1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/bounds.h> 19 #include <asm/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 #define MIGRATE_UNMOVABLE 0 39 #define MIGRATE_RECLAIMABLE 1 40 #define MIGRATE_MOVABLE 2 41 #define MIGRATE_RESERVE 3 42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 43 #define MIGRATE_TYPES 5 44 45 #define for_each_migratetype_order(order, type) \ 46 for (order = 0; order < MAX_ORDER; order++) \ 47 for (type = 0; type < MIGRATE_TYPES; type++) 48 49 extern int page_group_by_mobility_disabled; 50 51 static inline int get_pageblock_migratetype(struct page *page) 52 { 53 if (unlikely(page_group_by_mobility_disabled)) 54 return MIGRATE_UNMOVABLE; 55 56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 57 } 58 59 struct free_area { 60 struct list_head free_list[MIGRATE_TYPES]; 61 unsigned long nr_free; 62 }; 63 64 struct pglist_data; 65 66 /* 67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 68 * So add a wild amount of padding here to ensure that they fall into separate 69 * cachelines. There are very few zone structures in the machine, so space 70 * consumption is not a concern here. 71 */ 72 #if defined(CONFIG_SMP) 73 struct zone_padding { 74 char x[0]; 75 } ____cacheline_internodealigned_in_smp; 76 #define ZONE_PADDING(name) struct zone_padding name; 77 #else 78 #define ZONE_PADDING(name) 79 #endif 80 81 enum zone_stat_item { 82 /* First 128 byte cacheline (assuming 64 bit words) */ 83 NR_FREE_PAGES, 84 NR_LRU_BASE, 85 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 86 NR_ACTIVE_ANON, /* " " " " " */ 87 NR_INACTIVE_FILE, /* " " " " " */ 88 NR_ACTIVE_FILE, /* " " " " " */ 89 #ifdef CONFIG_UNEVICTABLE_LRU 90 NR_UNEVICTABLE, /* " " " " " */ 91 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 92 #else 93 NR_UNEVICTABLE = NR_ACTIVE_FILE, /* avoid compiler errors in dead code */ 94 NR_MLOCK = NR_ACTIVE_FILE, 95 #endif 96 NR_ANON_PAGES, /* Mapped anonymous pages */ 97 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 98 only modified from process context */ 99 NR_FILE_PAGES, 100 NR_FILE_DIRTY, 101 NR_WRITEBACK, 102 NR_SLAB_RECLAIMABLE, 103 NR_SLAB_UNRECLAIMABLE, 104 NR_PAGETABLE, /* used for pagetables */ 105 NR_UNSTABLE_NFS, /* NFS unstable pages */ 106 NR_BOUNCE, 107 NR_VMSCAN_WRITE, 108 /* Second 128 byte cacheline */ 109 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 110 #ifdef CONFIG_NUMA 111 NUMA_HIT, /* allocated in intended node */ 112 NUMA_MISS, /* allocated in non intended node */ 113 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 115 NUMA_LOCAL, /* allocation from local node */ 116 NUMA_OTHER, /* allocation from other node */ 117 #endif 118 NR_VM_ZONE_STAT_ITEMS }; 119 120 /* 121 * We do arithmetic on the LRU lists in various places in the code, 122 * so it is important to keep the active lists LRU_ACTIVE higher in 123 * the array than the corresponding inactive lists, and to keep 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 125 * 126 * This has to be kept in sync with the statistics in zone_stat_item 127 * above and the descriptions in vmstat_text in mm/vmstat.c 128 */ 129 #define LRU_BASE 0 130 #define LRU_ACTIVE 1 131 #define LRU_FILE 2 132 133 enum lru_list { 134 LRU_INACTIVE_ANON = LRU_BASE, 135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 138 #ifdef CONFIG_UNEVICTABLE_LRU 139 LRU_UNEVICTABLE, 140 #else 141 LRU_UNEVICTABLE = LRU_ACTIVE_FILE, /* avoid compiler errors in dead code */ 142 #endif 143 NR_LRU_LISTS 144 }; 145 146 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 147 148 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 149 150 static inline int is_file_lru(enum lru_list l) 151 { 152 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 153 } 154 155 static inline int is_active_lru(enum lru_list l) 156 { 157 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 158 } 159 160 static inline int is_unevictable_lru(enum lru_list l) 161 { 162 #ifdef CONFIG_UNEVICTABLE_LRU 163 return (l == LRU_UNEVICTABLE); 164 #else 165 return 0; 166 #endif 167 } 168 169 struct per_cpu_pages { 170 int count; /* number of pages in the list */ 171 int high; /* high watermark, emptying needed */ 172 int batch; /* chunk size for buddy add/remove */ 173 struct list_head list; /* the list of pages */ 174 }; 175 176 struct per_cpu_pageset { 177 struct per_cpu_pages pcp; 178 #ifdef CONFIG_NUMA 179 s8 expire; 180 #endif 181 #ifdef CONFIG_SMP 182 s8 stat_threshold; 183 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 184 #endif 185 } ____cacheline_aligned_in_smp; 186 187 #ifdef CONFIG_NUMA 188 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 189 #else 190 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 191 #endif 192 193 #endif /* !__GENERATING_BOUNDS.H */ 194 195 enum zone_type { 196 #ifdef CONFIG_ZONE_DMA 197 /* 198 * ZONE_DMA is used when there are devices that are not able 199 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 200 * carve out the portion of memory that is needed for these devices. 201 * The range is arch specific. 202 * 203 * Some examples 204 * 205 * Architecture Limit 206 * --------------------------- 207 * parisc, ia64, sparc <4G 208 * s390 <2G 209 * arm Various 210 * alpha Unlimited or 0-16MB. 211 * 212 * i386, x86_64 and multiple other arches 213 * <16M. 214 */ 215 ZONE_DMA, 216 #endif 217 #ifdef CONFIG_ZONE_DMA32 218 /* 219 * x86_64 needs two ZONE_DMAs because it supports devices that are 220 * only able to do DMA to the lower 16M but also 32 bit devices that 221 * can only do DMA areas below 4G. 222 */ 223 ZONE_DMA32, 224 #endif 225 /* 226 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 227 * performed on pages in ZONE_NORMAL if the DMA devices support 228 * transfers to all addressable memory. 229 */ 230 ZONE_NORMAL, 231 #ifdef CONFIG_HIGHMEM 232 /* 233 * A memory area that is only addressable by the kernel through 234 * mapping portions into its own address space. This is for example 235 * used by i386 to allow the kernel to address the memory beyond 236 * 900MB. The kernel will set up special mappings (page 237 * table entries on i386) for each page that the kernel needs to 238 * access. 239 */ 240 ZONE_HIGHMEM, 241 #endif 242 ZONE_MOVABLE, 243 __MAX_NR_ZONES 244 }; 245 246 #ifndef __GENERATING_BOUNDS_H 247 248 /* 249 * When a memory allocation must conform to specific limitations (such 250 * as being suitable for DMA) the caller will pass in hints to the 251 * allocator in the gfp_mask, in the zone modifier bits. These bits 252 * are used to select a priority ordered list of memory zones which 253 * match the requested limits. See gfp_zone() in include/linux/gfp.h 254 */ 255 256 #if MAX_NR_ZONES < 2 257 #define ZONES_SHIFT 0 258 #elif MAX_NR_ZONES <= 2 259 #define ZONES_SHIFT 1 260 #elif MAX_NR_ZONES <= 4 261 #define ZONES_SHIFT 2 262 #else 263 #error ZONES_SHIFT -- too many zones configured adjust calculation 264 #endif 265 266 struct zone_reclaim_stat { 267 /* 268 * The pageout code in vmscan.c keeps track of how many of the 269 * mem/swap backed and file backed pages are refeferenced. 270 * The higher the rotated/scanned ratio, the more valuable 271 * that cache is. 272 * 273 * The anon LRU stats live in [0], file LRU stats in [1] 274 */ 275 unsigned long recent_rotated[2]; 276 unsigned long recent_scanned[2]; 277 }; 278 279 struct zone { 280 /* Fields commonly accessed by the page allocator */ 281 unsigned long pages_min, pages_low, pages_high; 282 /* 283 * We don't know if the memory that we're going to allocate will be freeable 284 * or/and it will be released eventually, so to avoid totally wasting several 285 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 286 * to run OOM on the lower zones despite there's tons of freeable ram 287 * on the higher zones). This array is recalculated at runtime if the 288 * sysctl_lowmem_reserve_ratio sysctl changes. 289 */ 290 unsigned long lowmem_reserve[MAX_NR_ZONES]; 291 292 #ifdef CONFIG_NUMA 293 int node; 294 /* 295 * zone reclaim becomes active if more unmapped pages exist. 296 */ 297 unsigned long min_unmapped_pages; 298 unsigned long min_slab_pages; 299 struct per_cpu_pageset *pageset[NR_CPUS]; 300 #else 301 struct per_cpu_pageset pageset[NR_CPUS]; 302 #endif 303 /* 304 * free areas of different sizes 305 */ 306 spinlock_t lock; 307 #ifdef CONFIG_MEMORY_HOTPLUG 308 /* see spanned/present_pages for more description */ 309 seqlock_t span_seqlock; 310 #endif 311 struct free_area free_area[MAX_ORDER]; 312 313 #ifndef CONFIG_SPARSEMEM 314 /* 315 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 316 * In SPARSEMEM, this map is stored in struct mem_section 317 */ 318 unsigned long *pageblock_flags; 319 #endif /* CONFIG_SPARSEMEM */ 320 321 322 ZONE_PADDING(_pad1_) 323 324 /* Fields commonly accessed by the page reclaim scanner */ 325 spinlock_t lru_lock; 326 struct { 327 struct list_head list; 328 unsigned long nr_scan; 329 } lru[NR_LRU_LISTS]; 330 331 struct zone_reclaim_stat reclaim_stat; 332 333 unsigned long pages_scanned; /* since last reclaim */ 334 unsigned long flags; /* zone flags, see below */ 335 336 /* Zone statistics */ 337 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 338 339 /* 340 * prev_priority holds the scanning priority for this zone. It is 341 * defined as the scanning priority at which we achieved our reclaim 342 * target at the previous try_to_free_pages() or balance_pgdat() 343 * invokation. 344 * 345 * We use prev_priority as a measure of how much stress page reclaim is 346 * under - it drives the swappiness decision: whether to unmap mapped 347 * pages. 348 * 349 * Access to both this field is quite racy even on uniprocessor. But 350 * it is expected to average out OK. 351 */ 352 int prev_priority; 353 354 /* 355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 356 * this zone's LRU. Maintained by the pageout code. 357 */ 358 unsigned int inactive_ratio; 359 360 361 ZONE_PADDING(_pad2_) 362 /* Rarely used or read-mostly fields */ 363 364 /* 365 * wait_table -- the array holding the hash table 366 * wait_table_hash_nr_entries -- the size of the hash table array 367 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 368 * 369 * The purpose of all these is to keep track of the people 370 * waiting for a page to become available and make them 371 * runnable again when possible. The trouble is that this 372 * consumes a lot of space, especially when so few things 373 * wait on pages at a given time. So instead of using 374 * per-page waitqueues, we use a waitqueue hash table. 375 * 376 * The bucket discipline is to sleep on the same queue when 377 * colliding and wake all in that wait queue when removing. 378 * When something wakes, it must check to be sure its page is 379 * truly available, a la thundering herd. The cost of a 380 * collision is great, but given the expected load of the 381 * table, they should be so rare as to be outweighed by the 382 * benefits from the saved space. 383 * 384 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 385 * primary users of these fields, and in mm/page_alloc.c 386 * free_area_init_core() performs the initialization of them. 387 */ 388 wait_queue_head_t * wait_table; 389 unsigned long wait_table_hash_nr_entries; 390 unsigned long wait_table_bits; 391 392 /* 393 * Discontig memory support fields. 394 */ 395 struct pglist_data *zone_pgdat; 396 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 397 unsigned long zone_start_pfn; 398 399 /* 400 * zone_start_pfn, spanned_pages and present_pages are all 401 * protected by span_seqlock. It is a seqlock because it has 402 * to be read outside of zone->lock, and it is done in the main 403 * allocator path. But, it is written quite infrequently. 404 * 405 * The lock is declared along with zone->lock because it is 406 * frequently read in proximity to zone->lock. It's good to 407 * give them a chance of being in the same cacheline. 408 */ 409 unsigned long spanned_pages; /* total size, including holes */ 410 unsigned long present_pages; /* amount of memory (excluding holes) */ 411 412 /* 413 * rarely used fields: 414 */ 415 const char *name; 416 } ____cacheline_internodealigned_in_smp; 417 418 typedef enum { 419 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */ 420 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 421 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 422 } zone_flags_t; 423 424 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 425 { 426 set_bit(flag, &zone->flags); 427 } 428 429 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 430 { 431 return test_and_set_bit(flag, &zone->flags); 432 } 433 434 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 435 { 436 clear_bit(flag, &zone->flags); 437 } 438 439 static inline int zone_is_all_unreclaimable(const struct zone *zone) 440 { 441 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags); 442 } 443 444 static inline int zone_is_reclaim_locked(const struct zone *zone) 445 { 446 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 447 } 448 449 static inline int zone_is_oom_locked(const struct zone *zone) 450 { 451 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 452 } 453 454 /* 455 * The "priority" of VM scanning is how much of the queues we will scan in one 456 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 457 * queues ("queue_length >> 12") during an aging round. 458 */ 459 #define DEF_PRIORITY 12 460 461 /* Maximum number of zones on a zonelist */ 462 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 463 464 #ifdef CONFIG_NUMA 465 466 /* 467 * The NUMA zonelists are doubled becausse we need zonelists that restrict the 468 * allocations to a single node for GFP_THISNODE. 469 * 470 * [0] : Zonelist with fallback 471 * [1] : No fallback (GFP_THISNODE) 472 */ 473 #define MAX_ZONELISTS 2 474 475 476 /* 477 * We cache key information from each zonelist for smaller cache 478 * footprint when scanning for free pages in get_page_from_freelist(). 479 * 480 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 481 * up short of free memory since the last time (last_fullzone_zap) 482 * we zero'd fullzones. 483 * 2) The array z_to_n[] maps each zone in the zonelist to its node 484 * id, so that we can efficiently evaluate whether that node is 485 * set in the current tasks mems_allowed. 486 * 487 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 488 * indexed by a zones offset in the zonelist zones[] array. 489 * 490 * The get_page_from_freelist() routine does two scans. During the 491 * first scan, we skip zones whose corresponding bit in 'fullzones' 492 * is set or whose corresponding node in current->mems_allowed (which 493 * comes from cpusets) is not set. During the second scan, we bypass 494 * this zonelist_cache, to ensure we look methodically at each zone. 495 * 496 * Once per second, we zero out (zap) fullzones, forcing us to 497 * reconsider nodes that might have regained more free memory. 498 * The field last_full_zap is the time we last zapped fullzones. 499 * 500 * This mechanism reduces the amount of time we waste repeatedly 501 * reexaming zones for free memory when they just came up low on 502 * memory momentarilly ago. 503 * 504 * The zonelist_cache struct members logically belong in struct 505 * zonelist. However, the mempolicy zonelists constructed for 506 * MPOL_BIND are intentionally variable length (and usually much 507 * shorter). A general purpose mechanism for handling structs with 508 * multiple variable length members is more mechanism than we want 509 * here. We resort to some special case hackery instead. 510 * 511 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 512 * part because they are shorter), so we put the fixed length stuff 513 * at the front of the zonelist struct, ending in a variable length 514 * zones[], as is needed by MPOL_BIND. 515 * 516 * Then we put the optional zonelist cache on the end of the zonelist 517 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 518 * the fixed length portion at the front of the struct. This pointer 519 * both enables us to find the zonelist cache, and in the case of 520 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 521 * to know that the zonelist cache is not there. 522 * 523 * The end result is that struct zonelists come in two flavors: 524 * 1) The full, fixed length version, shown below, and 525 * 2) The custom zonelists for MPOL_BIND. 526 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 527 * 528 * Even though there may be multiple CPU cores on a node modifying 529 * fullzones or last_full_zap in the same zonelist_cache at the same 530 * time, we don't lock it. This is just hint data - if it is wrong now 531 * and then, the allocator will still function, perhaps a bit slower. 532 */ 533 534 535 struct zonelist_cache { 536 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 537 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 538 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 539 }; 540 #else 541 #define MAX_ZONELISTS 1 542 struct zonelist_cache; 543 #endif 544 545 /* 546 * This struct contains information about a zone in a zonelist. It is stored 547 * here to avoid dereferences into large structures and lookups of tables 548 */ 549 struct zoneref { 550 struct zone *zone; /* Pointer to actual zone */ 551 int zone_idx; /* zone_idx(zoneref->zone) */ 552 }; 553 554 /* 555 * One allocation request operates on a zonelist. A zonelist 556 * is a list of zones, the first one is the 'goal' of the 557 * allocation, the other zones are fallback zones, in decreasing 558 * priority. 559 * 560 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 561 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 562 * * 563 * To speed the reading of the zonelist, the zonerefs contain the zone index 564 * of the entry being read. Helper functions to access information given 565 * a struct zoneref are 566 * 567 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 568 * zonelist_zone_idx() - Return the index of the zone for an entry 569 * zonelist_node_idx() - Return the index of the node for an entry 570 */ 571 struct zonelist { 572 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 573 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 574 #ifdef CONFIG_NUMA 575 struct zonelist_cache zlcache; // optional ... 576 #endif 577 }; 578 579 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 580 struct node_active_region { 581 unsigned long start_pfn; 582 unsigned long end_pfn; 583 int nid; 584 }; 585 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 586 587 #ifndef CONFIG_DISCONTIGMEM 588 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 589 extern struct page *mem_map; 590 #endif 591 592 /* 593 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 594 * (mostly NUMA machines?) to denote a higher-level memory zone than the 595 * zone denotes. 596 * 597 * On NUMA machines, each NUMA node would have a pg_data_t to describe 598 * it's memory layout. 599 * 600 * Memory statistics and page replacement data structures are maintained on a 601 * per-zone basis. 602 */ 603 struct bootmem_data; 604 typedef struct pglist_data { 605 struct zone node_zones[MAX_NR_ZONES]; 606 struct zonelist node_zonelists[MAX_ZONELISTS]; 607 int nr_zones; 608 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 609 struct page *node_mem_map; 610 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 611 struct page_cgroup *node_page_cgroup; 612 #endif 613 #endif 614 struct bootmem_data *bdata; 615 #ifdef CONFIG_MEMORY_HOTPLUG 616 /* 617 * Must be held any time you expect node_start_pfn, node_present_pages 618 * or node_spanned_pages stay constant. Holding this will also 619 * guarantee that any pfn_valid() stays that way. 620 * 621 * Nests above zone->lock and zone->size_seqlock. 622 */ 623 spinlock_t node_size_lock; 624 #endif 625 unsigned long node_start_pfn; 626 unsigned long node_present_pages; /* total number of physical pages */ 627 unsigned long node_spanned_pages; /* total size of physical page 628 range, including holes */ 629 int node_id; 630 wait_queue_head_t kswapd_wait; 631 struct task_struct *kswapd; 632 int kswapd_max_order; 633 } pg_data_t; 634 635 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 636 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 637 #ifdef CONFIG_FLAT_NODE_MEM_MAP 638 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 639 #else 640 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 641 #endif 642 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 643 644 #include <linux/memory_hotplug.h> 645 646 void get_zone_counts(unsigned long *active, unsigned long *inactive, 647 unsigned long *free); 648 void build_all_zonelists(void); 649 void wakeup_kswapd(struct zone *zone, int order); 650 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 651 int classzone_idx, int alloc_flags); 652 enum memmap_context { 653 MEMMAP_EARLY, 654 MEMMAP_HOTPLUG, 655 }; 656 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 657 unsigned long size, 658 enum memmap_context context); 659 660 #ifdef CONFIG_HAVE_MEMORY_PRESENT 661 void memory_present(int nid, unsigned long start, unsigned long end); 662 #else 663 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 664 #endif 665 666 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 667 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 668 #endif 669 670 /* 671 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 672 */ 673 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 674 675 static inline int populated_zone(struct zone *zone) 676 { 677 return (!!zone->present_pages); 678 } 679 680 extern int movable_zone; 681 682 static inline int zone_movable_is_highmem(void) 683 { 684 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 685 return movable_zone == ZONE_HIGHMEM; 686 #else 687 return 0; 688 #endif 689 } 690 691 static inline int is_highmem_idx(enum zone_type idx) 692 { 693 #ifdef CONFIG_HIGHMEM 694 return (idx == ZONE_HIGHMEM || 695 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 696 #else 697 return 0; 698 #endif 699 } 700 701 static inline int is_normal_idx(enum zone_type idx) 702 { 703 return (idx == ZONE_NORMAL); 704 } 705 706 /** 707 * is_highmem - helper function to quickly check if a struct zone is a 708 * highmem zone or not. This is an attempt to keep references 709 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 710 * @zone - pointer to struct zone variable 711 */ 712 static inline int is_highmem(struct zone *zone) 713 { 714 #ifdef CONFIG_HIGHMEM 715 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 716 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 717 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 718 zone_movable_is_highmem()); 719 #else 720 return 0; 721 #endif 722 } 723 724 static inline int is_normal(struct zone *zone) 725 { 726 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 727 } 728 729 static inline int is_dma32(struct zone *zone) 730 { 731 #ifdef CONFIG_ZONE_DMA32 732 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 733 #else 734 return 0; 735 #endif 736 } 737 738 static inline int is_dma(struct zone *zone) 739 { 740 #ifdef CONFIG_ZONE_DMA 741 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 742 #else 743 return 0; 744 #endif 745 } 746 747 /* These two functions are used to setup the per zone pages min values */ 748 struct ctl_table; 749 struct file; 750 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 751 void __user *, size_t *, loff_t *); 752 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 753 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 754 void __user *, size_t *, loff_t *); 755 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 756 void __user *, size_t *, loff_t *); 757 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 758 struct file *, void __user *, size_t *, loff_t *); 759 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 760 struct file *, void __user *, size_t *, loff_t *); 761 762 extern int numa_zonelist_order_handler(struct ctl_table *, int, 763 struct file *, void __user *, size_t *, loff_t *); 764 extern char numa_zonelist_order[]; 765 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 766 767 #include <linux/topology.h> 768 /* Returns the number of the current Node. */ 769 #ifndef numa_node_id 770 #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 771 #endif 772 773 #ifndef CONFIG_NEED_MULTIPLE_NODES 774 775 extern struct pglist_data contig_page_data; 776 #define NODE_DATA(nid) (&contig_page_data) 777 #define NODE_MEM_MAP(nid) mem_map 778 779 #else /* CONFIG_NEED_MULTIPLE_NODES */ 780 781 #include <asm/mmzone.h> 782 783 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 784 785 extern struct pglist_data *first_online_pgdat(void); 786 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 787 extern struct zone *next_zone(struct zone *zone); 788 789 /** 790 * for_each_online_pgdat - helper macro to iterate over all online nodes 791 * @pgdat - pointer to a pg_data_t variable 792 */ 793 #define for_each_online_pgdat(pgdat) \ 794 for (pgdat = first_online_pgdat(); \ 795 pgdat; \ 796 pgdat = next_online_pgdat(pgdat)) 797 /** 798 * for_each_zone - helper macro to iterate over all memory zones 799 * @zone - pointer to struct zone variable 800 * 801 * The user only needs to declare the zone variable, for_each_zone 802 * fills it in. 803 */ 804 #define for_each_zone(zone) \ 805 for (zone = (first_online_pgdat())->node_zones; \ 806 zone; \ 807 zone = next_zone(zone)) 808 809 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 810 { 811 return zoneref->zone; 812 } 813 814 static inline int zonelist_zone_idx(struct zoneref *zoneref) 815 { 816 return zoneref->zone_idx; 817 } 818 819 static inline int zonelist_node_idx(struct zoneref *zoneref) 820 { 821 #ifdef CONFIG_NUMA 822 /* zone_to_nid not available in this context */ 823 return zoneref->zone->node; 824 #else 825 return 0; 826 #endif /* CONFIG_NUMA */ 827 } 828 829 /** 830 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 831 * @z - The cursor used as a starting point for the search 832 * @highest_zoneidx - The zone index of the highest zone to return 833 * @nodes - An optional nodemask to filter the zonelist with 834 * @zone - The first suitable zone found is returned via this parameter 835 * 836 * This function returns the next zone at or below a given zone index that is 837 * within the allowed nodemask using a cursor as the starting point for the 838 * search. The zoneref returned is a cursor that represents the current zone 839 * being examined. It should be advanced by one before calling 840 * next_zones_zonelist again. 841 */ 842 struct zoneref *next_zones_zonelist(struct zoneref *z, 843 enum zone_type highest_zoneidx, 844 nodemask_t *nodes, 845 struct zone **zone); 846 847 /** 848 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 849 * @zonelist - The zonelist to search for a suitable zone 850 * @highest_zoneidx - The zone index of the highest zone to return 851 * @nodes - An optional nodemask to filter the zonelist with 852 * @zone - The first suitable zone found is returned via this parameter 853 * 854 * This function returns the first zone at or below a given zone index that is 855 * within the allowed nodemask. The zoneref returned is a cursor that can be 856 * used to iterate the zonelist with next_zones_zonelist by advancing it by 857 * one before calling. 858 */ 859 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 860 enum zone_type highest_zoneidx, 861 nodemask_t *nodes, 862 struct zone **zone) 863 { 864 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 865 zone); 866 } 867 868 /** 869 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 870 * @zone - The current zone in the iterator 871 * @z - The current pointer within zonelist->zones being iterated 872 * @zlist - The zonelist being iterated 873 * @highidx - The zone index of the highest zone to return 874 * @nodemask - Nodemask allowed by the allocator 875 * 876 * This iterator iterates though all zones at or below a given zone index and 877 * within a given nodemask 878 */ 879 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 880 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 881 zone; \ 882 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 883 884 /** 885 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 886 * @zone - The current zone in the iterator 887 * @z - The current pointer within zonelist->zones being iterated 888 * @zlist - The zonelist being iterated 889 * @highidx - The zone index of the highest zone to return 890 * 891 * This iterator iterates though all zones at or below a given zone index. 892 */ 893 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 894 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 895 896 #ifdef CONFIG_SPARSEMEM 897 #include <asm/sparsemem.h> 898 #endif 899 900 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 901 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 902 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 903 { 904 return 0; 905 } 906 #endif 907 908 #ifdef CONFIG_FLATMEM 909 #define pfn_to_nid(pfn) (0) 910 #endif 911 912 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 913 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 914 915 #ifdef CONFIG_SPARSEMEM 916 917 /* 918 * SECTION_SHIFT #bits space required to store a section # 919 * 920 * PA_SECTION_SHIFT physical address to/from section number 921 * PFN_SECTION_SHIFT pfn to/from section number 922 */ 923 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 924 925 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 926 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 927 928 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 929 930 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 931 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 932 933 #define SECTION_BLOCKFLAGS_BITS \ 934 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 935 936 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 937 #error Allocator MAX_ORDER exceeds SECTION_SIZE 938 #endif 939 940 struct page; 941 struct page_cgroup; 942 struct mem_section { 943 /* 944 * This is, logically, a pointer to an array of struct 945 * pages. However, it is stored with some other magic. 946 * (see sparse.c::sparse_init_one_section()) 947 * 948 * Additionally during early boot we encode node id of 949 * the location of the section here to guide allocation. 950 * (see sparse.c::memory_present()) 951 * 952 * Making it a UL at least makes someone do a cast 953 * before using it wrong. 954 */ 955 unsigned long section_mem_map; 956 957 /* See declaration of similar field in struct zone */ 958 unsigned long *pageblock_flags; 959 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 960 /* 961 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 962 * section. (see memcontrol.h/page_cgroup.h about this.) 963 */ 964 struct page_cgroup *page_cgroup; 965 unsigned long pad; 966 #endif 967 }; 968 969 #ifdef CONFIG_SPARSEMEM_EXTREME 970 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 971 #else 972 #define SECTIONS_PER_ROOT 1 973 #endif 974 975 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 976 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 977 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 978 979 #ifdef CONFIG_SPARSEMEM_EXTREME 980 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 981 #else 982 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 983 #endif 984 985 static inline struct mem_section *__nr_to_section(unsigned long nr) 986 { 987 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 988 return NULL; 989 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 990 } 991 extern int __section_nr(struct mem_section* ms); 992 extern unsigned long usemap_size(void); 993 994 /* 995 * We use the lower bits of the mem_map pointer to store 996 * a little bit of information. There should be at least 997 * 3 bits here due to 32-bit alignment. 998 */ 999 #define SECTION_MARKED_PRESENT (1UL<<0) 1000 #define SECTION_HAS_MEM_MAP (1UL<<1) 1001 #define SECTION_MAP_LAST_BIT (1UL<<2) 1002 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1003 #define SECTION_NID_SHIFT 2 1004 1005 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1006 { 1007 unsigned long map = section->section_mem_map; 1008 map &= SECTION_MAP_MASK; 1009 return (struct page *)map; 1010 } 1011 1012 static inline int present_section(struct mem_section *section) 1013 { 1014 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1015 } 1016 1017 static inline int present_section_nr(unsigned long nr) 1018 { 1019 return present_section(__nr_to_section(nr)); 1020 } 1021 1022 static inline int valid_section(struct mem_section *section) 1023 { 1024 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1025 } 1026 1027 static inline int valid_section_nr(unsigned long nr) 1028 { 1029 return valid_section(__nr_to_section(nr)); 1030 } 1031 1032 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1033 { 1034 return __nr_to_section(pfn_to_section_nr(pfn)); 1035 } 1036 1037 static inline int pfn_valid(unsigned long pfn) 1038 { 1039 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1040 return 0; 1041 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1042 } 1043 1044 static inline int pfn_present(unsigned long pfn) 1045 { 1046 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1047 return 0; 1048 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1049 } 1050 1051 /* 1052 * These are _only_ used during initialisation, therefore they 1053 * can use __initdata ... They could have names to indicate 1054 * this restriction. 1055 */ 1056 #ifdef CONFIG_NUMA 1057 #define pfn_to_nid(pfn) \ 1058 ({ \ 1059 unsigned long __pfn_to_nid_pfn = (pfn); \ 1060 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1061 }) 1062 #else 1063 #define pfn_to_nid(pfn) (0) 1064 #endif 1065 1066 #define early_pfn_valid(pfn) pfn_valid(pfn) 1067 void sparse_init(void); 1068 #else 1069 #define sparse_init() do {} while (0) 1070 #define sparse_index_init(_sec, _nid) do {} while (0) 1071 #endif /* CONFIG_SPARSEMEM */ 1072 1073 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1074 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 1075 #else 1076 #define early_pfn_in_nid(pfn, nid) (1) 1077 #endif 1078 1079 #ifndef early_pfn_valid 1080 #define early_pfn_valid(pfn) (1) 1081 #endif 1082 1083 void memory_present(int nid, unsigned long start, unsigned long end); 1084 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1085 1086 /* 1087 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1088 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1089 * pfn_valid_within() should be used in this case; we optimise this away 1090 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1091 */ 1092 #ifdef CONFIG_HOLES_IN_ZONE 1093 #define pfn_valid_within(pfn) pfn_valid(pfn) 1094 #else 1095 #define pfn_valid_within(pfn) (1) 1096 #endif 1097 1098 #endif /* !__GENERATING_BOUNDS.H */ 1099 #endif /* !__ASSEMBLY__ */ 1100 #endif /* _LINUX_MMZONE_H */ 1101