316 	 * arm			Various
317 	 * alpha		Unlimited or 0-16MB.
318 	 *
319 	 * i386, x86_64 and multiple other arches
320 	 * 			<16M.
321 	 */
322 	ZONE_DMA,
323 #endif
324 #ifdef CONFIG_ZONE_DMA32
325 	/*
326 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
327 	 * only able to do DMA to the lower 16M but also 32 bit devices that
328 	 * can only do DMA areas below 4G.
329 	 */
330 	ZONE_DMA32,
331 #endif
332 	/*
333 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
334 	 * performed on pages in ZONE_NORMAL if the DMA devices support
335 	 * transfers to all addressable memory.
336 	 */
337 	ZONE_NORMAL,
338 #ifdef CONFIG_HIGHMEM
339 	/*
340 	 * A memory area that is only addressable by the kernel through
341 	 * mapping portions into its own address space. This is for example
342 	 * used by i386 to allow the kernel to address the memory beyond
343 	 * 900MB. The kernel will set up special mappings (page
344 	 * table entries on i386) for each page that the kernel needs to
345 	 * access.
346 	 */
347 	ZONE_HIGHMEM,
348 #endif
349 	ZONE_MOVABLE,
350 #ifdef CONFIG_ZONE_DEVICE
351 	ZONE_DEVICE,
352 #endif
353 	__MAX_NR_ZONES
354 
355 };
356 
357 #ifndef __GENERATING_BOUNDS_H
358 
359 struct zone {
360 	/* Read-mostly fields */
361 
362 	/* zone watermarks, access with *_wmark_pages(zone) macros */
363 	unsigned long watermark[NR_WMARK];
364 
365 	unsigned long nr_reserved_highatomic;
366 
367 	/*
368 	 * We don't know if the memory that we're going to allocate will be
369 	 * freeable or/and it will be released eventually, so to avoid totally
370 	 * wasting several GB of ram we must reserve some of the lower zone
371 	 * memory (otherwise we risk to run OOM on the lower zones despite
372 	 * there being tons of freeable ram on the higher zones).  This array is
373 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
374 	 * changes.
375 	 */
376 	long lowmem_reserve[MAX_NR_ZONES];
377 
378 #ifdef CONFIG_NUMA
379 	int node;
380 #endif
381 	struct pglist_data	*zone_pgdat;
382 	struct per_cpu_pageset __percpu *pageset;
383 
384 #ifndef CONFIG_SPARSEMEM
385 	/*
386 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
387 	 * In SPARSEMEM, this map is stored in struct mem_section
388 	 */
389 	unsigned long		*pageblock_flags;
390 #endif /* CONFIG_SPARSEMEM */
391 
392 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 	unsigned long		zone_start_pfn;
394 
395 	/*
396 	 * spanned_pages is the total pages spanned by the zone, including
397 	 * holes, which is calculated as:
398 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
399 	 *
400 	 * present_pages is physical pages existing within the zone, which
401 	 * is calculated as:
402 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
403 	 *
404 	 * managed_pages is present pages managed by the buddy system, which
405 	 * is calculated as (reserved_pages includes pages allocated by the
406 	 * bootmem allocator):
407 	 *	managed_pages = present_pages - reserved_pages;
408 	 *
409 	 * So present_pages may be used by memory hotplug or memory power
410 	 * management logic to figure out unmanaged pages by checking
411 	 * (present_pages - managed_pages). And managed_pages should be used
412 	 * by page allocator and vm scanner to calculate all kinds of watermarks
413 	 * and thresholds.
414 	 *
415 	 * Locking rules:
416 	 *
417 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
418 	 * It is a seqlock because it has to be read outside of zone->lock,
419 	 * and it is done in the main allocator path.  But, it is written
420 	 * quite infrequently.
421 	 *
422 	 * The span_seq lock is declared along with zone->lock because it is
423 	 * frequently read in proximity to zone->lock.  It's good to
424 	 * give them a chance of being in the same cacheline.
425 	 *
426 	 * Write access to present_pages at runtime should be protected by
427 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
428 	 * present_pages should get_online_mems() to get a stable value.
429 	 *
430 	 * Read access to managed_pages should be safe because it's unsigned
431 	 * long. Write access to zone->managed_pages and totalram_pages are
432 	 * protected by managed_page_count_lock at runtime. Idealy only
433 	 * adjust_managed_page_count() should be used instead of directly
434 	 * touching zone->managed_pages and totalram_pages.
435 	 */
436 	unsigned long		managed_pages;
437 	unsigned long		spanned_pages;
438 	unsigned long		present_pages;
439 
440 	const char		*name;
441 
442 #ifdef CONFIG_MEMORY_ISOLATION
443 	/*
444 	 * Number of isolated pageblock. It is used to solve incorrect
445 	 * freepage counting problem due to racy retrieving migratetype
446 	 * of pageblock. Protected by zone->lock.
447 	 */
448 	unsigned long		nr_isolate_pageblock;
449 #endif
450 
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 	/* see spanned/present_pages for more description */
453 	seqlock_t		span_seqlock;
454 #endif
455 
456 	int initialized;
457 
458 	/* Write-intensive fields used from the page allocator */
459 	ZONE_PADDING(_pad1_)
460 
461 	/* free areas of different sizes */
462 	struct free_area	free_area[MAX_ORDER];
463 
464 	/* zone flags, see below */
465 	unsigned long		flags;
466 
467 	/* Primarily protects free_area */
468 	spinlock_t		lock;
469 
470 	/* Write-intensive fields used by compaction and vmstats. */
471 	ZONE_PADDING(_pad2_)
472 
473 	/*
474 	 * When free pages are below this point, additional steps are taken
475 	 * when reading the number of free pages to avoid per-cpu counter
476 	 * drift allowing watermarks to be breached
477 	 */
478 	unsigned long percpu_drift_mark;
479 
480 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
481 	/* pfn where compaction free scanner should start */
482 	unsigned long		compact_cached_free_pfn;
483 	/* pfn where async and sync compaction migration scanner should start */
484 	unsigned long		compact_cached_migrate_pfn[2];
485 #endif
486 
487 #ifdef CONFIG_COMPACTION
488 	/*
489 	 * On compaction failure, 1<<compact_defer_shift compactions
490 	 * are skipped before trying again. The number attempted since
491 	 * last failure is tracked with compact_considered.
492 	 */
493 	unsigned int		compact_considered;
494 	unsigned int		compact_defer_shift;
495 	int			compact_order_failed;
496 #endif
497 
498 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
499 	/* Set to true when the PG_migrate_skip bits should be cleared */
500 	bool			compact_blockskip_flush;
501 #endif
502 
503 	bool			contiguous;
504 
505 	ZONE_PADDING(_pad3_)
506 	/* Zone statistics */
507 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
508 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
509 } ____cacheline_internodealigned_in_smp;
510 
511 enum pgdat_flags {
512 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
513 					 * a congested BDI
514 					 */
515 	PGDAT_DIRTY,			/* reclaim scanning has recently found
516 					 * many dirty file pages at the tail
517 					 * of the LRU.
518 					 */
519 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
520 					 * many pages under writeback
521 					 */
522 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
523 };
524 
525 static inline unsigned long zone_end_pfn(const struct zone *zone)
526 {
527 	return zone->zone_start_pfn + zone->spanned_pages;
528 }
529 
530 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
531 {
532 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
533 }
534 
535 static inline bool zone_is_initialized(struct zone *zone)
536 {
537 	return zone->initialized;
538 }
539 
540 static inline bool zone_is_empty(struct zone *zone)
541 {
542 	return zone->spanned_pages == 0;
543 }
544 
545 /*
546  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
547  * intersection with the given zone
548  */
549 static inline bool zone_intersects(struct zone *zone,
550 		unsigned long start_pfn, unsigned long nr_pages)
551 {
552 	if (zone_is_empty(zone))
553 		return false;
554 	if (start_pfn >= zone_end_pfn(zone) ||
555 	    start_pfn + nr_pages <= zone->zone_start_pfn)
556 		return false;
557 
558 	return true;
559 }
560 
561 /*
562  * The "priority" of VM scanning is how much of the queues we will scan in one
563  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
564  * queues ("queue_length >> 12") during an aging round.
565  */
566 #define DEF_PRIORITY 12
567 
568 /* Maximum number of zones on a zonelist */
569 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
570 
571 enum {
572 	ZONELIST_FALLBACK,	/* zonelist with fallback */
573 #ifdef CONFIG_NUMA
574 	/*
575 	 * The NUMA zonelists are doubled because we need zonelists that
576 	 * restrict the allocations to a single node for __GFP_THISNODE.
577 	 */
578 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
579 #endif
580 	MAX_ZONELISTS
581 };
582 
583 /*
584  * This struct contains information about a zone in a zonelist. It is stored
585  * here to avoid dereferences into large structures and lookups of tables
586  */
587 struct zoneref {
588 	struct zone *zone;	/* Pointer to actual zone */
589 	int zone_idx;		/* zone_idx(zoneref->zone) */
590 };
591 
592 /*
593  * One allocation request operates on a zonelist. A zonelist
594  * is a list of zones, the first one is the 'goal' of the
595  * allocation, the other zones are fallback zones, in decreasing
596  * priority.
597  *
598  * To speed the reading of the zonelist, the zonerefs contain the zone index
599  * of the entry being read. Helper functions to access information given
600  * a struct zoneref are
601  *
602  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
603  * zonelist_zone_idx()	- Return the index of the zone for an entry
604  * zonelist_node_idx()	- Return the index of the node for an entry
605  */
606 struct zonelist {
607 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
608 };
609 
610 #ifndef CONFIG_DISCONTIGMEM
611 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
612 extern struct page *mem_map;
613 #endif
614 
615 /*
616  * On NUMA machines, each NUMA node would have a pg_data_t to describe
617  * it's memory layout. On UMA machines there is a single pglist_data which
618  * describes the whole memory.
619  *
620  * Memory statistics and page replacement data structures are maintained on a
621  * per-zone basis.
622  */
623 struct bootmem_data;
624 typedef struct pglist_data {
625 	struct zone node_zones[MAX_NR_ZONES];
626 	struct zonelist node_zonelists[MAX_ZONELISTS];
627 	int nr_zones;
628 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
629 	struct page *node_mem_map;
630 #ifdef CONFIG_PAGE_EXTENSION
631 	struct page_ext *node_page_ext;
632 #endif
633 #endif
634 #ifndef CONFIG_NO_BOOTMEM
635 	struct bootmem_data *bdata;
636 #endif
637 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
638 	/*
639 	 * Must be held any time you expect node_start_pfn, node_present_pages
640 	 * or node_spanned_pages stay constant.  Holding this will also
641 	 * guarantee that any pfn_valid() stays that way.
642 	 *
643 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
644 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
645 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
646 	 *
647 	 * Nests above zone->lock and zone->span_seqlock
648 	 */
649 	spinlock_t node_size_lock;
650 #endif
651 	unsigned long node_start_pfn;
652 	unsigned long node_present_pages; /* total number of physical pages */
653 	unsigned long node_spanned_pages; /* total size of physical page
654 					     range, including holes */
655 	int node_id;
656 	wait_queue_head_t kswapd_wait;
657 	wait_queue_head_t pfmemalloc_wait;
658 	struct task_struct *kswapd;	/* Protected by
659 					   mem_hotplug_begin/end() */
660 	int kswapd_order;
661 	enum zone_type kswapd_classzone_idx;
662 
663 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
664 
665 #ifdef CONFIG_COMPACTION
666 	int kcompactd_max_order;
667 	enum zone_type kcompactd_classzone_idx;
668 	wait_queue_head_t kcompactd_wait;
669 	struct task_struct *kcompactd;
670 #endif
671 #ifdef CONFIG_NUMA_BALANCING
672 	/* Lock serializing the migrate rate limiting window */
673 	spinlock_t numabalancing_migrate_lock;
674 
675 	/* Rate limiting time interval */
676 	unsigned long numabalancing_migrate_next_window;
677 
678 	/* Number of pages migrated during the rate limiting time interval */
679 	unsigned long numabalancing_migrate_nr_pages;
680 #endif
681 	/*
682 	 * This is a per-node reserve of pages that are not available
683 	 * to userspace allocations.
684 	 */
685 	unsigned long		totalreserve_pages;
686 
687 #ifdef CONFIG_NUMA
688 	/*
689 	 * zone reclaim becomes active if more unmapped pages exist.
690 	 */
691 	unsigned long		min_unmapped_pages;
692 	unsigned long		min_slab_pages;
693 #endif /* CONFIG_NUMA */
694 
695 	/* Write-intensive fields used by page reclaim */
696 	ZONE_PADDING(_pad1_)
697 	spinlock_t		lru_lock;
698 
699 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
700 	/*
701 	 * If memory initialisation on large machines is deferred then this
702 	 * is the first PFN that needs to be initialised.
703 	 */
704 	unsigned long first_deferred_pfn;
705 	/* Number of non-deferred pages */
706 	unsigned long static_init_pgcnt;
707 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
708 
709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
710 	spinlock_t split_queue_lock;
711 	struct list_head split_queue;
712 	unsigned long split_queue_len;
713 #endif
714 
715 	/* Fields commonly accessed by the page reclaim scanner */
716 	struct lruvec		lruvec;
717 
718 	unsigned long		flags;
719 
720 	ZONE_PADDING(_pad2_)
721 
722 	/* Per-node vmstats */
723 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
724 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
725 } pg_data_t;
726 
727 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
728 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
729 #ifdef CONFIG_FLAT_NODE_MEM_MAP
730 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
731 #else
732 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
733 #endif
734 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
735 
736 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
737 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
738 static inline spinlock_t *zone_lru_lock(struct zone *zone)
739 {
740 	return &zone->zone_pgdat->lru_lock;
741 }
742 
743 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
744 {
745 	return &pgdat->lruvec;
746 }
747 
748 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
749 {
750 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
751 }
752 
753 static inline bool pgdat_is_empty(pg_data_t *pgdat)
754 {
755 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
756 }
757 
758 #include <linux/memory_hotplug.h>
759 
760 void build_all_zonelists(pg_data_t *pgdat);
761 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
762 		   enum zone_type classzone_idx);
763 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
764 			 int classzone_idx, unsigned int alloc_flags,
765 			 long free_pages);
766 bool zone_watermark_ok(struct zone *z, unsigned int order,
767 		unsigned long mark, int classzone_idx,
768 		unsigned int alloc_flags);
769 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
770 		unsigned long mark, int classzone_idx);
771 enum memmap_context {
772 	MEMMAP_EARLY,
773 	MEMMAP_HOTPLUG,
774 };
775 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
776 				     unsigned long size);
777 
778 extern void lruvec_init(struct lruvec *lruvec);
779 
780 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
781 {
782 #ifdef CONFIG_MEMCG
783 	return lruvec->pgdat;
784 #else
785 	return container_of(lruvec, struct pglist_data, lruvec);
786 #endif
787 }
788 
789 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
790 
791 #ifdef CONFIG_HAVE_MEMORY_PRESENT
792 void memory_present(int nid, unsigned long start, unsigned long end);
793 #else
794 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
795 #endif
796 
797 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
798 int local_memory_node(int node_id);
799 #else
800 static inline int local_memory_node(int node_id) { return node_id; };
801 #endif
802 
803 /*
804  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
805  */
806 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
807 
808 #ifdef CONFIG_ZONE_DEVICE
809 static inline bool is_dev_zone(const struct zone *zone)
810 {
811 	return zone_idx(zone) == ZONE_DEVICE;
812 }
813 #else
814 static inline bool is_dev_zone(const struct zone *zone)
815 {
816 	return false;
817 }
818 #endif
819 
820 /*
821  * Returns true if a zone has pages managed by the buddy allocator.
822  * All the reclaim decisions have to use this function rather than
823  * populated_zone(). If the whole zone is reserved then we can easily
824  * end up with populated_zone() && !managed_zone().
825  */
826 static inline bool managed_zone(struct zone *zone)
827 {
828 	return zone->managed_pages;
829 }
830 
831 /* Returns true if a zone has memory */
832 static inline bool populated_zone(struct zone *zone)
833 {
834 	return zone->present_pages;
835 }
836 
837 #ifdef CONFIG_NUMA
838 static inline int zone_to_nid(struct zone *zone)
839 {
840 	return zone->node;
841 }
842 
843 static inline void zone_set_nid(struct zone *zone, int nid)
844 {
845 	zone->node = nid;
846 }
847 #else
848 static inline int zone_to_nid(struct zone *zone)
849 {
850 	return 0;
851 }
852 
853 static inline void zone_set_nid(struct zone *zone, int nid) {}
854 #endif
855 
856 extern int movable_zone;
857 
858 #ifdef CONFIG_HIGHMEM
859 static inline int zone_movable_is_highmem(void)
860 {
861 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
862 	return movable_zone == ZONE_HIGHMEM;
863 #else
864 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
865 #endif
866 }
867 #endif
868 
869 static inline int is_highmem_idx(enum zone_type idx)
870 {
871 #ifdef CONFIG_HIGHMEM
872 	return (idx == ZONE_HIGHMEM ||
873 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
874 #else
875 	return 0;
876 #endif
877 }
878 
879 /**
880  * is_highmem - helper function to quickly check if a struct zone is a
881  *              highmem zone or not.  This is an attempt to keep references
882  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
883  * @zone - pointer to struct zone variable
884  */
885 static inline int is_highmem(struct zone *zone)
886 {
887 #ifdef CONFIG_HIGHMEM
888 	return is_highmem_idx(zone_idx(zone));
889 #else
890 	return 0;
891 #endif
892 }
893 
894 /* These two functions are used to setup the per zone pages min values */
895 struct ctl_table;
896 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
897 					void __user *, size_t *, loff_t *);
898 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
899 					void __user *, size_t *, loff_t *);
900 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
901 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
902 					void __user *, size_t *, loff_t *);
903 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
904 					void __user *, size_t *, loff_t *);
905 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
906 			void __user *, size_t *, loff_t *);
907 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
908 			void __user *, size_t *, loff_t *);
909 
910 extern int numa_zonelist_order_handler(struct ctl_table *, int,
911 			void __user *, size_t *, loff_t *);
912 extern char numa_zonelist_order[];
913 #define NUMA_ZONELIST_ORDER_LEN	16
914 
915 #ifndef CONFIG_NEED_MULTIPLE_NODES
916 
917 extern struct pglist_data contig_page_data;
918 #define NODE_DATA(nid)		(&contig_page_data)
919 #define NODE_MEM_MAP(nid)	mem_map
920 
921 #else /* CONFIG_NEED_MULTIPLE_NODES */
922 
923 #include <asm/mmzone.h>
924 
925 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
926 
927 extern struct pglist_data *first_online_pgdat(void);
928 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
929 extern struct zone *next_zone(struct zone *zone);
930 
931 /**
932  * for_each_online_pgdat - helper macro to iterate over all online nodes
933  * @pgdat - pointer to a pg_data_t variable
934  */
935 #define for_each_online_pgdat(pgdat)			\
936 	for (pgdat = first_online_pgdat();		\
937 	     pgdat;					\
938 	     pgdat = next_online_pgdat(pgdat))
939 /**
940  * for_each_zone - helper macro to iterate over all memory zones
941  * @zone - pointer to struct zone variable
942  *
943  * The user only needs to declare the zone variable, for_each_zone
944  * fills it in.
945  */
946 #define for_each_zone(zone)			        \
947 	for (zone = (first_online_pgdat())->node_zones; \
948 	     zone;					\
949 	     zone = next_zone(zone))
950 
951 #define for_each_populated_zone(zone)		        \
952 	for (zone = (first_online_pgdat())->node_zones; \
953 	     zone;					\
954 	     zone = next_zone(zone))			\
955 		if (!populated_zone(zone))		\
956 			; /* do nothing */		\
957 		else
958 
959 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
960 {
961 	return zoneref->zone;
962 }
963 
964 static inline int zonelist_zone_idx(struct zoneref *zoneref)
965 {
966 	return zoneref->zone_idx;
967 }
968 
969 static inline int zonelist_node_idx(struct zoneref *zoneref)
970 {
971 	return zone_to_nid(zoneref->zone);
972 }
973 
974 struct zoneref *__next_zones_zonelist(struct zoneref *z,
975 					enum zone_type highest_zoneidx,
976 					nodemask_t *nodes);
977 
978 /**
979  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
980  * @z - The cursor used as a starting point for the search
981  * @highest_zoneidx - The zone index of the highest zone to return
982  * @nodes - An optional nodemask to filter the zonelist with
983  *
984  * This function returns the next zone at or below a given zone index that is
985  * within the allowed nodemask using a cursor as the starting point for the
986  * search. The zoneref returned is a cursor that represents the current zone
987  * being examined. It should be advanced by one before calling
988  * next_zones_zonelist again.
989  */
990 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
991 					enum zone_type highest_zoneidx,
992 					nodemask_t *nodes)
993 {
994 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
995 		return z;
996 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
997 }
998 
999 /**
1000  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1001  * @zonelist - The zonelist to search for a suitable zone
1002  * @highest_zoneidx - The zone index of the highest zone to return
1003  * @nodes - An optional nodemask to filter the zonelist with
1004  * @return - Zoneref pointer for the first suitable zone found (see below)
1005  *
1006  * This function returns the first zone at or below a given zone index that is
1007  * within the allowed nodemask. The zoneref returned is a cursor that can be
1008  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1009  * one before calling.
1010  *
1011  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1012  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1013  * update due to cpuset modification.
1014  */
1015 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1016 					enum zone_type highest_zoneidx,
1017 					nodemask_t *nodes)
1018 {
1019 	return next_zones_zonelist(zonelist->_zonerefs,
1020 							highest_zoneidx, nodes);
1021 }
1022 
1023 /**
1024  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1025  * @zone - The current zone in the iterator
1026  * @z - The current pointer within zonelist->zones being iterated
1027  * @zlist - The zonelist being iterated
1028  * @highidx - The zone index of the highest zone to return
1029  * @nodemask - Nodemask allowed by the allocator
1030  *
1031  * This iterator iterates though all zones at or below a given zone index and
1032  * within a given nodemask
1033  */
1034 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1035 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1036 		zone;							\
1037 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1038 			zone = zonelist_zone(z))
1039 
1040 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1041 	for (zone = z->zone;	\
1042 		zone;							\
1043 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1044 			zone = zonelist_zone(z))
1045 
1046 
1047 /**
1048  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1049  * @zone - The current zone in the iterator
1050  * @z - The current pointer within zonelist->zones being iterated
1051  * @zlist - The zonelist being iterated
1052  * @highidx - The zone index of the highest zone to return
1053  *
1054  * This iterator iterates though all zones at or below a given zone index.
1055  */
1056 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1057 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1058 
1059 #ifdef CONFIG_SPARSEMEM
1060 #include <asm/sparsemem.h>
1061 #endif
1062 
1063 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1064 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1065 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1066 {
1067 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1068 	return 0;
1069 }
1070 #endif
1071 
1072 #ifdef CONFIG_FLATMEM
1073 #define pfn_to_nid(pfn)		(0)
1074 #endif
1075 
1076 #ifdef CONFIG_SPARSEMEM
1077 
1078 /*
1079  * SECTION_SHIFT    		#bits space required to store a section #
1080  *
1081  * PA_SECTION_SHIFT		physical address to/from section number
1082  * PFN_SECTION_SHIFT		pfn to/from section number
1083  */
1084 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1085 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1086 
1087 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1088 
1089 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1090 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1091 
1092 #define SECTION_BLOCKFLAGS_BITS \
1093 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1094 
1095 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1096 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1097 #endif
1098 
1099 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1100 {
1101 	return pfn >> PFN_SECTION_SHIFT;
1102 }
1103 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1104 {
1105 	return sec << PFN_SECTION_SHIFT;
1106 }
1107 
1108 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1109 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1110 
1111 struct page;
1112 struct page_ext;
1113 struct mem_section {
1114 	/*
1115 	 * This is, logically, a pointer to an array of struct
1116 	 * pages.  However, it is stored with some other magic.
1117 	 * (see sparse.c::sparse_init_one_section())
1118 	 *
1119 	 * Additionally during early boot we encode node id of
1120 	 * the location of the section here to guide allocation.
1121 	 * (see sparse.c::memory_present())
1122 	 *
1123 	 * Making it a UL at least makes someone do a cast
1124 	 * before using it wrong.
1125 	 */
1126 	unsigned long section_mem_map;
1127 
1128 	/* See declaration of similar field in struct zone */
1129 	unsigned long *pageblock_flags;
1130 #ifdef CONFIG_PAGE_EXTENSION
1131 	/*
1132 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1133 	 * section. (see page_ext.h about this.)
1134 	 */
1135 	struct page_ext *page_ext;
1136 	unsigned long pad;
1137 #endif
1138 	/*
1139 	 * WARNING: mem_section must be a power-of-2 in size for the
1140 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1141 	 */
1142 };
1143 
1144 #ifdef CONFIG_SPARSEMEM_EXTREME
1145 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1146 #else
1147 #define SECTIONS_PER_ROOT	1
1148 #endif
1149 
1150 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1151 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1152 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1153 
1154 #ifdef CONFIG_SPARSEMEM_EXTREME
1155 extern struct mem_section **mem_section;
1156 #else
1157 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1158 #endif
1159 
1160 static inline struct mem_section *__nr_to_section(unsigned long nr)
1161 {
1162 #ifdef CONFIG_SPARSEMEM_EXTREME
1163 	if (!mem_section)
1164 		return NULL;
1165 #endif
1166 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1167 		return NULL;
1168 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1169 }
1170 extern int __section_nr(struct mem_section* ms);
1171 extern unsigned long usemap_size(void);
1172 
1173 /*
1174  * We use the lower bits of the mem_map pointer to store
1175  * a little bit of information.  The pointer is calculated
1176  * as mem_map - section_nr_to_pfn(pnum).  The result is
1177  * aligned to the minimum alignment of the two values:
1178  *   1. All mem_map arrays are page-aligned.
1179  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1180  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1181  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1182  *      worst combination is powerpc with 256k pages,
1183  *      which results in PFN_SECTION_SHIFT equal 6.
1184  * To sum it up, at least 6 bits are available.
1185  */
1186 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1187 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1188 #define SECTION_IS_ONLINE	(1UL<<2)
1189 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1190 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1191 #define SECTION_NID_SHIFT	3
1192 
1193 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1194 {
1195 	unsigned long map = section->section_mem_map;
1196 	map &= SECTION_MAP_MASK;
1197 	return (struct page *)map;
1198 }
1199 
1200 static inline int present_section(struct mem_section *section)
1201 {
1202 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1203 }
1204 
1205 static inline int present_section_nr(unsigned long nr)
1206 {
1207 	return present_section(__nr_to_section(nr));
1208 }
1209 
1210 static inline int valid_section(struct mem_section *section)
1211 {
1212 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1213 }
1214 
1215 static inline int valid_section_nr(unsigned long nr)
1216 {
1217 	return valid_section(__nr_to_section(nr));
1218 }
1219 
1220 static inline int online_section(struct mem_section *section)
1221 {
1222 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1223 }
1224 
1225 static inline int online_section_nr(unsigned long nr)
1226 {
1227 	return online_section(__nr_to_section(nr));
1228 }
1229 
1230 #ifdef CONFIG_MEMORY_HOTPLUG
1231 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1232 #ifdef CONFIG_MEMORY_HOTREMOVE
1233 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1234 #endif
1235 #endif
1236 
1237 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1238 {
1239 	return __nr_to_section(pfn_to_section_nr(pfn));
1240 }
1241 
1242 extern int __highest_present_section_nr;
1243 
1244 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1245 static inline int pfn_valid(unsigned long pfn)
1246 {
1247 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1248 		return 0;
1249 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1250 }
1251 #endif
1252 
1253 static inline int pfn_present(unsigned long pfn)
1254 {
1255 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1256 		return 0;
1257 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1258 }
1259 
1260 /*
1261  * These are _only_ used during initialisation, therefore they
1262  * can use __initdata ...  They could have names to indicate
1263  * this restriction.
1264  */
1265 #ifdef CONFIG_NUMA
1266 #define pfn_to_nid(pfn)							\
1267 ({									\
1268 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1269 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1270 })
1271 #else
1272 #define pfn_to_nid(pfn)		(0)
1273 #endif
1274 
1275 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1276 void sparse_init(void);
1277 #else
1278 #define sparse_init()	do {} while (0)
1279 #define sparse_index_init(_sec, _nid)  do {} while (0)
1280 #endif /* CONFIG_SPARSEMEM */
1281 
1282 /*
1283  * During memory init memblocks map pfns to nids. The search is expensive and
1284  * this caches recent lookups. The implementation of __early_pfn_to_nid
1285  * may treat start/end as pfns or sections.
1286  */
1287 struct mminit_pfnnid_cache {
1288 	unsigned long last_start;
1289 	unsigned long last_end;
1290 	int last_nid;
1291 };
1292 
1293 #ifndef early_pfn_valid
1294 #define early_pfn_valid(pfn)	(1)
1295 #endif
1296 
1297 void memory_present(int nid, unsigned long start, unsigned long end);
1298 
1299 /*
1300  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1301  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1302  * pfn_valid_within() should be used in this case; we optimise this away
1303  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1304  */
1305 #ifdef CONFIG_HOLES_IN_ZONE
1306 #define pfn_valid_within(pfn) pfn_valid(pfn)
1307 #else
1308 #define pfn_valid_within(pfn) (1)
1309 #endif
1310 
1311 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1312 /*
1313  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1314  * associated with it or not. This means that a struct page exists for this
1315  * pfn. The caller cannot assume the page is fully initialized in general.
1316  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1317  * will ensure the struct page is fully online and initialized. Special pages
1318  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1319  *
1320  * In FLATMEM, it is expected that holes always have valid memmap as long as
1321  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1322  * that a valid section has a memmap for the entire section.
1323  *
1324  * However, an ARM, and maybe other embedded architectures in the future
1325  * free memmap backing holes to save memory on the assumption the memmap is
1326  * never used. The page_zone linkages are then broken even though pfn_valid()
1327  * returns true. A walker of the full memmap must then do this additional
1328  * check to ensure the memmap they are looking at is sane by making sure
1329  * the zone and PFN linkages are still valid. This is expensive, but walkers
1330  * of the full memmap are extremely rare.
1331  */
1332 bool memmap_valid_within(unsigned long pfn,
1333 					struct page *page, struct zone *zone);
1334 #else
1335 static inline bool memmap_valid_within(unsigned long pfn,
1336 					struct page *page, struct zone *zone)
1337 {
1338 	return true;
1339 }
1340 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1341 
1342 #endif /* !__GENERATING_BOUNDS.H */
1343 #endif /* !__ASSEMBLY__ */
1344 #endif /* _LINUX_MMZONE_H */
1345