xref: /linux-6.15/include/linux/mmzone.h (revision 261a9af6)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
104 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
105 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
106 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
107 	NR_DIRTIED,		/* page dirtyings since bootup */
108 	NR_WRITTEN,		/* page writings since bootup */
109 #ifdef CONFIG_NUMA
110 	NUMA_HIT,		/* allocated in intended node */
111 	NUMA_MISS,		/* allocated in non intended node */
112 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
113 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
114 	NUMA_LOCAL,		/* allocation from local node */
115 	NUMA_OTHER,		/* allocation from other node */
116 #endif
117 	NR_ANON_TRANSPARENT_HUGEPAGES,
118 	NR_VM_ZONE_STAT_ITEMS };
119 
120 /*
121  * We do arithmetic on the LRU lists in various places in the code,
122  * so it is important to keep the active lists LRU_ACTIVE higher in
123  * the array than the corresponding inactive lists, and to keep
124  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
125  *
126  * This has to be kept in sync with the statistics in zone_stat_item
127  * above and the descriptions in vmstat_text in mm/vmstat.c
128  */
129 #define LRU_BASE 0
130 #define LRU_ACTIVE 1
131 #define LRU_FILE 2
132 
133 enum lru_list {
134 	LRU_INACTIVE_ANON = LRU_BASE,
135 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
136 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
137 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
138 	LRU_UNEVICTABLE,
139 	NR_LRU_LISTS
140 };
141 
142 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
143 
144 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
145 
146 static inline int is_file_lru(enum lru_list l)
147 {
148 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
149 }
150 
151 static inline int is_active_lru(enum lru_list l)
152 {
153 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
154 }
155 
156 static inline int is_unevictable_lru(enum lru_list l)
157 {
158 	return (l == LRU_UNEVICTABLE);
159 }
160 
161 enum zone_watermarks {
162 	WMARK_MIN,
163 	WMARK_LOW,
164 	WMARK_HIGH,
165 	NR_WMARK
166 };
167 
168 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
169 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
170 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
171 
172 struct per_cpu_pages {
173 	int count;		/* number of pages in the list */
174 	int high;		/* high watermark, emptying needed */
175 	int batch;		/* chunk size for buddy add/remove */
176 
177 	/* Lists of pages, one per migrate type stored on the pcp-lists */
178 	struct list_head lists[MIGRATE_PCPTYPES];
179 };
180 
181 struct per_cpu_pageset {
182 	struct per_cpu_pages pcp;
183 #ifdef CONFIG_NUMA
184 	s8 expire;
185 #endif
186 #ifdef CONFIG_SMP
187 	s8 stat_threshold;
188 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
189 #endif
190 };
191 
192 #endif /* !__GENERATING_BOUNDS.H */
193 
194 enum zone_type {
195 #ifdef CONFIG_ZONE_DMA
196 	/*
197 	 * ZONE_DMA is used when there are devices that are not able
198 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
199 	 * carve out the portion of memory that is needed for these devices.
200 	 * The range is arch specific.
201 	 *
202 	 * Some examples
203 	 *
204 	 * Architecture		Limit
205 	 * ---------------------------
206 	 * parisc, ia64, sparc	<4G
207 	 * s390			<2G
208 	 * arm			Various
209 	 * alpha		Unlimited or 0-16MB.
210 	 *
211 	 * i386, x86_64 and multiple other arches
212 	 * 			<16M.
213 	 */
214 	ZONE_DMA,
215 #endif
216 #ifdef CONFIG_ZONE_DMA32
217 	/*
218 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
219 	 * only able to do DMA to the lower 16M but also 32 bit devices that
220 	 * can only do DMA areas below 4G.
221 	 */
222 	ZONE_DMA32,
223 #endif
224 	/*
225 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
226 	 * performed on pages in ZONE_NORMAL if the DMA devices support
227 	 * transfers to all addressable memory.
228 	 */
229 	ZONE_NORMAL,
230 #ifdef CONFIG_HIGHMEM
231 	/*
232 	 * A memory area that is only addressable by the kernel through
233 	 * mapping portions into its own address space. This is for example
234 	 * used by i386 to allow the kernel to address the memory beyond
235 	 * 900MB. The kernel will set up special mappings (page
236 	 * table entries on i386) for each page that the kernel needs to
237 	 * access.
238 	 */
239 	ZONE_HIGHMEM,
240 #endif
241 	ZONE_MOVABLE,
242 	__MAX_NR_ZONES
243 };
244 
245 #ifndef __GENERATING_BOUNDS_H
246 
247 /*
248  * When a memory allocation must conform to specific limitations (such
249  * as being suitable for DMA) the caller will pass in hints to the
250  * allocator in the gfp_mask, in the zone modifier bits.  These bits
251  * are used to select a priority ordered list of memory zones which
252  * match the requested limits. See gfp_zone() in include/linux/gfp.h
253  */
254 
255 #if MAX_NR_ZONES < 2
256 #define ZONES_SHIFT 0
257 #elif MAX_NR_ZONES <= 2
258 #define ZONES_SHIFT 1
259 #elif MAX_NR_ZONES <= 4
260 #define ZONES_SHIFT 2
261 #else
262 #error ZONES_SHIFT -- too many zones configured adjust calculation
263 #endif
264 
265 struct zone_reclaim_stat {
266 	/*
267 	 * The pageout code in vmscan.c keeps track of how many of the
268 	 * mem/swap backed and file backed pages are refeferenced.
269 	 * The higher the rotated/scanned ratio, the more valuable
270 	 * that cache is.
271 	 *
272 	 * The anon LRU stats live in [0], file LRU stats in [1]
273 	 */
274 	unsigned long		recent_rotated[2];
275 	unsigned long		recent_scanned[2];
276 };
277 
278 struct zone {
279 	/* Fields commonly accessed by the page allocator */
280 
281 	/* zone watermarks, access with *_wmark_pages(zone) macros */
282 	unsigned long watermark[NR_WMARK];
283 
284 	/*
285 	 * When free pages are below this point, additional steps are taken
286 	 * when reading the number of free pages to avoid per-cpu counter
287 	 * drift allowing watermarks to be breached
288 	 */
289 	unsigned long percpu_drift_mark;
290 
291 	/*
292 	 * We don't know if the memory that we're going to allocate will be freeable
293 	 * or/and it will be released eventually, so to avoid totally wasting several
294 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
295 	 * to run OOM on the lower zones despite there's tons of freeable ram
296 	 * on the higher zones). This array is recalculated at runtime if the
297 	 * sysctl_lowmem_reserve_ratio sysctl changes.
298 	 */
299 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
300 
301 #ifdef CONFIG_NUMA
302 	int node;
303 	/*
304 	 * zone reclaim becomes active if more unmapped pages exist.
305 	 */
306 	unsigned long		min_unmapped_pages;
307 	unsigned long		min_slab_pages;
308 #endif
309 	struct per_cpu_pageset __percpu *pageset;
310 	/*
311 	 * free areas of different sizes
312 	 */
313 	spinlock_t		lock;
314 	int                     all_unreclaimable; /* All pages pinned */
315 #ifdef CONFIG_MEMORY_HOTPLUG
316 	/* see spanned/present_pages for more description */
317 	seqlock_t		span_seqlock;
318 #endif
319 	struct free_area	free_area[MAX_ORDER];
320 
321 #ifndef CONFIG_SPARSEMEM
322 	/*
323 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
324 	 * In SPARSEMEM, this map is stored in struct mem_section
325 	 */
326 	unsigned long		*pageblock_flags;
327 #endif /* CONFIG_SPARSEMEM */
328 
329 #ifdef CONFIG_COMPACTION
330 	/*
331 	 * On compaction failure, 1<<compact_defer_shift compactions
332 	 * are skipped before trying again. The number attempted since
333 	 * last failure is tracked with compact_considered.
334 	 */
335 	unsigned int		compact_considered;
336 	unsigned int		compact_defer_shift;
337 #endif
338 
339 	ZONE_PADDING(_pad1_)
340 
341 	/* Fields commonly accessed by the page reclaim scanner */
342 	spinlock_t		lru_lock;
343 	struct zone_lru {
344 		struct list_head list;
345 	} lru[NR_LRU_LISTS];
346 
347 	struct zone_reclaim_stat reclaim_stat;
348 
349 	unsigned long		pages_scanned;	   /* since last reclaim */
350 	unsigned long		flags;		   /* zone flags, see below */
351 
352 	/* Zone statistics */
353 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
354 
355 	/*
356 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
357 	 * this zone's LRU.  Maintained by the pageout code.
358 	 */
359 	unsigned int inactive_ratio;
360 
361 
362 	ZONE_PADDING(_pad2_)
363 	/* Rarely used or read-mostly fields */
364 
365 	/*
366 	 * wait_table		-- the array holding the hash table
367 	 * wait_table_hash_nr_entries	-- the size of the hash table array
368 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
369 	 *
370 	 * The purpose of all these is to keep track of the people
371 	 * waiting for a page to become available and make them
372 	 * runnable again when possible. The trouble is that this
373 	 * consumes a lot of space, especially when so few things
374 	 * wait on pages at a given time. So instead of using
375 	 * per-page waitqueues, we use a waitqueue hash table.
376 	 *
377 	 * The bucket discipline is to sleep on the same queue when
378 	 * colliding and wake all in that wait queue when removing.
379 	 * When something wakes, it must check to be sure its page is
380 	 * truly available, a la thundering herd. The cost of a
381 	 * collision is great, but given the expected load of the
382 	 * table, they should be so rare as to be outweighed by the
383 	 * benefits from the saved space.
384 	 *
385 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
386 	 * primary users of these fields, and in mm/page_alloc.c
387 	 * free_area_init_core() performs the initialization of them.
388 	 */
389 	wait_queue_head_t	* wait_table;
390 	unsigned long		wait_table_hash_nr_entries;
391 	unsigned long		wait_table_bits;
392 
393 	/*
394 	 * Discontig memory support fields.
395 	 */
396 	struct pglist_data	*zone_pgdat;
397 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
398 	unsigned long		zone_start_pfn;
399 
400 	/*
401 	 * zone_start_pfn, spanned_pages and present_pages are all
402 	 * protected by span_seqlock.  It is a seqlock because it has
403 	 * to be read outside of zone->lock, and it is done in the main
404 	 * allocator path.  But, it is written quite infrequently.
405 	 *
406 	 * The lock is declared along with zone->lock because it is
407 	 * frequently read in proximity to zone->lock.  It's good to
408 	 * give them a chance of being in the same cacheline.
409 	 */
410 	unsigned long		spanned_pages;	/* total size, including holes */
411 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
412 
413 	/*
414 	 * rarely used fields:
415 	 */
416 	const char		*name;
417 } ____cacheline_internodealigned_in_smp;
418 
419 typedef enum {
420 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
421 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
422 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
423 					 * a congested BDI
424 					 */
425 } zone_flags_t;
426 
427 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
428 {
429 	set_bit(flag, &zone->flags);
430 }
431 
432 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
433 {
434 	return test_and_set_bit(flag, &zone->flags);
435 }
436 
437 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
438 {
439 	clear_bit(flag, &zone->flags);
440 }
441 
442 static inline int zone_is_reclaim_congested(const struct zone *zone)
443 {
444 	return test_bit(ZONE_CONGESTED, &zone->flags);
445 }
446 
447 static inline int zone_is_reclaim_locked(const struct zone *zone)
448 {
449 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
450 }
451 
452 static inline int zone_is_oom_locked(const struct zone *zone)
453 {
454 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
455 }
456 
457 /*
458  * The "priority" of VM scanning is how much of the queues we will scan in one
459  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
460  * queues ("queue_length >> 12") during an aging round.
461  */
462 #define DEF_PRIORITY 12
463 
464 /* Maximum number of zones on a zonelist */
465 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
466 
467 #ifdef CONFIG_NUMA
468 
469 /*
470  * The NUMA zonelists are doubled because we need zonelists that restrict the
471  * allocations to a single node for GFP_THISNODE.
472  *
473  * [0]	: Zonelist with fallback
474  * [1]	: No fallback (GFP_THISNODE)
475  */
476 #define MAX_ZONELISTS 2
477 
478 
479 /*
480  * We cache key information from each zonelist for smaller cache
481  * footprint when scanning for free pages in get_page_from_freelist().
482  *
483  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
484  *    up short of free memory since the last time (last_fullzone_zap)
485  *    we zero'd fullzones.
486  * 2) The array z_to_n[] maps each zone in the zonelist to its node
487  *    id, so that we can efficiently evaluate whether that node is
488  *    set in the current tasks mems_allowed.
489  *
490  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
491  * indexed by a zones offset in the zonelist zones[] array.
492  *
493  * The get_page_from_freelist() routine does two scans.  During the
494  * first scan, we skip zones whose corresponding bit in 'fullzones'
495  * is set or whose corresponding node in current->mems_allowed (which
496  * comes from cpusets) is not set.  During the second scan, we bypass
497  * this zonelist_cache, to ensure we look methodically at each zone.
498  *
499  * Once per second, we zero out (zap) fullzones, forcing us to
500  * reconsider nodes that might have regained more free memory.
501  * The field last_full_zap is the time we last zapped fullzones.
502  *
503  * This mechanism reduces the amount of time we waste repeatedly
504  * reexaming zones for free memory when they just came up low on
505  * memory momentarilly ago.
506  *
507  * The zonelist_cache struct members logically belong in struct
508  * zonelist.  However, the mempolicy zonelists constructed for
509  * MPOL_BIND are intentionally variable length (and usually much
510  * shorter).  A general purpose mechanism for handling structs with
511  * multiple variable length members is more mechanism than we want
512  * here.  We resort to some special case hackery instead.
513  *
514  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
515  * part because they are shorter), so we put the fixed length stuff
516  * at the front of the zonelist struct, ending in a variable length
517  * zones[], as is needed by MPOL_BIND.
518  *
519  * Then we put the optional zonelist cache on the end of the zonelist
520  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
521  * the fixed length portion at the front of the struct.  This pointer
522  * both enables us to find the zonelist cache, and in the case of
523  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
524  * to know that the zonelist cache is not there.
525  *
526  * The end result is that struct zonelists come in two flavors:
527  *  1) The full, fixed length version, shown below, and
528  *  2) The custom zonelists for MPOL_BIND.
529  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
530  *
531  * Even though there may be multiple CPU cores on a node modifying
532  * fullzones or last_full_zap in the same zonelist_cache at the same
533  * time, we don't lock it.  This is just hint data - if it is wrong now
534  * and then, the allocator will still function, perhaps a bit slower.
535  */
536 
537 
538 struct zonelist_cache {
539 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
540 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
541 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
542 };
543 #else
544 #define MAX_ZONELISTS 1
545 struct zonelist_cache;
546 #endif
547 
548 /*
549  * This struct contains information about a zone in a zonelist. It is stored
550  * here to avoid dereferences into large structures and lookups of tables
551  */
552 struct zoneref {
553 	struct zone *zone;	/* Pointer to actual zone */
554 	int zone_idx;		/* zone_idx(zoneref->zone) */
555 };
556 
557 /*
558  * One allocation request operates on a zonelist. A zonelist
559  * is a list of zones, the first one is the 'goal' of the
560  * allocation, the other zones are fallback zones, in decreasing
561  * priority.
562  *
563  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
564  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
565  * *
566  * To speed the reading of the zonelist, the zonerefs contain the zone index
567  * of the entry being read. Helper functions to access information given
568  * a struct zoneref are
569  *
570  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
571  * zonelist_zone_idx()	- Return the index of the zone for an entry
572  * zonelist_node_idx()	- Return the index of the node for an entry
573  */
574 struct zonelist {
575 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
576 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
577 #ifdef CONFIG_NUMA
578 	struct zonelist_cache zlcache;			     // optional ...
579 #endif
580 };
581 
582 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
583 struct node_active_region {
584 	unsigned long start_pfn;
585 	unsigned long end_pfn;
586 	int nid;
587 };
588 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
589 
590 #ifndef CONFIG_DISCONTIGMEM
591 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
592 extern struct page *mem_map;
593 #endif
594 
595 /*
596  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
597  * (mostly NUMA machines?) to denote a higher-level memory zone than the
598  * zone denotes.
599  *
600  * On NUMA machines, each NUMA node would have a pg_data_t to describe
601  * it's memory layout.
602  *
603  * Memory statistics and page replacement data structures are maintained on a
604  * per-zone basis.
605  */
606 struct bootmem_data;
607 typedef struct pglist_data {
608 	struct zone node_zones[MAX_NR_ZONES];
609 	struct zonelist node_zonelists[MAX_ZONELISTS];
610 	int nr_zones;
611 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
612 	struct page *node_mem_map;
613 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
614 	struct page_cgroup *node_page_cgroup;
615 #endif
616 #endif
617 #ifndef CONFIG_NO_BOOTMEM
618 	struct bootmem_data *bdata;
619 #endif
620 #ifdef CONFIG_MEMORY_HOTPLUG
621 	/*
622 	 * Must be held any time you expect node_start_pfn, node_present_pages
623 	 * or node_spanned_pages stay constant.  Holding this will also
624 	 * guarantee that any pfn_valid() stays that way.
625 	 *
626 	 * Nests above zone->lock and zone->size_seqlock.
627 	 */
628 	spinlock_t node_size_lock;
629 #endif
630 	unsigned long node_start_pfn;
631 	unsigned long node_present_pages; /* total number of physical pages */
632 	unsigned long node_spanned_pages; /* total size of physical page
633 					     range, including holes */
634 	int node_id;
635 	wait_queue_head_t kswapd_wait;
636 	struct task_struct *kswapd;
637 	int kswapd_max_order;
638 	enum zone_type classzone_idx;
639 } pg_data_t;
640 
641 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
642 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
643 #ifdef CONFIG_FLAT_NODE_MEM_MAP
644 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
645 #else
646 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
647 #endif
648 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
649 
650 #include <linux/memory_hotplug.h>
651 
652 extern struct mutex zonelists_mutex;
653 void build_all_zonelists(void *data);
654 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
656 		int classzone_idx, int alloc_flags);
657 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
658 		int classzone_idx, int alloc_flags);
659 enum memmap_context {
660 	MEMMAP_EARLY,
661 	MEMMAP_HOTPLUG,
662 };
663 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
664 				     unsigned long size,
665 				     enum memmap_context context);
666 
667 #ifdef CONFIG_HAVE_MEMORY_PRESENT
668 void memory_present(int nid, unsigned long start, unsigned long end);
669 #else
670 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
671 #endif
672 
673 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
674 int local_memory_node(int node_id);
675 #else
676 static inline int local_memory_node(int node_id) { return node_id; };
677 #endif
678 
679 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
680 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
681 #endif
682 
683 /*
684  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
685  */
686 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
687 
688 static inline int populated_zone(struct zone *zone)
689 {
690 	return (!!zone->present_pages);
691 }
692 
693 extern int movable_zone;
694 
695 static inline int zone_movable_is_highmem(void)
696 {
697 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
698 	return movable_zone == ZONE_HIGHMEM;
699 #else
700 	return 0;
701 #endif
702 }
703 
704 static inline int is_highmem_idx(enum zone_type idx)
705 {
706 #ifdef CONFIG_HIGHMEM
707 	return (idx == ZONE_HIGHMEM ||
708 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
709 #else
710 	return 0;
711 #endif
712 }
713 
714 static inline int is_normal_idx(enum zone_type idx)
715 {
716 	return (idx == ZONE_NORMAL);
717 }
718 
719 /**
720  * is_highmem - helper function to quickly check if a struct zone is a
721  *              highmem zone or not.  This is an attempt to keep references
722  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
723  * @zone - pointer to struct zone variable
724  */
725 static inline int is_highmem(struct zone *zone)
726 {
727 #ifdef CONFIG_HIGHMEM
728 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
729 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
730 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
731 		zone_movable_is_highmem());
732 #else
733 	return 0;
734 #endif
735 }
736 
737 static inline int is_normal(struct zone *zone)
738 {
739 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
740 }
741 
742 static inline int is_dma32(struct zone *zone)
743 {
744 #ifdef CONFIG_ZONE_DMA32
745 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
746 #else
747 	return 0;
748 #endif
749 }
750 
751 static inline int is_dma(struct zone *zone)
752 {
753 #ifdef CONFIG_ZONE_DMA
754 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
755 #else
756 	return 0;
757 #endif
758 }
759 
760 /* These two functions are used to setup the per zone pages min values */
761 struct ctl_table;
762 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
763 					void __user *, size_t *, loff_t *);
764 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
765 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
766 					void __user *, size_t *, loff_t *);
767 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
768 					void __user *, size_t *, loff_t *);
769 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
770 			void __user *, size_t *, loff_t *);
771 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
772 			void __user *, size_t *, loff_t *);
773 
774 extern int numa_zonelist_order_handler(struct ctl_table *, int,
775 			void __user *, size_t *, loff_t *);
776 extern char numa_zonelist_order[];
777 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
778 
779 #ifndef CONFIG_NEED_MULTIPLE_NODES
780 
781 extern struct pglist_data contig_page_data;
782 #define NODE_DATA(nid)		(&contig_page_data)
783 #define NODE_MEM_MAP(nid)	mem_map
784 
785 #else /* CONFIG_NEED_MULTIPLE_NODES */
786 
787 #include <asm/mmzone.h>
788 
789 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
790 
791 extern struct pglist_data *first_online_pgdat(void);
792 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
793 extern struct zone *next_zone(struct zone *zone);
794 
795 /**
796  * for_each_online_pgdat - helper macro to iterate over all online nodes
797  * @pgdat - pointer to a pg_data_t variable
798  */
799 #define for_each_online_pgdat(pgdat)			\
800 	for (pgdat = first_online_pgdat();		\
801 	     pgdat;					\
802 	     pgdat = next_online_pgdat(pgdat))
803 /**
804  * for_each_zone - helper macro to iterate over all memory zones
805  * @zone - pointer to struct zone variable
806  *
807  * The user only needs to declare the zone variable, for_each_zone
808  * fills it in.
809  */
810 #define for_each_zone(zone)			        \
811 	for (zone = (first_online_pgdat())->node_zones; \
812 	     zone;					\
813 	     zone = next_zone(zone))
814 
815 #define for_each_populated_zone(zone)		        \
816 	for (zone = (first_online_pgdat())->node_zones; \
817 	     zone;					\
818 	     zone = next_zone(zone))			\
819 		if (!populated_zone(zone))		\
820 			; /* do nothing */		\
821 		else
822 
823 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
824 {
825 	return zoneref->zone;
826 }
827 
828 static inline int zonelist_zone_idx(struct zoneref *zoneref)
829 {
830 	return zoneref->zone_idx;
831 }
832 
833 static inline int zonelist_node_idx(struct zoneref *zoneref)
834 {
835 #ifdef CONFIG_NUMA
836 	/* zone_to_nid not available in this context */
837 	return zoneref->zone->node;
838 #else
839 	return 0;
840 #endif /* CONFIG_NUMA */
841 }
842 
843 /**
844  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
845  * @z - The cursor used as a starting point for the search
846  * @highest_zoneidx - The zone index of the highest zone to return
847  * @nodes - An optional nodemask to filter the zonelist with
848  * @zone - The first suitable zone found is returned via this parameter
849  *
850  * This function returns the next zone at or below a given zone index that is
851  * within the allowed nodemask using a cursor as the starting point for the
852  * search. The zoneref returned is a cursor that represents the current zone
853  * being examined. It should be advanced by one before calling
854  * next_zones_zonelist again.
855  */
856 struct zoneref *next_zones_zonelist(struct zoneref *z,
857 					enum zone_type highest_zoneidx,
858 					nodemask_t *nodes,
859 					struct zone **zone);
860 
861 /**
862  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
863  * @zonelist - The zonelist to search for a suitable zone
864  * @highest_zoneidx - The zone index of the highest zone to return
865  * @nodes - An optional nodemask to filter the zonelist with
866  * @zone - The first suitable zone found is returned via this parameter
867  *
868  * This function returns the first zone at or below a given zone index that is
869  * within the allowed nodemask. The zoneref returned is a cursor that can be
870  * used to iterate the zonelist with next_zones_zonelist by advancing it by
871  * one before calling.
872  */
873 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
874 					enum zone_type highest_zoneidx,
875 					nodemask_t *nodes,
876 					struct zone **zone)
877 {
878 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
879 								zone);
880 }
881 
882 /**
883  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
884  * @zone - The current zone in the iterator
885  * @z - The current pointer within zonelist->zones being iterated
886  * @zlist - The zonelist being iterated
887  * @highidx - The zone index of the highest zone to return
888  * @nodemask - Nodemask allowed by the allocator
889  *
890  * This iterator iterates though all zones at or below a given zone index and
891  * within a given nodemask
892  */
893 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
894 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
895 		zone;							\
896 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
897 
898 /**
899  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
900  * @zone - The current zone in the iterator
901  * @z - The current pointer within zonelist->zones being iterated
902  * @zlist - The zonelist being iterated
903  * @highidx - The zone index of the highest zone to return
904  *
905  * This iterator iterates though all zones at or below a given zone index.
906  */
907 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
908 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
909 
910 #ifdef CONFIG_SPARSEMEM
911 #include <asm/sparsemem.h>
912 #endif
913 
914 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
915 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
916 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
917 {
918 	return 0;
919 }
920 #endif
921 
922 #ifdef CONFIG_FLATMEM
923 #define pfn_to_nid(pfn)		(0)
924 #endif
925 
926 #ifdef CONFIG_SPARSEMEM
927 
928 /*
929  * SECTION_SHIFT    		#bits space required to store a section #
930  *
931  * PA_SECTION_SHIFT		physical address to/from section number
932  * PFN_SECTION_SHIFT		pfn to/from section number
933  */
934 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
935 
936 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
937 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
938 
939 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
940 
941 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
942 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
943 
944 #define SECTION_BLOCKFLAGS_BITS \
945 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
946 
947 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
948 #error Allocator MAX_ORDER exceeds SECTION_SIZE
949 #endif
950 
951 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
952 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
953 
954 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
955 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
956 
957 struct page;
958 struct page_cgroup;
959 struct mem_section {
960 	/*
961 	 * This is, logically, a pointer to an array of struct
962 	 * pages.  However, it is stored with some other magic.
963 	 * (see sparse.c::sparse_init_one_section())
964 	 *
965 	 * Additionally during early boot we encode node id of
966 	 * the location of the section here to guide allocation.
967 	 * (see sparse.c::memory_present())
968 	 *
969 	 * Making it a UL at least makes someone do a cast
970 	 * before using it wrong.
971 	 */
972 	unsigned long section_mem_map;
973 
974 	/* See declaration of similar field in struct zone */
975 	unsigned long *pageblock_flags;
976 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
977 	/*
978 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
979 	 * section. (see memcontrol.h/page_cgroup.h about this.)
980 	 */
981 	struct page_cgroup *page_cgroup;
982 	unsigned long pad;
983 #endif
984 };
985 
986 #ifdef CONFIG_SPARSEMEM_EXTREME
987 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
988 #else
989 #define SECTIONS_PER_ROOT	1
990 #endif
991 
992 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
993 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
994 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
995 
996 #ifdef CONFIG_SPARSEMEM_EXTREME
997 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
998 #else
999 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1000 #endif
1001 
1002 static inline struct mem_section *__nr_to_section(unsigned long nr)
1003 {
1004 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1005 		return NULL;
1006 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1007 }
1008 extern int __section_nr(struct mem_section* ms);
1009 extern unsigned long usemap_size(void);
1010 
1011 /*
1012  * We use the lower bits of the mem_map pointer to store
1013  * a little bit of information.  There should be at least
1014  * 3 bits here due to 32-bit alignment.
1015  */
1016 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1017 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1018 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1019 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1020 #define SECTION_NID_SHIFT	2
1021 
1022 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1023 {
1024 	unsigned long map = section->section_mem_map;
1025 	map &= SECTION_MAP_MASK;
1026 	return (struct page *)map;
1027 }
1028 
1029 static inline int present_section(struct mem_section *section)
1030 {
1031 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1032 }
1033 
1034 static inline int present_section_nr(unsigned long nr)
1035 {
1036 	return present_section(__nr_to_section(nr));
1037 }
1038 
1039 static inline int valid_section(struct mem_section *section)
1040 {
1041 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1042 }
1043 
1044 static inline int valid_section_nr(unsigned long nr)
1045 {
1046 	return valid_section(__nr_to_section(nr));
1047 }
1048 
1049 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1050 {
1051 	return __nr_to_section(pfn_to_section_nr(pfn));
1052 }
1053 
1054 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1055 static inline int pfn_valid(unsigned long pfn)
1056 {
1057 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1058 		return 0;
1059 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1060 }
1061 #endif
1062 
1063 static inline int pfn_present(unsigned long pfn)
1064 {
1065 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1066 		return 0;
1067 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1068 }
1069 
1070 /*
1071  * These are _only_ used during initialisation, therefore they
1072  * can use __initdata ...  They could have names to indicate
1073  * this restriction.
1074  */
1075 #ifdef CONFIG_NUMA
1076 #define pfn_to_nid(pfn)							\
1077 ({									\
1078 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1079 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1080 })
1081 #else
1082 #define pfn_to_nid(pfn)		(0)
1083 #endif
1084 
1085 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1086 void sparse_init(void);
1087 #else
1088 #define sparse_init()	do {} while (0)
1089 #define sparse_index_init(_sec, _nid)  do {} while (0)
1090 #endif /* CONFIG_SPARSEMEM */
1091 
1092 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1093 bool early_pfn_in_nid(unsigned long pfn, int nid);
1094 #else
1095 #define early_pfn_in_nid(pfn, nid)	(1)
1096 #endif
1097 
1098 #ifndef early_pfn_valid
1099 #define early_pfn_valid(pfn)	(1)
1100 #endif
1101 
1102 void memory_present(int nid, unsigned long start, unsigned long end);
1103 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1104 
1105 /*
1106  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1107  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1108  * pfn_valid_within() should be used in this case; we optimise this away
1109  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1110  */
1111 #ifdef CONFIG_HOLES_IN_ZONE
1112 #define pfn_valid_within(pfn) pfn_valid(pfn)
1113 #else
1114 #define pfn_valid_within(pfn) (1)
1115 #endif
1116 
1117 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1118 /*
1119  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1120  * associated with it or not. In FLATMEM, it is expected that holes always
1121  * have valid memmap as long as there is valid PFNs either side of the hole.
1122  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1123  * entire section.
1124  *
1125  * However, an ARM, and maybe other embedded architectures in the future
1126  * free memmap backing holes to save memory on the assumption the memmap is
1127  * never used. The page_zone linkages are then broken even though pfn_valid()
1128  * returns true. A walker of the full memmap must then do this additional
1129  * check to ensure the memmap they are looking at is sane by making sure
1130  * the zone and PFN linkages are still valid. This is expensive, but walkers
1131  * of the full memmap are extremely rare.
1132  */
1133 int memmap_valid_within(unsigned long pfn,
1134 					struct page *page, struct zone *zone);
1135 #else
1136 static inline int memmap_valid_within(unsigned long pfn,
1137 					struct page *page, struct zone *zone)
1138 {
1139 	return 1;
1140 }
1141 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1142 
1143 #endif /* !__GENERATING_BOUNDS.H */
1144 #endif /* !__ASSEMBLY__ */
1145 #endif /* _LINUX_MMZONE_H */
1146