xref: /linux-6.15/include/linux/mmzone.h (revision 258e4bfc)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68 
69 #ifdef CONFIG_CMA
70 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 #  define is_migrate_cma(migratetype) false
73 #endif
74 
75 #define for_each_migratetype_order(order, type) \
76 	for (order = 0; order < MAX_ORDER; order++) \
77 		for (type = 0; type < MIGRATE_TYPES; type++)
78 
79 extern int page_group_by_mobility_disabled;
80 
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83 
84 #define get_pageblock_migratetype(page)					\
85 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
86 			PB_migrate_end, MIGRATETYPE_MASK)
87 
88 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
89 {
90 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
91 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
92 					MIGRATETYPE_MASK);
93 }
94 
95 struct free_area {
96 	struct list_head	free_list[MIGRATE_TYPES];
97 	unsigned long		nr_free;
98 };
99 
100 struct pglist_data;
101 
102 /*
103  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
104  * So add a wild amount of padding here to ensure that they fall into separate
105  * cachelines.  There are very few zone structures in the machine, so space
106  * consumption is not a concern here.
107  */
108 #if defined(CONFIG_SMP)
109 struct zone_padding {
110 	char x[0];
111 } ____cacheline_internodealigned_in_smp;
112 #define ZONE_PADDING(name)	struct zone_padding name;
113 #else
114 #define ZONE_PADDING(name)
115 #endif
116 
117 enum zone_stat_item {
118 	/* First 128 byte cacheline (assuming 64 bit words) */
119 	NR_FREE_PAGES,
120 	NR_ALLOC_BATCH,
121 	NR_LRU_BASE,
122 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
123 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
124 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
125 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
126 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
127 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
128 	NR_ANON_PAGES,	/* Mapped anonymous pages */
129 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
130 			   only modified from process context */
131 	NR_FILE_PAGES,
132 	NR_FILE_DIRTY,
133 	NR_WRITEBACK,
134 	NR_SLAB_RECLAIMABLE,
135 	NR_SLAB_UNRECLAIMABLE,
136 	NR_PAGETABLE,		/* used for pagetables */
137 	NR_KERNEL_STACK,
138 	/* Second 128 byte cacheline */
139 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
140 	NR_BOUNCE,
141 	NR_VMSCAN_WRITE,
142 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
143 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
144 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
145 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
146 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
147 	NR_DIRTIED,		/* page dirtyings since bootup */
148 	NR_WRITTEN,		/* page writings since bootup */
149 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
150 #ifdef CONFIG_NUMA
151 	NUMA_HIT,		/* allocated in intended node */
152 	NUMA_MISS,		/* allocated in non intended node */
153 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
154 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
155 	NUMA_LOCAL,		/* allocation from local node */
156 	NUMA_OTHER,		/* allocation from other node */
157 #endif
158 	WORKINGSET_REFAULT,
159 	WORKINGSET_ACTIVATE,
160 	WORKINGSET_NODERECLAIM,
161 	NR_ANON_TRANSPARENT_HUGEPAGES,
162 	NR_FREE_CMA_PAGES,
163 	NR_VM_ZONE_STAT_ITEMS };
164 
165 /*
166  * We do arithmetic on the LRU lists in various places in the code,
167  * so it is important to keep the active lists LRU_ACTIVE higher in
168  * the array than the corresponding inactive lists, and to keep
169  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
170  *
171  * This has to be kept in sync with the statistics in zone_stat_item
172  * above and the descriptions in vmstat_text in mm/vmstat.c
173  */
174 #define LRU_BASE 0
175 #define LRU_ACTIVE 1
176 #define LRU_FILE 2
177 
178 enum lru_list {
179 	LRU_INACTIVE_ANON = LRU_BASE,
180 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
181 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
182 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
183 	LRU_UNEVICTABLE,
184 	NR_LRU_LISTS
185 };
186 
187 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
188 
189 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
190 
191 static inline int is_file_lru(enum lru_list lru)
192 {
193 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
194 }
195 
196 static inline int is_active_lru(enum lru_list lru)
197 {
198 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
199 }
200 
201 struct zone_reclaim_stat {
202 	/*
203 	 * The pageout code in vmscan.c keeps track of how many of the
204 	 * mem/swap backed and file backed pages are referenced.
205 	 * The higher the rotated/scanned ratio, the more valuable
206 	 * that cache is.
207 	 *
208 	 * The anon LRU stats live in [0], file LRU stats in [1]
209 	 */
210 	unsigned long		recent_rotated[2];
211 	unsigned long		recent_scanned[2];
212 };
213 
214 struct lruvec {
215 	struct list_head		lists[NR_LRU_LISTS];
216 	struct zone_reclaim_stat	reclaim_stat;
217 	/* Evictions & activations on the inactive file list */
218 	atomic_long_t			inactive_age;
219 #ifdef CONFIG_MEMCG
220 	struct zone			*zone;
221 #endif
222 };
223 
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
228 
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
237 
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240 
241 enum zone_watermarks {
242 	WMARK_MIN,
243 	WMARK_LOW,
244 	WMARK_HIGH,
245 	NR_WMARK
246 };
247 
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251 
252 struct per_cpu_pages {
253 	int count;		/* number of pages in the list */
254 	int high;		/* high watermark, emptying needed */
255 	int batch;		/* chunk size for buddy add/remove */
256 
257 	/* Lists of pages, one per migrate type stored on the pcp-lists */
258 	struct list_head lists[MIGRATE_PCPTYPES];
259 };
260 
261 struct per_cpu_pageset {
262 	struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 	s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 	s8 stat_threshold;
268 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271 
272 #endif /* !__GENERATING_BOUNDS.H */
273 
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 	/*
277 	 * ZONE_DMA is used when there are devices that are not able
278 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 	 * carve out the portion of memory that is needed for these devices.
280 	 * The range is arch specific.
281 	 *
282 	 * Some examples
283 	 *
284 	 * Architecture		Limit
285 	 * ---------------------------
286 	 * parisc, ia64, sparc	<4G
287 	 * s390			<2G
288 	 * arm			Various
289 	 * alpha		Unlimited or 0-16MB.
290 	 *
291 	 * i386, x86_64 and multiple other arches
292 	 * 			<16M.
293 	 */
294 	ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 	/*
298 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 	 * only able to do DMA to the lower 16M but also 32 bit devices that
300 	 * can only do DMA areas below 4G.
301 	 */
302 	ZONE_DMA32,
303 #endif
304 	/*
305 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 	 * performed on pages in ZONE_NORMAL if the DMA devices support
307 	 * transfers to all addressable memory.
308 	 */
309 	ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 	/*
312 	 * A memory area that is only addressable by the kernel through
313 	 * mapping portions into its own address space. This is for example
314 	 * used by i386 to allow the kernel to address the memory beyond
315 	 * 900MB. The kernel will set up special mappings (page
316 	 * table entries on i386) for each page that the kernel needs to
317 	 * access.
318 	 */
319 	ZONE_HIGHMEM,
320 #endif
321 	ZONE_MOVABLE,
322 #ifdef CONFIG_ZONE_DEVICE
323 	ZONE_DEVICE,
324 #endif
325 	__MAX_NR_ZONES
326 
327 };
328 
329 #ifndef __GENERATING_BOUNDS_H
330 
331 struct zone {
332 	/* Read-mostly fields */
333 
334 	/* zone watermarks, access with *_wmark_pages(zone) macros */
335 	unsigned long watermark[NR_WMARK];
336 
337 	unsigned long nr_reserved_highatomic;
338 
339 	/*
340 	 * We don't know if the memory that we're going to allocate will be
341 	 * freeable or/and it will be released eventually, so to avoid totally
342 	 * wasting several GB of ram we must reserve some of the lower zone
343 	 * memory (otherwise we risk to run OOM on the lower zones despite
344 	 * there being tons of freeable ram on the higher zones).  This array is
345 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
346 	 * changes.
347 	 */
348 	long lowmem_reserve[MAX_NR_ZONES];
349 
350 #ifdef CONFIG_NUMA
351 	int node;
352 #endif
353 
354 	/*
355 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
356 	 * this zone's LRU.  Maintained by the pageout code.
357 	 */
358 	unsigned int inactive_ratio;
359 
360 	struct pglist_data	*zone_pgdat;
361 	struct per_cpu_pageset __percpu *pageset;
362 
363 	/*
364 	 * This is a per-zone reserve of pages that are not available
365 	 * to userspace allocations.
366 	 */
367 	unsigned long		totalreserve_pages;
368 
369 #ifndef CONFIG_SPARSEMEM
370 	/*
371 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 	 * In SPARSEMEM, this map is stored in struct mem_section
373 	 */
374 	unsigned long		*pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376 
377 #ifdef CONFIG_NUMA
378 	/*
379 	 * zone reclaim becomes active if more unmapped pages exist.
380 	 */
381 	unsigned long		min_unmapped_pages;
382 	unsigned long		min_slab_pages;
383 #endif /* CONFIG_NUMA */
384 
385 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
386 	unsigned long		zone_start_pfn;
387 
388 	/*
389 	 * spanned_pages is the total pages spanned by the zone, including
390 	 * holes, which is calculated as:
391 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
392 	 *
393 	 * present_pages is physical pages existing within the zone, which
394 	 * is calculated as:
395 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
396 	 *
397 	 * managed_pages is present pages managed by the buddy system, which
398 	 * is calculated as (reserved_pages includes pages allocated by the
399 	 * bootmem allocator):
400 	 *	managed_pages = present_pages - reserved_pages;
401 	 *
402 	 * So present_pages may be used by memory hotplug or memory power
403 	 * management logic to figure out unmanaged pages by checking
404 	 * (present_pages - managed_pages). And managed_pages should be used
405 	 * by page allocator and vm scanner to calculate all kinds of watermarks
406 	 * and thresholds.
407 	 *
408 	 * Locking rules:
409 	 *
410 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
411 	 * It is a seqlock because it has to be read outside of zone->lock,
412 	 * and it is done in the main allocator path.  But, it is written
413 	 * quite infrequently.
414 	 *
415 	 * The span_seq lock is declared along with zone->lock because it is
416 	 * frequently read in proximity to zone->lock.  It's good to
417 	 * give them a chance of being in the same cacheline.
418 	 *
419 	 * Write access to present_pages at runtime should be protected by
420 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
421 	 * present_pages should get_online_mems() to get a stable value.
422 	 *
423 	 * Read access to managed_pages should be safe because it's unsigned
424 	 * long. Write access to zone->managed_pages and totalram_pages are
425 	 * protected by managed_page_count_lock at runtime. Idealy only
426 	 * adjust_managed_page_count() should be used instead of directly
427 	 * touching zone->managed_pages and totalram_pages.
428 	 */
429 	unsigned long		managed_pages;
430 	unsigned long		spanned_pages;
431 	unsigned long		present_pages;
432 
433 	const char		*name;
434 
435 #ifdef CONFIG_MEMORY_ISOLATION
436 	/*
437 	 * Number of isolated pageblock. It is used to solve incorrect
438 	 * freepage counting problem due to racy retrieving migratetype
439 	 * of pageblock. Protected by zone->lock.
440 	 */
441 	unsigned long		nr_isolate_pageblock;
442 #endif
443 
444 #ifdef CONFIG_MEMORY_HOTPLUG
445 	/* see spanned/present_pages for more description */
446 	seqlock_t		span_seqlock;
447 #endif
448 
449 	/*
450 	 * wait_table		-- the array holding the hash table
451 	 * wait_table_hash_nr_entries	-- the size of the hash table array
452 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
453 	 *
454 	 * The purpose of all these is to keep track of the people
455 	 * waiting for a page to become available and make them
456 	 * runnable again when possible. The trouble is that this
457 	 * consumes a lot of space, especially when so few things
458 	 * wait on pages at a given time. So instead of using
459 	 * per-page waitqueues, we use a waitqueue hash table.
460 	 *
461 	 * The bucket discipline is to sleep on the same queue when
462 	 * colliding and wake all in that wait queue when removing.
463 	 * When something wakes, it must check to be sure its page is
464 	 * truly available, a la thundering herd. The cost of a
465 	 * collision is great, but given the expected load of the
466 	 * table, they should be so rare as to be outweighed by the
467 	 * benefits from the saved space.
468 	 *
469 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
470 	 * primary users of these fields, and in mm/page_alloc.c
471 	 * free_area_init_core() performs the initialization of them.
472 	 */
473 	wait_queue_head_t	*wait_table;
474 	unsigned long		wait_table_hash_nr_entries;
475 	unsigned long		wait_table_bits;
476 
477 	ZONE_PADDING(_pad1_)
478 	/* free areas of different sizes */
479 	struct free_area	free_area[MAX_ORDER];
480 
481 	/* zone flags, see below */
482 	unsigned long		flags;
483 
484 	/* Write-intensive fields used from the page allocator */
485 	spinlock_t		lock;
486 
487 	ZONE_PADDING(_pad2_)
488 
489 	/* Write-intensive fields used by page reclaim */
490 
491 	/* Fields commonly accessed by the page reclaim scanner */
492 	spinlock_t		lru_lock;
493 	struct lruvec		lruvec;
494 
495 	/*
496 	 * When free pages are below this point, additional steps are taken
497 	 * when reading the number of free pages to avoid per-cpu counter
498 	 * drift allowing watermarks to be breached
499 	 */
500 	unsigned long percpu_drift_mark;
501 
502 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
503 	/* pfn where compaction free scanner should start */
504 	unsigned long		compact_cached_free_pfn;
505 	/* pfn where async and sync compaction migration scanner should start */
506 	unsigned long		compact_cached_migrate_pfn[2];
507 #endif
508 
509 #ifdef CONFIG_COMPACTION
510 	/*
511 	 * On compaction failure, 1<<compact_defer_shift compactions
512 	 * are skipped before trying again. The number attempted since
513 	 * last failure is tracked with compact_considered.
514 	 */
515 	unsigned int		compact_considered;
516 	unsigned int		compact_defer_shift;
517 	int			compact_order_failed;
518 #endif
519 
520 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
521 	/* Set to true when the PG_migrate_skip bits should be cleared */
522 	bool			compact_blockskip_flush;
523 #endif
524 
525 	bool			contiguous;
526 
527 	ZONE_PADDING(_pad3_)
528 	/* Zone statistics */
529 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
530 } ____cacheline_internodealigned_in_smp;
531 
532 enum zone_flags {
533 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
534 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
535 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
536 					 * a congested BDI
537 					 */
538 	ZONE_DIRTY,			/* reclaim scanning has recently found
539 					 * many dirty file pages at the tail
540 					 * of the LRU.
541 					 */
542 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
543 					 * many pages under writeback
544 					 */
545 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
546 };
547 
548 static inline unsigned long zone_end_pfn(const struct zone *zone)
549 {
550 	return zone->zone_start_pfn + zone->spanned_pages;
551 }
552 
553 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
554 {
555 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
556 }
557 
558 static inline bool zone_is_initialized(struct zone *zone)
559 {
560 	return !!zone->wait_table;
561 }
562 
563 static inline bool zone_is_empty(struct zone *zone)
564 {
565 	return zone->spanned_pages == 0;
566 }
567 
568 /*
569  * The "priority" of VM scanning is how much of the queues we will scan in one
570  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
571  * queues ("queue_length >> 12") during an aging round.
572  */
573 #define DEF_PRIORITY 12
574 
575 /* Maximum number of zones on a zonelist */
576 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
577 
578 enum {
579 	ZONELIST_FALLBACK,	/* zonelist with fallback */
580 #ifdef CONFIG_NUMA
581 	/*
582 	 * The NUMA zonelists are doubled because we need zonelists that
583 	 * restrict the allocations to a single node for __GFP_THISNODE.
584 	 */
585 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
586 #endif
587 	MAX_ZONELISTS
588 };
589 
590 /*
591  * This struct contains information about a zone in a zonelist. It is stored
592  * here to avoid dereferences into large structures and lookups of tables
593  */
594 struct zoneref {
595 	struct zone *zone;	/* Pointer to actual zone */
596 	int zone_idx;		/* zone_idx(zoneref->zone) */
597 };
598 
599 /*
600  * One allocation request operates on a zonelist. A zonelist
601  * is a list of zones, the first one is the 'goal' of the
602  * allocation, the other zones are fallback zones, in decreasing
603  * priority.
604  *
605  * To speed the reading of the zonelist, the zonerefs contain the zone index
606  * of the entry being read. Helper functions to access information given
607  * a struct zoneref are
608  *
609  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
610  * zonelist_zone_idx()	- Return the index of the zone for an entry
611  * zonelist_node_idx()	- Return the index of the node for an entry
612  */
613 struct zonelist {
614 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
615 };
616 
617 #ifndef CONFIG_DISCONTIGMEM
618 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
619 extern struct page *mem_map;
620 #endif
621 
622 /*
623  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
624  * (mostly NUMA machines?) to denote a higher-level memory zone than the
625  * zone denotes.
626  *
627  * On NUMA machines, each NUMA node would have a pg_data_t to describe
628  * it's memory layout.
629  *
630  * Memory statistics and page replacement data structures are maintained on a
631  * per-zone basis.
632  */
633 struct bootmem_data;
634 typedef struct pglist_data {
635 	struct zone node_zones[MAX_NR_ZONES];
636 	struct zonelist node_zonelists[MAX_ZONELISTS];
637 	int nr_zones;
638 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
639 	struct page *node_mem_map;
640 #ifdef CONFIG_PAGE_EXTENSION
641 	struct page_ext *node_page_ext;
642 #endif
643 #endif
644 #ifndef CONFIG_NO_BOOTMEM
645 	struct bootmem_data *bdata;
646 #endif
647 #ifdef CONFIG_MEMORY_HOTPLUG
648 	/*
649 	 * Must be held any time you expect node_start_pfn, node_present_pages
650 	 * or node_spanned_pages stay constant.  Holding this will also
651 	 * guarantee that any pfn_valid() stays that way.
652 	 *
653 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
654 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
655 	 *
656 	 * Nests above zone->lock and zone->span_seqlock
657 	 */
658 	spinlock_t node_size_lock;
659 #endif
660 	unsigned long node_start_pfn;
661 	unsigned long node_present_pages; /* total number of physical pages */
662 	unsigned long node_spanned_pages; /* total size of physical page
663 					     range, including holes */
664 	int node_id;
665 	wait_queue_head_t kswapd_wait;
666 	wait_queue_head_t pfmemalloc_wait;
667 	struct task_struct *kswapd;	/* Protected by
668 					   mem_hotplug_begin/end() */
669 	int kswapd_max_order;
670 	enum zone_type classzone_idx;
671 #ifdef CONFIG_COMPACTION
672 	int kcompactd_max_order;
673 	enum zone_type kcompactd_classzone_idx;
674 	wait_queue_head_t kcompactd_wait;
675 	struct task_struct *kcompactd;
676 #endif
677 #ifdef CONFIG_NUMA_BALANCING
678 	/* Lock serializing the migrate rate limiting window */
679 	spinlock_t numabalancing_migrate_lock;
680 
681 	/* Rate limiting time interval */
682 	unsigned long numabalancing_migrate_next_window;
683 
684 	/* Number of pages migrated during the rate limiting time interval */
685 	unsigned long numabalancing_migrate_nr_pages;
686 #endif
687 
688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
689 	/*
690 	 * If memory initialisation on large machines is deferred then this
691 	 * is the first PFN that needs to be initialised.
692 	 */
693 	unsigned long first_deferred_pfn;
694 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
695 
696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
697 	spinlock_t split_queue_lock;
698 	struct list_head split_queue;
699 	unsigned long split_queue_len;
700 #endif
701 } pg_data_t;
702 
703 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
704 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
705 #ifdef CONFIG_FLAT_NODE_MEM_MAP
706 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
707 #else
708 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
709 #endif
710 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
711 
712 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
713 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
714 
715 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
716 {
717 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
718 }
719 
720 static inline bool pgdat_is_empty(pg_data_t *pgdat)
721 {
722 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
723 }
724 
725 static inline int zone_id(const struct zone *zone)
726 {
727 	struct pglist_data *pgdat = zone->zone_pgdat;
728 
729 	return zone - pgdat->node_zones;
730 }
731 
732 #ifdef CONFIG_ZONE_DEVICE
733 static inline bool is_dev_zone(const struct zone *zone)
734 {
735 	return zone_id(zone) == ZONE_DEVICE;
736 }
737 #else
738 static inline bool is_dev_zone(const struct zone *zone)
739 {
740 	return false;
741 }
742 #endif
743 
744 #include <linux/memory_hotplug.h>
745 
746 extern struct mutex zonelists_mutex;
747 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
748 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
749 bool zone_watermark_ok(struct zone *z, unsigned int order,
750 		unsigned long mark, int classzone_idx, int alloc_flags);
751 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
752 		unsigned long mark, int classzone_idx);
753 enum memmap_context {
754 	MEMMAP_EARLY,
755 	MEMMAP_HOTPLUG,
756 };
757 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
758 				     unsigned long size);
759 
760 extern void lruvec_init(struct lruvec *lruvec);
761 
762 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
763 {
764 #ifdef CONFIG_MEMCG
765 	return lruvec->zone;
766 #else
767 	return container_of(lruvec, struct zone, lruvec);
768 #endif
769 }
770 
771 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
772 
773 #ifdef CONFIG_HAVE_MEMORY_PRESENT
774 void memory_present(int nid, unsigned long start, unsigned long end);
775 #else
776 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
777 #endif
778 
779 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
780 int local_memory_node(int node_id);
781 #else
782 static inline int local_memory_node(int node_id) { return node_id; };
783 #endif
784 
785 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
786 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
787 #endif
788 
789 /*
790  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
791  */
792 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
793 
794 static inline int populated_zone(struct zone *zone)
795 {
796 	return (!!zone->present_pages);
797 }
798 
799 extern int movable_zone;
800 
801 #ifdef CONFIG_HIGHMEM
802 static inline int zone_movable_is_highmem(void)
803 {
804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
805 	return movable_zone == ZONE_HIGHMEM;
806 #else
807 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
808 #endif
809 }
810 #endif
811 
812 static inline int is_highmem_idx(enum zone_type idx)
813 {
814 #ifdef CONFIG_HIGHMEM
815 	return (idx == ZONE_HIGHMEM ||
816 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
817 #else
818 	return 0;
819 #endif
820 }
821 
822 /**
823  * is_highmem - helper function to quickly check if a struct zone is a
824  *              highmem zone or not.  This is an attempt to keep references
825  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
826  * @zone - pointer to struct zone variable
827  */
828 static inline int is_highmem(struct zone *zone)
829 {
830 #ifdef CONFIG_HIGHMEM
831 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
832 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
833 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
834 		zone_movable_is_highmem());
835 #else
836 	return 0;
837 #endif
838 }
839 
840 /* These two functions are used to setup the per zone pages min values */
841 struct ctl_table;
842 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
843 					void __user *, size_t *, loff_t *);
844 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
845 					void __user *, size_t *, loff_t *);
846 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
847 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
848 					void __user *, size_t *, loff_t *);
849 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
850 					void __user *, size_t *, loff_t *);
851 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
852 			void __user *, size_t *, loff_t *);
853 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
854 			void __user *, size_t *, loff_t *);
855 
856 extern int numa_zonelist_order_handler(struct ctl_table *, int,
857 			void __user *, size_t *, loff_t *);
858 extern char numa_zonelist_order[];
859 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
860 
861 #ifndef CONFIG_NEED_MULTIPLE_NODES
862 
863 extern struct pglist_data contig_page_data;
864 #define NODE_DATA(nid)		(&contig_page_data)
865 #define NODE_MEM_MAP(nid)	mem_map
866 
867 #else /* CONFIG_NEED_MULTIPLE_NODES */
868 
869 #include <asm/mmzone.h>
870 
871 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
872 
873 extern struct pglist_data *first_online_pgdat(void);
874 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
875 extern struct zone *next_zone(struct zone *zone);
876 
877 /**
878  * for_each_online_pgdat - helper macro to iterate over all online nodes
879  * @pgdat - pointer to a pg_data_t variable
880  */
881 #define for_each_online_pgdat(pgdat)			\
882 	for (pgdat = first_online_pgdat();		\
883 	     pgdat;					\
884 	     pgdat = next_online_pgdat(pgdat))
885 /**
886  * for_each_zone - helper macro to iterate over all memory zones
887  * @zone - pointer to struct zone variable
888  *
889  * The user only needs to declare the zone variable, for_each_zone
890  * fills it in.
891  */
892 #define for_each_zone(zone)			        \
893 	for (zone = (first_online_pgdat())->node_zones; \
894 	     zone;					\
895 	     zone = next_zone(zone))
896 
897 #define for_each_populated_zone(zone)		        \
898 	for (zone = (first_online_pgdat())->node_zones; \
899 	     zone;					\
900 	     zone = next_zone(zone))			\
901 		if (!populated_zone(zone))		\
902 			; /* do nothing */		\
903 		else
904 
905 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
906 {
907 	return zoneref->zone;
908 }
909 
910 static inline int zonelist_zone_idx(struct zoneref *zoneref)
911 {
912 	return zoneref->zone_idx;
913 }
914 
915 static inline int zonelist_node_idx(struct zoneref *zoneref)
916 {
917 #ifdef CONFIG_NUMA
918 	/* zone_to_nid not available in this context */
919 	return zoneref->zone->node;
920 #else
921 	return 0;
922 #endif /* CONFIG_NUMA */
923 }
924 
925 /**
926  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
927  * @z - The cursor used as a starting point for the search
928  * @highest_zoneidx - The zone index of the highest zone to return
929  * @nodes - An optional nodemask to filter the zonelist with
930  *
931  * This function returns the next zone at or below a given zone index that is
932  * within the allowed nodemask using a cursor as the starting point for the
933  * search. The zoneref returned is a cursor that represents the current zone
934  * being examined. It should be advanced by one before calling
935  * next_zones_zonelist again.
936  */
937 struct zoneref *next_zones_zonelist(struct zoneref *z,
938 					enum zone_type highest_zoneidx,
939 					nodemask_t *nodes);
940 
941 /**
942  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
943  * @zonelist - The zonelist to search for a suitable zone
944  * @highest_zoneidx - The zone index of the highest zone to return
945  * @nodes - An optional nodemask to filter the zonelist with
946  * @zone - The first suitable zone found is returned via this parameter
947  *
948  * This function returns the first zone at or below a given zone index that is
949  * within the allowed nodemask. The zoneref returned is a cursor that can be
950  * used to iterate the zonelist with next_zones_zonelist by advancing it by
951  * one before calling.
952  */
953 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
954 					enum zone_type highest_zoneidx,
955 					nodemask_t *nodes,
956 					struct zone **zone)
957 {
958 	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
959 							highest_zoneidx, nodes);
960 	*zone = zonelist_zone(z);
961 	return z;
962 }
963 
964 /**
965  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
966  * @zone - The current zone in the iterator
967  * @z - The current pointer within zonelist->zones being iterated
968  * @zlist - The zonelist being iterated
969  * @highidx - The zone index of the highest zone to return
970  * @nodemask - Nodemask allowed by the allocator
971  *
972  * This iterator iterates though all zones at or below a given zone index and
973  * within a given nodemask
974  */
975 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
976 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
977 		zone;							\
978 		z = next_zones_zonelist(++z, highidx, nodemask),	\
979 			zone = zonelist_zone(z))			\
980 
981 /**
982  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
983  * @zone - The current zone in the iterator
984  * @z - The current pointer within zonelist->zones being iterated
985  * @zlist - The zonelist being iterated
986  * @highidx - The zone index of the highest zone to return
987  *
988  * This iterator iterates though all zones at or below a given zone index.
989  */
990 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
991 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
992 
993 #ifdef CONFIG_SPARSEMEM
994 #include <asm/sparsemem.h>
995 #endif
996 
997 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
998 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
999 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1000 {
1001 	return 0;
1002 }
1003 #endif
1004 
1005 #ifdef CONFIG_FLATMEM
1006 #define pfn_to_nid(pfn)		(0)
1007 #endif
1008 
1009 #ifdef CONFIG_SPARSEMEM
1010 
1011 /*
1012  * SECTION_SHIFT    		#bits space required to store a section #
1013  *
1014  * PA_SECTION_SHIFT		physical address to/from section number
1015  * PFN_SECTION_SHIFT		pfn to/from section number
1016  */
1017 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1018 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1019 
1020 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1021 
1022 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1023 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1024 
1025 #define SECTION_BLOCKFLAGS_BITS \
1026 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1027 
1028 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1029 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1030 #endif
1031 
1032 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1033 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1034 
1035 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1036 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1037 
1038 struct page;
1039 struct page_ext;
1040 struct mem_section {
1041 	/*
1042 	 * This is, logically, a pointer to an array of struct
1043 	 * pages.  However, it is stored with some other magic.
1044 	 * (see sparse.c::sparse_init_one_section())
1045 	 *
1046 	 * Additionally during early boot we encode node id of
1047 	 * the location of the section here to guide allocation.
1048 	 * (see sparse.c::memory_present())
1049 	 *
1050 	 * Making it a UL at least makes someone do a cast
1051 	 * before using it wrong.
1052 	 */
1053 	unsigned long section_mem_map;
1054 
1055 	/* See declaration of similar field in struct zone */
1056 	unsigned long *pageblock_flags;
1057 #ifdef CONFIG_PAGE_EXTENSION
1058 	/*
1059 	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1060 	 * section. (see page_ext.h about this.)
1061 	 */
1062 	struct page_ext *page_ext;
1063 	unsigned long pad;
1064 #endif
1065 	/*
1066 	 * WARNING: mem_section must be a power-of-2 in size for the
1067 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1068 	 */
1069 };
1070 
1071 #ifdef CONFIG_SPARSEMEM_EXTREME
1072 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1073 #else
1074 #define SECTIONS_PER_ROOT	1
1075 #endif
1076 
1077 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1078 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1079 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1080 
1081 #ifdef CONFIG_SPARSEMEM_EXTREME
1082 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1083 #else
1084 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1085 #endif
1086 
1087 static inline struct mem_section *__nr_to_section(unsigned long nr)
1088 {
1089 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1090 		return NULL;
1091 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1092 }
1093 extern int __section_nr(struct mem_section* ms);
1094 extern unsigned long usemap_size(void);
1095 
1096 /*
1097  * We use the lower bits of the mem_map pointer to store
1098  * a little bit of information.  There should be at least
1099  * 3 bits here due to 32-bit alignment.
1100  */
1101 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1102 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1103 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1104 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1105 #define SECTION_NID_SHIFT	2
1106 
1107 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1108 {
1109 	unsigned long map = section->section_mem_map;
1110 	map &= SECTION_MAP_MASK;
1111 	return (struct page *)map;
1112 }
1113 
1114 static inline int present_section(struct mem_section *section)
1115 {
1116 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1117 }
1118 
1119 static inline int present_section_nr(unsigned long nr)
1120 {
1121 	return present_section(__nr_to_section(nr));
1122 }
1123 
1124 static inline int valid_section(struct mem_section *section)
1125 {
1126 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1127 }
1128 
1129 static inline int valid_section_nr(unsigned long nr)
1130 {
1131 	return valid_section(__nr_to_section(nr));
1132 }
1133 
1134 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1135 {
1136 	return __nr_to_section(pfn_to_section_nr(pfn));
1137 }
1138 
1139 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1140 static inline int pfn_valid(unsigned long pfn)
1141 {
1142 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1143 		return 0;
1144 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1145 }
1146 #endif
1147 
1148 static inline int pfn_present(unsigned long pfn)
1149 {
1150 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1151 		return 0;
1152 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1153 }
1154 
1155 /*
1156  * These are _only_ used during initialisation, therefore they
1157  * can use __initdata ...  They could have names to indicate
1158  * this restriction.
1159  */
1160 #ifdef CONFIG_NUMA
1161 #define pfn_to_nid(pfn)							\
1162 ({									\
1163 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1164 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1165 })
1166 #else
1167 #define pfn_to_nid(pfn)		(0)
1168 #endif
1169 
1170 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1171 void sparse_init(void);
1172 #else
1173 #define sparse_init()	do {} while (0)
1174 #define sparse_index_init(_sec, _nid)  do {} while (0)
1175 #endif /* CONFIG_SPARSEMEM */
1176 
1177 /*
1178  * During memory init memblocks map pfns to nids. The search is expensive and
1179  * this caches recent lookups. The implementation of __early_pfn_to_nid
1180  * may treat start/end as pfns or sections.
1181  */
1182 struct mminit_pfnnid_cache {
1183 	unsigned long last_start;
1184 	unsigned long last_end;
1185 	int last_nid;
1186 };
1187 
1188 #ifndef early_pfn_valid
1189 #define early_pfn_valid(pfn)	(1)
1190 #endif
1191 
1192 void memory_present(int nid, unsigned long start, unsigned long end);
1193 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1194 
1195 /*
1196  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1197  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1198  * pfn_valid_within() should be used in this case; we optimise this away
1199  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1200  */
1201 #ifdef CONFIG_HOLES_IN_ZONE
1202 #define pfn_valid_within(pfn) pfn_valid(pfn)
1203 #else
1204 #define pfn_valid_within(pfn) (1)
1205 #endif
1206 
1207 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1208 /*
1209  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1210  * associated with it or not. In FLATMEM, it is expected that holes always
1211  * have valid memmap as long as there is valid PFNs either side of the hole.
1212  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1213  * entire section.
1214  *
1215  * However, an ARM, and maybe other embedded architectures in the future
1216  * free memmap backing holes to save memory on the assumption the memmap is
1217  * never used. The page_zone linkages are then broken even though pfn_valid()
1218  * returns true. A walker of the full memmap must then do this additional
1219  * check to ensure the memmap they are looking at is sane by making sure
1220  * the zone and PFN linkages are still valid. This is expensive, but walkers
1221  * of the full memmap are extremely rare.
1222  */
1223 bool memmap_valid_within(unsigned long pfn,
1224 					struct page *page, struct zone *zone);
1225 #else
1226 static inline bool memmap_valid_within(unsigned long pfn,
1227 					struct page *page, struct zone *zone)
1228 {
1229 	return true;
1230 }
1231 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1232 
1233 #endif /* !__GENERATING_BOUNDS.H */
1234 #endif /* !__ASSEMBLY__ */
1235 #endif /* _LINUX_MMZONE_H */
1236