xref: /linux-6.15/include/linux/mmzone.h (revision 2ffdd477)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34 
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36 
37 /*
38  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39  * costly to service.  That is between allocation orders which should
40  * coalesce naturally under reasonable reclaim pressure and those which
41  * will not.
42  */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44 
45 enum migratetype {
46 	MIGRATE_UNMOVABLE,
47 	MIGRATE_MOVABLE,
48 	MIGRATE_RECLAIMABLE,
49 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
50 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
51 #ifdef CONFIG_CMA
52 	/*
53 	 * MIGRATE_CMA migration type is designed to mimic the way
54 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
55 	 * from MIGRATE_CMA pageblocks and page allocator never
56 	 * implicitly change migration type of MIGRATE_CMA pageblock.
57 	 *
58 	 * The way to use it is to change migratetype of a range of
59 	 * pageblocks to MIGRATE_CMA which can be done by
60 	 * __free_pageblock_cma() function.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 #  define is_migrate_cma(migratetype) false
78 #  define is_migrate_cma_page(_page) false
79 #endif
80 
81 static inline bool is_migrate_movable(int mt)
82 {
83 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85 
86 /*
87  * Check whether a migratetype can be merged with another migratetype.
88  *
89  * It is only mergeable when it can fall back to other migratetypes for
90  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91  */
92 static inline bool migratetype_is_mergeable(int mt)
93 {
94 	return mt < MIGRATE_PCPTYPES;
95 }
96 
97 #define for_each_migratetype_order(order, type) \
98 	for (order = 0; order <= MAX_ORDER; order++) \
99 		for (type = 0; type < MIGRATE_TYPES; type++)
100 
101 extern int page_group_by_mobility_disabled;
102 
103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104 
105 #define get_pageblock_migratetype(page)					\
106 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107 
108 #define folio_migratetype(folio)				\
109 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
110 			MIGRATETYPE_MASK)
111 struct free_area {
112 	struct list_head	free_list[MIGRATE_TYPES];
113 	unsigned long		nr_free;
114 };
115 
116 struct pglist_data;
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_EVENT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_EVENT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	/* Second 128 byte cacheline */
144 	NR_BOUNCE,
145 #if IS_ENABLED(CONFIG_ZSMALLOC)
146 	NR_ZSPAGES,		/* allocated in zsmalloc */
147 #endif
148 	NR_FREE_CMA_PAGES,
149 #ifdef CONFIG_UNACCEPTED_MEMORY
150 	NR_UNACCEPTED,
151 #endif
152 	NR_VM_ZONE_STAT_ITEMS };
153 
154 enum node_stat_item {
155 	NR_LRU_BASE,
156 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
157 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
158 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
159 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
160 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
161 	NR_SLAB_RECLAIMABLE_B,
162 	NR_SLAB_UNRECLAIMABLE_B,
163 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
164 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
165 	WORKINGSET_NODES,
166 	WORKINGSET_REFAULT_BASE,
167 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
168 	WORKINGSET_REFAULT_FILE,
169 	WORKINGSET_ACTIVATE_BASE,
170 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
171 	WORKINGSET_ACTIVATE_FILE,
172 	WORKINGSET_RESTORE_BASE,
173 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
174 	WORKINGSET_RESTORE_FILE,
175 	WORKINGSET_NODERECLAIM,
176 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
177 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
178 			   only modified from process context */
179 	NR_FILE_PAGES,
180 	NR_FILE_DIRTY,
181 	NR_WRITEBACK,
182 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
183 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
184 	NR_SHMEM_THPS,
185 	NR_SHMEM_PMDMAPPED,
186 	NR_FILE_THPS,
187 	NR_FILE_PMDMAPPED,
188 	NR_ANON_THPS,
189 	NR_VMSCAN_WRITE,
190 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
191 	NR_DIRTIED,		/* page dirtyings since bootup */
192 	NR_WRITTEN,		/* page writings since bootup */
193 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
194 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
195 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
196 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
197 	NR_KERNEL_STACK_KB,	/* measured in KiB */
198 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
199 	NR_KERNEL_SCS_KB,	/* measured in KiB */
200 #endif
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
203 #ifdef CONFIG_SWAP
204 	NR_SWAPCACHE,
205 #endif
206 #ifdef CONFIG_NUMA_BALANCING
207 	PGPROMOTE_SUCCESS,	/* promote successfully */
208 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
209 #endif
210 	NR_VM_NODE_STAT_ITEMS
211 };
212 
213 /*
214  * Returns true if the item should be printed in THPs (/proc/vmstat
215  * currently prints number of anon, file and shmem THPs. But the item
216  * is charged in pages).
217  */
218 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
219 {
220 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
221 		return false;
222 
223 	return item == NR_ANON_THPS ||
224 	       item == NR_FILE_THPS ||
225 	       item == NR_SHMEM_THPS ||
226 	       item == NR_SHMEM_PMDMAPPED ||
227 	       item == NR_FILE_PMDMAPPED;
228 }
229 
230 /*
231  * Returns true if the value is measured in bytes (most vmstat values are
232  * measured in pages). This defines the API part, the internal representation
233  * might be different.
234  */
235 static __always_inline bool vmstat_item_in_bytes(int idx)
236 {
237 	/*
238 	 * Global and per-node slab counters track slab pages.
239 	 * It's expected that changes are multiples of PAGE_SIZE.
240 	 * Internally values are stored in pages.
241 	 *
242 	 * Per-memcg and per-lruvec counters track memory, consumed
243 	 * by individual slab objects. These counters are actually
244 	 * byte-precise.
245 	 */
246 	return (idx == NR_SLAB_RECLAIMABLE_B ||
247 		idx == NR_SLAB_UNRECLAIMABLE_B);
248 }
249 
250 /*
251  * We do arithmetic on the LRU lists in various places in the code,
252  * so it is important to keep the active lists LRU_ACTIVE higher in
253  * the array than the corresponding inactive lists, and to keep
254  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255  *
256  * This has to be kept in sync with the statistics in zone_stat_item
257  * above and the descriptions in vmstat_text in mm/vmstat.c
258  */
259 #define LRU_BASE 0
260 #define LRU_ACTIVE 1
261 #define LRU_FILE 2
262 
263 enum lru_list {
264 	LRU_INACTIVE_ANON = LRU_BASE,
265 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 	LRU_UNEVICTABLE,
269 	NR_LRU_LISTS
270 };
271 
272 enum vmscan_throttle_state {
273 	VMSCAN_THROTTLE_WRITEBACK,
274 	VMSCAN_THROTTLE_ISOLATED,
275 	VMSCAN_THROTTLE_NOPROGRESS,
276 	VMSCAN_THROTTLE_CONGESTED,
277 	NR_VMSCAN_THROTTLE,
278 };
279 
280 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
281 
282 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
283 
284 static inline bool is_file_lru(enum lru_list lru)
285 {
286 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
287 }
288 
289 static inline bool is_active_lru(enum lru_list lru)
290 {
291 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
292 }
293 
294 #define WORKINGSET_ANON 0
295 #define WORKINGSET_FILE 1
296 #define ANON_AND_FILE 2
297 
298 enum lruvec_flags {
299 	/*
300 	 * An lruvec has many dirty pages backed by a congested BDI:
301 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
302 	 *    It can be cleared by cgroup reclaim or kswapd.
303 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
304 	 *    It can only be cleared by kswapd.
305 	 *
306 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
307 	 * reclaim, but not vice versa. This only applies to the root cgroup.
308 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
309 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
310 	 * by kswapd).
311 	 */
312 	LRUVEC_CGROUP_CONGESTED,
313 	LRUVEC_NODE_CONGESTED,
314 };
315 
316 #endif /* !__GENERATING_BOUNDS_H */
317 
318 /*
319  * Evictable pages are divided into multiple generations. The youngest and the
320  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
321  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
322  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
323  * corresponding generation. The gen counter in folio->flags stores gen+1 while
324  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
325  *
326  * A page is added to the youngest generation on faulting. The aging needs to
327  * check the accessed bit at least twice before handing this page over to the
328  * eviction. The first check takes care of the accessed bit set on the initial
329  * fault; the second check makes sure this page hasn't been used since then.
330  * This process, AKA second chance, requires a minimum of two generations,
331  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
332  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
333  * rest of generations, if they exist, are considered inactive. See
334  * lru_gen_is_active().
335  *
336  * PG_active is always cleared while a page is on one of lrugen->folios[] so
337  * that the aging needs not to worry about it. And it's set again when a page
338  * considered active is isolated for non-reclaiming purposes, e.g., migration.
339  * See lru_gen_add_folio() and lru_gen_del_folio().
340  *
341  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
342  * number of categories of the active/inactive LRU when keeping track of
343  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
344  * in folio->flags.
345  */
346 #define MIN_NR_GENS		2U
347 #define MAX_NR_GENS		4U
348 
349 /*
350  * Each generation is divided into multiple tiers. A page accessed N times
351  * through file descriptors is in tier order_base_2(N). A page in the first tier
352  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
353  * tables or read ahead. A page in any other tier (N>1) is marked by
354  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
355  * supported without using additional bits in folio->flags.
356  *
357  * In contrast to moving across generations which requires the LRU lock, moving
358  * across tiers only involves atomic operations on folio->flags and therefore
359  * has a negligible cost in the buffered access path. In the eviction path,
360  * comparisons of refaulted/(evicted+protected) from the first tier and the
361  * rest infer whether pages accessed multiple times through file descriptors
362  * are statistically hot and thus worth protecting.
363  *
364  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
365  * number of categories of the active/inactive LRU when keeping track of
366  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
367  * folio->flags.
368  */
369 #define MAX_NR_TIERS		4U
370 
371 #ifndef __GENERATING_BOUNDS_H
372 
373 struct lruvec;
374 struct page_vma_mapped_walk;
375 
376 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
377 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
378 
379 #ifdef CONFIG_LRU_GEN
380 
381 enum {
382 	LRU_GEN_ANON,
383 	LRU_GEN_FILE,
384 };
385 
386 enum {
387 	LRU_GEN_CORE,
388 	LRU_GEN_MM_WALK,
389 	LRU_GEN_NONLEAF_YOUNG,
390 	NR_LRU_GEN_CAPS
391 };
392 
393 #define MIN_LRU_BATCH		BITS_PER_LONG
394 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
395 
396 /* whether to keep historical stats from evicted generations */
397 #ifdef CONFIG_LRU_GEN_STATS
398 #define NR_HIST_GENS		MAX_NR_GENS
399 #else
400 #define NR_HIST_GENS		1U
401 #endif
402 
403 /*
404  * The youngest generation number is stored in max_seq for both anon and file
405  * types as they are aged on an equal footing. The oldest generation numbers are
406  * stored in min_seq[] separately for anon and file types as clean file pages
407  * can be evicted regardless of swap constraints.
408  *
409  * Normally anon and file min_seq are in sync. But if swapping is constrained,
410  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
411  * min_seq behind.
412  *
413  * The number of pages in each generation is eventually consistent and therefore
414  * can be transiently negative when reset_batch_size() is pending.
415  */
416 struct lru_gen_folio {
417 	/* the aging increments the youngest generation number */
418 	unsigned long max_seq;
419 	/* the eviction increments the oldest generation numbers */
420 	unsigned long min_seq[ANON_AND_FILE];
421 	/* the birth time of each generation in jiffies */
422 	unsigned long timestamps[MAX_NR_GENS];
423 	/* the multi-gen LRU lists, lazily sorted on eviction */
424 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
425 	/* the multi-gen LRU sizes, eventually consistent */
426 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
427 	/* the exponential moving average of refaulted */
428 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
429 	/* the exponential moving average of evicted+protected */
430 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
431 	/* the first tier doesn't need protection, hence the minus one */
432 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
433 	/* can be modified without holding the LRU lock */
434 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
435 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
436 	/* whether the multi-gen LRU is enabled */
437 	bool enabled;
438 #ifdef CONFIG_MEMCG
439 	/* the memcg generation this lru_gen_folio belongs to */
440 	u8 gen;
441 	/* the list segment this lru_gen_folio belongs to */
442 	u8 seg;
443 	/* per-node lru_gen_folio list for global reclaim */
444 	struct hlist_nulls_node list;
445 #endif
446 };
447 
448 enum {
449 	MM_LEAF_TOTAL,		/* total leaf entries */
450 	MM_LEAF_OLD,		/* old leaf entries */
451 	MM_LEAF_YOUNG,		/* young leaf entries */
452 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
453 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
454 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
455 	NR_MM_STATS
456 };
457 
458 /* double-buffering Bloom filters */
459 #define NR_BLOOM_FILTERS	2
460 
461 struct lru_gen_mm_state {
462 	/* set to max_seq after each iteration */
463 	unsigned long seq;
464 	/* where the current iteration continues after */
465 	struct list_head *head;
466 	/* where the last iteration ended before */
467 	struct list_head *tail;
468 	/* Bloom filters flip after each iteration */
469 	unsigned long *filters[NR_BLOOM_FILTERS];
470 	/* the mm stats for debugging */
471 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
472 };
473 
474 struct lru_gen_mm_walk {
475 	/* the lruvec under reclaim */
476 	struct lruvec *lruvec;
477 	/* unstable max_seq from lru_gen_folio */
478 	unsigned long max_seq;
479 	/* the next address within an mm to scan */
480 	unsigned long next_addr;
481 	/* to batch promoted pages */
482 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 	/* to batch the mm stats */
484 	int mm_stats[NR_MM_STATS];
485 	/* total batched items */
486 	int batched;
487 	bool can_swap;
488 	bool force_scan;
489 };
490 
491 void lru_gen_init_lruvec(struct lruvec *lruvec);
492 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
493 
494 #ifdef CONFIG_MEMCG
495 
496 /*
497  * For each node, memcgs are divided into two generations: the old and the
498  * young. For each generation, memcgs are randomly sharded into multiple bins
499  * to improve scalability. For each bin, the hlist_nulls is virtually divided
500  * into three segments: the head, the tail and the default.
501  *
502  * An onlining memcg is added to the tail of a random bin in the old generation.
503  * The eviction starts at the head of a random bin in the old generation. The
504  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505  * the old generation, is incremented when all its bins become empty.
506  *
507  * There are four operations:
508  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
509  *    current generation (old or young) and updates its "seg" to "head";
510  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
511  *    current generation (old or young) and updates its "seg" to "tail";
512  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
513  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
514  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
515  *    young generation, updates its "gen" to "young" and resets its "seg" to
516  *    "default".
517  *
518  * The events that trigger the above operations are:
519  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
520  * 2. The first attempt to reclaim an memcg below low, which triggers
521  *    MEMCG_LRU_TAIL;
522  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
523  *    which triggers MEMCG_LRU_TAIL;
524  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
525  *    which triggers MEMCG_LRU_YOUNG;
526  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
527  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
528  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
529  *
530  * Note that memcg LRU only applies to global reclaim, and the round-robin
531  * incrementing of their max_seq counters ensures the eventual fairness to all
532  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
533  */
534 #define MEMCG_NR_GENS	2
535 #define MEMCG_NR_BINS	8
536 
537 struct lru_gen_memcg {
538 	/* the per-node memcg generation counter */
539 	unsigned long seq;
540 	/* each memcg has one lru_gen_folio per node */
541 	unsigned long nr_memcgs[MEMCG_NR_GENS];
542 	/* per-node lru_gen_folio list for global reclaim */
543 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
544 	/* protects the above */
545 	spinlock_t lock;
546 };
547 
548 void lru_gen_init_pgdat(struct pglist_data *pgdat);
549 
550 void lru_gen_init_memcg(struct mem_cgroup *memcg);
551 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
552 void lru_gen_online_memcg(struct mem_cgroup *memcg);
553 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
554 void lru_gen_release_memcg(struct mem_cgroup *memcg);
555 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
556 
557 #else /* !CONFIG_MEMCG */
558 
559 #define MEMCG_NR_GENS	1
560 
561 struct lru_gen_memcg {
562 };
563 
564 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
565 {
566 }
567 
568 #endif /* CONFIG_MEMCG */
569 
570 #else /* !CONFIG_LRU_GEN */
571 
572 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
573 {
574 }
575 
576 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
577 {
578 }
579 
580 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
581 {
582 }
583 
584 #ifdef CONFIG_MEMCG
585 
586 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
587 {
588 }
589 
590 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
591 {
592 }
593 
594 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
595 {
596 }
597 
598 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
599 {
600 }
601 
602 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
603 {
604 }
605 
606 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
607 {
608 }
609 
610 #endif /* CONFIG_MEMCG */
611 
612 #endif /* CONFIG_LRU_GEN */
613 
614 struct lruvec {
615 	struct list_head		lists[NR_LRU_LISTS];
616 	/* per lruvec lru_lock for memcg */
617 	spinlock_t			lru_lock;
618 	/*
619 	 * These track the cost of reclaiming one LRU - file or anon -
620 	 * over the other. As the observed cost of reclaiming one LRU
621 	 * increases, the reclaim scan balance tips toward the other.
622 	 */
623 	unsigned long			anon_cost;
624 	unsigned long			file_cost;
625 	/* Non-resident age, driven by LRU movement */
626 	atomic_long_t			nonresident_age;
627 	/* Refaults at the time of last reclaim cycle */
628 	unsigned long			refaults[ANON_AND_FILE];
629 	/* Various lruvec state flags (enum lruvec_flags) */
630 	unsigned long			flags;
631 #ifdef CONFIG_LRU_GEN
632 	/* evictable pages divided into generations */
633 	struct lru_gen_folio		lrugen;
634 	/* to concurrently iterate lru_gen_mm_list */
635 	struct lru_gen_mm_state		mm_state;
636 #endif
637 #ifdef CONFIG_MEMCG
638 	struct pglist_data *pgdat;
639 #endif
640 };
641 
642 /* Isolate for asynchronous migration */
643 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
644 /* Isolate unevictable pages */
645 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
646 
647 /* LRU Isolation modes. */
648 typedef unsigned __bitwise isolate_mode_t;
649 
650 enum zone_watermarks {
651 	WMARK_MIN,
652 	WMARK_LOW,
653 	WMARK_HIGH,
654 	WMARK_PROMO,
655 	NR_WMARK
656 };
657 
658 /*
659  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
660  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
661  * it should not contribute to serious fragmentation causing THP allocation
662  * failures.
663  */
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 #define NR_PCP_THP 1
666 #else
667 #define NR_PCP_THP 0
668 #endif
669 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
670 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
671 
672 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
673 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
674 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
675 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
676 
677 /*
678  * Flags used in pcp->flags field.
679  *
680  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
681  * previous page freeing.  To avoid to drain PCP for an accident
682  * high-order page freeing.
683  *
684  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
685  * draining PCP for consecutive high-order pages freeing without
686  * allocation if data cache slice of CPU is large enough.  To reduce
687  * zone lock contention and keep cache-hot pages reusing.
688  */
689 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
690 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
691 
692 struct per_cpu_pages {
693 	spinlock_t lock;	/* Protects lists field */
694 	int count;		/* number of pages in the list */
695 	int high;		/* high watermark, emptying needed */
696 	int high_min;		/* min high watermark */
697 	int high_max;		/* max high watermark */
698 	int batch;		/* chunk size for buddy add/remove */
699 	u8 flags;		/* protected by pcp->lock */
700 	u8 alloc_factor;	/* batch scaling factor during allocate */
701 #ifdef CONFIG_NUMA
702 	u8 expire;		/* When 0, remote pagesets are drained */
703 #endif
704 	short free_count;	/* consecutive free count */
705 
706 	/* Lists of pages, one per migrate type stored on the pcp-lists */
707 	struct list_head lists[NR_PCP_LISTS];
708 } ____cacheline_aligned_in_smp;
709 
710 struct per_cpu_zonestat {
711 #ifdef CONFIG_SMP
712 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
713 	s8 stat_threshold;
714 #endif
715 #ifdef CONFIG_NUMA
716 	/*
717 	 * Low priority inaccurate counters that are only folded
718 	 * on demand. Use a large type to avoid the overhead of
719 	 * folding during refresh_cpu_vm_stats.
720 	 */
721 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
722 #endif
723 };
724 
725 struct per_cpu_nodestat {
726 	s8 stat_threshold;
727 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
728 };
729 
730 #endif /* !__GENERATING_BOUNDS.H */
731 
732 enum zone_type {
733 	/*
734 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
735 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
736 	 * On architectures where this area covers the whole 32 bit address
737 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
738 	 * DMA addressing constraints. This distinction is important as a 32bit
739 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
740 	 * platforms may need both zones as they support peripherals with
741 	 * different DMA addressing limitations.
742 	 */
743 #ifdef CONFIG_ZONE_DMA
744 	ZONE_DMA,
745 #endif
746 #ifdef CONFIG_ZONE_DMA32
747 	ZONE_DMA32,
748 #endif
749 	/*
750 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
751 	 * performed on pages in ZONE_NORMAL if the DMA devices support
752 	 * transfers to all addressable memory.
753 	 */
754 	ZONE_NORMAL,
755 #ifdef CONFIG_HIGHMEM
756 	/*
757 	 * A memory area that is only addressable by the kernel through
758 	 * mapping portions into its own address space. This is for example
759 	 * used by i386 to allow the kernel to address the memory beyond
760 	 * 900MB. The kernel will set up special mappings (page
761 	 * table entries on i386) for each page that the kernel needs to
762 	 * access.
763 	 */
764 	ZONE_HIGHMEM,
765 #endif
766 	/*
767 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
768 	 * movable pages with few exceptional cases described below. Main use
769 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
770 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
771 	 * to increase the number of THP/huge pages. Notable special cases are:
772 	 *
773 	 * 1. Pinned pages: (long-term) pinning of movable pages might
774 	 *    essentially turn such pages unmovable. Therefore, we do not allow
775 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
776 	 *    faulted, they come from the right zone right away. However, it is
777 	 *    still possible that address space already has pages in
778 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
779 	 *    touches that memory before pinning). In such case we migrate them
780 	 *    to a different zone. When migration fails - pinning fails.
781 	 * 2. memblock allocations: kernelcore/movablecore setups might create
782 	 *    situations where ZONE_MOVABLE contains unmovable allocations
783 	 *    after boot. Memory offlining and allocations fail early.
784 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
785 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
786 	 *    for example, if we have sections that are only partially
787 	 *    populated. Memory offlining and allocations fail early.
788 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
789 	 *    memory offlining, such pages cannot be allocated.
790 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
791 	 *    hotplugged memory blocks might only partially be managed by the
792 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
793 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
794 	 *    some cases (virtio-mem), such pages can be skipped during
795 	 *    memory offlining, however, cannot be moved/allocated. These
796 	 *    techniques might use alloc_contig_range() to hide previously
797 	 *    exposed pages from the buddy again (e.g., to implement some sort
798 	 *    of memory unplug in virtio-mem).
799 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
800 	 *    situations where ZERO_PAGE(0) which is allocated differently
801 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
802 	 *    cannot be migrated.
803 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
804 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
805 	 *    such zone. Such pages cannot be really moved around as they are
806 	 *    self-stored in the range, but they are treated as movable when
807 	 *    the range they describe is about to be offlined.
808 	 *
809 	 * In general, no unmovable allocations that degrade memory offlining
810 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
811 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
812 	 * if has_unmovable_pages() states that there are no unmovable pages,
813 	 * there can be false negatives).
814 	 */
815 	ZONE_MOVABLE,
816 #ifdef CONFIG_ZONE_DEVICE
817 	ZONE_DEVICE,
818 #endif
819 	__MAX_NR_ZONES
820 
821 };
822 
823 #ifndef __GENERATING_BOUNDS_H
824 
825 #define ASYNC_AND_SYNC 2
826 
827 struct zone {
828 	/* Read-mostly fields */
829 
830 	/* zone watermarks, access with *_wmark_pages(zone) macros */
831 	unsigned long _watermark[NR_WMARK];
832 	unsigned long watermark_boost;
833 
834 	unsigned long nr_reserved_highatomic;
835 
836 	/*
837 	 * We don't know if the memory that we're going to allocate will be
838 	 * freeable or/and it will be released eventually, so to avoid totally
839 	 * wasting several GB of ram we must reserve some of the lower zone
840 	 * memory (otherwise we risk to run OOM on the lower zones despite
841 	 * there being tons of freeable ram on the higher zones).  This array is
842 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
843 	 * changes.
844 	 */
845 	long lowmem_reserve[MAX_NR_ZONES];
846 
847 #ifdef CONFIG_NUMA
848 	int node;
849 #endif
850 	struct pglist_data	*zone_pgdat;
851 	struct per_cpu_pages	__percpu *per_cpu_pageset;
852 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
853 	/*
854 	 * the high and batch values are copied to individual pagesets for
855 	 * faster access
856 	 */
857 	int pageset_high_min;
858 	int pageset_high_max;
859 	int pageset_batch;
860 
861 #ifndef CONFIG_SPARSEMEM
862 	/*
863 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
864 	 * In SPARSEMEM, this map is stored in struct mem_section
865 	 */
866 	unsigned long		*pageblock_flags;
867 #endif /* CONFIG_SPARSEMEM */
868 
869 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
870 	unsigned long		zone_start_pfn;
871 
872 	/*
873 	 * spanned_pages is the total pages spanned by the zone, including
874 	 * holes, which is calculated as:
875 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
876 	 *
877 	 * present_pages is physical pages existing within the zone, which
878 	 * is calculated as:
879 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
880 	 *
881 	 * present_early_pages is present pages existing within the zone
882 	 * located on memory available since early boot, excluding hotplugged
883 	 * memory.
884 	 *
885 	 * managed_pages is present pages managed by the buddy system, which
886 	 * is calculated as (reserved_pages includes pages allocated by the
887 	 * bootmem allocator):
888 	 *	managed_pages = present_pages - reserved_pages;
889 	 *
890 	 * cma pages is present pages that are assigned for CMA use
891 	 * (MIGRATE_CMA).
892 	 *
893 	 * So present_pages may be used by memory hotplug or memory power
894 	 * management logic to figure out unmanaged pages by checking
895 	 * (present_pages - managed_pages). And managed_pages should be used
896 	 * by page allocator and vm scanner to calculate all kinds of watermarks
897 	 * and thresholds.
898 	 *
899 	 * Locking rules:
900 	 *
901 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
902 	 * It is a seqlock because it has to be read outside of zone->lock,
903 	 * and it is done in the main allocator path.  But, it is written
904 	 * quite infrequently.
905 	 *
906 	 * The span_seq lock is declared along with zone->lock because it is
907 	 * frequently read in proximity to zone->lock.  It's good to
908 	 * give them a chance of being in the same cacheline.
909 	 *
910 	 * Write access to present_pages at runtime should be protected by
911 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
912 	 * present_pages should use get_online_mems() to get a stable value.
913 	 */
914 	atomic_long_t		managed_pages;
915 	unsigned long		spanned_pages;
916 	unsigned long		present_pages;
917 #if defined(CONFIG_MEMORY_HOTPLUG)
918 	unsigned long		present_early_pages;
919 #endif
920 #ifdef CONFIG_CMA
921 	unsigned long		cma_pages;
922 #endif
923 
924 	const char		*name;
925 
926 #ifdef CONFIG_MEMORY_ISOLATION
927 	/*
928 	 * Number of isolated pageblock. It is used to solve incorrect
929 	 * freepage counting problem due to racy retrieving migratetype
930 	 * of pageblock. Protected by zone->lock.
931 	 */
932 	unsigned long		nr_isolate_pageblock;
933 #endif
934 
935 #ifdef CONFIG_MEMORY_HOTPLUG
936 	/* see spanned/present_pages for more description */
937 	seqlock_t		span_seqlock;
938 #endif
939 
940 	int initialized;
941 
942 	/* Write-intensive fields used from the page allocator */
943 	CACHELINE_PADDING(_pad1_);
944 
945 	/* free areas of different sizes */
946 	struct free_area	free_area[MAX_ORDER + 1];
947 
948 #ifdef CONFIG_UNACCEPTED_MEMORY
949 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
950 	struct list_head	unaccepted_pages;
951 #endif
952 
953 	/* zone flags, see below */
954 	unsigned long		flags;
955 
956 	/* Primarily protects free_area */
957 	spinlock_t		lock;
958 
959 	/* Write-intensive fields used by compaction and vmstats. */
960 	CACHELINE_PADDING(_pad2_);
961 
962 	/*
963 	 * When free pages are below this point, additional steps are taken
964 	 * when reading the number of free pages to avoid per-cpu counter
965 	 * drift allowing watermarks to be breached
966 	 */
967 	unsigned long percpu_drift_mark;
968 
969 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
970 	/* pfn where compaction free scanner should start */
971 	unsigned long		compact_cached_free_pfn;
972 	/* pfn where compaction migration scanner should start */
973 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
974 	unsigned long		compact_init_migrate_pfn;
975 	unsigned long		compact_init_free_pfn;
976 #endif
977 
978 #ifdef CONFIG_COMPACTION
979 	/*
980 	 * On compaction failure, 1<<compact_defer_shift compactions
981 	 * are skipped before trying again. The number attempted since
982 	 * last failure is tracked with compact_considered.
983 	 * compact_order_failed is the minimum compaction failed order.
984 	 */
985 	unsigned int		compact_considered;
986 	unsigned int		compact_defer_shift;
987 	int			compact_order_failed;
988 #endif
989 
990 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
991 	/* Set to true when the PG_migrate_skip bits should be cleared */
992 	bool			compact_blockskip_flush;
993 #endif
994 
995 	bool			contiguous;
996 
997 	CACHELINE_PADDING(_pad3_);
998 	/* Zone statistics */
999 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1000 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1001 } ____cacheline_internodealigned_in_smp;
1002 
1003 enum pgdat_flags {
1004 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1005 					 * many dirty file pages at the tail
1006 					 * of the LRU.
1007 					 */
1008 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1009 					 * many pages under writeback
1010 					 */
1011 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1012 };
1013 
1014 enum zone_flags {
1015 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1016 					 * Cleared when kswapd is woken.
1017 					 */
1018 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1019 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1020 };
1021 
1022 static inline unsigned long zone_managed_pages(struct zone *zone)
1023 {
1024 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1025 }
1026 
1027 static inline unsigned long zone_cma_pages(struct zone *zone)
1028 {
1029 #ifdef CONFIG_CMA
1030 	return zone->cma_pages;
1031 #else
1032 	return 0;
1033 #endif
1034 }
1035 
1036 static inline unsigned long zone_end_pfn(const struct zone *zone)
1037 {
1038 	return zone->zone_start_pfn + zone->spanned_pages;
1039 }
1040 
1041 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1042 {
1043 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1044 }
1045 
1046 static inline bool zone_is_initialized(struct zone *zone)
1047 {
1048 	return zone->initialized;
1049 }
1050 
1051 static inline bool zone_is_empty(struct zone *zone)
1052 {
1053 	return zone->spanned_pages == 0;
1054 }
1055 
1056 #ifndef BUILD_VDSO32_64
1057 /*
1058  * The zone field is never updated after free_area_init_core()
1059  * sets it, so none of the operations on it need to be atomic.
1060  */
1061 
1062 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1063 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1064 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1065 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1066 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1067 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1068 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1069 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1070 
1071 /*
1072  * Define the bit shifts to access each section.  For non-existent
1073  * sections we define the shift as 0; that plus a 0 mask ensures
1074  * the compiler will optimise away reference to them.
1075  */
1076 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1077 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1078 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1079 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1080 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1081 
1082 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1083 #ifdef NODE_NOT_IN_PAGE_FLAGS
1084 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1085 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1086 						SECTIONS_PGOFF : ZONES_PGOFF)
1087 #else
1088 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1089 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1090 						NODES_PGOFF : ZONES_PGOFF)
1091 #endif
1092 
1093 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1094 
1095 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1096 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1097 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1098 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1099 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1100 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1101 
1102 static inline enum zone_type page_zonenum(const struct page *page)
1103 {
1104 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1105 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1106 }
1107 
1108 static inline enum zone_type folio_zonenum(const struct folio *folio)
1109 {
1110 	return page_zonenum(&folio->page);
1111 }
1112 
1113 #ifdef CONFIG_ZONE_DEVICE
1114 static inline bool is_zone_device_page(const struct page *page)
1115 {
1116 	return page_zonenum(page) == ZONE_DEVICE;
1117 }
1118 
1119 /*
1120  * Consecutive zone device pages should not be merged into the same sgl
1121  * or bvec segment with other types of pages or if they belong to different
1122  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1123  * without scanning the entire segment. This helper returns true either if
1124  * both pages are not zone device pages or both pages are zone device pages
1125  * with the same pgmap.
1126  */
1127 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1128 						     const struct page *b)
1129 {
1130 	if (is_zone_device_page(a) != is_zone_device_page(b))
1131 		return false;
1132 	if (!is_zone_device_page(a))
1133 		return true;
1134 	return a->pgmap == b->pgmap;
1135 }
1136 
1137 extern void memmap_init_zone_device(struct zone *, unsigned long,
1138 				    unsigned long, struct dev_pagemap *);
1139 #else
1140 static inline bool is_zone_device_page(const struct page *page)
1141 {
1142 	return false;
1143 }
1144 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1145 						     const struct page *b)
1146 {
1147 	return true;
1148 }
1149 #endif
1150 
1151 static inline bool folio_is_zone_device(const struct folio *folio)
1152 {
1153 	return is_zone_device_page(&folio->page);
1154 }
1155 
1156 static inline bool is_zone_movable_page(const struct page *page)
1157 {
1158 	return page_zonenum(page) == ZONE_MOVABLE;
1159 }
1160 
1161 static inline bool folio_is_zone_movable(const struct folio *folio)
1162 {
1163 	return folio_zonenum(folio) == ZONE_MOVABLE;
1164 }
1165 #endif
1166 
1167 /*
1168  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1169  * intersection with the given zone
1170  */
1171 static inline bool zone_intersects(struct zone *zone,
1172 		unsigned long start_pfn, unsigned long nr_pages)
1173 {
1174 	if (zone_is_empty(zone))
1175 		return false;
1176 	if (start_pfn >= zone_end_pfn(zone) ||
1177 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1178 		return false;
1179 
1180 	return true;
1181 }
1182 
1183 /*
1184  * The "priority" of VM scanning is how much of the queues we will scan in one
1185  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1186  * queues ("queue_length >> 12") during an aging round.
1187  */
1188 #define DEF_PRIORITY 12
1189 
1190 /* Maximum number of zones on a zonelist */
1191 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1192 
1193 enum {
1194 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1195 #ifdef CONFIG_NUMA
1196 	/*
1197 	 * The NUMA zonelists are doubled because we need zonelists that
1198 	 * restrict the allocations to a single node for __GFP_THISNODE.
1199 	 */
1200 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1201 #endif
1202 	MAX_ZONELISTS
1203 };
1204 
1205 /*
1206  * This struct contains information about a zone in a zonelist. It is stored
1207  * here to avoid dereferences into large structures and lookups of tables
1208  */
1209 struct zoneref {
1210 	struct zone *zone;	/* Pointer to actual zone */
1211 	int zone_idx;		/* zone_idx(zoneref->zone) */
1212 };
1213 
1214 /*
1215  * One allocation request operates on a zonelist. A zonelist
1216  * is a list of zones, the first one is the 'goal' of the
1217  * allocation, the other zones are fallback zones, in decreasing
1218  * priority.
1219  *
1220  * To speed the reading of the zonelist, the zonerefs contain the zone index
1221  * of the entry being read. Helper functions to access information given
1222  * a struct zoneref are
1223  *
1224  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1225  * zonelist_zone_idx()	- Return the index of the zone for an entry
1226  * zonelist_node_idx()	- Return the index of the node for an entry
1227  */
1228 struct zonelist {
1229 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1230 };
1231 
1232 /*
1233  * The array of struct pages for flatmem.
1234  * It must be declared for SPARSEMEM as well because there are configurations
1235  * that rely on that.
1236  */
1237 extern struct page *mem_map;
1238 
1239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1240 struct deferred_split {
1241 	spinlock_t split_queue_lock;
1242 	struct list_head split_queue;
1243 	unsigned long split_queue_len;
1244 };
1245 #endif
1246 
1247 #ifdef CONFIG_MEMORY_FAILURE
1248 /*
1249  * Per NUMA node memory failure handling statistics.
1250  */
1251 struct memory_failure_stats {
1252 	/*
1253 	 * Number of raw pages poisoned.
1254 	 * Cases not accounted: memory outside kernel control, offline page,
1255 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1256 	 * error events, and unpoison actions from hwpoison_unpoison.
1257 	 */
1258 	unsigned long total;
1259 	/*
1260 	 * Recovery results of poisoned raw pages handled by memory_failure,
1261 	 * in sync with mf_result.
1262 	 * total = ignored + failed + delayed + recovered.
1263 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1264 	 */
1265 	unsigned long ignored;
1266 	unsigned long failed;
1267 	unsigned long delayed;
1268 	unsigned long recovered;
1269 };
1270 #endif
1271 
1272 /*
1273  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1274  * it's memory layout. On UMA machines there is a single pglist_data which
1275  * describes the whole memory.
1276  *
1277  * Memory statistics and page replacement data structures are maintained on a
1278  * per-zone basis.
1279  */
1280 typedef struct pglist_data {
1281 	/*
1282 	 * node_zones contains just the zones for THIS node. Not all of the
1283 	 * zones may be populated, but it is the full list. It is referenced by
1284 	 * this node's node_zonelists as well as other node's node_zonelists.
1285 	 */
1286 	struct zone node_zones[MAX_NR_ZONES];
1287 
1288 	/*
1289 	 * node_zonelists contains references to all zones in all nodes.
1290 	 * Generally the first zones will be references to this node's
1291 	 * node_zones.
1292 	 */
1293 	struct zonelist node_zonelists[MAX_ZONELISTS];
1294 
1295 	int nr_zones; /* number of populated zones in this node */
1296 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1297 	struct page *node_mem_map;
1298 #ifdef CONFIG_PAGE_EXTENSION
1299 	struct page_ext *node_page_ext;
1300 #endif
1301 #endif
1302 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1303 	/*
1304 	 * Must be held any time you expect node_start_pfn,
1305 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1306 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1307 	 * init.
1308 	 *
1309 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1310 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1311 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1312 	 *
1313 	 * Nests above zone->lock and zone->span_seqlock
1314 	 */
1315 	spinlock_t node_size_lock;
1316 #endif
1317 	unsigned long node_start_pfn;
1318 	unsigned long node_present_pages; /* total number of physical pages */
1319 	unsigned long node_spanned_pages; /* total size of physical page
1320 					     range, including holes */
1321 	int node_id;
1322 	wait_queue_head_t kswapd_wait;
1323 	wait_queue_head_t pfmemalloc_wait;
1324 
1325 	/* workqueues for throttling reclaim for different reasons. */
1326 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1327 
1328 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1329 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1330 					 * when throttling started. */
1331 #ifdef CONFIG_MEMORY_HOTPLUG
1332 	struct mutex kswapd_lock;
1333 #endif
1334 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1335 	int kswapd_order;
1336 	enum zone_type kswapd_highest_zoneidx;
1337 
1338 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1339 
1340 #ifdef CONFIG_COMPACTION
1341 	int kcompactd_max_order;
1342 	enum zone_type kcompactd_highest_zoneidx;
1343 	wait_queue_head_t kcompactd_wait;
1344 	struct task_struct *kcompactd;
1345 	bool proactive_compact_trigger;
1346 #endif
1347 	/*
1348 	 * This is a per-node reserve of pages that are not available
1349 	 * to userspace allocations.
1350 	 */
1351 	unsigned long		totalreserve_pages;
1352 
1353 #ifdef CONFIG_NUMA
1354 	/*
1355 	 * node reclaim becomes active if more unmapped pages exist.
1356 	 */
1357 	unsigned long		min_unmapped_pages;
1358 	unsigned long		min_slab_pages;
1359 #endif /* CONFIG_NUMA */
1360 
1361 	/* Write-intensive fields used by page reclaim */
1362 	CACHELINE_PADDING(_pad1_);
1363 
1364 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1365 	/*
1366 	 * If memory initialisation on large machines is deferred then this
1367 	 * is the first PFN that needs to be initialised.
1368 	 */
1369 	unsigned long first_deferred_pfn;
1370 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1371 
1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1373 	struct deferred_split deferred_split_queue;
1374 #endif
1375 
1376 #ifdef CONFIG_NUMA_BALANCING
1377 	/* start time in ms of current promote rate limit period */
1378 	unsigned int nbp_rl_start;
1379 	/* number of promote candidate pages at start time of current rate limit period */
1380 	unsigned long nbp_rl_nr_cand;
1381 	/* promote threshold in ms */
1382 	unsigned int nbp_threshold;
1383 	/* start time in ms of current promote threshold adjustment period */
1384 	unsigned int nbp_th_start;
1385 	/*
1386 	 * number of promote candidate pages at start time of current promote
1387 	 * threshold adjustment period
1388 	 */
1389 	unsigned long nbp_th_nr_cand;
1390 #endif
1391 	/* Fields commonly accessed by the page reclaim scanner */
1392 
1393 	/*
1394 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1395 	 *
1396 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1397 	 */
1398 	struct lruvec		__lruvec;
1399 
1400 	unsigned long		flags;
1401 
1402 #ifdef CONFIG_LRU_GEN
1403 	/* kswap mm walk data */
1404 	struct lru_gen_mm_walk mm_walk;
1405 	/* lru_gen_folio list */
1406 	struct lru_gen_memcg memcg_lru;
1407 #endif
1408 
1409 	CACHELINE_PADDING(_pad2_);
1410 
1411 	/* Per-node vmstats */
1412 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1413 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1414 #ifdef CONFIG_NUMA
1415 	struct memory_tier __rcu *memtier;
1416 #endif
1417 #ifdef CONFIG_MEMORY_FAILURE
1418 	struct memory_failure_stats mf_stats;
1419 #endif
1420 } pg_data_t;
1421 
1422 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1423 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1424 
1425 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1426 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1427 
1428 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1429 {
1430 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1431 }
1432 
1433 #include <linux/memory_hotplug.h>
1434 
1435 void build_all_zonelists(pg_data_t *pgdat);
1436 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1437 		   enum zone_type highest_zoneidx);
1438 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1439 			 int highest_zoneidx, unsigned int alloc_flags,
1440 			 long free_pages);
1441 bool zone_watermark_ok(struct zone *z, unsigned int order,
1442 		unsigned long mark, int highest_zoneidx,
1443 		unsigned int alloc_flags);
1444 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1445 		unsigned long mark, int highest_zoneidx);
1446 /*
1447  * Memory initialization context, use to differentiate memory added by
1448  * the platform statically or via memory hotplug interface.
1449  */
1450 enum meminit_context {
1451 	MEMINIT_EARLY,
1452 	MEMINIT_HOTPLUG,
1453 };
1454 
1455 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1456 				     unsigned long size);
1457 
1458 extern void lruvec_init(struct lruvec *lruvec);
1459 
1460 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1461 {
1462 #ifdef CONFIG_MEMCG
1463 	return lruvec->pgdat;
1464 #else
1465 	return container_of(lruvec, struct pglist_data, __lruvec);
1466 #endif
1467 }
1468 
1469 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1470 int local_memory_node(int node_id);
1471 #else
1472 static inline int local_memory_node(int node_id) { return node_id; };
1473 #endif
1474 
1475 /*
1476  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1477  */
1478 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1479 
1480 #ifdef CONFIG_ZONE_DEVICE
1481 static inline bool zone_is_zone_device(struct zone *zone)
1482 {
1483 	return zone_idx(zone) == ZONE_DEVICE;
1484 }
1485 #else
1486 static inline bool zone_is_zone_device(struct zone *zone)
1487 {
1488 	return false;
1489 }
1490 #endif
1491 
1492 /*
1493  * Returns true if a zone has pages managed by the buddy allocator.
1494  * All the reclaim decisions have to use this function rather than
1495  * populated_zone(). If the whole zone is reserved then we can easily
1496  * end up with populated_zone() && !managed_zone().
1497  */
1498 static inline bool managed_zone(struct zone *zone)
1499 {
1500 	return zone_managed_pages(zone);
1501 }
1502 
1503 /* Returns true if a zone has memory */
1504 static inline bool populated_zone(struct zone *zone)
1505 {
1506 	return zone->present_pages;
1507 }
1508 
1509 #ifdef CONFIG_NUMA
1510 static inline int zone_to_nid(struct zone *zone)
1511 {
1512 	return zone->node;
1513 }
1514 
1515 static inline void zone_set_nid(struct zone *zone, int nid)
1516 {
1517 	zone->node = nid;
1518 }
1519 #else
1520 static inline int zone_to_nid(struct zone *zone)
1521 {
1522 	return 0;
1523 }
1524 
1525 static inline void zone_set_nid(struct zone *zone, int nid) {}
1526 #endif
1527 
1528 extern int movable_zone;
1529 
1530 static inline int is_highmem_idx(enum zone_type idx)
1531 {
1532 #ifdef CONFIG_HIGHMEM
1533 	return (idx == ZONE_HIGHMEM ||
1534 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1535 #else
1536 	return 0;
1537 #endif
1538 }
1539 
1540 /**
1541  * is_highmem - helper function to quickly check if a struct zone is a
1542  *              highmem zone or not.  This is an attempt to keep references
1543  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1544  * @zone: pointer to struct zone variable
1545  * Return: 1 for a highmem zone, 0 otherwise
1546  */
1547 static inline int is_highmem(struct zone *zone)
1548 {
1549 	return is_highmem_idx(zone_idx(zone));
1550 }
1551 
1552 #ifdef CONFIG_ZONE_DMA
1553 bool has_managed_dma(void);
1554 #else
1555 static inline bool has_managed_dma(void)
1556 {
1557 	return false;
1558 }
1559 #endif
1560 
1561 
1562 #ifndef CONFIG_NUMA
1563 
1564 extern struct pglist_data contig_page_data;
1565 static inline struct pglist_data *NODE_DATA(int nid)
1566 {
1567 	return &contig_page_data;
1568 }
1569 
1570 #else /* CONFIG_NUMA */
1571 
1572 #include <asm/mmzone.h>
1573 
1574 #endif /* !CONFIG_NUMA */
1575 
1576 extern struct pglist_data *first_online_pgdat(void);
1577 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1578 extern struct zone *next_zone(struct zone *zone);
1579 
1580 /**
1581  * for_each_online_pgdat - helper macro to iterate over all online nodes
1582  * @pgdat: pointer to a pg_data_t variable
1583  */
1584 #define for_each_online_pgdat(pgdat)			\
1585 	for (pgdat = first_online_pgdat();		\
1586 	     pgdat;					\
1587 	     pgdat = next_online_pgdat(pgdat))
1588 /**
1589  * for_each_zone - helper macro to iterate over all memory zones
1590  * @zone: pointer to struct zone variable
1591  *
1592  * The user only needs to declare the zone variable, for_each_zone
1593  * fills it in.
1594  */
1595 #define for_each_zone(zone)			        \
1596 	for (zone = (first_online_pgdat())->node_zones; \
1597 	     zone;					\
1598 	     zone = next_zone(zone))
1599 
1600 #define for_each_populated_zone(zone)		        \
1601 	for (zone = (first_online_pgdat())->node_zones; \
1602 	     zone;					\
1603 	     zone = next_zone(zone))			\
1604 		if (!populated_zone(zone))		\
1605 			; /* do nothing */		\
1606 		else
1607 
1608 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1609 {
1610 	return zoneref->zone;
1611 }
1612 
1613 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1614 {
1615 	return zoneref->zone_idx;
1616 }
1617 
1618 static inline int zonelist_node_idx(struct zoneref *zoneref)
1619 {
1620 	return zone_to_nid(zoneref->zone);
1621 }
1622 
1623 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1624 					enum zone_type highest_zoneidx,
1625 					nodemask_t *nodes);
1626 
1627 /**
1628  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1629  * @z: The cursor used as a starting point for the search
1630  * @highest_zoneidx: The zone index of the highest zone to return
1631  * @nodes: An optional nodemask to filter the zonelist with
1632  *
1633  * This function returns the next zone at or below a given zone index that is
1634  * within the allowed nodemask using a cursor as the starting point for the
1635  * search. The zoneref returned is a cursor that represents the current zone
1636  * being examined. It should be advanced by one before calling
1637  * next_zones_zonelist again.
1638  *
1639  * Return: the next zone at or below highest_zoneidx within the allowed
1640  * nodemask using a cursor within a zonelist as a starting point
1641  */
1642 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1643 					enum zone_type highest_zoneidx,
1644 					nodemask_t *nodes)
1645 {
1646 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1647 		return z;
1648 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1649 }
1650 
1651 /**
1652  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1653  * @zonelist: The zonelist to search for a suitable zone
1654  * @highest_zoneidx: The zone index of the highest zone to return
1655  * @nodes: An optional nodemask to filter the zonelist with
1656  *
1657  * This function returns the first zone at or below a given zone index that is
1658  * within the allowed nodemask. The zoneref returned is a cursor that can be
1659  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1660  * one before calling.
1661  *
1662  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1663  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1664  * update due to cpuset modification.
1665  *
1666  * Return: Zoneref pointer for the first suitable zone found
1667  */
1668 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1669 					enum zone_type highest_zoneidx,
1670 					nodemask_t *nodes)
1671 {
1672 	return next_zones_zonelist(zonelist->_zonerefs,
1673 							highest_zoneidx, nodes);
1674 }
1675 
1676 /**
1677  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1678  * @zone: The current zone in the iterator
1679  * @z: The current pointer within zonelist->_zonerefs being iterated
1680  * @zlist: The zonelist being iterated
1681  * @highidx: The zone index of the highest zone to return
1682  * @nodemask: Nodemask allowed by the allocator
1683  *
1684  * This iterator iterates though all zones at or below a given zone index and
1685  * within a given nodemask
1686  */
1687 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1688 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1689 		zone;							\
1690 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1691 			zone = zonelist_zone(z))
1692 
1693 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1694 	for (zone = z->zone;	\
1695 		zone;							\
1696 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1697 			zone = zonelist_zone(z))
1698 
1699 
1700 /**
1701  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1702  * @zone: The current zone in the iterator
1703  * @z: The current pointer within zonelist->zones being iterated
1704  * @zlist: The zonelist being iterated
1705  * @highidx: The zone index of the highest zone to return
1706  *
1707  * This iterator iterates though all zones at or below a given zone index.
1708  */
1709 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1710 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1711 
1712 /* Whether the 'nodes' are all movable nodes */
1713 static inline bool movable_only_nodes(nodemask_t *nodes)
1714 {
1715 	struct zonelist *zonelist;
1716 	struct zoneref *z;
1717 	int nid;
1718 
1719 	if (nodes_empty(*nodes))
1720 		return false;
1721 
1722 	/*
1723 	 * We can chose arbitrary node from the nodemask to get a
1724 	 * zonelist as they are interlinked. We just need to find
1725 	 * at least one zone that can satisfy kernel allocations.
1726 	 */
1727 	nid = first_node(*nodes);
1728 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1729 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1730 	return (!z->zone) ? true : false;
1731 }
1732 
1733 
1734 #ifdef CONFIG_SPARSEMEM
1735 #include <asm/sparsemem.h>
1736 #endif
1737 
1738 #ifdef CONFIG_FLATMEM
1739 #define pfn_to_nid(pfn)		(0)
1740 #endif
1741 
1742 #ifdef CONFIG_SPARSEMEM
1743 
1744 /*
1745  * PA_SECTION_SHIFT		physical address to/from section number
1746  * PFN_SECTION_SHIFT		pfn to/from section number
1747  */
1748 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1749 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1750 
1751 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1752 
1753 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1754 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1755 
1756 #define SECTION_BLOCKFLAGS_BITS \
1757 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1758 
1759 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1760 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1761 #endif
1762 
1763 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1764 {
1765 	return pfn >> PFN_SECTION_SHIFT;
1766 }
1767 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1768 {
1769 	return sec << PFN_SECTION_SHIFT;
1770 }
1771 
1772 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1773 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1774 
1775 #define SUBSECTION_SHIFT 21
1776 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1777 
1778 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1779 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1780 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1781 
1782 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1783 #error Subsection size exceeds section size
1784 #else
1785 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1786 #endif
1787 
1788 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1789 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1790 
1791 struct mem_section_usage {
1792 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1793 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1794 #endif
1795 	/* See declaration of similar field in struct zone */
1796 	unsigned long pageblock_flags[0];
1797 };
1798 
1799 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1800 
1801 struct page;
1802 struct page_ext;
1803 struct mem_section {
1804 	/*
1805 	 * This is, logically, a pointer to an array of struct
1806 	 * pages.  However, it is stored with some other magic.
1807 	 * (see sparse.c::sparse_init_one_section())
1808 	 *
1809 	 * Additionally during early boot we encode node id of
1810 	 * the location of the section here to guide allocation.
1811 	 * (see sparse.c::memory_present())
1812 	 *
1813 	 * Making it a UL at least makes someone do a cast
1814 	 * before using it wrong.
1815 	 */
1816 	unsigned long section_mem_map;
1817 
1818 	struct mem_section_usage *usage;
1819 #ifdef CONFIG_PAGE_EXTENSION
1820 	/*
1821 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1822 	 * section. (see page_ext.h about this.)
1823 	 */
1824 	struct page_ext *page_ext;
1825 	unsigned long pad;
1826 #endif
1827 	/*
1828 	 * WARNING: mem_section must be a power-of-2 in size for the
1829 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1830 	 */
1831 };
1832 
1833 #ifdef CONFIG_SPARSEMEM_EXTREME
1834 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1835 #else
1836 #define SECTIONS_PER_ROOT	1
1837 #endif
1838 
1839 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1840 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1841 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1842 
1843 #ifdef CONFIG_SPARSEMEM_EXTREME
1844 extern struct mem_section **mem_section;
1845 #else
1846 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1847 #endif
1848 
1849 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1850 {
1851 	return ms->usage->pageblock_flags;
1852 }
1853 
1854 static inline struct mem_section *__nr_to_section(unsigned long nr)
1855 {
1856 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1857 
1858 	if (unlikely(root >= NR_SECTION_ROOTS))
1859 		return NULL;
1860 
1861 #ifdef CONFIG_SPARSEMEM_EXTREME
1862 	if (!mem_section || !mem_section[root])
1863 		return NULL;
1864 #endif
1865 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1866 }
1867 extern size_t mem_section_usage_size(void);
1868 
1869 /*
1870  * We use the lower bits of the mem_map pointer to store
1871  * a little bit of information.  The pointer is calculated
1872  * as mem_map - section_nr_to_pfn(pnum).  The result is
1873  * aligned to the minimum alignment of the two values:
1874  *   1. All mem_map arrays are page-aligned.
1875  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1876  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1877  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1878  *      worst combination is powerpc with 256k pages,
1879  *      which results in PFN_SECTION_SHIFT equal 6.
1880  * To sum it up, at least 6 bits are available on all architectures.
1881  * However, we can exceed 6 bits on some other architectures except
1882  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1883  * with the worst case of 64K pages on arm64) if we make sure the
1884  * exceeded bit is not applicable to powerpc.
1885  */
1886 enum {
1887 	SECTION_MARKED_PRESENT_BIT,
1888 	SECTION_HAS_MEM_MAP_BIT,
1889 	SECTION_IS_ONLINE_BIT,
1890 	SECTION_IS_EARLY_BIT,
1891 #ifdef CONFIG_ZONE_DEVICE
1892 	SECTION_TAINT_ZONE_DEVICE_BIT,
1893 #endif
1894 	SECTION_MAP_LAST_BIT,
1895 };
1896 
1897 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1898 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1899 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1900 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1901 #ifdef CONFIG_ZONE_DEVICE
1902 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1903 #endif
1904 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1905 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1906 
1907 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1908 {
1909 	unsigned long map = section->section_mem_map;
1910 	map &= SECTION_MAP_MASK;
1911 	return (struct page *)map;
1912 }
1913 
1914 static inline int present_section(struct mem_section *section)
1915 {
1916 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1917 }
1918 
1919 static inline int present_section_nr(unsigned long nr)
1920 {
1921 	return present_section(__nr_to_section(nr));
1922 }
1923 
1924 static inline int valid_section(struct mem_section *section)
1925 {
1926 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1927 }
1928 
1929 static inline int early_section(struct mem_section *section)
1930 {
1931 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1932 }
1933 
1934 static inline int valid_section_nr(unsigned long nr)
1935 {
1936 	return valid_section(__nr_to_section(nr));
1937 }
1938 
1939 static inline int online_section(struct mem_section *section)
1940 {
1941 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1942 }
1943 
1944 #ifdef CONFIG_ZONE_DEVICE
1945 static inline int online_device_section(struct mem_section *section)
1946 {
1947 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1948 
1949 	return section && ((section->section_mem_map & flags) == flags);
1950 }
1951 #else
1952 static inline int online_device_section(struct mem_section *section)
1953 {
1954 	return 0;
1955 }
1956 #endif
1957 
1958 static inline int online_section_nr(unsigned long nr)
1959 {
1960 	return online_section(__nr_to_section(nr));
1961 }
1962 
1963 #ifdef CONFIG_MEMORY_HOTPLUG
1964 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1965 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1966 #endif
1967 
1968 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1969 {
1970 	return __nr_to_section(pfn_to_section_nr(pfn));
1971 }
1972 
1973 extern unsigned long __highest_present_section_nr;
1974 
1975 static inline int subsection_map_index(unsigned long pfn)
1976 {
1977 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1978 }
1979 
1980 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1981 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1982 {
1983 	int idx = subsection_map_index(pfn);
1984 
1985 	return test_bit(idx, ms->usage->subsection_map);
1986 }
1987 #else
1988 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1989 {
1990 	return 1;
1991 }
1992 #endif
1993 
1994 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1995 /**
1996  * pfn_valid - check if there is a valid memory map entry for a PFN
1997  * @pfn: the page frame number to check
1998  *
1999  * Check if there is a valid memory map entry aka struct page for the @pfn.
2000  * Note, that availability of the memory map entry does not imply that
2001  * there is actual usable memory at that @pfn. The struct page may
2002  * represent a hole or an unusable page frame.
2003  *
2004  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2005  */
2006 static inline int pfn_valid(unsigned long pfn)
2007 {
2008 	struct mem_section *ms;
2009 
2010 	/*
2011 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2012 	 * pfn. Else it might lead to false positives when
2013 	 * some of the upper bits are set, but the lower bits
2014 	 * match a valid pfn.
2015 	 */
2016 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2017 		return 0;
2018 
2019 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2020 		return 0;
2021 	ms = __pfn_to_section(pfn);
2022 	if (!valid_section(ms))
2023 		return 0;
2024 	/*
2025 	 * Traditionally early sections always returned pfn_valid() for
2026 	 * the entire section-sized span.
2027 	 */
2028 	return early_section(ms) || pfn_section_valid(ms, pfn);
2029 }
2030 #endif
2031 
2032 static inline int pfn_in_present_section(unsigned long pfn)
2033 {
2034 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2035 		return 0;
2036 	return present_section(__pfn_to_section(pfn));
2037 }
2038 
2039 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2040 {
2041 	while (++section_nr <= __highest_present_section_nr) {
2042 		if (present_section_nr(section_nr))
2043 			return section_nr;
2044 	}
2045 
2046 	return -1;
2047 }
2048 
2049 /*
2050  * These are _only_ used during initialisation, therefore they
2051  * can use __initdata ...  They could have names to indicate
2052  * this restriction.
2053  */
2054 #ifdef CONFIG_NUMA
2055 #define pfn_to_nid(pfn)							\
2056 ({									\
2057 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2058 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2059 })
2060 #else
2061 #define pfn_to_nid(pfn)		(0)
2062 #endif
2063 
2064 void sparse_init(void);
2065 #else
2066 #define sparse_init()	do {} while (0)
2067 #define sparse_index_init(_sec, _nid)  do {} while (0)
2068 #define pfn_in_present_section pfn_valid
2069 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2070 #endif /* CONFIG_SPARSEMEM */
2071 
2072 #endif /* !__GENERATING_BOUNDS.H */
2073 #endif /* !__ASSEMBLY__ */
2074 #endif /* _LINUX_MMZONE_H */
2075