xref: /linux-6.15/include/linux/mmzone.h (revision 266fe2f2)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
104 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
105 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 	NUMA_HIT,		/* allocated in intended node */
109 	NUMA_MISS,		/* allocated in non intended node */
110 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
111 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
112 	NUMA_LOCAL,		/* allocation from local node */
113 	NUMA_OTHER,		/* allocation from other node */
114 #endif
115 	NR_VM_ZONE_STAT_ITEMS };
116 
117 /*
118  * We do arithmetic on the LRU lists in various places in the code,
119  * so it is important to keep the active lists LRU_ACTIVE higher in
120  * the array than the corresponding inactive lists, and to keep
121  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122  *
123  * This has to be kept in sync with the statistics in zone_stat_item
124  * above and the descriptions in vmstat_text in mm/vmstat.c
125  */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129 
130 enum lru_list {
131 	LRU_INACTIVE_ANON = LRU_BASE,
132 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 	LRU_UNEVICTABLE,
136 	NR_LRU_LISTS
137 };
138 
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140 
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142 
143 static inline int is_file_lru(enum lru_list l)
144 {
145 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146 }
147 
148 static inline int is_active_lru(enum lru_list l)
149 {
150 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 }
152 
153 static inline int is_unevictable_lru(enum lru_list l)
154 {
155 	return (l == LRU_UNEVICTABLE);
156 }
157 
158 enum zone_watermarks {
159 	WMARK_MIN,
160 	WMARK_LOW,
161 	WMARK_HIGH,
162 	NR_WMARK
163 };
164 
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168 
169 struct per_cpu_pages {
170 	int count;		/* number of pages in the list */
171 	int high;		/* high watermark, emptying needed */
172 	int batch;		/* chunk size for buddy add/remove */
173 
174 	/* Lists of pages, one per migrate type stored on the pcp-lists */
175 	struct list_head lists[MIGRATE_PCPTYPES];
176 };
177 
178 struct per_cpu_pageset {
179 	struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 	s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 	s8 stat_threshold;
185 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 } ____cacheline_aligned_in_smp;
188 
189 #ifdef CONFIG_NUMA
190 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
191 #else
192 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
193 #endif
194 
195 #endif /* !__GENERATING_BOUNDS.H */
196 
197 enum zone_type {
198 #ifdef CONFIG_ZONE_DMA
199 	/*
200 	 * ZONE_DMA is used when there are devices that are not able
201 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
202 	 * carve out the portion of memory that is needed for these devices.
203 	 * The range is arch specific.
204 	 *
205 	 * Some examples
206 	 *
207 	 * Architecture		Limit
208 	 * ---------------------------
209 	 * parisc, ia64, sparc	<4G
210 	 * s390			<2G
211 	 * arm			Various
212 	 * alpha		Unlimited or 0-16MB.
213 	 *
214 	 * i386, x86_64 and multiple other arches
215 	 * 			<16M.
216 	 */
217 	ZONE_DMA,
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	/*
221 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
222 	 * only able to do DMA to the lower 16M but also 32 bit devices that
223 	 * can only do DMA areas below 4G.
224 	 */
225 	ZONE_DMA32,
226 #endif
227 	/*
228 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
229 	 * performed on pages in ZONE_NORMAL if the DMA devices support
230 	 * transfers to all addressable memory.
231 	 */
232 	ZONE_NORMAL,
233 #ifdef CONFIG_HIGHMEM
234 	/*
235 	 * A memory area that is only addressable by the kernel through
236 	 * mapping portions into its own address space. This is for example
237 	 * used by i386 to allow the kernel to address the memory beyond
238 	 * 900MB. The kernel will set up special mappings (page
239 	 * table entries on i386) for each page that the kernel needs to
240 	 * access.
241 	 */
242 	ZONE_HIGHMEM,
243 #endif
244 	ZONE_MOVABLE,
245 	__MAX_NR_ZONES
246 };
247 
248 #ifndef __GENERATING_BOUNDS_H
249 
250 /*
251  * When a memory allocation must conform to specific limitations (such
252  * as being suitable for DMA) the caller will pass in hints to the
253  * allocator in the gfp_mask, in the zone modifier bits.  These bits
254  * are used to select a priority ordered list of memory zones which
255  * match the requested limits. See gfp_zone() in include/linux/gfp.h
256  */
257 
258 #if MAX_NR_ZONES < 2
259 #define ZONES_SHIFT 0
260 #elif MAX_NR_ZONES <= 2
261 #define ZONES_SHIFT 1
262 #elif MAX_NR_ZONES <= 4
263 #define ZONES_SHIFT 2
264 #else
265 #error ZONES_SHIFT -- too many zones configured adjust calculation
266 #endif
267 
268 struct zone_reclaim_stat {
269 	/*
270 	 * The pageout code in vmscan.c keeps track of how many of the
271 	 * mem/swap backed and file backed pages are refeferenced.
272 	 * The higher the rotated/scanned ratio, the more valuable
273 	 * that cache is.
274 	 *
275 	 * The anon LRU stats live in [0], file LRU stats in [1]
276 	 */
277 	unsigned long		recent_rotated[2];
278 	unsigned long		recent_scanned[2];
279 
280 	/*
281 	 * accumulated for batching
282 	 */
283 	unsigned long		nr_saved_scan[NR_LRU_LISTS];
284 };
285 
286 struct zone {
287 	/* Fields commonly accessed by the page allocator */
288 
289 	/* zone watermarks, access with *_wmark_pages(zone) macros */
290 	unsigned long watermark[NR_WMARK];
291 
292 	/*
293 	 * We don't know if the memory that we're going to allocate will be freeable
294 	 * or/and it will be released eventually, so to avoid totally wasting several
295 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
296 	 * to run OOM on the lower zones despite there's tons of freeable ram
297 	 * on the higher zones). This array is recalculated at runtime if the
298 	 * sysctl_lowmem_reserve_ratio sysctl changes.
299 	 */
300 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
301 
302 #ifdef CONFIG_NUMA
303 	int node;
304 	/*
305 	 * zone reclaim becomes active if more unmapped pages exist.
306 	 */
307 	unsigned long		min_unmapped_pages;
308 	unsigned long		min_slab_pages;
309 	struct per_cpu_pageset	*pageset[NR_CPUS];
310 #else
311 	struct per_cpu_pageset	pageset[NR_CPUS];
312 #endif
313 	/*
314 	 * free areas of different sizes
315 	 */
316 	spinlock_t		lock;
317 #ifdef CONFIG_MEMORY_HOTPLUG
318 	/* see spanned/present_pages for more description */
319 	seqlock_t		span_seqlock;
320 #endif
321 	struct free_area	free_area[MAX_ORDER];
322 
323 #ifndef CONFIG_SPARSEMEM
324 	/*
325 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
326 	 * In SPARSEMEM, this map is stored in struct mem_section
327 	 */
328 	unsigned long		*pageblock_flags;
329 #endif /* CONFIG_SPARSEMEM */
330 
331 
332 	ZONE_PADDING(_pad1_)
333 
334 	/* Fields commonly accessed by the page reclaim scanner */
335 	spinlock_t		lru_lock;
336 	struct zone_lru {
337 		struct list_head list;
338 	} lru[NR_LRU_LISTS];
339 
340 	struct zone_reclaim_stat reclaim_stat;
341 
342 	unsigned long		pages_scanned;	   /* since last reclaim */
343 	unsigned long		flags;		   /* zone flags, see below */
344 
345 	/* Zone statistics */
346 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
347 
348 	/*
349 	 * prev_priority holds the scanning priority for this zone.  It is
350 	 * defined as the scanning priority at which we achieved our reclaim
351 	 * target at the previous try_to_free_pages() or balance_pgdat()
352 	 * invokation.
353 	 *
354 	 * We use prev_priority as a measure of how much stress page reclaim is
355 	 * under - it drives the swappiness decision: whether to unmap mapped
356 	 * pages.
357 	 *
358 	 * Access to both this field is quite racy even on uniprocessor.  But
359 	 * it is expected to average out OK.
360 	 */
361 	int prev_priority;
362 
363 	/*
364 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
365 	 * this zone's LRU.  Maintained by the pageout code.
366 	 */
367 	unsigned int inactive_ratio;
368 
369 
370 	ZONE_PADDING(_pad2_)
371 	/* Rarely used or read-mostly fields */
372 
373 	/*
374 	 * wait_table		-- the array holding the hash table
375 	 * wait_table_hash_nr_entries	-- the size of the hash table array
376 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
377 	 *
378 	 * The purpose of all these is to keep track of the people
379 	 * waiting for a page to become available and make them
380 	 * runnable again when possible. The trouble is that this
381 	 * consumes a lot of space, especially when so few things
382 	 * wait on pages at a given time. So instead of using
383 	 * per-page waitqueues, we use a waitqueue hash table.
384 	 *
385 	 * The bucket discipline is to sleep on the same queue when
386 	 * colliding and wake all in that wait queue when removing.
387 	 * When something wakes, it must check to be sure its page is
388 	 * truly available, a la thundering herd. The cost of a
389 	 * collision is great, but given the expected load of the
390 	 * table, they should be so rare as to be outweighed by the
391 	 * benefits from the saved space.
392 	 *
393 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
394 	 * primary users of these fields, and in mm/page_alloc.c
395 	 * free_area_init_core() performs the initialization of them.
396 	 */
397 	wait_queue_head_t	* wait_table;
398 	unsigned long		wait_table_hash_nr_entries;
399 	unsigned long		wait_table_bits;
400 
401 	/*
402 	 * Discontig memory support fields.
403 	 */
404 	struct pglist_data	*zone_pgdat;
405 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
406 	unsigned long		zone_start_pfn;
407 
408 	/*
409 	 * zone_start_pfn, spanned_pages and present_pages are all
410 	 * protected by span_seqlock.  It is a seqlock because it has
411 	 * to be read outside of zone->lock, and it is done in the main
412 	 * allocator path.  But, it is written quite infrequently.
413 	 *
414 	 * The lock is declared along with zone->lock because it is
415 	 * frequently read in proximity to zone->lock.  It's good to
416 	 * give them a chance of being in the same cacheline.
417 	 */
418 	unsigned long		spanned_pages;	/* total size, including holes */
419 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
420 
421 	/*
422 	 * rarely used fields:
423 	 */
424 	const char		*name;
425 } ____cacheline_internodealigned_in_smp;
426 
427 typedef enum {
428 	ZONE_ALL_UNRECLAIMABLE,		/* all pages pinned */
429 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
430 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
431 } zone_flags_t;
432 
433 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
434 {
435 	set_bit(flag, &zone->flags);
436 }
437 
438 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
439 {
440 	return test_and_set_bit(flag, &zone->flags);
441 }
442 
443 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
444 {
445 	clear_bit(flag, &zone->flags);
446 }
447 
448 static inline int zone_is_all_unreclaimable(const struct zone *zone)
449 {
450 	return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
451 }
452 
453 static inline int zone_is_reclaim_locked(const struct zone *zone)
454 {
455 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
456 }
457 
458 static inline int zone_is_oom_locked(const struct zone *zone)
459 {
460 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
461 }
462 
463 /*
464  * The "priority" of VM scanning is how much of the queues we will scan in one
465  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
466  * queues ("queue_length >> 12") during an aging round.
467  */
468 #define DEF_PRIORITY 12
469 
470 /* Maximum number of zones on a zonelist */
471 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
472 
473 #ifdef CONFIG_NUMA
474 
475 /*
476  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
477  * allocations to a single node for GFP_THISNODE.
478  *
479  * [0]	: Zonelist with fallback
480  * [1]	: No fallback (GFP_THISNODE)
481  */
482 #define MAX_ZONELISTS 2
483 
484 
485 /*
486  * We cache key information from each zonelist for smaller cache
487  * footprint when scanning for free pages in get_page_from_freelist().
488  *
489  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
490  *    up short of free memory since the last time (last_fullzone_zap)
491  *    we zero'd fullzones.
492  * 2) The array z_to_n[] maps each zone in the zonelist to its node
493  *    id, so that we can efficiently evaluate whether that node is
494  *    set in the current tasks mems_allowed.
495  *
496  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
497  * indexed by a zones offset in the zonelist zones[] array.
498  *
499  * The get_page_from_freelist() routine does two scans.  During the
500  * first scan, we skip zones whose corresponding bit in 'fullzones'
501  * is set or whose corresponding node in current->mems_allowed (which
502  * comes from cpusets) is not set.  During the second scan, we bypass
503  * this zonelist_cache, to ensure we look methodically at each zone.
504  *
505  * Once per second, we zero out (zap) fullzones, forcing us to
506  * reconsider nodes that might have regained more free memory.
507  * The field last_full_zap is the time we last zapped fullzones.
508  *
509  * This mechanism reduces the amount of time we waste repeatedly
510  * reexaming zones for free memory when they just came up low on
511  * memory momentarilly ago.
512  *
513  * The zonelist_cache struct members logically belong in struct
514  * zonelist.  However, the mempolicy zonelists constructed for
515  * MPOL_BIND are intentionally variable length (and usually much
516  * shorter).  A general purpose mechanism for handling structs with
517  * multiple variable length members is more mechanism than we want
518  * here.  We resort to some special case hackery instead.
519  *
520  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
521  * part because they are shorter), so we put the fixed length stuff
522  * at the front of the zonelist struct, ending in a variable length
523  * zones[], as is needed by MPOL_BIND.
524  *
525  * Then we put the optional zonelist cache on the end of the zonelist
526  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
527  * the fixed length portion at the front of the struct.  This pointer
528  * both enables us to find the zonelist cache, and in the case of
529  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
530  * to know that the zonelist cache is not there.
531  *
532  * The end result is that struct zonelists come in two flavors:
533  *  1) The full, fixed length version, shown below, and
534  *  2) The custom zonelists for MPOL_BIND.
535  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
536  *
537  * Even though there may be multiple CPU cores on a node modifying
538  * fullzones or last_full_zap in the same zonelist_cache at the same
539  * time, we don't lock it.  This is just hint data - if it is wrong now
540  * and then, the allocator will still function, perhaps a bit slower.
541  */
542 
543 
544 struct zonelist_cache {
545 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
546 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
547 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
548 };
549 #else
550 #define MAX_ZONELISTS 1
551 struct zonelist_cache;
552 #endif
553 
554 /*
555  * This struct contains information about a zone in a zonelist. It is stored
556  * here to avoid dereferences into large structures and lookups of tables
557  */
558 struct zoneref {
559 	struct zone *zone;	/* Pointer to actual zone */
560 	int zone_idx;		/* zone_idx(zoneref->zone) */
561 };
562 
563 /*
564  * One allocation request operates on a zonelist. A zonelist
565  * is a list of zones, the first one is the 'goal' of the
566  * allocation, the other zones are fallback zones, in decreasing
567  * priority.
568  *
569  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
570  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
571  * *
572  * To speed the reading of the zonelist, the zonerefs contain the zone index
573  * of the entry being read. Helper functions to access information given
574  * a struct zoneref are
575  *
576  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
577  * zonelist_zone_idx()	- Return the index of the zone for an entry
578  * zonelist_node_idx()	- Return the index of the node for an entry
579  */
580 struct zonelist {
581 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
582 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
583 #ifdef CONFIG_NUMA
584 	struct zonelist_cache zlcache;			     // optional ...
585 #endif
586 };
587 
588 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
589 struct node_active_region {
590 	unsigned long start_pfn;
591 	unsigned long end_pfn;
592 	int nid;
593 };
594 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
595 
596 #ifndef CONFIG_DISCONTIGMEM
597 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
598 extern struct page *mem_map;
599 #endif
600 
601 /*
602  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
603  * (mostly NUMA machines?) to denote a higher-level memory zone than the
604  * zone denotes.
605  *
606  * On NUMA machines, each NUMA node would have a pg_data_t to describe
607  * it's memory layout.
608  *
609  * Memory statistics and page replacement data structures are maintained on a
610  * per-zone basis.
611  */
612 struct bootmem_data;
613 typedef struct pglist_data {
614 	struct zone node_zones[MAX_NR_ZONES];
615 	struct zonelist node_zonelists[MAX_ZONELISTS];
616 	int nr_zones;
617 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
618 	struct page *node_mem_map;
619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
620 	struct page_cgroup *node_page_cgroup;
621 #endif
622 #endif
623 	struct bootmem_data *bdata;
624 #ifdef CONFIG_MEMORY_HOTPLUG
625 	/*
626 	 * Must be held any time you expect node_start_pfn, node_present_pages
627 	 * or node_spanned_pages stay constant.  Holding this will also
628 	 * guarantee that any pfn_valid() stays that way.
629 	 *
630 	 * Nests above zone->lock and zone->size_seqlock.
631 	 */
632 	spinlock_t node_size_lock;
633 #endif
634 	unsigned long node_start_pfn;
635 	unsigned long node_present_pages; /* total number of physical pages */
636 	unsigned long node_spanned_pages; /* total size of physical page
637 					     range, including holes */
638 	int node_id;
639 	wait_queue_head_t kswapd_wait;
640 	struct task_struct *kswapd;
641 	int kswapd_max_order;
642 } pg_data_t;
643 
644 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
645 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
646 #ifdef CONFIG_FLAT_NODE_MEM_MAP
647 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
648 #else
649 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
650 #endif
651 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
652 
653 #include <linux/memory_hotplug.h>
654 
655 void get_zone_counts(unsigned long *active, unsigned long *inactive,
656 			unsigned long *free);
657 void build_all_zonelists(void);
658 void wakeup_kswapd(struct zone *zone, int order);
659 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
660 		int classzone_idx, int alloc_flags);
661 enum memmap_context {
662 	MEMMAP_EARLY,
663 	MEMMAP_HOTPLUG,
664 };
665 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
666 				     unsigned long size,
667 				     enum memmap_context context);
668 
669 #ifdef CONFIG_HAVE_MEMORY_PRESENT
670 void memory_present(int nid, unsigned long start, unsigned long end);
671 #else
672 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
673 #endif
674 
675 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
676 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
677 #endif
678 
679 /*
680  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
681  */
682 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
683 
684 static inline int populated_zone(struct zone *zone)
685 {
686 	return (!!zone->present_pages);
687 }
688 
689 extern int movable_zone;
690 
691 static inline int zone_movable_is_highmem(void)
692 {
693 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
694 	return movable_zone == ZONE_HIGHMEM;
695 #else
696 	return 0;
697 #endif
698 }
699 
700 static inline int is_highmem_idx(enum zone_type idx)
701 {
702 #ifdef CONFIG_HIGHMEM
703 	return (idx == ZONE_HIGHMEM ||
704 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
705 #else
706 	return 0;
707 #endif
708 }
709 
710 static inline int is_normal_idx(enum zone_type idx)
711 {
712 	return (idx == ZONE_NORMAL);
713 }
714 
715 /**
716  * is_highmem - helper function to quickly check if a struct zone is a
717  *              highmem zone or not.  This is an attempt to keep references
718  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
719  * @zone - pointer to struct zone variable
720  */
721 static inline int is_highmem(struct zone *zone)
722 {
723 #ifdef CONFIG_HIGHMEM
724 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
725 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
726 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
727 		zone_movable_is_highmem());
728 #else
729 	return 0;
730 #endif
731 }
732 
733 static inline int is_normal(struct zone *zone)
734 {
735 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
736 }
737 
738 static inline int is_dma32(struct zone *zone)
739 {
740 #ifdef CONFIG_ZONE_DMA32
741 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
742 #else
743 	return 0;
744 #endif
745 }
746 
747 static inline int is_dma(struct zone *zone)
748 {
749 #ifdef CONFIG_ZONE_DMA
750 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
751 #else
752 	return 0;
753 #endif
754 }
755 
756 /* These two functions are used to setup the per zone pages min values */
757 struct ctl_table;
758 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
759 					void __user *, size_t *, loff_t *);
760 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
761 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
762 					void __user *, size_t *, loff_t *);
763 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
764 					void __user *, size_t *, loff_t *);
765 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
766 			void __user *, size_t *, loff_t *);
767 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
768 			void __user *, size_t *, loff_t *);
769 
770 extern int numa_zonelist_order_handler(struct ctl_table *, int,
771 			void __user *, size_t *, loff_t *);
772 extern char numa_zonelist_order[];
773 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
774 
775 #ifndef CONFIG_NEED_MULTIPLE_NODES
776 
777 extern struct pglist_data contig_page_data;
778 #define NODE_DATA(nid)		(&contig_page_data)
779 #define NODE_MEM_MAP(nid)	mem_map
780 
781 #else /* CONFIG_NEED_MULTIPLE_NODES */
782 
783 #include <asm/mmzone.h>
784 
785 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
786 
787 extern struct pglist_data *first_online_pgdat(void);
788 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
789 extern struct zone *next_zone(struct zone *zone);
790 
791 /**
792  * for_each_online_pgdat - helper macro to iterate over all online nodes
793  * @pgdat - pointer to a pg_data_t variable
794  */
795 #define for_each_online_pgdat(pgdat)			\
796 	for (pgdat = first_online_pgdat();		\
797 	     pgdat;					\
798 	     pgdat = next_online_pgdat(pgdat))
799 /**
800  * for_each_zone - helper macro to iterate over all memory zones
801  * @zone - pointer to struct zone variable
802  *
803  * The user only needs to declare the zone variable, for_each_zone
804  * fills it in.
805  */
806 #define for_each_zone(zone)			        \
807 	for (zone = (first_online_pgdat())->node_zones; \
808 	     zone;					\
809 	     zone = next_zone(zone))
810 
811 #define for_each_populated_zone(zone)		        \
812 	for (zone = (first_online_pgdat())->node_zones; \
813 	     zone;					\
814 	     zone = next_zone(zone))			\
815 		if (!populated_zone(zone))		\
816 			; /* do nothing */		\
817 		else
818 
819 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
820 {
821 	return zoneref->zone;
822 }
823 
824 static inline int zonelist_zone_idx(struct zoneref *zoneref)
825 {
826 	return zoneref->zone_idx;
827 }
828 
829 static inline int zonelist_node_idx(struct zoneref *zoneref)
830 {
831 #ifdef CONFIG_NUMA
832 	/* zone_to_nid not available in this context */
833 	return zoneref->zone->node;
834 #else
835 	return 0;
836 #endif /* CONFIG_NUMA */
837 }
838 
839 /**
840  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
841  * @z - The cursor used as a starting point for the search
842  * @highest_zoneidx - The zone index of the highest zone to return
843  * @nodes - An optional nodemask to filter the zonelist with
844  * @zone - The first suitable zone found is returned via this parameter
845  *
846  * This function returns the next zone at or below a given zone index that is
847  * within the allowed nodemask using a cursor as the starting point for the
848  * search. The zoneref returned is a cursor that represents the current zone
849  * being examined. It should be advanced by one before calling
850  * next_zones_zonelist again.
851  */
852 struct zoneref *next_zones_zonelist(struct zoneref *z,
853 					enum zone_type highest_zoneidx,
854 					nodemask_t *nodes,
855 					struct zone **zone);
856 
857 /**
858  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
859  * @zonelist - The zonelist to search for a suitable zone
860  * @highest_zoneidx - The zone index of the highest zone to return
861  * @nodes - An optional nodemask to filter the zonelist with
862  * @zone - The first suitable zone found is returned via this parameter
863  *
864  * This function returns the first zone at or below a given zone index that is
865  * within the allowed nodemask. The zoneref returned is a cursor that can be
866  * used to iterate the zonelist with next_zones_zonelist by advancing it by
867  * one before calling.
868  */
869 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
870 					enum zone_type highest_zoneidx,
871 					nodemask_t *nodes,
872 					struct zone **zone)
873 {
874 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
875 								zone);
876 }
877 
878 /**
879  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
880  * @zone - The current zone in the iterator
881  * @z - The current pointer within zonelist->zones being iterated
882  * @zlist - The zonelist being iterated
883  * @highidx - The zone index of the highest zone to return
884  * @nodemask - Nodemask allowed by the allocator
885  *
886  * This iterator iterates though all zones at or below a given zone index and
887  * within a given nodemask
888  */
889 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
890 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
891 		zone;							\
892 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
893 
894 /**
895  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
896  * @zone - The current zone in the iterator
897  * @z - The current pointer within zonelist->zones being iterated
898  * @zlist - The zonelist being iterated
899  * @highidx - The zone index of the highest zone to return
900  *
901  * This iterator iterates though all zones at or below a given zone index.
902  */
903 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
904 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
905 
906 #ifdef CONFIG_SPARSEMEM
907 #include <asm/sparsemem.h>
908 #endif
909 
910 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
911 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
912 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
913 {
914 	return 0;
915 }
916 #endif
917 
918 #ifdef CONFIG_FLATMEM
919 #define pfn_to_nid(pfn)		(0)
920 #endif
921 
922 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
923 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
924 
925 #ifdef CONFIG_SPARSEMEM
926 
927 /*
928  * SECTION_SHIFT    		#bits space required to store a section #
929  *
930  * PA_SECTION_SHIFT		physical address to/from section number
931  * PFN_SECTION_SHIFT		pfn to/from section number
932  */
933 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
934 
935 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
936 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
937 
938 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
939 
940 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
941 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
942 
943 #define SECTION_BLOCKFLAGS_BITS \
944 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
945 
946 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
947 #error Allocator MAX_ORDER exceeds SECTION_SIZE
948 #endif
949 
950 struct page;
951 struct page_cgroup;
952 struct mem_section {
953 	/*
954 	 * This is, logically, a pointer to an array of struct
955 	 * pages.  However, it is stored with some other magic.
956 	 * (see sparse.c::sparse_init_one_section())
957 	 *
958 	 * Additionally during early boot we encode node id of
959 	 * the location of the section here to guide allocation.
960 	 * (see sparse.c::memory_present())
961 	 *
962 	 * Making it a UL at least makes someone do a cast
963 	 * before using it wrong.
964 	 */
965 	unsigned long section_mem_map;
966 
967 	/* See declaration of similar field in struct zone */
968 	unsigned long *pageblock_flags;
969 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
970 	/*
971 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
972 	 * section. (see memcontrol.h/page_cgroup.h about this.)
973 	 */
974 	struct page_cgroup *page_cgroup;
975 	unsigned long pad;
976 #endif
977 };
978 
979 #ifdef CONFIG_SPARSEMEM_EXTREME
980 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
981 #else
982 #define SECTIONS_PER_ROOT	1
983 #endif
984 
985 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
986 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
987 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
988 
989 #ifdef CONFIG_SPARSEMEM_EXTREME
990 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
991 #else
992 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
993 #endif
994 
995 static inline struct mem_section *__nr_to_section(unsigned long nr)
996 {
997 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
998 		return NULL;
999 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1000 }
1001 extern int __section_nr(struct mem_section* ms);
1002 extern unsigned long usemap_size(void);
1003 
1004 /*
1005  * We use the lower bits of the mem_map pointer to store
1006  * a little bit of information.  There should be at least
1007  * 3 bits here due to 32-bit alignment.
1008  */
1009 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1010 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1011 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1012 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1013 #define SECTION_NID_SHIFT	2
1014 
1015 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1016 {
1017 	unsigned long map = section->section_mem_map;
1018 	map &= SECTION_MAP_MASK;
1019 	return (struct page *)map;
1020 }
1021 
1022 static inline int present_section(struct mem_section *section)
1023 {
1024 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1025 }
1026 
1027 static inline int present_section_nr(unsigned long nr)
1028 {
1029 	return present_section(__nr_to_section(nr));
1030 }
1031 
1032 static inline int valid_section(struct mem_section *section)
1033 {
1034 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1035 }
1036 
1037 static inline int valid_section_nr(unsigned long nr)
1038 {
1039 	return valid_section(__nr_to_section(nr));
1040 }
1041 
1042 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1043 {
1044 	return __nr_to_section(pfn_to_section_nr(pfn));
1045 }
1046 
1047 static inline int pfn_valid(unsigned long pfn)
1048 {
1049 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1050 		return 0;
1051 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1052 }
1053 
1054 static inline int pfn_present(unsigned long pfn)
1055 {
1056 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1057 		return 0;
1058 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1059 }
1060 
1061 /*
1062  * These are _only_ used during initialisation, therefore they
1063  * can use __initdata ...  They could have names to indicate
1064  * this restriction.
1065  */
1066 #ifdef CONFIG_NUMA
1067 #define pfn_to_nid(pfn)							\
1068 ({									\
1069 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1070 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1071 })
1072 #else
1073 #define pfn_to_nid(pfn)		(0)
1074 #endif
1075 
1076 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1077 void sparse_init(void);
1078 #else
1079 #define sparse_init()	do {} while (0)
1080 #define sparse_index_init(_sec, _nid)  do {} while (0)
1081 #endif /* CONFIG_SPARSEMEM */
1082 
1083 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1084 bool early_pfn_in_nid(unsigned long pfn, int nid);
1085 #else
1086 #define early_pfn_in_nid(pfn, nid)	(1)
1087 #endif
1088 
1089 #ifndef early_pfn_valid
1090 #define early_pfn_valid(pfn)	(1)
1091 #endif
1092 
1093 void memory_present(int nid, unsigned long start, unsigned long end);
1094 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1095 
1096 /*
1097  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1098  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1099  * pfn_valid_within() should be used in this case; we optimise this away
1100  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1101  */
1102 #ifdef CONFIG_HOLES_IN_ZONE
1103 #define pfn_valid_within(pfn) pfn_valid(pfn)
1104 #else
1105 #define pfn_valid_within(pfn) (1)
1106 #endif
1107 
1108 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1109 /*
1110  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1111  * associated with it or not. In FLATMEM, it is expected that holes always
1112  * have valid memmap as long as there is valid PFNs either side of the hole.
1113  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1114  * entire section.
1115  *
1116  * However, an ARM, and maybe other embedded architectures in the future
1117  * free memmap backing holes to save memory on the assumption the memmap is
1118  * never used. The page_zone linkages are then broken even though pfn_valid()
1119  * returns true. A walker of the full memmap must then do this additional
1120  * check to ensure the memmap they are looking at is sane by making sure
1121  * the zone and PFN linkages are still valid. This is expensive, but walkers
1122  * of the full memmap are extremely rare.
1123  */
1124 int memmap_valid_within(unsigned long pfn,
1125 					struct page *page, struct zone *zone);
1126 #else
1127 static inline int memmap_valid_within(unsigned long pfn,
1128 					struct page *page, struct zone *zone)
1129 {
1130 	return 1;
1131 }
1132 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1133 
1134 #endif /* !__GENERATING_BOUNDS.H */
1135 #endif /* !__ASSEMBLY__ */
1136 #endif /* _LINUX_MMZONE_H */
1137