1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <generated/bounds.h> 19 #include <asm/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coelesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 #define MIGRATE_UNMOVABLE 0 39 #define MIGRATE_RECLAIMABLE 1 40 #define MIGRATE_MOVABLE 2 41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */ 42 #define MIGRATE_RESERVE 3 43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */ 44 #define MIGRATE_TYPES 5 45 46 #define for_each_migratetype_order(order, type) \ 47 for (order = 0; order < MAX_ORDER; order++) \ 48 for (type = 0; type < MIGRATE_TYPES; type++) 49 50 extern int page_group_by_mobility_disabled; 51 52 static inline int get_pageblock_migratetype(struct page *page) 53 { 54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end); 55 } 56 57 struct free_area { 58 struct list_head free_list[MIGRATE_TYPES]; 59 unsigned long nr_free; 60 }; 61 62 struct pglist_data; 63 64 /* 65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 66 * So add a wild amount of padding here to ensure that they fall into separate 67 * cachelines. There are very few zone structures in the machine, so space 68 * consumption is not a concern here. 69 */ 70 #if defined(CONFIG_SMP) 71 struct zone_padding { 72 char x[0]; 73 } ____cacheline_internodealigned_in_smp; 74 #define ZONE_PADDING(name) struct zone_padding name; 75 #else 76 #define ZONE_PADDING(name) 77 #endif 78 79 enum zone_stat_item { 80 /* First 128 byte cacheline (assuming 64 bit words) */ 81 NR_FREE_PAGES, 82 NR_LRU_BASE, 83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 84 NR_ACTIVE_ANON, /* " " " " " */ 85 NR_INACTIVE_FILE, /* " " " " " */ 86 NR_ACTIVE_FILE, /* " " " " " */ 87 NR_UNEVICTABLE, /* " " " " " */ 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 89 NR_ANON_PAGES, /* Mapped anonymous pages */ 90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 91 only modified from process context */ 92 NR_FILE_PAGES, 93 NR_FILE_DIRTY, 94 NR_WRITEBACK, 95 NR_SLAB_RECLAIMABLE, 96 NR_SLAB_UNRECLAIMABLE, 97 NR_PAGETABLE, /* used for pagetables */ 98 NR_KERNEL_STACK, 99 /* Second 128 byte cacheline */ 100 NR_UNSTABLE_NFS, /* NFS unstable pages */ 101 NR_BOUNCE, 102 NR_VMSCAN_WRITE, 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 107 NR_DIRTIED, /* page dirtyings since bootup */ 108 NR_WRITTEN, /* page writings since bootup */ 109 #ifdef CONFIG_NUMA 110 NUMA_HIT, /* allocated in intended node */ 111 NUMA_MISS, /* allocated in non intended node */ 112 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 114 NUMA_LOCAL, /* allocation from local node */ 115 NUMA_OTHER, /* allocation from other node */ 116 #endif 117 NR_ANON_TRANSPARENT_HUGEPAGES, 118 NR_VM_ZONE_STAT_ITEMS }; 119 120 /* 121 * We do arithmetic on the LRU lists in various places in the code, 122 * so it is important to keep the active lists LRU_ACTIVE higher in 123 * the array than the corresponding inactive lists, and to keep 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 125 * 126 * This has to be kept in sync with the statistics in zone_stat_item 127 * above and the descriptions in vmstat_text in mm/vmstat.c 128 */ 129 #define LRU_BASE 0 130 #define LRU_ACTIVE 1 131 #define LRU_FILE 2 132 133 enum lru_list { 134 LRU_INACTIVE_ANON = LRU_BASE, 135 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 136 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 137 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 138 LRU_UNEVICTABLE, 139 NR_LRU_LISTS 140 }; 141 142 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++) 143 144 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++) 145 146 static inline int is_file_lru(enum lru_list l) 147 { 148 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE); 149 } 150 151 static inline int is_active_lru(enum lru_list l) 152 { 153 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE); 154 } 155 156 static inline int is_unevictable_lru(enum lru_list l) 157 { 158 return (l == LRU_UNEVICTABLE); 159 } 160 161 enum zone_watermarks { 162 WMARK_MIN, 163 WMARK_LOW, 164 WMARK_HIGH, 165 NR_WMARK 166 }; 167 168 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 169 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 170 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 171 172 struct per_cpu_pages { 173 int count; /* number of pages in the list */ 174 int high; /* high watermark, emptying needed */ 175 int batch; /* chunk size for buddy add/remove */ 176 177 /* Lists of pages, one per migrate type stored on the pcp-lists */ 178 struct list_head lists[MIGRATE_PCPTYPES]; 179 }; 180 181 struct per_cpu_pageset { 182 struct per_cpu_pages pcp; 183 #ifdef CONFIG_NUMA 184 s8 expire; 185 #endif 186 #ifdef CONFIG_SMP 187 s8 stat_threshold; 188 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 189 #endif 190 }; 191 192 #endif /* !__GENERATING_BOUNDS.H */ 193 194 enum zone_type { 195 #ifdef CONFIG_ZONE_DMA 196 /* 197 * ZONE_DMA is used when there are devices that are not able 198 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 199 * carve out the portion of memory that is needed for these devices. 200 * The range is arch specific. 201 * 202 * Some examples 203 * 204 * Architecture Limit 205 * --------------------------- 206 * parisc, ia64, sparc <4G 207 * s390 <2G 208 * arm Various 209 * alpha Unlimited or 0-16MB. 210 * 211 * i386, x86_64 and multiple other arches 212 * <16M. 213 */ 214 ZONE_DMA, 215 #endif 216 #ifdef CONFIG_ZONE_DMA32 217 /* 218 * x86_64 needs two ZONE_DMAs because it supports devices that are 219 * only able to do DMA to the lower 16M but also 32 bit devices that 220 * can only do DMA areas below 4G. 221 */ 222 ZONE_DMA32, 223 #endif 224 /* 225 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 226 * performed on pages in ZONE_NORMAL if the DMA devices support 227 * transfers to all addressable memory. 228 */ 229 ZONE_NORMAL, 230 #ifdef CONFIG_HIGHMEM 231 /* 232 * A memory area that is only addressable by the kernel through 233 * mapping portions into its own address space. This is for example 234 * used by i386 to allow the kernel to address the memory beyond 235 * 900MB. The kernel will set up special mappings (page 236 * table entries on i386) for each page that the kernel needs to 237 * access. 238 */ 239 ZONE_HIGHMEM, 240 #endif 241 ZONE_MOVABLE, 242 __MAX_NR_ZONES 243 }; 244 245 #ifndef __GENERATING_BOUNDS_H 246 247 /* 248 * When a memory allocation must conform to specific limitations (such 249 * as being suitable for DMA) the caller will pass in hints to the 250 * allocator in the gfp_mask, in the zone modifier bits. These bits 251 * are used to select a priority ordered list of memory zones which 252 * match the requested limits. See gfp_zone() in include/linux/gfp.h 253 */ 254 255 #if MAX_NR_ZONES < 2 256 #define ZONES_SHIFT 0 257 #elif MAX_NR_ZONES <= 2 258 #define ZONES_SHIFT 1 259 #elif MAX_NR_ZONES <= 4 260 #define ZONES_SHIFT 2 261 #else 262 #error ZONES_SHIFT -- too many zones configured adjust calculation 263 #endif 264 265 struct zone_reclaim_stat { 266 /* 267 * The pageout code in vmscan.c keeps track of how many of the 268 * mem/swap backed and file backed pages are refeferenced. 269 * The higher the rotated/scanned ratio, the more valuable 270 * that cache is. 271 * 272 * The anon LRU stats live in [0], file LRU stats in [1] 273 */ 274 unsigned long recent_rotated[2]; 275 unsigned long recent_scanned[2]; 276 }; 277 278 struct zone { 279 /* Fields commonly accessed by the page allocator */ 280 281 /* zone watermarks, access with *_wmark_pages(zone) macros */ 282 unsigned long watermark[NR_WMARK]; 283 284 /* 285 * When free pages are below this point, additional steps are taken 286 * when reading the number of free pages to avoid per-cpu counter 287 * drift allowing watermarks to be breached 288 */ 289 unsigned long percpu_drift_mark; 290 291 /* 292 * We don't know if the memory that we're going to allocate will be freeable 293 * or/and it will be released eventually, so to avoid totally wasting several 294 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 295 * to run OOM on the lower zones despite there's tons of freeable ram 296 * on the higher zones). This array is recalculated at runtime if the 297 * sysctl_lowmem_reserve_ratio sysctl changes. 298 */ 299 unsigned long lowmem_reserve[MAX_NR_ZONES]; 300 301 #ifdef CONFIG_NUMA 302 int node; 303 /* 304 * zone reclaim becomes active if more unmapped pages exist. 305 */ 306 unsigned long min_unmapped_pages; 307 unsigned long min_slab_pages; 308 #endif 309 struct per_cpu_pageset __percpu *pageset; 310 /* 311 * free areas of different sizes 312 */ 313 spinlock_t lock; 314 int all_unreclaimable; /* All pages pinned */ 315 #ifdef CONFIG_MEMORY_HOTPLUG 316 /* see spanned/present_pages for more description */ 317 seqlock_t span_seqlock; 318 #endif 319 struct free_area free_area[MAX_ORDER]; 320 321 #ifndef CONFIG_SPARSEMEM 322 /* 323 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 324 * In SPARSEMEM, this map is stored in struct mem_section 325 */ 326 unsigned long *pageblock_flags; 327 #endif /* CONFIG_SPARSEMEM */ 328 329 #ifdef CONFIG_COMPACTION 330 /* 331 * On compaction failure, 1<<compact_defer_shift compactions 332 * are skipped before trying again. The number attempted since 333 * last failure is tracked with compact_considered. 334 */ 335 unsigned int compact_considered; 336 unsigned int compact_defer_shift; 337 #endif 338 339 ZONE_PADDING(_pad1_) 340 341 /* Fields commonly accessed by the page reclaim scanner */ 342 spinlock_t lru_lock; 343 struct zone_lru { 344 struct list_head list; 345 } lru[NR_LRU_LISTS]; 346 347 struct zone_reclaim_stat reclaim_stat; 348 349 unsigned long pages_scanned; /* since last reclaim */ 350 unsigned long flags; /* zone flags, see below */ 351 352 /* Zone statistics */ 353 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 354 355 /* 356 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 357 * this zone's LRU. Maintained by the pageout code. 358 */ 359 unsigned int inactive_ratio; 360 361 362 ZONE_PADDING(_pad2_) 363 /* Rarely used or read-mostly fields */ 364 365 /* 366 * wait_table -- the array holding the hash table 367 * wait_table_hash_nr_entries -- the size of the hash table array 368 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 369 * 370 * The purpose of all these is to keep track of the people 371 * waiting for a page to become available and make them 372 * runnable again when possible. The trouble is that this 373 * consumes a lot of space, especially when so few things 374 * wait on pages at a given time. So instead of using 375 * per-page waitqueues, we use a waitqueue hash table. 376 * 377 * The bucket discipline is to sleep on the same queue when 378 * colliding and wake all in that wait queue when removing. 379 * When something wakes, it must check to be sure its page is 380 * truly available, a la thundering herd. The cost of a 381 * collision is great, but given the expected load of the 382 * table, they should be so rare as to be outweighed by the 383 * benefits from the saved space. 384 * 385 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 386 * primary users of these fields, and in mm/page_alloc.c 387 * free_area_init_core() performs the initialization of them. 388 */ 389 wait_queue_head_t * wait_table; 390 unsigned long wait_table_hash_nr_entries; 391 unsigned long wait_table_bits; 392 393 /* 394 * Discontig memory support fields. 395 */ 396 struct pglist_data *zone_pgdat; 397 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 398 unsigned long zone_start_pfn; 399 400 /* 401 * zone_start_pfn, spanned_pages and present_pages are all 402 * protected by span_seqlock. It is a seqlock because it has 403 * to be read outside of zone->lock, and it is done in the main 404 * allocator path. But, it is written quite infrequently. 405 * 406 * The lock is declared along with zone->lock because it is 407 * frequently read in proximity to zone->lock. It's good to 408 * give them a chance of being in the same cacheline. 409 */ 410 unsigned long spanned_pages; /* total size, including holes */ 411 unsigned long present_pages; /* amount of memory (excluding holes) */ 412 413 /* 414 * rarely used fields: 415 */ 416 const char *name; 417 } ____cacheline_internodealigned_in_smp; 418 419 typedef enum { 420 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 421 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 422 ZONE_CONGESTED, /* zone has many dirty pages backed by 423 * a congested BDI 424 */ 425 } zone_flags_t; 426 427 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 428 { 429 set_bit(flag, &zone->flags); 430 } 431 432 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 433 { 434 return test_and_set_bit(flag, &zone->flags); 435 } 436 437 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 438 { 439 clear_bit(flag, &zone->flags); 440 } 441 442 static inline int zone_is_reclaim_congested(const struct zone *zone) 443 { 444 return test_bit(ZONE_CONGESTED, &zone->flags); 445 } 446 447 static inline int zone_is_reclaim_locked(const struct zone *zone) 448 { 449 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 450 } 451 452 static inline int zone_is_oom_locked(const struct zone *zone) 453 { 454 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 455 } 456 457 /* 458 * The "priority" of VM scanning is how much of the queues we will scan in one 459 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 460 * queues ("queue_length >> 12") during an aging round. 461 */ 462 #define DEF_PRIORITY 12 463 464 /* Maximum number of zones on a zonelist */ 465 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 466 467 #ifdef CONFIG_NUMA 468 469 /* 470 * The NUMA zonelists are doubled because we need zonelists that restrict the 471 * allocations to a single node for GFP_THISNODE. 472 * 473 * [0] : Zonelist with fallback 474 * [1] : No fallback (GFP_THISNODE) 475 */ 476 #define MAX_ZONELISTS 2 477 478 479 /* 480 * We cache key information from each zonelist for smaller cache 481 * footprint when scanning for free pages in get_page_from_freelist(). 482 * 483 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 484 * up short of free memory since the last time (last_fullzone_zap) 485 * we zero'd fullzones. 486 * 2) The array z_to_n[] maps each zone in the zonelist to its node 487 * id, so that we can efficiently evaluate whether that node is 488 * set in the current tasks mems_allowed. 489 * 490 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 491 * indexed by a zones offset in the zonelist zones[] array. 492 * 493 * The get_page_from_freelist() routine does two scans. During the 494 * first scan, we skip zones whose corresponding bit in 'fullzones' 495 * is set or whose corresponding node in current->mems_allowed (which 496 * comes from cpusets) is not set. During the second scan, we bypass 497 * this zonelist_cache, to ensure we look methodically at each zone. 498 * 499 * Once per second, we zero out (zap) fullzones, forcing us to 500 * reconsider nodes that might have regained more free memory. 501 * The field last_full_zap is the time we last zapped fullzones. 502 * 503 * This mechanism reduces the amount of time we waste repeatedly 504 * reexaming zones for free memory when they just came up low on 505 * memory momentarilly ago. 506 * 507 * The zonelist_cache struct members logically belong in struct 508 * zonelist. However, the mempolicy zonelists constructed for 509 * MPOL_BIND are intentionally variable length (and usually much 510 * shorter). A general purpose mechanism for handling structs with 511 * multiple variable length members is more mechanism than we want 512 * here. We resort to some special case hackery instead. 513 * 514 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 515 * part because they are shorter), so we put the fixed length stuff 516 * at the front of the zonelist struct, ending in a variable length 517 * zones[], as is needed by MPOL_BIND. 518 * 519 * Then we put the optional zonelist cache on the end of the zonelist 520 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 521 * the fixed length portion at the front of the struct. This pointer 522 * both enables us to find the zonelist cache, and in the case of 523 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 524 * to know that the zonelist cache is not there. 525 * 526 * The end result is that struct zonelists come in two flavors: 527 * 1) The full, fixed length version, shown below, and 528 * 2) The custom zonelists for MPOL_BIND. 529 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 530 * 531 * Even though there may be multiple CPU cores on a node modifying 532 * fullzones or last_full_zap in the same zonelist_cache at the same 533 * time, we don't lock it. This is just hint data - if it is wrong now 534 * and then, the allocator will still function, perhaps a bit slower. 535 */ 536 537 538 struct zonelist_cache { 539 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 540 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 541 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 542 }; 543 #else 544 #define MAX_ZONELISTS 1 545 struct zonelist_cache; 546 #endif 547 548 /* 549 * This struct contains information about a zone in a zonelist. It is stored 550 * here to avoid dereferences into large structures and lookups of tables 551 */ 552 struct zoneref { 553 struct zone *zone; /* Pointer to actual zone */ 554 int zone_idx; /* zone_idx(zoneref->zone) */ 555 }; 556 557 /* 558 * One allocation request operates on a zonelist. A zonelist 559 * is a list of zones, the first one is the 'goal' of the 560 * allocation, the other zones are fallback zones, in decreasing 561 * priority. 562 * 563 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 564 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 565 * * 566 * To speed the reading of the zonelist, the zonerefs contain the zone index 567 * of the entry being read. Helper functions to access information given 568 * a struct zoneref are 569 * 570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 571 * zonelist_zone_idx() - Return the index of the zone for an entry 572 * zonelist_node_idx() - Return the index of the node for an entry 573 */ 574 struct zonelist { 575 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 577 #ifdef CONFIG_NUMA 578 struct zonelist_cache zlcache; // optional ... 579 #endif 580 }; 581 582 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 583 struct node_active_region { 584 unsigned long start_pfn; 585 unsigned long end_pfn; 586 int nid; 587 }; 588 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 589 590 #ifndef CONFIG_DISCONTIGMEM 591 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 592 extern struct page *mem_map; 593 #endif 594 595 /* 596 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 597 * (mostly NUMA machines?) to denote a higher-level memory zone than the 598 * zone denotes. 599 * 600 * On NUMA machines, each NUMA node would have a pg_data_t to describe 601 * it's memory layout. 602 * 603 * Memory statistics and page replacement data structures are maintained on a 604 * per-zone basis. 605 */ 606 struct bootmem_data; 607 typedef struct pglist_data { 608 struct zone node_zones[MAX_NR_ZONES]; 609 struct zonelist node_zonelists[MAX_ZONELISTS]; 610 int nr_zones; 611 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 612 struct page *node_mem_map; 613 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 614 struct page_cgroup *node_page_cgroup; 615 #endif 616 #endif 617 #ifndef CONFIG_NO_BOOTMEM 618 struct bootmem_data *bdata; 619 #endif 620 #ifdef CONFIG_MEMORY_HOTPLUG 621 /* 622 * Must be held any time you expect node_start_pfn, node_present_pages 623 * or node_spanned_pages stay constant. Holding this will also 624 * guarantee that any pfn_valid() stays that way. 625 * 626 * Nests above zone->lock and zone->size_seqlock. 627 */ 628 spinlock_t node_size_lock; 629 #endif 630 unsigned long node_start_pfn; 631 unsigned long node_present_pages; /* total number of physical pages */ 632 unsigned long node_spanned_pages; /* total size of physical page 633 range, including holes */ 634 int node_id; 635 wait_queue_head_t kswapd_wait; 636 struct task_struct *kswapd; 637 int kswapd_max_order; 638 enum zone_type classzone_idx; 639 } pg_data_t; 640 641 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 642 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 643 #ifdef CONFIG_FLAT_NODE_MEM_MAP 644 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 645 #else 646 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 647 #endif 648 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 649 650 #include <linux/memory_hotplug.h> 651 652 extern struct mutex zonelists_mutex; 653 void build_all_zonelists(void *data); 654 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 656 int classzone_idx, int alloc_flags); 657 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 658 int classzone_idx, int alloc_flags); 659 enum memmap_context { 660 MEMMAP_EARLY, 661 MEMMAP_HOTPLUG, 662 }; 663 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 664 unsigned long size, 665 enum memmap_context context); 666 667 #ifdef CONFIG_HAVE_MEMORY_PRESENT 668 void memory_present(int nid, unsigned long start, unsigned long end); 669 #else 670 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 671 #endif 672 673 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 674 int local_memory_node(int node_id); 675 #else 676 static inline int local_memory_node(int node_id) { return node_id; }; 677 #endif 678 679 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 680 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 681 #endif 682 683 /* 684 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 685 */ 686 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 687 688 static inline int populated_zone(struct zone *zone) 689 { 690 return (!!zone->present_pages); 691 } 692 693 extern int movable_zone; 694 695 static inline int zone_movable_is_highmem(void) 696 { 697 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP) 698 return movable_zone == ZONE_HIGHMEM; 699 #else 700 return 0; 701 #endif 702 } 703 704 static inline int is_highmem_idx(enum zone_type idx) 705 { 706 #ifdef CONFIG_HIGHMEM 707 return (idx == ZONE_HIGHMEM || 708 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 709 #else 710 return 0; 711 #endif 712 } 713 714 static inline int is_normal_idx(enum zone_type idx) 715 { 716 return (idx == ZONE_NORMAL); 717 } 718 719 /** 720 * is_highmem - helper function to quickly check if a struct zone is a 721 * highmem zone or not. This is an attempt to keep references 722 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 723 * @zone - pointer to struct zone variable 724 */ 725 static inline int is_highmem(struct zone *zone) 726 { 727 #ifdef CONFIG_HIGHMEM 728 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 729 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 730 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 731 zone_movable_is_highmem()); 732 #else 733 return 0; 734 #endif 735 } 736 737 static inline int is_normal(struct zone *zone) 738 { 739 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 740 } 741 742 static inline int is_dma32(struct zone *zone) 743 { 744 #ifdef CONFIG_ZONE_DMA32 745 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 746 #else 747 return 0; 748 #endif 749 } 750 751 static inline int is_dma(struct zone *zone) 752 { 753 #ifdef CONFIG_ZONE_DMA 754 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 755 #else 756 return 0; 757 #endif 758 } 759 760 /* These two functions are used to setup the per zone pages min values */ 761 struct ctl_table; 762 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 763 void __user *, size_t *, loff_t *); 764 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 765 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 766 void __user *, size_t *, loff_t *); 767 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 768 void __user *, size_t *, loff_t *); 769 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 770 void __user *, size_t *, loff_t *); 771 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 772 void __user *, size_t *, loff_t *); 773 774 extern int numa_zonelist_order_handler(struct ctl_table *, int, 775 void __user *, size_t *, loff_t *); 776 extern char numa_zonelist_order[]; 777 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 778 779 #ifndef CONFIG_NEED_MULTIPLE_NODES 780 781 extern struct pglist_data contig_page_data; 782 #define NODE_DATA(nid) (&contig_page_data) 783 #define NODE_MEM_MAP(nid) mem_map 784 785 #else /* CONFIG_NEED_MULTIPLE_NODES */ 786 787 #include <asm/mmzone.h> 788 789 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 790 791 extern struct pglist_data *first_online_pgdat(void); 792 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 793 extern struct zone *next_zone(struct zone *zone); 794 795 /** 796 * for_each_online_pgdat - helper macro to iterate over all online nodes 797 * @pgdat - pointer to a pg_data_t variable 798 */ 799 #define for_each_online_pgdat(pgdat) \ 800 for (pgdat = first_online_pgdat(); \ 801 pgdat; \ 802 pgdat = next_online_pgdat(pgdat)) 803 /** 804 * for_each_zone - helper macro to iterate over all memory zones 805 * @zone - pointer to struct zone variable 806 * 807 * The user only needs to declare the zone variable, for_each_zone 808 * fills it in. 809 */ 810 #define for_each_zone(zone) \ 811 for (zone = (first_online_pgdat())->node_zones; \ 812 zone; \ 813 zone = next_zone(zone)) 814 815 #define for_each_populated_zone(zone) \ 816 for (zone = (first_online_pgdat())->node_zones; \ 817 zone; \ 818 zone = next_zone(zone)) \ 819 if (!populated_zone(zone)) \ 820 ; /* do nothing */ \ 821 else 822 823 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 824 { 825 return zoneref->zone; 826 } 827 828 static inline int zonelist_zone_idx(struct zoneref *zoneref) 829 { 830 return zoneref->zone_idx; 831 } 832 833 static inline int zonelist_node_idx(struct zoneref *zoneref) 834 { 835 #ifdef CONFIG_NUMA 836 /* zone_to_nid not available in this context */ 837 return zoneref->zone->node; 838 #else 839 return 0; 840 #endif /* CONFIG_NUMA */ 841 } 842 843 /** 844 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 845 * @z - The cursor used as a starting point for the search 846 * @highest_zoneidx - The zone index of the highest zone to return 847 * @nodes - An optional nodemask to filter the zonelist with 848 * @zone - The first suitable zone found is returned via this parameter 849 * 850 * This function returns the next zone at or below a given zone index that is 851 * within the allowed nodemask using a cursor as the starting point for the 852 * search. The zoneref returned is a cursor that represents the current zone 853 * being examined. It should be advanced by one before calling 854 * next_zones_zonelist again. 855 */ 856 struct zoneref *next_zones_zonelist(struct zoneref *z, 857 enum zone_type highest_zoneidx, 858 nodemask_t *nodes, 859 struct zone **zone); 860 861 /** 862 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 863 * @zonelist - The zonelist to search for a suitable zone 864 * @highest_zoneidx - The zone index of the highest zone to return 865 * @nodes - An optional nodemask to filter the zonelist with 866 * @zone - The first suitable zone found is returned via this parameter 867 * 868 * This function returns the first zone at or below a given zone index that is 869 * within the allowed nodemask. The zoneref returned is a cursor that can be 870 * used to iterate the zonelist with next_zones_zonelist by advancing it by 871 * one before calling. 872 */ 873 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 874 enum zone_type highest_zoneidx, 875 nodemask_t *nodes, 876 struct zone **zone) 877 { 878 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 879 zone); 880 } 881 882 /** 883 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 884 * @zone - The current zone in the iterator 885 * @z - The current pointer within zonelist->zones being iterated 886 * @zlist - The zonelist being iterated 887 * @highidx - The zone index of the highest zone to return 888 * @nodemask - Nodemask allowed by the allocator 889 * 890 * This iterator iterates though all zones at or below a given zone index and 891 * within a given nodemask 892 */ 893 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 894 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 895 zone; \ 896 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 897 898 /** 899 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 900 * @zone - The current zone in the iterator 901 * @z - The current pointer within zonelist->zones being iterated 902 * @zlist - The zonelist being iterated 903 * @highidx - The zone index of the highest zone to return 904 * 905 * This iterator iterates though all zones at or below a given zone index. 906 */ 907 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 908 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 909 910 #ifdef CONFIG_SPARSEMEM 911 #include <asm/sparsemem.h> 912 #endif 913 914 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 915 !defined(CONFIG_ARCH_POPULATES_NODE_MAP) 916 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 917 { 918 return 0; 919 } 920 #endif 921 922 #ifdef CONFIG_FLATMEM 923 #define pfn_to_nid(pfn) (0) 924 #endif 925 926 #ifdef CONFIG_SPARSEMEM 927 928 /* 929 * SECTION_SHIFT #bits space required to store a section # 930 * 931 * PA_SECTION_SHIFT physical address to/from section number 932 * PFN_SECTION_SHIFT pfn to/from section number 933 */ 934 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 935 936 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 937 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 938 939 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 940 941 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 942 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 943 944 #define SECTION_BLOCKFLAGS_BITS \ 945 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 946 947 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 948 #error Allocator MAX_ORDER exceeds SECTION_SIZE 949 #endif 950 951 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 952 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 953 954 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 955 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 956 957 struct page; 958 struct page_cgroup; 959 struct mem_section { 960 /* 961 * This is, logically, a pointer to an array of struct 962 * pages. However, it is stored with some other magic. 963 * (see sparse.c::sparse_init_one_section()) 964 * 965 * Additionally during early boot we encode node id of 966 * the location of the section here to guide allocation. 967 * (see sparse.c::memory_present()) 968 * 969 * Making it a UL at least makes someone do a cast 970 * before using it wrong. 971 */ 972 unsigned long section_mem_map; 973 974 /* See declaration of similar field in struct zone */ 975 unsigned long *pageblock_flags; 976 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 977 /* 978 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 979 * section. (see memcontrol.h/page_cgroup.h about this.) 980 */ 981 struct page_cgroup *page_cgroup; 982 unsigned long pad; 983 #endif 984 }; 985 986 #ifdef CONFIG_SPARSEMEM_EXTREME 987 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 988 #else 989 #define SECTIONS_PER_ROOT 1 990 #endif 991 992 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 993 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 994 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 995 996 #ifdef CONFIG_SPARSEMEM_EXTREME 997 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 998 #else 999 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1000 #endif 1001 1002 static inline struct mem_section *__nr_to_section(unsigned long nr) 1003 { 1004 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1005 return NULL; 1006 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1007 } 1008 extern int __section_nr(struct mem_section* ms); 1009 extern unsigned long usemap_size(void); 1010 1011 /* 1012 * We use the lower bits of the mem_map pointer to store 1013 * a little bit of information. There should be at least 1014 * 3 bits here due to 32-bit alignment. 1015 */ 1016 #define SECTION_MARKED_PRESENT (1UL<<0) 1017 #define SECTION_HAS_MEM_MAP (1UL<<1) 1018 #define SECTION_MAP_LAST_BIT (1UL<<2) 1019 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1020 #define SECTION_NID_SHIFT 2 1021 1022 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1023 { 1024 unsigned long map = section->section_mem_map; 1025 map &= SECTION_MAP_MASK; 1026 return (struct page *)map; 1027 } 1028 1029 static inline int present_section(struct mem_section *section) 1030 { 1031 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1032 } 1033 1034 static inline int present_section_nr(unsigned long nr) 1035 { 1036 return present_section(__nr_to_section(nr)); 1037 } 1038 1039 static inline int valid_section(struct mem_section *section) 1040 { 1041 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1042 } 1043 1044 static inline int valid_section_nr(unsigned long nr) 1045 { 1046 return valid_section(__nr_to_section(nr)); 1047 } 1048 1049 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1050 { 1051 return __nr_to_section(pfn_to_section_nr(pfn)); 1052 } 1053 1054 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1055 static inline int pfn_valid(unsigned long pfn) 1056 { 1057 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1058 return 0; 1059 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1060 } 1061 #endif 1062 1063 static inline int pfn_present(unsigned long pfn) 1064 { 1065 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1066 return 0; 1067 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1068 } 1069 1070 /* 1071 * These are _only_ used during initialisation, therefore they 1072 * can use __initdata ... They could have names to indicate 1073 * this restriction. 1074 */ 1075 #ifdef CONFIG_NUMA 1076 #define pfn_to_nid(pfn) \ 1077 ({ \ 1078 unsigned long __pfn_to_nid_pfn = (pfn); \ 1079 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1080 }) 1081 #else 1082 #define pfn_to_nid(pfn) (0) 1083 #endif 1084 1085 #define early_pfn_valid(pfn) pfn_valid(pfn) 1086 void sparse_init(void); 1087 #else 1088 #define sparse_init() do {} while (0) 1089 #define sparse_index_init(_sec, _nid) do {} while (0) 1090 #endif /* CONFIG_SPARSEMEM */ 1091 1092 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1093 bool early_pfn_in_nid(unsigned long pfn, int nid); 1094 #else 1095 #define early_pfn_in_nid(pfn, nid) (1) 1096 #endif 1097 1098 #ifndef early_pfn_valid 1099 #define early_pfn_valid(pfn) (1) 1100 #endif 1101 1102 void memory_present(int nid, unsigned long start, unsigned long end); 1103 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1104 1105 /* 1106 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1107 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1108 * pfn_valid_within() should be used in this case; we optimise this away 1109 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1110 */ 1111 #ifdef CONFIG_HOLES_IN_ZONE 1112 #define pfn_valid_within(pfn) pfn_valid(pfn) 1113 #else 1114 #define pfn_valid_within(pfn) (1) 1115 #endif 1116 1117 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1118 /* 1119 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1120 * associated with it or not. In FLATMEM, it is expected that holes always 1121 * have valid memmap as long as there is valid PFNs either side of the hole. 1122 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1123 * entire section. 1124 * 1125 * However, an ARM, and maybe other embedded architectures in the future 1126 * free memmap backing holes to save memory on the assumption the memmap is 1127 * never used. The page_zone linkages are then broken even though pfn_valid() 1128 * returns true. A walker of the full memmap must then do this additional 1129 * check to ensure the memmap they are looking at is sane by making sure 1130 * the zone and PFN linkages are still valid. This is expensive, but walkers 1131 * of the full memmap are extremely rare. 1132 */ 1133 int memmap_valid_within(unsigned long pfn, 1134 struct page *page, struct zone *zone); 1135 #else 1136 static inline int memmap_valid_within(unsigned long pfn, 1137 struct page *page, struct zone *zone) 1138 { 1139 return 1; 1140 } 1141 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1142 1143 #endif /* !__GENERATING_BOUNDS.H */ 1144 #endif /* !__ASSEMBLY__ */ 1145 #endif /* _LINUX_MMZONE_H */ 1146