xref: /linux-6.15/include/linux/mmzone.h (revision 2b8232ce)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18 
19 /* Free memory management - zoned buddy allocator.  */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26 
27 /*
28  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29  * costly to service.  That is between allocation orders which should
30  * coelesce naturally under reasonable reclaim pressure and those which
31  * will not.
32  */
33 #define PAGE_ALLOC_COSTLY_ORDER 3
34 
35 struct free_area {
36 	struct list_head	free_list;
37 	unsigned long		nr_free;
38 };
39 
40 struct pglist_data;
41 
42 /*
43  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44  * So add a wild amount of padding here to ensure that they fall into separate
45  * cachelines.  There are very few zone structures in the machine, so space
46  * consumption is not a concern here.
47  */
48 #if defined(CONFIG_SMP)
49 struct zone_padding {
50 	char x[0];
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name)	struct zone_padding name;
53 #else
54 #define ZONE_PADDING(name)
55 #endif
56 
57 enum zone_stat_item {
58 	/* First 128 byte cacheline (assuming 64 bit words) */
59 	NR_FREE_PAGES,
60 	NR_INACTIVE,
61 	NR_ACTIVE,
62 	NR_ANON_PAGES,	/* Mapped anonymous pages */
63 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
64 			   only modified from process context */
65 	NR_FILE_PAGES,
66 	NR_FILE_DIRTY,
67 	NR_WRITEBACK,
68 	/* Second 128 byte cacheline */
69 	NR_SLAB_RECLAIMABLE,
70 	NR_SLAB_UNRECLAIMABLE,
71 	NR_PAGETABLE,		/* used for pagetables */
72 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
73 	NR_BOUNCE,
74 	NR_VMSCAN_WRITE,
75 #ifdef CONFIG_NUMA
76 	NUMA_HIT,		/* allocated in intended node */
77 	NUMA_MISS,		/* allocated in non intended node */
78 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
79 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
80 	NUMA_LOCAL,		/* allocation from local node */
81 	NUMA_OTHER,		/* allocation from other node */
82 #endif
83 	NR_VM_ZONE_STAT_ITEMS };
84 
85 struct per_cpu_pages {
86 	int count;		/* number of pages in the list */
87 	int high;		/* high watermark, emptying needed */
88 	int batch;		/* chunk size for buddy add/remove */
89 	struct list_head list;	/* the list of pages */
90 };
91 
92 struct per_cpu_pageset {
93 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
94 #ifdef CONFIG_NUMA
95 	s8 expire;
96 #endif
97 #ifdef CONFIG_SMP
98 	s8 stat_threshold;
99 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
100 #endif
101 } ____cacheline_aligned_in_smp;
102 
103 #ifdef CONFIG_NUMA
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
105 #else
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
107 #endif
108 
109 enum zone_type {
110 #ifdef CONFIG_ZONE_DMA
111 	/*
112 	 * ZONE_DMA is used when there are devices that are not able
113 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 	 * carve out the portion of memory that is needed for these devices.
115 	 * The range is arch specific.
116 	 *
117 	 * Some examples
118 	 *
119 	 * Architecture		Limit
120 	 * ---------------------------
121 	 * parisc, ia64, sparc	<4G
122 	 * s390			<2G
123 	 * arm			Various
124 	 * alpha		Unlimited or 0-16MB.
125 	 *
126 	 * i386, x86_64 and multiple other arches
127 	 * 			<16M.
128 	 */
129 	ZONE_DMA,
130 #endif
131 #ifdef CONFIG_ZONE_DMA32
132 	/*
133 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
134 	 * only able to do DMA to the lower 16M but also 32 bit devices that
135 	 * can only do DMA areas below 4G.
136 	 */
137 	ZONE_DMA32,
138 #endif
139 	/*
140 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
141 	 * performed on pages in ZONE_NORMAL if the DMA devices support
142 	 * transfers to all addressable memory.
143 	 */
144 	ZONE_NORMAL,
145 #ifdef CONFIG_HIGHMEM
146 	/*
147 	 * A memory area that is only addressable by the kernel through
148 	 * mapping portions into its own address space. This is for example
149 	 * used by i386 to allow the kernel to address the memory beyond
150 	 * 900MB. The kernel will set up special mappings (page
151 	 * table entries on i386) for each page that the kernel needs to
152 	 * access.
153 	 */
154 	ZONE_HIGHMEM,
155 #endif
156 	ZONE_MOVABLE,
157 	MAX_NR_ZONES
158 };
159 
160 /*
161  * When a memory allocation must conform to specific limitations (such
162  * as being suitable for DMA) the caller will pass in hints to the
163  * allocator in the gfp_mask, in the zone modifier bits.  These bits
164  * are used to select a priority ordered list of memory zones which
165  * match the requested limits. See gfp_zone() in include/linux/gfp.h
166  */
167 
168 /*
169  * Count the active zones.  Note that the use of defined(X) outside
170  * #if and family is not necessarily defined so ensure we cannot use
171  * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
172  */
173 #define __ZONE_COUNT (			\
174 	  defined(CONFIG_ZONE_DMA)	\
175 	+ defined(CONFIG_ZONE_DMA32)	\
176 	+ 1				\
177 	+ defined(CONFIG_HIGHMEM)	\
178 	+ 1				\
179 )
180 #if __ZONE_COUNT < 2
181 #define ZONES_SHIFT 0
182 #elif __ZONE_COUNT <= 2
183 #define ZONES_SHIFT 1
184 #elif __ZONE_COUNT <= 4
185 #define ZONES_SHIFT 2
186 #else
187 #error ZONES_SHIFT -- too many zones configured adjust calculation
188 #endif
189 #undef __ZONE_COUNT
190 
191 struct zone {
192 	/* Fields commonly accessed by the page allocator */
193 	unsigned long		pages_min, pages_low, pages_high;
194 	/*
195 	 * We don't know if the memory that we're going to allocate will be freeable
196 	 * or/and it will be released eventually, so to avoid totally wasting several
197 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
198 	 * to run OOM on the lower zones despite there's tons of freeable ram
199 	 * on the higher zones). This array is recalculated at runtime if the
200 	 * sysctl_lowmem_reserve_ratio sysctl changes.
201 	 */
202 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
203 
204 #ifdef CONFIG_NUMA
205 	int node;
206 	/*
207 	 * zone reclaim becomes active if more unmapped pages exist.
208 	 */
209 	unsigned long		min_unmapped_pages;
210 	unsigned long		min_slab_pages;
211 	struct per_cpu_pageset	*pageset[NR_CPUS];
212 #else
213 	struct per_cpu_pageset	pageset[NR_CPUS];
214 #endif
215 	/*
216 	 * free areas of different sizes
217 	 */
218 	spinlock_t		lock;
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 	/* see spanned/present_pages for more description */
221 	seqlock_t		span_seqlock;
222 #endif
223 	struct free_area	free_area[MAX_ORDER];
224 
225 
226 	ZONE_PADDING(_pad1_)
227 
228 	/* Fields commonly accessed by the page reclaim scanner */
229 	spinlock_t		lru_lock;
230 	struct list_head	active_list;
231 	struct list_head	inactive_list;
232 	unsigned long		nr_scan_active;
233 	unsigned long		nr_scan_inactive;
234 	unsigned long		pages_scanned;	   /* since last reclaim */
235 	int			all_unreclaimable; /* All pages pinned */
236 
237 	/* A count of how many reclaimers are scanning this zone */
238 	atomic_t		reclaim_in_progress;
239 
240 	/* Zone statistics */
241 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
242 
243 	/*
244 	 * prev_priority holds the scanning priority for this zone.  It is
245 	 * defined as the scanning priority at which we achieved our reclaim
246 	 * target at the previous try_to_free_pages() or balance_pgdat()
247 	 * invokation.
248 	 *
249 	 * We use prev_priority as a measure of how much stress page reclaim is
250 	 * under - it drives the swappiness decision: whether to unmap mapped
251 	 * pages.
252 	 *
253 	 * Access to both this field is quite racy even on uniprocessor.  But
254 	 * it is expected to average out OK.
255 	 */
256 	int prev_priority;
257 
258 
259 	ZONE_PADDING(_pad2_)
260 	/* Rarely used or read-mostly fields */
261 
262 	/*
263 	 * wait_table		-- the array holding the hash table
264 	 * wait_table_hash_nr_entries	-- the size of the hash table array
265 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
266 	 *
267 	 * The purpose of all these is to keep track of the people
268 	 * waiting for a page to become available and make them
269 	 * runnable again when possible. The trouble is that this
270 	 * consumes a lot of space, especially when so few things
271 	 * wait on pages at a given time. So instead of using
272 	 * per-page waitqueues, we use a waitqueue hash table.
273 	 *
274 	 * The bucket discipline is to sleep on the same queue when
275 	 * colliding and wake all in that wait queue when removing.
276 	 * When something wakes, it must check to be sure its page is
277 	 * truly available, a la thundering herd. The cost of a
278 	 * collision is great, but given the expected load of the
279 	 * table, they should be so rare as to be outweighed by the
280 	 * benefits from the saved space.
281 	 *
282 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
283 	 * primary users of these fields, and in mm/page_alloc.c
284 	 * free_area_init_core() performs the initialization of them.
285 	 */
286 	wait_queue_head_t	* wait_table;
287 	unsigned long		wait_table_hash_nr_entries;
288 	unsigned long		wait_table_bits;
289 
290 	/*
291 	 * Discontig memory support fields.
292 	 */
293 	struct pglist_data	*zone_pgdat;
294 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
295 	unsigned long		zone_start_pfn;
296 
297 	/*
298 	 * zone_start_pfn, spanned_pages and present_pages are all
299 	 * protected by span_seqlock.  It is a seqlock because it has
300 	 * to be read outside of zone->lock, and it is done in the main
301 	 * allocator path.  But, it is written quite infrequently.
302 	 *
303 	 * The lock is declared along with zone->lock because it is
304 	 * frequently read in proximity to zone->lock.  It's good to
305 	 * give them a chance of being in the same cacheline.
306 	 */
307 	unsigned long		spanned_pages;	/* total size, including holes */
308 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
309 
310 	/*
311 	 * rarely used fields:
312 	 */
313 	const char		*name;
314 } ____cacheline_internodealigned_in_smp;
315 
316 /*
317  * The "priority" of VM scanning is how much of the queues we will scan in one
318  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
319  * queues ("queue_length >> 12") during an aging round.
320  */
321 #define DEF_PRIORITY 12
322 
323 /* Maximum number of zones on a zonelist */
324 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
325 
326 #ifdef CONFIG_NUMA
327 /*
328  * We cache key information from each zonelist for smaller cache
329  * footprint when scanning for free pages in get_page_from_freelist().
330  *
331  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
332  *    up short of free memory since the last time (last_fullzone_zap)
333  *    we zero'd fullzones.
334  * 2) The array z_to_n[] maps each zone in the zonelist to its node
335  *    id, so that we can efficiently evaluate whether that node is
336  *    set in the current tasks mems_allowed.
337  *
338  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
339  * indexed by a zones offset in the zonelist zones[] array.
340  *
341  * The get_page_from_freelist() routine does two scans.  During the
342  * first scan, we skip zones whose corresponding bit in 'fullzones'
343  * is set or whose corresponding node in current->mems_allowed (which
344  * comes from cpusets) is not set.  During the second scan, we bypass
345  * this zonelist_cache, to ensure we look methodically at each zone.
346  *
347  * Once per second, we zero out (zap) fullzones, forcing us to
348  * reconsider nodes that might have regained more free memory.
349  * The field last_full_zap is the time we last zapped fullzones.
350  *
351  * This mechanism reduces the amount of time we waste repeatedly
352  * reexaming zones for free memory when they just came up low on
353  * memory momentarilly ago.
354  *
355  * The zonelist_cache struct members logically belong in struct
356  * zonelist.  However, the mempolicy zonelists constructed for
357  * MPOL_BIND are intentionally variable length (and usually much
358  * shorter).  A general purpose mechanism for handling structs with
359  * multiple variable length members is more mechanism than we want
360  * here.  We resort to some special case hackery instead.
361  *
362  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
363  * part because they are shorter), so we put the fixed length stuff
364  * at the front of the zonelist struct, ending in a variable length
365  * zones[], as is needed by MPOL_BIND.
366  *
367  * Then we put the optional zonelist cache on the end of the zonelist
368  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
369  * the fixed length portion at the front of the struct.  This pointer
370  * both enables us to find the zonelist cache, and in the case of
371  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
372  * to know that the zonelist cache is not there.
373  *
374  * The end result is that struct zonelists come in two flavors:
375  *  1) The full, fixed length version, shown below, and
376  *  2) The custom zonelists for MPOL_BIND.
377  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
378  *
379  * Even though there may be multiple CPU cores on a node modifying
380  * fullzones or last_full_zap in the same zonelist_cache at the same
381  * time, we don't lock it.  This is just hint data - if it is wrong now
382  * and then, the allocator will still function, perhaps a bit slower.
383  */
384 
385 
386 struct zonelist_cache {
387 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
388 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
389 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
390 };
391 #else
392 struct zonelist_cache;
393 #endif
394 
395 /*
396  * One allocation request operates on a zonelist. A zonelist
397  * is a list of zones, the first one is the 'goal' of the
398  * allocation, the other zones are fallback zones, in decreasing
399  * priority.
400  *
401  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
402  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
403  */
404 
405 struct zonelist {
406 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
407 	struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
408 #ifdef CONFIG_NUMA
409 	struct zonelist_cache zlcache;			     // optional ...
410 #endif
411 };
412 
413 #ifdef CONFIG_NUMA
414 /*
415  * Only custom zonelists like MPOL_BIND need to be filtered as part of
416  * policies. As described in the comment for struct zonelist_cache, these
417  * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
418  * that to determine if the zonelists needs to be filtered or not.
419  */
420 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
421 {
422 	return !zonelist->zlcache_ptr;
423 }
424 #else
425 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
426 {
427 	return 0;
428 }
429 #endif /* CONFIG_NUMA */
430 
431 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
432 struct node_active_region {
433 	unsigned long start_pfn;
434 	unsigned long end_pfn;
435 	int nid;
436 };
437 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
438 
439 #ifndef CONFIG_DISCONTIGMEM
440 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
441 extern struct page *mem_map;
442 #endif
443 
444 /*
445  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
446  * (mostly NUMA machines?) to denote a higher-level memory zone than the
447  * zone denotes.
448  *
449  * On NUMA machines, each NUMA node would have a pg_data_t to describe
450  * it's memory layout.
451  *
452  * Memory statistics and page replacement data structures are maintained on a
453  * per-zone basis.
454  */
455 struct bootmem_data;
456 typedef struct pglist_data {
457 	struct zone node_zones[MAX_NR_ZONES];
458 	struct zonelist node_zonelists[MAX_NR_ZONES];
459 	int nr_zones;
460 #ifdef CONFIG_FLAT_NODE_MEM_MAP
461 	struct page *node_mem_map;
462 #endif
463 	struct bootmem_data *bdata;
464 #ifdef CONFIG_MEMORY_HOTPLUG
465 	/*
466 	 * Must be held any time you expect node_start_pfn, node_present_pages
467 	 * or node_spanned_pages stay constant.  Holding this will also
468 	 * guarantee that any pfn_valid() stays that way.
469 	 *
470 	 * Nests above zone->lock and zone->size_seqlock.
471 	 */
472 	spinlock_t node_size_lock;
473 #endif
474 	unsigned long node_start_pfn;
475 	unsigned long node_present_pages; /* total number of physical pages */
476 	unsigned long node_spanned_pages; /* total size of physical page
477 					     range, including holes */
478 	int node_id;
479 	wait_queue_head_t kswapd_wait;
480 	struct task_struct *kswapd;
481 	int kswapd_max_order;
482 } pg_data_t;
483 
484 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
485 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
486 #ifdef CONFIG_FLAT_NODE_MEM_MAP
487 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
488 #else
489 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
490 #endif
491 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
492 
493 #include <linux/memory_hotplug.h>
494 
495 void get_zone_counts(unsigned long *active, unsigned long *inactive,
496 			unsigned long *free);
497 void build_all_zonelists(void);
498 void wakeup_kswapd(struct zone *zone, int order);
499 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
500 		int classzone_idx, int alloc_flags);
501 enum memmap_context {
502 	MEMMAP_EARLY,
503 	MEMMAP_HOTPLUG,
504 };
505 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
506 				     unsigned long size,
507 				     enum memmap_context context);
508 
509 #ifdef CONFIG_HAVE_MEMORY_PRESENT
510 void memory_present(int nid, unsigned long start, unsigned long end);
511 #else
512 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
513 #endif
514 
515 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
516 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
517 #endif
518 
519 /*
520  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
521  */
522 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
523 
524 static inline int populated_zone(struct zone *zone)
525 {
526 	return (!!zone->present_pages);
527 }
528 
529 extern int movable_zone;
530 
531 static inline int zone_movable_is_highmem(void)
532 {
533 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
534 	return movable_zone == ZONE_HIGHMEM;
535 #else
536 	return 0;
537 #endif
538 }
539 
540 static inline int is_highmem_idx(enum zone_type idx)
541 {
542 #ifdef CONFIG_HIGHMEM
543 	return (idx == ZONE_HIGHMEM ||
544 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
545 #else
546 	return 0;
547 #endif
548 }
549 
550 static inline int is_normal_idx(enum zone_type idx)
551 {
552 	return (idx == ZONE_NORMAL);
553 }
554 
555 /**
556  * is_highmem - helper function to quickly check if a struct zone is a
557  *              highmem zone or not.  This is an attempt to keep references
558  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
559  * @zone - pointer to struct zone variable
560  */
561 static inline int is_highmem(struct zone *zone)
562 {
563 #ifdef CONFIG_HIGHMEM
564 	int zone_idx = zone - zone->zone_pgdat->node_zones;
565 	return zone_idx == ZONE_HIGHMEM ||
566 		(zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
567 #else
568 	return 0;
569 #endif
570 }
571 
572 static inline int is_normal(struct zone *zone)
573 {
574 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
575 }
576 
577 static inline int is_dma32(struct zone *zone)
578 {
579 #ifdef CONFIG_ZONE_DMA32
580 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
581 #else
582 	return 0;
583 #endif
584 }
585 
586 static inline int is_dma(struct zone *zone)
587 {
588 #ifdef CONFIG_ZONE_DMA
589 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
590 #else
591 	return 0;
592 #endif
593 }
594 
595 /* These two functions are used to setup the per zone pages min values */
596 struct ctl_table;
597 struct file;
598 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
599 					void __user *, size_t *, loff_t *);
600 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
601 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
602 					void __user *, size_t *, loff_t *);
603 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
604 					void __user *, size_t *, loff_t *);
605 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
606 			struct file *, void __user *, size_t *, loff_t *);
607 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
608 			struct file *, void __user *, size_t *, loff_t *);
609 
610 extern int numa_zonelist_order_handler(struct ctl_table *, int,
611 			struct file *, void __user *, size_t *, loff_t *);
612 extern char numa_zonelist_order[];
613 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
614 
615 #include <linux/topology.h>
616 /* Returns the number of the current Node. */
617 #ifndef numa_node_id
618 #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
619 #endif
620 
621 #ifndef CONFIG_NEED_MULTIPLE_NODES
622 
623 extern struct pglist_data contig_page_data;
624 #define NODE_DATA(nid)		(&contig_page_data)
625 #define NODE_MEM_MAP(nid)	mem_map
626 #define MAX_NODES_SHIFT		1
627 
628 #else /* CONFIG_NEED_MULTIPLE_NODES */
629 
630 #include <asm/mmzone.h>
631 
632 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
633 
634 extern struct pglist_data *first_online_pgdat(void);
635 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
636 extern struct zone *next_zone(struct zone *zone);
637 
638 /**
639  * for_each_pgdat - helper macro to iterate over all nodes
640  * @pgdat - pointer to a pg_data_t variable
641  */
642 #define for_each_online_pgdat(pgdat)			\
643 	for (pgdat = first_online_pgdat();		\
644 	     pgdat;					\
645 	     pgdat = next_online_pgdat(pgdat))
646 /**
647  * for_each_zone - helper macro to iterate over all memory zones
648  * @zone - pointer to struct zone variable
649  *
650  * The user only needs to declare the zone variable, for_each_zone
651  * fills it in.
652  */
653 #define for_each_zone(zone)			        \
654 	for (zone = (first_online_pgdat())->node_zones; \
655 	     zone;					\
656 	     zone = next_zone(zone))
657 
658 #ifdef CONFIG_SPARSEMEM
659 #include <asm/sparsemem.h>
660 #endif
661 
662 #if BITS_PER_LONG == 32
663 /*
664  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
665  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
666  */
667 #define FLAGS_RESERVED		9
668 
669 #elif BITS_PER_LONG == 64
670 /*
671  * with 64 bit flags field, there's plenty of room.
672  */
673 #define FLAGS_RESERVED		32
674 
675 #else
676 
677 #error BITS_PER_LONG not defined
678 
679 #endif
680 
681 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
682 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 #define early_pfn_to_nid(nid)  (0UL)
684 #endif
685 
686 #ifdef CONFIG_FLATMEM
687 #define pfn_to_nid(pfn)		(0)
688 #endif
689 
690 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
691 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
692 
693 #ifdef CONFIG_SPARSEMEM
694 
695 /*
696  * SECTION_SHIFT    		#bits space required to store a section #
697  *
698  * PA_SECTION_SHIFT		physical address to/from section number
699  * PFN_SECTION_SHIFT		pfn to/from section number
700  */
701 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
702 
703 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
704 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
705 
706 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
707 
708 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
709 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
710 
711 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
712 #error Allocator MAX_ORDER exceeds SECTION_SIZE
713 #endif
714 
715 struct page;
716 struct mem_section {
717 	/*
718 	 * This is, logically, a pointer to an array of struct
719 	 * pages.  However, it is stored with some other magic.
720 	 * (see sparse.c::sparse_init_one_section())
721 	 *
722 	 * Additionally during early boot we encode node id of
723 	 * the location of the section here to guide allocation.
724 	 * (see sparse.c::memory_present())
725 	 *
726 	 * Making it a UL at least makes someone do a cast
727 	 * before using it wrong.
728 	 */
729 	unsigned long section_mem_map;
730 };
731 
732 #ifdef CONFIG_SPARSEMEM_EXTREME
733 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
734 #else
735 #define SECTIONS_PER_ROOT	1
736 #endif
737 
738 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
739 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
740 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
741 
742 #ifdef CONFIG_SPARSEMEM_EXTREME
743 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
744 #else
745 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
746 #endif
747 
748 static inline struct mem_section *__nr_to_section(unsigned long nr)
749 {
750 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
751 		return NULL;
752 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
753 }
754 extern int __section_nr(struct mem_section* ms);
755 
756 /*
757  * We use the lower bits of the mem_map pointer to store
758  * a little bit of information.  There should be at least
759  * 3 bits here due to 32-bit alignment.
760  */
761 #define	SECTION_MARKED_PRESENT	(1UL<<0)
762 #define SECTION_HAS_MEM_MAP	(1UL<<1)
763 #define SECTION_MAP_LAST_BIT	(1UL<<2)
764 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
765 #define SECTION_NID_SHIFT	2
766 
767 static inline struct page *__section_mem_map_addr(struct mem_section *section)
768 {
769 	unsigned long map = section->section_mem_map;
770 	map &= SECTION_MAP_MASK;
771 	return (struct page *)map;
772 }
773 
774 static inline int valid_section(struct mem_section *section)
775 {
776 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
777 }
778 
779 static inline int section_has_mem_map(struct mem_section *section)
780 {
781 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
782 }
783 
784 static inline int valid_section_nr(unsigned long nr)
785 {
786 	return valid_section(__nr_to_section(nr));
787 }
788 
789 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
790 {
791 	return __nr_to_section(pfn_to_section_nr(pfn));
792 }
793 
794 static inline int pfn_valid(unsigned long pfn)
795 {
796 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
797 		return 0;
798 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
799 }
800 
801 /*
802  * These are _only_ used during initialisation, therefore they
803  * can use __initdata ...  They could have names to indicate
804  * this restriction.
805  */
806 #ifdef CONFIG_NUMA
807 #define pfn_to_nid(pfn)							\
808 ({									\
809 	unsigned long __pfn_to_nid_pfn = (pfn);				\
810 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
811 })
812 #else
813 #define pfn_to_nid(pfn)		(0)
814 #endif
815 
816 #define early_pfn_valid(pfn)	pfn_valid(pfn)
817 void sparse_init(void);
818 #else
819 #define sparse_init()	do {} while (0)
820 #define sparse_index_init(_sec, _nid)  do {} while (0)
821 #endif /* CONFIG_SPARSEMEM */
822 
823 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
824 #define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
825 #else
826 #define early_pfn_in_nid(pfn, nid)	(1)
827 #endif
828 
829 #ifndef early_pfn_valid
830 #define early_pfn_valid(pfn)	(1)
831 #endif
832 
833 void memory_present(int nid, unsigned long start, unsigned long end);
834 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
835 
836 /*
837  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
838  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
839  * pfn_valid_within() should be used in this case; we optimise this away
840  * when we have no holes within a MAX_ORDER_NR_PAGES block.
841  */
842 #ifdef CONFIG_HOLES_IN_ZONE
843 #define pfn_valid_within(pfn) pfn_valid(pfn)
844 #else
845 #define pfn_valid_within(pfn) (1)
846 #endif
847 
848 #endif /* !__ASSEMBLY__ */
849 #endif /* __KERNEL__ */
850 #endif /* _LINUX_MMZONE_H */
851