1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/list_nulls.h> 11 #include <linux/wait.h> 12 #include <linux/bitops.h> 13 #include <linux/cache.h> 14 #include <linux/threads.h> 15 #include <linux/numa.h> 16 #include <linux/init.h> 17 #include <linux/seqlock.h> 18 #include <linux/nodemask.h> 19 #include <linux/pageblock-flags.h> 20 #include <linux/page-flags-layout.h> 21 #include <linux/atomic.h> 22 #include <linux/mm_types.h> 23 #include <linux/page-flags.h> 24 #include <linux/local_lock.h> 25 #include <asm/page.h> 26 27 /* Free memory management - zoned buddy allocator. */ 28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29 #define MAX_ORDER 10 30 #else 31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32 #endif 33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER) 34 35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 36 37 /* 38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 39 * costly to service. That is between allocation orders which should 40 * coalesce naturally under reasonable reclaim pressure and those which 41 * will not. 42 */ 43 #define PAGE_ALLOC_COSTLY_ORDER 3 44 45 enum migratetype { 46 MIGRATE_UNMOVABLE, 47 MIGRATE_MOVABLE, 48 MIGRATE_RECLAIMABLE, 49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 51 #ifdef CONFIG_CMA 52 /* 53 * MIGRATE_CMA migration type is designed to mimic the way 54 * ZONE_MOVABLE works. Only movable pages can be allocated 55 * from MIGRATE_CMA pageblocks and page allocator never 56 * implicitly change migration type of MIGRATE_CMA pageblock. 57 * 58 * The way to use it is to change migratetype of a range of 59 * pageblocks to MIGRATE_CMA which can be done by 60 * __free_pageblock_cma() function. 61 */ 62 MIGRATE_CMA, 63 #endif 64 #ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66 #endif 67 MIGRATE_TYPES 68 }; 69 70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71 extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73 #ifdef CONFIG_CMA 74 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76 #else 77 # define is_migrate_cma(migratetype) false 78 # define is_migrate_cma_page(_page) false 79 #endif 80 81 static inline bool is_migrate_movable(int mt) 82 { 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84 } 85 86 /* 87 * Check whether a migratetype can be merged with another migratetype. 88 * 89 * It is only mergeable when it can fall back to other migratetypes for 90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 91 */ 92 static inline bool migratetype_is_mergeable(int mt) 93 { 94 return mt < MIGRATE_PCPTYPES; 95 } 96 97 #define for_each_migratetype_order(order, type) \ 98 for (order = 0; order <= MAX_ORDER; order++) \ 99 for (type = 0; type < MIGRATE_TYPES; type++) 100 101 extern int page_group_by_mobility_disabled; 102 103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 104 105 #define get_pageblock_migratetype(page) \ 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 107 108 #define folio_migratetype(folio) \ 109 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ 110 MIGRATETYPE_MASK) 111 struct free_area { 112 struct list_head free_list[MIGRATE_TYPES]; 113 unsigned long nr_free; 114 }; 115 116 struct pglist_data; 117 118 #ifdef CONFIG_NUMA 119 enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_EVENT_ITEMS 127 }; 128 #else 129 #define NR_VM_NUMA_EVENT_ITEMS 0 130 #endif 131 132 enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 /* Second 128 byte cacheline */ 144 NR_BOUNCE, 145 #if IS_ENABLED(CONFIG_ZSMALLOC) 146 NR_ZSPAGES, /* allocated in zsmalloc */ 147 #endif 148 NR_FREE_CMA_PAGES, 149 #ifdef CONFIG_UNACCEPTED_MEMORY 150 NR_UNACCEPTED, 151 #endif 152 NR_VM_ZONE_STAT_ITEMS }; 153 154 enum node_stat_item { 155 NR_LRU_BASE, 156 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 157 NR_ACTIVE_ANON, /* " " " " " */ 158 NR_INACTIVE_FILE, /* " " " " " */ 159 NR_ACTIVE_FILE, /* " " " " " */ 160 NR_UNEVICTABLE, /* " " " " " */ 161 NR_SLAB_RECLAIMABLE_B, 162 NR_SLAB_UNRECLAIMABLE_B, 163 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 164 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 165 WORKINGSET_NODES, 166 WORKINGSET_REFAULT_BASE, 167 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 168 WORKINGSET_REFAULT_FILE, 169 WORKINGSET_ACTIVATE_BASE, 170 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 171 WORKINGSET_ACTIVATE_FILE, 172 WORKINGSET_RESTORE_BASE, 173 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 174 WORKINGSET_RESTORE_FILE, 175 WORKINGSET_NODERECLAIM, 176 NR_ANON_MAPPED, /* Mapped anonymous pages */ 177 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 178 only modified from process context */ 179 NR_FILE_PAGES, 180 NR_FILE_DIRTY, 181 NR_WRITEBACK, 182 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 183 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 184 NR_SHMEM_THPS, 185 NR_SHMEM_PMDMAPPED, 186 NR_FILE_THPS, 187 NR_FILE_PMDMAPPED, 188 NR_ANON_THPS, 189 NR_VMSCAN_WRITE, 190 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 191 NR_DIRTIED, /* page dirtyings since bootup */ 192 NR_WRITTEN, /* page writings since bootup */ 193 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 194 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 195 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 196 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 197 NR_KERNEL_STACK_KB, /* measured in KiB */ 198 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 199 NR_KERNEL_SCS_KB, /* measured in KiB */ 200 #endif 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 203 #ifdef CONFIG_SWAP 204 NR_SWAPCACHE, 205 #endif 206 #ifdef CONFIG_NUMA_BALANCING 207 PGPROMOTE_SUCCESS, /* promote successfully */ 208 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 209 #endif 210 NR_VM_NODE_STAT_ITEMS 211 }; 212 213 /* 214 * Returns true if the item should be printed in THPs (/proc/vmstat 215 * currently prints number of anon, file and shmem THPs. But the item 216 * is charged in pages). 217 */ 218 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 219 { 220 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 221 return false; 222 223 return item == NR_ANON_THPS || 224 item == NR_FILE_THPS || 225 item == NR_SHMEM_THPS || 226 item == NR_SHMEM_PMDMAPPED || 227 item == NR_FILE_PMDMAPPED; 228 } 229 230 /* 231 * Returns true if the value is measured in bytes (most vmstat values are 232 * measured in pages). This defines the API part, the internal representation 233 * might be different. 234 */ 235 static __always_inline bool vmstat_item_in_bytes(int idx) 236 { 237 /* 238 * Global and per-node slab counters track slab pages. 239 * It's expected that changes are multiples of PAGE_SIZE. 240 * Internally values are stored in pages. 241 * 242 * Per-memcg and per-lruvec counters track memory, consumed 243 * by individual slab objects. These counters are actually 244 * byte-precise. 245 */ 246 return (idx == NR_SLAB_RECLAIMABLE_B || 247 idx == NR_SLAB_UNRECLAIMABLE_B); 248 } 249 250 /* 251 * We do arithmetic on the LRU lists in various places in the code, 252 * so it is important to keep the active lists LRU_ACTIVE higher in 253 * the array than the corresponding inactive lists, and to keep 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 255 * 256 * This has to be kept in sync with the statistics in zone_stat_item 257 * above and the descriptions in vmstat_text in mm/vmstat.c 258 */ 259 #define LRU_BASE 0 260 #define LRU_ACTIVE 1 261 #define LRU_FILE 2 262 263 enum lru_list { 264 LRU_INACTIVE_ANON = LRU_BASE, 265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 268 LRU_UNEVICTABLE, 269 NR_LRU_LISTS 270 }; 271 272 enum vmscan_throttle_state { 273 VMSCAN_THROTTLE_WRITEBACK, 274 VMSCAN_THROTTLE_ISOLATED, 275 VMSCAN_THROTTLE_NOPROGRESS, 276 VMSCAN_THROTTLE_CONGESTED, 277 NR_VMSCAN_THROTTLE, 278 }; 279 280 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 281 282 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 283 284 static inline bool is_file_lru(enum lru_list lru) 285 { 286 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 287 } 288 289 static inline bool is_active_lru(enum lru_list lru) 290 { 291 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 292 } 293 294 #define WORKINGSET_ANON 0 295 #define WORKINGSET_FILE 1 296 #define ANON_AND_FILE 2 297 298 enum lruvec_flags { 299 /* 300 * An lruvec has many dirty pages backed by a congested BDI: 301 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. 302 * It can be cleared by cgroup reclaim or kswapd. 303 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. 304 * It can only be cleared by kswapd. 305 * 306 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup 307 * reclaim, but not vice versa. This only applies to the root cgroup. 308 * The goal is to prevent cgroup reclaim on the root cgroup (e.g. 309 * memory.reclaim) to unthrottle an unbalanced node (that was throttled 310 * by kswapd). 311 */ 312 LRUVEC_CGROUP_CONGESTED, 313 LRUVEC_NODE_CONGESTED, 314 }; 315 316 #endif /* !__GENERATING_BOUNDS_H */ 317 318 /* 319 * Evictable pages are divided into multiple generations. The youngest and the 320 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 321 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 322 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 323 * corresponding generation. The gen counter in folio->flags stores gen+1 while 324 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 325 * 326 * A page is added to the youngest generation on faulting. The aging needs to 327 * check the accessed bit at least twice before handing this page over to the 328 * eviction. The first check takes care of the accessed bit set on the initial 329 * fault; the second check makes sure this page hasn't been used since then. 330 * This process, AKA second chance, requires a minimum of two generations, 331 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 332 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 333 * rest of generations, if they exist, are considered inactive. See 334 * lru_gen_is_active(). 335 * 336 * PG_active is always cleared while a page is on one of lrugen->folios[] so 337 * that the aging needs not to worry about it. And it's set again when a page 338 * considered active is isolated for non-reclaiming purposes, e.g., migration. 339 * See lru_gen_add_folio() and lru_gen_del_folio(). 340 * 341 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 342 * number of categories of the active/inactive LRU when keeping track of 343 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 344 * in folio->flags. 345 */ 346 #define MIN_NR_GENS 2U 347 #define MAX_NR_GENS 4U 348 349 /* 350 * Each generation is divided into multiple tiers. A page accessed N times 351 * through file descriptors is in tier order_base_2(N). A page in the first tier 352 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 353 * tables or read ahead. A page in any other tier (N>1) is marked by 354 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 355 * supported without using additional bits in folio->flags. 356 * 357 * In contrast to moving across generations which requires the LRU lock, moving 358 * across tiers only involves atomic operations on folio->flags and therefore 359 * has a negligible cost in the buffered access path. In the eviction path, 360 * comparisons of refaulted/(evicted+protected) from the first tier and the 361 * rest infer whether pages accessed multiple times through file descriptors 362 * are statistically hot and thus worth protecting. 363 * 364 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 365 * number of categories of the active/inactive LRU when keeping track of 366 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 367 * folio->flags. 368 */ 369 #define MAX_NR_TIERS 4U 370 371 #ifndef __GENERATING_BOUNDS_H 372 373 struct lruvec; 374 struct page_vma_mapped_walk; 375 376 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 377 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 378 379 #ifdef CONFIG_LRU_GEN 380 381 enum { 382 LRU_GEN_ANON, 383 LRU_GEN_FILE, 384 }; 385 386 enum { 387 LRU_GEN_CORE, 388 LRU_GEN_MM_WALK, 389 LRU_GEN_NONLEAF_YOUNG, 390 NR_LRU_GEN_CAPS 391 }; 392 393 #define MIN_LRU_BATCH BITS_PER_LONG 394 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 395 396 /* whether to keep historical stats from evicted generations */ 397 #ifdef CONFIG_LRU_GEN_STATS 398 #define NR_HIST_GENS MAX_NR_GENS 399 #else 400 #define NR_HIST_GENS 1U 401 #endif 402 403 /* 404 * The youngest generation number is stored in max_seq for both anon and file 405 * types as they are aged on an equal footing. The oldest generation numbers are 406 * stored in min_seq[] separately for anon and file types as clean file pages 407 * can be evicted regardless of swap constraints. 408 * 409 * Normally anon and file min_seq are in sync. But if swapping is constrained, 410 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 411 * min_seq behind. 412 * 413 * The number of pages in each generation is eventually consistent and therefore 414 * can be transiently negative when reset_batch_size() is pending. 415 */ 416 struct lru_gen_folio { 417 /* the aging increments the youngest generation number */ 418 unsigned long max_seq; 419 /* the eviction increments the oldest generation numbers */ 420 unsigned long min_seq[ANON_AND_FILE]; 421 /* the birth time of each generation in jiffies */ 422 unsigned long timestamps[MAX_NR_GENS]; 423 /* the multi-gen LRU lists, lazily sorted on eviction */ 424 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 425 /* the multi-gen LRU sizes, eventually consistent */ 426 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 427 /* the exponential moving average of refaulted */ 428 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 429 /* the exponential moving average of evicted+protected */ 430 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 431 /* the first tier doesn't need protection, hence the minus one */ 432 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 433 /* can be modified without holding the LRU lock */ 434 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 435 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 436 /* whether the multi-gen LRU is enabled */ 437 bool enabled; 438 #ifdef CONFIG_MEMCG 439 /* the memcg generation this lru_gen_folio belongs to */ 440 u8 gen; 441 /* the list segment this lru_gen_folio belongs to */ 442 u8 seg; 443 /* per-node lru_gen_folio list for global reclaim */ 444 struct hlist_nulls_node list; 445 #endif 446 }; 447 448 enum { 449 MM_LEAF_TOTAL, /* total leaf entries */ 450 MM_LEAF_OLD, /* old leaf entries */ 451 MM_LEAF_YOUNG, /* young leaf entries */ 452 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 453 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 454 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 455 NR_MM_STATS 456 }; 457 458 /* double-buffering Bloom filters */ 459 #define NR_BLOOM_FILTERS 2 460 461 struct lru_gen_mm_state { 462 /* set to max_seq after each iteration */ 463 unsigned long seq; 464 /* where the current iteration continues after */ 465 struct list_head *head; 466 /* where the last iteration ended before */ 467 struct list_head *tail; 468 /* Bloom filters flip after each iteration */ 469 unsigned long *filters[NR_BLOOM_FILTERS]; 470 /* the mm stats for debugging */ 471 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 472 }; 473 474 struct lru_gen_mm_walk { 475 /* the lruvec under reclaim */ 476 struct lruvec *lruvec; 477 /* unstable max_seq from lru_gen_folio */ 478 unsigned long max_seq; 479 /* the next address within an mm to scan */ 480 unsigned long next_addr; 481 /* to batch promoted pages */ 482 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 483 /* to batch the mm stats */ 484 int mm_stats[NR_MM_STATS]; 485 /* total batched items */ 486 int batched; 487 bool can_swap; 488 bool force_scan; 489 }; 490 491 void lru_gen_init_lruvec(struct lruvec *lruvec); 492 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 493 494 #ifdef CONFIG_MEMCG 495 496 /* 497 * For each node, memcgs are divided into two generations: the old and the 498 * young. For each generation, memcgs are randomly sharded into multiple bins 499 * to improve scalability. For each bin, the hlist_nulls is virtually divided 500 * into three segments: the head, the tail and the default. 501 * 502 * An onlining memcg is added to the tail of a random bin in the old generation. 503 * The eviction starts at the head of a random bin in the old generation. The 504 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 505 * the old generation, is incremented when all its bins become empty. 506 * 507 * There are four operations: 508 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its 509 * current generation (old or young) and updates its "seg" to "head"; 510 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its 511 * current generation (old or young) and updates its "seg" to "tail"; 512 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old 513 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 514 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the 515 * young generation, updates its "gen" to "young" and resets its "seg" to 516 * "default". 517 * 518 * The events that trigger the above operations are: 519 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 520 * 2. The first attempt to reclaim an memcg below low, which triggers 521 * MEMCG_LRU_TAIL; 522 * 3. The first attempt to reclaim an memcg below reclaimable size threshold, 523 * which triggers MEMCG_LRU_TAIL; 524 * 4. The second attempt to reclaim an memcg below reclaimable size threshold, 525 * which triggers MEMCG_LRU_YOUNG; 526 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 527 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 528 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. 529 * 530 * Note that memcg LRU only applies to global reclaim, and the round-robin 531 * incrementing of their max_seq counters ensures the eventual fairness to all 532 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 533 */ 534 #define MEMCG_NR_GENS 2 535 #define MEMCG_NR_BINS 8 536 537 struct lru_gen_memcg { 538 /* the per-node memcg generation counter */ 539 unsigned long seq; 540 /* each memcg has one lru_gen_folio per node */ 541 unsigned long nr_memcgs[MEMCG_NR_GENS]; 542 /* per-node lru_gen_folio list for global reclaim */ 543 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 544 /* protects the above */ 545 spinlock_t lock; 546 }; 547 548 void lru_gen_init_pgdat(struct pglist_data *pgdat); 549 550 void lru_gen_init_memcg(struct mem_cgroup *memcg); 551 void lru_gen_exit_memcg(struct mem_cgroup *memcg); 552 void lru_gen_online_memcg(struct mem_cgroup *memcg); 553 void lru_gen_offline_memcg(struct mem_cgroup *memcg); 554 void lru_gen_release_memcg(struct mem_cgroup *memcg); 555 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); 556 557 #else /* !CONFIG_MEMCG */ 558 559 #define MEMCG_NR_GENS 1 560 561 struct lru_gen_memcg { 562 }; 563 564 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 565 { 566 } 567 568 #endif /* CONFIG_MEMCG */ 569 570 #else /* !CONFIG_LRU_GEN */ 571 572 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 573 { 574 } 575 576 static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 577 { 578 } 579 580 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 581 { 582 } 583 584 #ifdef CONFIG_MEMCG 585 586 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 587 { 588 } 589 590 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 591 { 592 } 593 594 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 595 { 596 } 597 598 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 599 { 600 } 601 602 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 603 { 604 } 605 606 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 607 { 608 } 609 610 #endif /* CONFIG_MEMCG */ 611 612 #endif /* CONFIG_LRU_GEN */ 613 614 struct lruvec { 615 struct list_head lists[NR_LRU_LISTS]; 616 /* per lruvec lru_lock for memcg */ 617 spinlock_t lru_lock; 618 /* 619 * These track the cost of reclaiming one LRU - file or anon - 620 * over the other. As the observed cost of reclaiming one LRU 621 * increases, the reclaim scan balance tips toward the other. 622 */ 623 unsigned long anon_cost; 624 unsigned long file_cost; 625 /* Non-resident age, driven by LRU movement */ 626 atomic_long_t nonresident_age; 627 /* Refaults at the time of last reclaim cycle */ 628 unsigned long refaults[ANON_AND_FILE]; 629 /* Various lruvec state flags (enum lruvec_flags) */ 630 unsigned long flags; 631 #ifdef CONFIG_LRU_GEN 632 /* evictable pages divided into generations */ 633 struct lru_gen_folio lrugen; 634 /* to concurrently iterate lru_gen_mm_list */ 635 struct lru_gen_mm_state mm_state; 636 #endif 637 #ifdef CONFIG_MEMCG 638 struct pglist_data *pgdat; 639 #endif 640 }; 641 642 /* Isolate for asynchronous migration */ 643 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 644 /* Isolate unevictable pages */ 645 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 646 647 /* LRU Isolation modes. */ 648 typedef unsigned __bitwise isolate_mode_t; 649 650 enum zone_watermarks { 651 WMARK_MIN, 652 WMARK_LOW, 653 WMARK_HIGH, 654 WMARK_PROMO, 655 NR_WMARK 656 }; 657 658 /* 659 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 660 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 661 * it should not contribute to serious fragmentation causing THP allocation 662 * failures. 663 */ 664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 665 #define NR_PCP_THP 1 666 #else 667 #define NR_PCP_THP 0 668 #endif 669 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 670 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 671 672 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 673 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 674 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 675 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 676 677 /* 678 * Flags used in pcp->flags field. 679 * 680 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the 681 * previous page freeing. To avoid to drain PCP for an accident 682 * high-order page freeing. 683 * 684 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before 685 * draining PCP for consecutive high-order pages freeing without 686 * allocation if data cache slice of CPU is large enough. To reduce 687 * zone lock contention and keep cache-hot pages reusing. 688 */ 689 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0) 690 #define PCPF_FREE_HIGH_BATCH BIT(1) 691 692 struct per_cpu_pages { 693 spinlock_t lock; /* Protects lists field */ 694 int count; /* number of pages in the list */ 695 int high; /* high watermark, emptying needed */ 696 int high_min; /* min high watermark */ 697 int high_max; /* max high watermark */ 698 int batch; /* chunk size for buddy add/remove */ 699 u8 flags; /* protected by pcp->lock */ 700 u8 alloc_factor; /* batch scaling factor during allocate */ 701 #ifdef CONFIG_NUMA 702 u8 expire; /* When 0, remote pagesets are drained */ 703 #endif 704 short free_count; /* consecutive free count */ 705 706 /* Lists of pages, one per migrate type stored on the pcp-lists */ 707 struct list_head lists[NR_PCP_LISTS]; 708 } ____cacheline_aligned_in_smp; 709 710 struct per_cpu_zonestat { 711 #ifdef CONFIG_SMP 712 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 713 s8 stat_threshold; 714 #endif 715 #ifdef CONFIG_NUMA 716 /* 717 * Low priority inaccurate counters that are only folded 718 * on demand. Use a large type to avoid the overhead of 719 * folding during refresh_cpu_vm_stats. 720 */ 721 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 722 #endif 723 }; 724 725 struct per_cpu_nodestat { 726 s8 stat_threshold; 727 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 728 }; 729 730 #endif /* !__GENERATING_BOUNDS.H */ 731 732 enum zone_type { 733 /* 734 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 735 * to DMA to all of the addressable memory (ZONE_NORMAL). 736 * On architectures where this area covers the whole 32 bit address 737 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 738 * DMA addressing constraints. This distinction is important as a 32bit 739 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 740 * platforms may need both zones as they support peripherals with 741 * different DMA addressing limitations. 742 */ 743 #ifdef CONFIG_ZONE_DMA 744 ZONE_DMA, 745 #endif 746 #ifdef CONFIG_ZONE_DMA32 747 ZONE_DMA32, 748 #endif 749 /* 750 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 751 * performed on pages in ZONE_NORMAL if the DMA devices support 752 * transfers to all addressable memory. 753 */ 754 ZONE_NORMAL, 755 #ifdef CONFIG_HIGHMEM 756 /* 757 * A memory area that is only addressable by the kernel through 758 * mapping portions into its own address space. This is for example 759 * used by i386 to allow the kernel to address the memory beyond 760 * 900MB. The kernel will set up special mappings (page 761 * table entries on i386) for each page that the kernel needs to 762 * access. 763 */ 764 ZONE_HIGHMEM, 765 #endif 766 /* 767 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 768 * movable pages with few exceptional cases described below. Main use 769 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 770 * likely to succeed, and to locally limit unmovable allocations - e.g., 771 * to increase the number of THP/huge pages. Notable special cases are: 772 * 773 * 1. Pinned pages: (long-term) pinning of movable pages might 774 * essentially turn such pages unmovable. Therefore, we do not allow 775 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 776 * faulted, they come from the right zone right away. However, it is 777 * still possible that address space already has pages in 778 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 779 * touches that memory before pinning). In such case we migrate them 780 * to a different zone. When migration fails - pinning fails. 781 * 2. memblock allocations: kernelcore/movablecore setups might create 782 * situations where ZONE_MOVABLE contains unmovable allocations 783 * after boot. Memory offlining and allocations fail early. 784 * 3. Memory holes: kernelcore/movablecore setups might create very rare 785 * situations where ZONE_MOVABLE contains memory holes after boot, 786 * for example, if we have sections that are only partially 787 * populated. Memory offlining and allocations fail early. 788 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 789 * memory offlining, such pages cannot be allocated. 790 * 5. Unmovable PG_offline pages: in paravirtualized environments, 791 * hotplugged memory blocks might only partially be managed by the 792 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 793 * parts not manged by the buddy are unmovable PG_offline pages. In 794 * some cases (virtio-mem), such pages can be skipped during 795 * memory offlining, however, cannot be moved/allocated. These 796 * techniques might use alloc_contig_range() to hide previously 797 * exposed pages from the buddy again (e.g., to implement some sort 798 * of memory unplug in virtio-mem). 799 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 800 * situations where ZERO_PAGE(0) which is allocated differently 801 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 802 * cannot be migrated. 803 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 804 * memory to the MOVABLE zone, the vmemmap pages are also placed in 805 * such zone. Such pages cannot be really moved around as they are 806 * self-stored in the range, but they are treated as movable when 807 * the range they describe is about to be offlined. 808 * 809 * In general, no unmovable allocations that degrade memory offlining 810 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 811 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 812 * if has_unmovable_pages() states that there are no unmovable pages, 813 * there can be false negatives). 814 */ 815 ZONE_MOVABLE, 816 #ifdef CONFIG_ZONE_DEVICE 817 ZONE_DEVICE, 818 #endif 819 __MAX_NR_ZONES 820 821 }; 822 823 #ifndef __GENERATING_BOUNDS_H 824 825 #define ASYNC_AND_SYNC 2 826 827 struct zone { 828 /* Read-mostly fields */ 829 830 /* zone watermarks, access with *_wmark_pages(zone) macros */ 831 unsigned long _watermark[NR_WMARK]; 832 unsigned long watermark_boost; 833 834 unsigned long nr_reserved_highatomic; 835 836 /* 837 * We don't know if the memory that we're going to allocate will be 838 * freeable or/and it will be released eventually, so to avoid totally 839 * wasting several GB of ram we must reserve some of the lower zone 840 * memory (otherwise we risk to run OOM on the lower zones despite 841 * there being tons of freeable ram on the higher zones). This array is 842 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 843 * changes. 844 */ 845 long lowmem_reserve[MAX_NR_ZONES]; 846 847 #ifdef CONFIG_NUMA 848 int node; 849 #endif 850 struct pglist_data *zone_pgdat; 851 struct per_cpu_pages __percpu *per_cpu_pageset; 852 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 853 /* 854 * the high and batch values are copied to individual pagesets for 855 * faster access 856 */ 857 int pageset_high_min; 858 int pageset_high_max; 859 int pageset_batch; 860 861 #ifndef CONFIG_SPARSEMEM 862 /* 863 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 864 * In SPARSEMEM, this map is stored in struct mem_section 865 */ 866 unsigned long *pageblock_flags; 867 #endif /* CONFIG_SPARSEMEM */ 868 869 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 870 unsigned long zone_start_pfn; 871 872 /* 873 * spanned_pages is the total pages spanned by the zone, including 874 * holes, which is calculated as: 875 * spanned_pages = zone_end_pfn - zone_start_pfn; 876 * 877 * present_pages is physical pages existing within the zone, which 878 * is calculated as: 879 * present_pages = spanned_pages - absent_pages(pages in holes); 880 * 881 * present_early_pages is present pages existing within the zone 882 * located on memory available since early boot, excluding hotplugged 883 * memory. 884 * 885 * managed_pages is present pages managed by the buddy system, which 886 * is calculated as (reserved_pages includes pages allocated by the 887 * bootmem allocator): 888 * managed_pages = present_pages - reserved_pages; 889 * 890 * cma pages is present pages that are assigned for CMA use 891 * (MIGRATE_CMA). 892 * 893 * So present_pages may be used by memory hotplug or memory power 894 * management logic to figure out unmanaged pages by checking 895 * (present_pages - managed_pages). And managed_pages should be used 896 * by page allocator and vm scanner to calculate all kinds of watermarks 897 * and thresholds. 898 * 899 * Locking rules: 900 * 901 * zone_start_pfn and spanned_pages are protected by span_seqlock. 902 * It is a seqlock because it has to be read outside of zone->lock, 903 * and it is done in the main allocator path. But, it is written 904 * quite infrequently. 905 * 906 * The span_seq lock is declared along with zone->lock because it is 907 * frequently read in proximity to zone->lock. It's good to 908 * give them a chance of being in the same cacheline. 909 * 910 * Write access to present_pages at runtime should be protected by 911 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 912 * present_pages should use get_online_mems() to get a stable value. 913 */ 914 atomic_long_t managed_pages; 915 unsigned long spanned_pages; 916 unsigned long present_pages; 917 #if defined(CONFIG_MEMORY_HOTPLUG) 918 unsigned long present_early_pages; 919 #endif 920 #ifdef CONFIG_CMA 921 unsigned long cma_pages; 922 #endif 923 924 const char *name; 925 926 #ifdef CONFIG_MEMORY_ISOLATION 927 /* 928 * Number of isolated pageblock. It is used to solve incorrect 929 * freepage counting problem due to racy retrieving migratetype 930 * of pageblock. Protected by zone->lock. 931 */ 932 unsigned long nr_isolate_pageblock; 933 #endif 934 935 #ifdef CONFIG_MEMORY_HOTPLUG 936 /* see spanned/present_pages for more description */ 937 seqlock_t span_seqlock; 938 #endif 939 940 int initialized; 941 942 /* Write-intensive fields used from the page allocator */ 943 CACHELINE_PADDING(_pad1_); 944 945 /* free areas of different sizes */ 946 struct free_area free_area[MAX_ORDER + 1]; 947 948 #ifdef CONFIG_UNACCEPTED_MEMORY 949 /* Pages to be accepted. All pages on the list are MAX_ORDER */ 950 struct list_head unaccepted_pages; 951 #endif 952 953 /* zone flags, see below */ 954 unsigned long flags; 955 956 /* Primarily protects free_area */ 957 spinlock_t lock; 958 959 /* Write-intensive fields used by compaction and vmstats. */ 960 CACHELINE_PADDING(_pad2_); 961 962 /* 963 * When free pages are below this point, additional steps are taken 964 * when reading the number of free pages to avoid per-cpu counter 965 * drift allowing watermarks to be breached 966 */ 967 unsigned long percpu_drift_mark; 968 969 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 970 /* pfn where compaction free scanner should start */ 971 unsigned long compact_cached_free_pfn; 972 /* pfn where compaction migration scanner should start */ 973 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 974 unsigned long compact_init_migrate_pfn; 975 unsigned long compact_init_free_pfn; 976 #endif 977 978 #ifdef CONFIG_COMPACTION 979 /* 980 * On compaction failure, 1<<compact_defer_shift compactions 981 * are skipped before trying again. The number attempted since 982 * last failure is tracked with compact_considered. 983 * compact_order_failed is the minimum compaction failed order. 984 */ 985 unsigned int compact_considered; 986 unsigned int compact_defer_shift; 987 int compact_order_failed; 988 #endif 989 990 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 991 /* Set to true when the PG_migrate_skip bits should be cleared */ 992 bool compact_blockskip_flush; 993 #endif 994 995 bool contiguous; 996 997 CACHELINE_PADDING(_pad3_); 998 /* Zone statistics */ 999 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 1000 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 1001 } ____cacheline_internodealigned_in_smp; 1002 1003 enum pgdat_flags { 1004 PGDAT_DIRTY, /* reclaim scanning has recently found 1005 * many dirty file pages at the tail 1006 * of the LRU. 1007 */ 1008 PGDAT_WRITEBACK, /* reclaim scanning has recently found 1009 * many pages under writeback 1010 */ 1011 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 1012 }; 1013 1014 enum zone_flags { 1015 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 1016 * Cleared when kswapd is woken. 1017 */ 1018 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 1019 ZONE_BELOW_HIGH, /* zone is below high watermark. */ 1020 }; 1021 1022 static inline unsigned long zone_managed_pages(struct zone *zone) 1023 { 1024 return (unsigned long)atomic_long_read(&zone->managed_pages); 1025 } 1026 1027 static inline unsigned long zone_cma_pages(struct zone *zone) 1028 { 1029 #ifdef CONFIG_CMA 1030 return zone->cma_pages; 1031 #else 1032 return 0; 1033 #endif 1034 } 1035 1036 static inline unsigned long zone_end_pfn(const struct zone *zone) 1037 { 1038 return zone->zone_start_pfn + zone->spanned_pages; 1039 } 1040 1041 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1042 { 1043 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1044 } 1045 1046 static inline bool zone_is_initialized(struct zone *zone) 1047 { 1048 return zone->initialized; 1049 } 1050 1051 static inline bool zone_is_empty(struct zone *zone) 1052 { 1053 return zone->spanned_pages == 0; 1054 } 1055 1056 #ifndef BUILD_VDSO32_64 1057 /* 1058 * The zone field is never updated after free_area_init_core() 1059 * sets it, so none of the operations on it need to be atomic. 1060 */ 1061 1062 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1063 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1064 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1065 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1066 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1067 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1068 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1069 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1070 1071 /* 1072 * Define the bit shifts to access each section. For non-existent 1073 * sections we define the shift as 0; that plus a 0 mask ensures 1074 * the compiler will optimise away reference to them. 1075 */ 1076 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1077 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1078 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1079 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1080 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1081 1082 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1083 #ifdef NODE_NOT_IN_PAGE_FLAGS 1084 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1085 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1086 SECTIONS_PGOFF : ZONES_PGOFF) 1087 #else 1088 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1089 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1090 NODES_PGOFF : ZONES_PGOFF) 1091 #endif 1092 1093 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1094 1095 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1096 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1097 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1098 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1099 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1100 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1101 1102 static inline enum zone_type page_zonenum(const struct page *page) 1103 { 1104 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1105 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1106 } 1107 1108 static inline enum zone_type folio_zonenum(const struct folio *folio) 1109 { 1110 return page_zonenum(&folio->page); 1111 } 1112 1113 #ifdef CONFIG_ZONE_DEVICE 1114 static inline bool is_zone_device_page(const struct page *page) 1115 { 1116 return page_zonenum(page) == ZONE_DEVICE; 1117 } 1118 1119 /* 1120 * Consecutive zone device pages should not be merged into the same sgl 1121 * or bvec segment with other types of pages or if they belong to different 1122 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1123 * without scanning the entire segment. This helper returns true either if 1124 * both pages are not zone device pages or both pages are zone device pages 1125 * with the same pgmap. 1126 */ 1127 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1128 const struct page *b) 1129 { 1130 if (is_zone_device_page(a) != is_zone_device_page(b)) 1131 return false; 1132 if (!is_zone_device_page(a)) 1133 return true; 1134 return a->pgmap == b->pgmap; 1135 } 1136 1137 extern void memmap_init_zone_device(struct zone *, unsigned long, 1138 unsigned long, struct dev_pagemap *); 1139 #else 1140 static inline bool is_zone_device_page(const struct page *page) 1141 { 1142 return false; 1143 } 1144 static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1145 const struct page *b) 1146 { 1147 return true; 1148 } 1149 #endif 1150 1151 static inline bool folio_is_zone_device(const struct folio *folio) 1152 { 1153 return is_zone_device_page(&folio->page); 1154 } 1155 1156 static inline bool is_zone_movable_page(const struct page *page) 1157 { 1158 return page_zonenum(page) == ZONE_MOVABLE; 1159 } 1160 1161 static inline bool folio_is_zone_movable(const struct folio *folio) 1162 { 1163 return folio_zonenum(folio) == ZONE_MOVABLE; 1164 } 1165 #endif 1166 1167 /* 1168 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1169 * intersection with the given zone 1170 */ 1171 static inline bool zone_intersects(struct zone *zone, 1172 unsigned long start_pfn, unsigned long nr_pages) 1173 { 1174 if (zone_is_empty(zone)) 1175 return false; 1176 if (start_pfn >= zone_end_pfn(zone) || 1177 start_pfn + nr_pages <= zone->zone_start_pfn) 1178 return false; 1179 1180 return true; 1181 } 1182 1183 /* 1184 * The "priority" of VM scanning is how much of the queues we will scan in one 1185 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1186 * queues ("queue_length >> 12") during an aging round. 1187 */ 1188 #define DEF_PRIORITY 12 1189 1190 /* Maximum number of zones on a zonelist */ 1191 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1192 1193 enum { 1194 ZONELIST_FALLBACK, /* zonelist with fallback */ 1195 #ifdef CONFIG_NUMA 1196 /* 1197 * The NUMA zonelists are doubled because we need zonelists that 1198 * restrict the allocations to a single node for __GFP_THISNODE. 1199 */ 1200 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1201 #endif 1202 MAX_ZONELISTS 1203 }; 1204 1205 /* 1206 * This struct contains information about a zone in a zonelist. It is stored 1207 * here to avoid dereferences into large structures and lookups of tables 1208 */ 1209 struct zoneref { 1210 struct zone *zone; /* Pointer to actual zone */ 1211 int zone_idx; /* zone_idx(zoneref->zone) */ 1212 }; 1213 1214 /* 1215 * One allocation request operates on a zonelist. A zonelist 1216 * is a list of zones, the first one is the 'goal' of the 1217 * allocation, the other zones are fallback zones, in decreasing 1218 * priority. 1219 * 1220 * To speed the reading of the zonelist, the zonerefs contain the zone index 1221 * of the entry being read. Helper functions to access information given 1222 * a struct zoneref are 1223 * 1224 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1225 * zonelist_zone_idx() - Return the index of the zone for an entry 1226 * zonelist_node_idx() - Return the index of the node for an entry 1227 */ 1228 struct zonelist { 1229 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1230 }; 1231 1232 /* 1233 * The array of struct pages for flatmem. 1234 * It must be declared for SPARSEMEM as well because there are configurations 1235 * that rely on that. 1236 */ 1237 extern struct page *mem_map; 1238 1239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1240 struct deferred_split { 1241 spinlock_t split_queue_lock; 1242 struct list_head split_queue; 1243 unsigned long split_queue_len; 1244 }; 1245 #endif 1246 1247 #ifdef CONFIG_MEMORY_FAILURE 1248 /* 1249 * Per NUMA node memory failure handling statistics. 1250 */ 1251 struct memory_failure_stats { 1252 /* 1253 * Number of raw pages poisoned. 1254 * Cases not accounted: memory outside kernel control, offline page, 1255 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1256 * error events, and unpoison actions from hwpoison_unpoison. 1257 */ 1258 unsigned long total; 1259 /* 1260 * Recovery results of poisoned raw pages handled by memory_failure, 1261 * in sync with mf_result. 1262 * total = ignored + failed + delayed + recovered. 1263 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1264 */ 1265 unsigned long ignored; 1266 unsigned long failed; 1267 unsigned long delayed; 1268 unsigned long recovered; 1269 }; 1270 #endif 1271 1272 /* 1273 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1274 * it's memory layout. On UMA machines there is a single pglist_data which 1275 * describes the whole memory. 1276 * 1277 * Memory statistics and page replacement data structures are maintained on a 1278 * per-zone basis. 1279 */ 1280 typedef struct pglist_data { 1281 /* 1282 * node_zones contains just the zones for THIS node. Not all of the 1283 * zones may be populated, but it is the full list. It is referenced by 1284 * this node's node_zonelists as well as other node's node_zonelists. 1285 */ 1286 struct zone node_zones[MAX_NR_ZONES]; 1287 1288 /* 1289 * node_zonelists contains references to all zones in all nodes. 1290 * Generally the first zones will be references to this node's 1291 * node_zones. 1292 */ 1293 struct zonelist node_zonelists[MAX_ZONELISTS]; 1294 1295 int nr_zones; /* number of populated zones in this node */ 1296 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1297 struct page *node_mem_map; 1298 #ifdef CONFIG_PAGE_EXTENSION 1299 struct page_ext *node_page_ext; 1300 #endif 1301 #endif 1302 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1303 /* 1304 * Must be held any time you expect node_start_pfn, 1305 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1306 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1307 * init. 1308 * 1309 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1310 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1311 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1312 * 1313 * Nests above zone->lock and zone->span_seqlock 1314 */ 1315 spinlock_t node_size_lock; 1316 #endif 1317 unsigned long node_start_pfn; 1318 unsigned long node_present_pages; /* total number of physical pages */ 1319 unsigned long node_spanned_pages; /* total size of physical page 1320 range, including holes */ 1321 int node_id; 1322 wait_queue_head_t kswapd_wait; 1323 wait_queue_head_t pfmemalloc_wait; 1324 1325 /* workqueues for throttling reclaim for different reasons. */ 1326 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1327 1328 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1329 unsigned long nr_reclaim_start; /* nr pages written while throttled 1330 * when throttling started. */ 1331 #ifdef CONFIG_MEMORY_HOTPLUG 1332 struct mutex kswapd_lock; 1333 #endif 1334 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1335 int kswapd_order; 1336 enum zone_type kswapd_highest_zoneidx; 1337 1338 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1339 1340 #ifdef CONFIG_COMPACTION 1341 int kcompactd_max_order; 1342 enum zone_type kcompactd_highest_zoneidx; 1343 wait_queue_head_t kcompactd_wait; 1344 struct task_struct *kcompactd; 1345 bool proactive_compact_trigger; 1346 #endif 1347 /* 1348 * This is a per-node reserve of pages that are not available 1349 * to userspace allocations. 1350 */ 1351 unsigned long totalreserve_pages; 1352 1353 #ifdef CONFIG_NUMA 1354 /* 1355 * node reclaim becomes active if more unmapped pages exist. 1356 */ 1357 unsigned long min_unmapped_pages; 1358 unsigned long min_slab_pages; 1359 #endif /* CONFIG_NUMA */ 1360 1361 /* Write-intensive fields used by page reclaim */ 1362 CACHELINE_PADDING(_pad1_); 1363 1364 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1365 /* 1366 * If memory initialisation on large machines is deferred then this 1367 * is the first PFN that needs to be initialised. 1368 */ 1369 unsigned long first_deferred_pfn; 1370 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1371 1372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1373 struct deferred_split deferred_split_queue; 1374 #endif 1375 1376 #ifdef CONFIG_NUMA_BALANCING 1377 /* start time in ms of current promote rate limit period */ 1378 unsigned int nbp_rl_start; 1379 /* number of promote candidate pages at start time of current rate limit period */ 1380 unsigned long nbp_rl_nr_cand; 1381 /* promote threshold in ms */ 1382 unsigned int nbp_threshold; 1383 /* start time in ms of current promote threshold adjustment period */ 1384 unsigned int nbp_th_start; 1385 /* 1386 * number of promote candidate pages at start time of current promote 1387 * threshold adjustment period 1388 */ 1389 unsigned long nbp_th_nr_cand; 1390 #endif 1391 /* Fields commonly accessed by the page reclaim scanner */ 1392 1393 /* 1394 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1395 * 1396 * Use mem_cgroup_lruvec() to look up lruvecs. 1397 */ 1398 struct lruvec __lruvec; 1399 1400 unsigned long flags; 1401 1402 #ifdef CONFIG_LRU_GEN 1403 /* kswap mm walk data */ 1404 struct lru_gen_mm_walk mm_walk; 1405 /* lru_gen_folio list */ 1406 struct lru_gen_memcg memcg_lru; 1407 #endif 1408 1409 CACHELINE_PADDING(_pad2_); 1410 1411 /* Per-node vmstats */ 1412 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1413 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1414 #ifdef CONFIG_NUMA 1415 struct memory_tier __rcu *memtier; 1416 #endif 1417 #ifdef CONFIG_MEMORY_FAILURE 1418 struct memory_failure_stats mf_stats; 1419 #endif 1420 } pg_data_t; 1421 1422 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1423 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1424 1425 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1426 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1427 1428 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1429 { 1430 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1431 } 1432 1433 #include <linux/memory_hotplug.h> 1434 1435 void build_all_zonelists(pg_data_t *pgdat); 1436 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1437 enum zone_type highest_zoneidx); 1438 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1439 int highest_zoneidx, unsigned int alloc_flags, 1440 long free_pages); 1441 bool zone_watermark_ok(struct zone *z, unsigned int order, 1442 unsigned long mark, int highest_zoneidx, 1443 unsigned int alloc_flags); 1444 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1445 unsigned long mark, int highest_zoneidx); 1446 /* 1447 * Memory initialization context, use to differentiate memory added by 1448 * the platform statically or via memory hotplug interface. 1449 */ 1450 enum meminit_context { 1451 MEMINIT_EARLY, 1452 MEMINIT_HOTPLUG, 1453 }; 1454 1455 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1456 unsigned long size); 1457 1458 extern void lruvec_init(struct lruvec *lruvec); 1459 1460 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1461 { 1462 #ifdef CONFIG_MEMCG 1463 return lruvec->pgdat; 1464 #else 1465 return container_of(lruvec, struct pglist_data, __lruvec); 1466 #endif 1467 } 1468 1469 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 1470 int local_memory_node(int node_id); 1471 #else 1472 static inline int local_memory_node(int node_id) { return node_id; }; 1473 #endif 1474 1475 /* 1476 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1477 */ 1478 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1479 1480 #ifdef CONFIG_ZONE_DEVICE 1481 static inline bool zone_is_zone_device(struct zone *zone) 1482 { 1483 return zone_idx(zone) == ZONE_DEVICE; 1484 } 1485 #else 1486 static inline bool zone_is_zone_device(struct zone *zone) 1487 { 1488 return false; 1489 } 1490 #endif 1491 1492 /* 1493 * Returns true if a zone has pages managed by the buddy allocator. 1494 * All the reclaim decisions have to use this function rather than 1495 * populated_zone(). If the whole zone is reserved then we can easily 1496 * end up with populated_zone() && !managed_zone(). 1497 */ 1498 static inline bool managed_zone(struct zone *zone) 1499 { 1500 return zone_managed_pages(zone); 1501 } 1502 1503 /* Returns true if a zone has memory */ 1504 static inline bool populated_zone(struct zone *zone) 1505 { 1506 return zone->present_pages; 1507 } 1508 1509 #ifdef CONFIG_NUMA 1510 static inline int zone_to_nid(struct zone *zone) 1511 { 1512 return zone->node; 1513 } 1514 1515 static inline void zone_set_nid(struct zone *zone, int nid) 1516 { 1517 zone->node = nid; 1518 } 1519 #else 1520 static inline int zone_to_nid(struct zone *zone) 1521 { 1522 return 0; 1523 } 1524 1525 static inline void zone_set_nid(struct zone *zone, int nid) {} 1526 #endif 1527 1528 extern int movable_zone; 1529 1530 static inline int is_highmem_idx(enum zone_type idx) 1531 { 1532 #ifdef CONFIG_HIGHMEM 1533 return (idx == ZONE_HIGHMEM || 1534 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1535 #else 1536 return 0; 1537 #endif 1538 } 1539 1540 /** 1541 * is_highmem - helper function to quickly check if a struct zone is a 1542 * highmem zone or not. This is an attempt to keep references 1543 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1544 * @zone: pointer to struct zone variable 1545 * Return: 1 for a highmem zone, 0 otherwise 1546 */ 1547 static inline int is_highmem(struct zone *zone) 1548 { 1549 return is_highmem_idx(zone_idx(zone)); 1550 } 1551 1552 #ifdef CONFIG_ZONE_DMA 1553 bool has_managed_dma(void); 1554 #else 1555 static inline bool has_managed_dma(void) 1556 { 1557 return false; 1558 } 1559 #endif 1560 1561 1562 #ifndef CONFIG_NUMA 1563 1564 extern struct pglist_data contig_page_data; 1565 static inline struct pglist_data *NODE_DATA(int nid) 1566 { 1567 return &contig_page_data; 1568 } 1569 1570 #else /* CONFIG_NUMA */ 1571 1572 #include <asm/mmzone.h> 1573 1574 #endif /* !CONFIG_NUMA */ 1575 1576 extern struct pglist_data *first_online_pgdat(void); 1577 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1578 extern struct zone *next_zone(struct zone *zone); 1579 1580 /** 1581 * for_each_online_pgdat - helper macro to iterate over all online nodes 1582 * @pgdat: pointer to a pg_data_t variable 1583 */ 1584 #define for_each_online_pgdat(pgdat) \ 1585 for (pgdat = first_online_pgdat(); \ 1586 pgdat; \ 1587 pgdat = next_online_pgdat(pgdat)) 1588 /** 1589 * for_each_zone - helper macro to iterate over all memory zones 1590 * @zone: pointer to struct zone variable 1591 * 1592 * The user only needs to declare the zone variable, for_each_zone 1593 * fills it in. 1594 */ 1595 #define for_each_zone(zone) \ 1596 for (zone = (first_online_pgdat())->node_zones; \ 1597 zone; \ 1598 zone = next_zone(zone)) 1599 1600 #define for_each_populated_zone(zone) \ 1601 for (zone = (first_online_pgdat())->node_zones; \ 1602 zone; \ 1603 zone = next_zone(zone)) \ 1604 if (!populated_zone(zone)) \ 1605 ; /* do nothing */ \ 1606 else 1607 1608 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1609 { 1610 return zoneref->zone; 1611 } 1612 1613 static inline int zonelist_zone_idx(struct zoneref *zoneref) 1614 { 1615 return zoneref->zone_idx; 1616 } 1617 1618 static inline int zonelist_node_idx(struct zoneref *zoneref) 1619 { 1620 return zone_to_nid(zoneref->zone); 1621 } 1622 1623 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1624 enum zone_type highest_zoneidx, 1625 nodemask_t *nodes); 1626 1627 /** 1628 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1629 * @z: The cursor used as a starting point for the search 1630 * @highest_zoneidx: The zone index of the highest zone to return 1631 * @nodes: An optional nodemask to filter the zonelist with 1632 * 1633 * This function returns the next zone at or below a given zone index that is 1634 * within the allowed nodemask using a cursor as the starting point for the 1635 * search. The zoneref returned is a cursor that represents the current zone 1636 * being examined. It should be advanced by one before calling 1637 * next_zones_zonelist again. 1638 * 1639 * Return: the next zone at or below highest_zoneidx within the allowed 1640 * nodemask using a cursor within a zonelist as a starting point 1641 */ 1642 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1643 enum zone_type highest_zoneidx, 1644 nodemask_t *nodes) 1645 { 1646 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1647 return z; 1648 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1649 } 1650 1651 /** 1652 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1653 * @zonelist: The zonelist to search for a suitable zone 1654 * @highest_zoneidx: The zone index of the highest zone to return 1655 * @nodes: An optional nodemask to filter the zonelist with 1656 * 1657 * This function returns the first zone at or below a given zone index that is 1658 * within the allowed nodemask. The zoneref returned is a cursor that can be 1659 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1660 * one before calling. 1661 * 1662 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1663 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1664 * update due to cpuset modification. 1665 * 1666 * Return: Zoneref pointer for the first suitable zone found 1667 */ 1668 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1669 enum zone_type highest_zoneidx, 1670 nodemask_t *nodes) 1671 { 1672 return next_zones_zonelist(zonelist->_zonerefs, 1673 highest_zoneidx, nodes); 1674 } 1675 1676 /** 1677 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1678 * @zone: The current zone in the iterator 1679 * @z: The current pointer within zonelist->_zonerefs being iterated 1680 * @zlist: The zonelist being iterated 1681 * @highidx: The zone index of the highest zone to return 1682 * @nodemask: Nodemask allowed by the allocator 1683 * 1684 * This iterator iterates though all zones at or below a given zone index and 1685 * within a given nodemask 1686 */ 1687 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1688 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1689 zone; \ 1690 z = next_zones_zonelist(++z, highidx, nodemask), \ 1691 zone = zonelist_zone(z)) 1692 1693 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1694 for (zone = z->zone; \ 1695 zone; \ 1696 z = next_zones_zonelist(++z, highidx, nodemask), \ 1697 zone = zonelist_zone(z)) 1698 1699 1700 /** 1701 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1702 * @zone: The current zone in the iterator 1703 * @z: The current pointer within zonelist->zones being iterated 1704 * @zlist: The zonelist being iterated 1705 * @highidx: The zone index of the highest zone to return 1706 * 1707 * This iterator iterates though all zones at or below a given zone index. 1708 */ 1709 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1710 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1711 1712 /* Whether the 'nodes' are all movable nodes */ 1713 static inline bool movable_only_nodes(nodemask_t *nodes) 1714 { 1715 struct zonelist *zonelist; 1716 struct zoneref *z; 1717 int nid; 1718 1719 if (nodes_empty(*nodes)) 1720 return false; 1721 1722 /* 1723 * We can chose arbitrary node from the nodemask to get a 1724 * zonelist as they are interlinked. We just need to find 1725 * at least one zone that can satisfy kernel allocations. 1726 */ 1727 nid = first_node(*nodes); 1728 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1729 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1730 return (!z->zone) ? true : false; 1731 } 1732 1733 1734 #ifdef CONFIG_SPARSEMEM 1735 #include <asm/sparsemem.h> 1736 #endif 1737 1738 #ifdef CONFIG_FLATMEM 1739 #define pfn_to_nid(pfn) (0) 1740 #endif 1741 1742 #ifdef CONFIG_SPARSEMEM 1743 1744 /* 1745 * PA_SECTION_SHIFT physical address to/from section number 1746 * PFN_SECTION_SHIFT pfn to/from section number 1747 */ 1748 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1749 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1750 1751 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1752 1753 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1754 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1755 1756 #define SECTION_BLOCKFLAGS_BITS \ 1757 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1758 1759 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1760 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1761 #endif 1762 1763 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1764 { 1765 return pfn >> PFN_SECTION_SHIFT; 1766 } 1767 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1768 { 1769 return sec << PFN_SECTION_SHIFT; 1770 } 1771 1772 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1773 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1774 1775 #define SUBSECTION_SHIFT 21 1776 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1777 1778 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1779 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1780 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1781 1782 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1783 #error Subsection size exceeds section size 1784 #else 1785 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1786 #endif 1787 1788 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1789 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1790 1791 struct mem_section_usage { 1792 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1793 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1794 #endif 1795 /* See declaration of similar field in struct zone */ 1796 unsigned long pageblock_flags[0]; 1797 }; 1798 1799 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1800 1801 struct page; 1802 struct page_ext; 1803 struct mem_section { 1804 /* 1805 * This is, logically, a pointer to an array of struct 1806 * pages. However, it is stored with some other magic. 1807 * (see sparse.c::sparse_init_one_section()) 1808 * 1809 * Additionally during early boot we encode node id of 1810 * the location of the section here to guide allocation. 1811 * (see sparse.c::memory_present()) 1812 * 1813 * Making it a UL at least makes someone do a cast 1814 * before using it wrong. 1815 */ 1816 unsigned long section_mem_map; 1817 1818 struct mem_section_usage *usage; 1819 #ifdef CONFIG_PAGE_EXTENSION 1820 /* 1821 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1822 * section. (see page_ext.h about this.) 1823 */ 1824 struct page_ext *page_ext; 1825 unsigned long pad; 1826 #endif 1827 /* 1828 * WARNING: mem_section must be a power-of-2 in size for the 1829 * calculation and use of SECTION_ROOT_MASK to make sense. 1830 */ 1831 }; 1832 1833 #ifdef CONFIG_SPARSEMEM_EXTREME 1834 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1835 #else 1836 #define SECTIONS_PER_ROOT 1 1837 #endif 1838 1839 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1840 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1841 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1842 1843 #ifdef CONFIG_SPARSEMEM_EXTREME 1844 extern struct mem_section **mem_section; 1845 #else 1846 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1847 #endif 1848 1849 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1850 { 1851 return ms->usage->pageblock_flags; 1852 } 1853 1854 static inline struct mem_section *__nr_to_section(unsigned long nr) 1855 { 1856 unsigned long root = SECTION_NR_TO_ROOT(nr); 1857 1858 if (unlikely(root >= NR_SECTION_ROOTS)) 1859 return NULL; 1860 1861 #ifdef CONFIG_SPARSEMEM_EXTREME 1862 if (!mem_section || !mem_section[root]) 1863 return NULL; 1864 #endif 1865 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1866 } 1867 extern size_t mem_section_usage_size(void); 1868 1869 /* 1870 * We use the lower bits of the mem_map pointer to store 1871 * a little bit of information. The pointer is calculated 1872 * as mem_map - section_nr_to_pfn(pnum). The result is 1873 * aligned to the minimum alignment of the two values: 1874 * 1. All mem_map arrays are page-aligned. 1875 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1876 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1877 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1878 * worst combination is powerpc with 256k pages, 1879 * which results in PFN_SECTION_SHIFT equal 6. 1880 * To sum it up, at least 6 bits are available on all architectures. 1881 * However, we can exceed 6 bits on some other architectures except 1882 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1883 * with the worst case of 64K pages on arm64) if we make sure the 1884 * exceeded bit is not applicable to powerpc. 1885 */ 1886 enum { 1887 SECTION_MARKED_PRESENT_BIT, 1888 SECTION_HAS_MEM_MAP_BIT, 1889 SECTION_IS_ONLINE_BIT, 1890 SECTION_IS_EARLY_BIT, 1891 #ifdef CONFIG_ZONE_DEVICE 1892 SECTION_TAINT_ZONE_DEVICE_BIT, 1893 #endif 1894 SECTION_MAP_LAST_BIT, 1895 }; 1896 1897 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1898 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1899 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1900 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1901 #ifdef CONFIG_ZONE_DEVICE 1902 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1903 #endif 1904 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1905 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1906 1907 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1908 { 1909 unsigned long map = section->section_mem_map; 1910 map &= SECTION_MAP_MASK; 1911 return (struct page *)map; 1912 } 1913 1914 static inline int present_section(struct mem_section *section) 1915 { 1916 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1917 } 1918 1919 static inline int present_section_nr(unsigned long nr) 1920 { 1921 return present_section(__nr_to_section(nr)); 1922 } 1923 1924 static inline int valid_section(struct mem_section *section) 1925 { 1926 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1927 } 1928 1929 static inline int early_section(struct mem_section *section) 1930 { 1931 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1932 } 1933 1934 static inline int valid_section_nr(unsigned long nr) 1935 { 1936 return valid_section(__nr_to_section(nr)); 1937 } 1938 1939 static inline int online_section(struct mem_section *section) 1940 { 1941 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1942 } 1943 1944 #ifdef CONFIG_ZONE_DEVICE 1945 static inline int online_device_section(struct mem_section *section) 1946 { 1947 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1948 1949 return section && ((section->section_mem_map & flags) == flags); 1950 } 1951 #else 1952 static inline int online_device_section(struct mem_section *section) 1953 { 1954 return 0; 1955 } 1956 #endif 1957 1958 static inline int online_section_nr(unsigned long nr) 1959 { 1960 return online_section(__nr_to_section(nr)); 1961 } 1962 1963 #ifdef CONFIG_MEMORY_HOTPLUG 1964 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1965 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1966 #endif 1967 1968 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1969 { 1970 return __nr_to_section(pfn_to_section_nr(pfn)); 1971 } 1972 1973 extern unsigned long __highest_present_section_nr; 1974 1975 static inline int subsection_map_index(unsigned long pfn) 1976 { 1977 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1978 } 1979 1980 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1981 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1982 { 1983 int idx = subsection_map_index(pfn); 1984 1985 return test_bit(idx, ms->usage->subsection_map); 1986 } 1987 #else 1988 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1989 { 1990 return 1; 1991 } 1992 #endif 1993 1994 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1995 /** 1996 * pfn_valid - check if there is a valid memory map entry for a PFN 1997 * @pfn: the page frame number to check 1998 * 1999 * Check if there is a valid memory map entry aka struct page for the @pfn. 2000 * Note, that availability of the memory map entry does not imply that 2001 * there is actual usable memory at that @pfn. The struct page may 2002 * represent a hole or an unusable page frame. 2003 * 2004 * Return: 1 for PFNs that have memory map entries and 0 otherwise 2005 */ 2006 static inline int pfn_valid(unsigned long pfn) 2007 { 2008 struct mem_section *ms; 2009 2010 /* 2011 * Ensure the upper PAGE_SHIFT bits are clear in the 2012 * pfn. Else it might lead to false positives when 2013 * some of the upper bits are set, but the lower bits 2014 * match a valid pfn. 2015 */ 2016 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2017 return 0; 2018 2019 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2020 return 0; 2021 ms = __pfn_to_section(pfn); 2022 if (!valid_section(ms)) 2023 return 0; 2024 /* 2025 * Traditionally early sections always returned pfn_valid() for 2026 * the entire section-sized span. 2027 */ 2028 return early_section(ms) || pfn_section_valid(ms, pfn); 2029 } 2030 #endif 2031 2032 static inline int pfn_in_present_section(unsigned long pfn) 2033 { 2034 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2035 return 0; 2036 return present_section(__pfn_to_section(pfn)); 2037 } 2038 2039 static inline unsigned long next_present_section_nr(unsigned long section_nr) 2040 { 2041 while (++section_nr <= __highest_present_section_nr) { 2042 if (present_section_nr(section_nr)) 2043 return section_nr; 2044 } 2045 2046 return -1; 2047 } 2048 2049 /* 2050 * These are _only_ used during initialisation, therefore they 2051 * can use __initdata ... They could have names to indicate 2052 * this restriction. 2053 */ 2054 #ifdef CONFIG_NUMA 2055 #define pfn_to_nid(pfn) \ 2056 ({ \ 2057 unsigned long __pfn_to_nid_pfn = (pfn); \ 2058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2059 }) 2060 #else 2061 #define pfn_to_nid(pfn) (0) 2062 #endif 2063 2064 void sparse_init(void); 2065 #else 2066 #define sparse_init() do {} while (0) 2067 #define sparse_index_init(_sec, _nid) do {} while (0) 2068 #define pfn_in_present_section pfn_valid 2069 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2070 #endif /* CONFIG_SPARSEMEM */ 2071 2072 #endif /* !__GENERATING_BOUNDS.H */ 2073 #endif /* !__ASSEMBLY__ */ 2074 #endif /* _LINUX_MMZONE_H */ 2075