1 #ifndef _LINUX_MMZONE_H 2 #define _LINUX_MMZONE_H 3 4 #ifndef __ASSEMBLY__ 5 #ifndef __GENERATING_BOUNDS_H 6 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/wait.h> 10 #include <linux/bitops.h> 11 #include <linux/cache.h> 12 #include <linux/threads.h> 13 #include <linux/numa.h> 14 #include <linux/init.h> 15 #include <linux/seqlock.h> 16 #include <linux/nodemask.h> 17 #include <linux/pageblock-flags.h> 18 #include <linux/page-flags-layout.h> 19 #include <linux/atomic.h> 20 #include <asm/page.h> 21 22 /* Free memory management - zoned buddy allocator. */ 23 #ifndef CONFIG_FORCE_MAX_ZONEORDER 24 #define MAX_ORDER 11 25 #else 26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27 #endif 28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30 /* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36 #define PAGE_ALLOC_COSTLY_ORDER 3 37 38 enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_MOVABLE, 41 MIGRATE_RECLAIMABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 44 #ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59 #endif 60 #ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62 #endif 63 MIGRATE_TYPES 64 }; 65 66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 67 extern char * const migratetype_names[MIGRATE_TYPES]; 68 69 #ifdef CONFIG_CMA 70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 71 #else 72 # define is_migrate_cma(migratetype) false 73 #endif 74 75 #define for_each_migratetype_order(order, type) \ 76 for (order = 0; order < MAX_ORDER; order++) \ 77 for (type = 0; type < MIGRATE_TYPES; type++) 78 79 extern int page_group_by_mobility_disabled; 80 81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 83 84 #define get_pageblock_migratetype(page) \ 85 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 86 PB_migrate_end, MIGRATETYPE_MASK) 87 88 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 89 { 90 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 91 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 92 MIGRATETYPE_MASK); 93 } 94 95 struct free_area { 96 struct list_head free_list[MIGRATE_TYPES]; 97 unsigned long nr_free; 98 }; 99 100 struct pglist_data; 101 102 /* 103 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 104 * So add a wild amount of padding here to ensure that they fall into separate 105 * cachelines. There are very few zone structures in the machine, so space 106 * consumption is not a concern here. 107 */ 108 #if defined(CONFIG_SMP) 109 struct zone_padding { 110 char x[0]; 111 } ____cacheline_internodealigned_in_smp; 112 #define ZONE_PADDING(name) struct zone_padding name; 113 #else 114 #define ZONE_PADDING(name) 115 #endif 116 117 enum zone_stat_item { 118 /* First 128 byte cacheline (assuming 64 bit words) */ 119 NR_FREE_PAGES, 120 NR_ALLOC_BATCH, 121 NR_LRU_BASE, 122 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 123 NR_ACTIVE_ANON, /* " " " " " */ 124 NR_INACTIVE_FILE, /* " " " " " */ 125 NR_ACTIVE_FILE, /* " " " " " */ 126 NR_UNEVICTABLE, /* " " " " " */ 127 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 128 NR_ANON_PAGES, /* Mapped anonymous pages */ 129 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 130 only modified from process context */ 131 NR_FILE_PAGES, 132 NR_FILE_DIRTY, 133 NR_WRITEBACK, 134 NR_SLAB_RECLAIMABLE, 135 NR_SLAB_UNRECLAIMABLE, 136 NR_PAGETABLE, /* used for pagetables */ 137 NR_KERNEL_STACK, 138 /* Second 128 byte cacheline */ 139 NR_UNSTABLE_NFS, /* NFS unstable pages */ 140 NR_BOUNCE, 141 NR_VMSCAN_WRITE, 142 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 143 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 144 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 145 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 146 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 147 NR_DIRTIED, /* page dirtyings since bootup */ 148 NR_WRITTEN, /* page writings since bootup */ 149 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 150 #ifdef CONFIG_NUMA 151 NUMA_HIT, /* allocated in intended node */ 152 NUMA_MISS, /* allocated in non intended node */ 153 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 154 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 155 NUMA_LOCAL, /* allocation from local node */ 156 NUMA_OTHER, /* allocation from other node */ 157 #endif 158 WORKINGSET_REFAULT, 159 WORKINGSET_ACTIVATE, 160 WORKINGSET_NODERECLAIM, 161 NR_ANON_TRANSPARENT_HUGEPAGES, 162 NR_FREE_CMA_PAGES, 163 NR_VM_ZONE_STAT_ITEMS }; 164 165 /* 166 * We do arithmetic on the LRU lists in various places in the code, 167 * so it is important to keep the active lists LRU_ACTIVE higher in 168 * the array than the corresponding inactive lists, and to keep 169 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 170 * 171 * This has to be kept in sync with the statistics in zone_stat_item 172 * above and the descriptions in vmstat_text in mm/vmstat.c 173 */ 174 #define LRU_BASE 0 175 #define LRU_ACTIVE 1 176 #define LRU_FILE 2 177 178 enum lru_list { 179 LRU_INACTIVE_ANON = LRU_BASE, 180 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 181 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 182 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 183 LRU_UNEVICTABLE, 184 NR_LRU_LISTS 185 }; 186 187 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 188 189 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 190 191 static inline int is_file_lru(enum lru_list lru) 192 { 193 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 194 } 195 196 static inline int is_active_lru(enum lru_list lru) 197 { 198 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 199 } 200 201 struct zone_reclaim_stat { 202 /* 203 * The pageout code in vmscan.c keeps track of how many of the 204 * mem/swap backed and file backed pages are referenced. 205 * The higher the rotated/scanned ratio, the more valuable 206 * that cache is. 207 * 208 * The anon LRU stats live in [0], file LRU stats in [1] 209 */ 210 unsigned long recent_rotated[2]; 211 unsigned long recent_scanned[2]; 212 }; 213 214 struct lruvec { 215 struct list_head lists[NR_LRU_LISTS]; 216 struct zone_reclaim_stat reclaim_stat; 217 /* Evictions & activations on the inactive file list */ 218 atomic_long_t inactive_age; 219 #ifdef CONFIG_MEMCG 220 struct zone *zone; 221 #endif 222 }; 223 224 /* Mask used at gathering information at once (see memcontrol.c) */ 225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229 /* Isolate clean file */ 230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231 /* Isolate unmapped file */ 232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233 /* Isolate for asynchronous migration */ 234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235 /* Isolate unevictable pages */ 236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238 /* LRU Isolation modes. */ 239 typedef unsigned __bitwise__ isolate_mode_t; 240 241 enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246 }; 247 248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252 struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259 }; 260 261 struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263 #ifdef CONFIG_NUMA 264 s8 expire; 265 #endif 266 #ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269 #endif 270 }; 271 272 #endif /* !__GENERATING_BOUNDS.H */ 273 274 enum zone_type { 275 #ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295 #endif 296 #ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303 #endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310 #ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320 #endif 321 ZONE_MOVABLE, 322 #ifdef CONFIG_ZONE_DEVICE 323 ZONE_DEVICE, 324 #endif 325 __MAX_NR_ZONES 326 327 }; 328 329 #ifndef __GENERATING_BOUNDS_H 330 331 struct zone { 332 /* Read-mostly fields */ 333 334 /* zone watermarks, access with *_wmark_pages(zone) macros */ 335 unsigned long watermark[NR_WMARK]; 336 337 unsigned long nr_reserved_highatomic; 338 339 /* 340 * We don't know if the memory that we're going to allocate will be 341 * freeable or/and it will be released eventually, so to avoid totally 342 * wasting several GB of ram we must reserve some of the lower zone 343 * memory (otherwise we risk to run OOM on the lower zones despite 344 * there being tons of freeable ram on the higher zones). This array is 345 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 346 * changes. 347 */ 348 long lowmem_reserve[MAX_NR_ZONES]; 349 350 #ifdef CONFIG_NUMA 351 int node; 352 #endif 353 354 /* 355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 356 * this zone's LRU. Maintained by the pageout code. 357 */ 358 unsigned int inactive_ratio; 359 360 struct pglist_data *zone_pgdat; 361 struct per_cpu_pageset __percpu *pageset; 362 363 /* 364 * This is a per-zone reserve of pages that are not available 365 * to userspace allocations. 366 */ 367 unsigned long totalreserve_pages; 368 369 #ifndef CONFIG_SPARSEMEM 370 /* 371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 372 * In SPARSEMEM, this map is stored in struct mem_section 373 */ 374 unsigned long *pageblock_flags; 375 #endif /* CONFIG_SPARSEMEM */ 376 377 #ifdef CONFIG_NUMA 378 /* 379 * zone reclaim becomes active if more unmapped pages exist. 380 */ 381 unsigned long min_unmapped_pages; 382 unsigned long min_slab_pages; 383 #endif /* CONFIG_NUMA */ 384 385 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 386 unsigned long zone_start_pfn; 387 388 /* 389 * spanned_pages is the total pages spanned by the zone, including 390 * holes, which is calculated as: 391 * spanned_pages = zone_end_pfn - zone_start_pfn; 392 * 393 * present_pages is physical pages existing within the zone, which 394 * is calculated as: 395 * present_pages = spanned_pages - absent_pages(pages in holes); 396 * 397 * managed_pages is present pages managed by the buddy system, which 398 * is calculated as (reserved_pages includes pages allocated by the 399 * bootmem allocator): 400 * managed_pages = present_pages - reserved_pages; 401 * 402 * So present_pages may be used by memory hotplug or memory power 403 * management logic to figure out unmanaged pages by checking 404 * (present_pages - managed_pages). And managed_pages should be used 405 * by page allocator and vm scanner to calculate all kinds of watermarks 406 * and thresholds. 407 * 408 * Locking rules: 409 * 410 * zone_start_pfn and spanned_pages are protected by span_seqlock. 411 * It is a seqlock because it has to be read outside of zone->lock, 412 * and it is done in the main allocator path. But, it is written 413 * quite infrequently. 414 * 415 * The span_seq lock is declared along with zone->lock because it is 416 * frequently read in proximity to zone->lock. It's good to 417 * give them a chance of being in the same cacheline. 418 * 419 * Write access to present_pages at runtime should be protected by 420 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 421 * present_pages should get_online_mems() to get a stable value. 422 * 423 * Read access to managed_pages should be safe because it's unsigned 424 * long. Write access to zone->managed_pages and totalram_pages are 425 * protected by managed_page_count_lock at runtime. Idealy only 426 * adjust_managed_page_count() should be used instead of directly 427 * touching zone->managed_pages and totalram_pages. 428 */ 429 unsigned long managed_pages; 430 unsigned long spanned_pages; 431 unsigned long present_pages; 432 433 const char *name; 434 435 #ifdef CONFIG_MEMORY_ISOLATION 436 /* 437 * Number of isolated pageblock. It is used to solve incorrect 438 * freepage counting problem due to racy retrieving migratetype 439 * of pageblock. Protected by zone->lock. 440 */ 441 unsigned long nr_isolate_pageblock; 442 #endif 443 444 #ifdef CONFIG_MEMORY_HOTPLUG 445 /* see spanned/present_pages for more description */ 446 seqlock_t span_seqlock; 447 #endif 448 449 /* 450 * wait_table -- the array holding the hash table 451 * wait_table_hash_nr_entries -- the size of the hash table array 452 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 453 * 454 * The purpose of all these is to keep track of the people 455 * waiting for a page to become available and make them 456 * runnable again when possible. The trouble is that this 457 * consumes a lot of space, especially when so few things 458 * wait on pages at a given time. So instead of using 459 * per-page waitqueues, we use a waitqueue hash table. 460 * 461 * The bucket discipline is to sleep on the same queue when 462 * colliding and wake all in that wait queue when removing. 463 * When something wakes, it must check to be sure its page is 464 * truly available, a la thundering herd. The cost of a 465 * collision is great, but given the expected load of the 466 * table, they should be so rare as to be outweighed by the 467 * benefits from the saved space. 468 * 469 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 470 * primary users of these fields, and in mm/page_alloc.c 471 * free_area_init_core() performs the initialization of them. 472 */ 473 wait_queue_head_t *wait_table; 474 unsigned long wait_table_hash_nr_entries; 475 unsigned long wait_table_bits; 476 477 ZONE_PADDING(_pad1_) 478 /* free areas of different sizes */ 479 struct free_area free_area[MAX_ORDER]; 480 481 /* zone flags, see below */ 482 unsigned long flags; 483 484 /* Write-intensive fields used from the page allocator */ 485 spinlock_t lock; 486 487 ZONE_PADDING(_pad2_) 488 489 /* Write-intensive fields used by page reclaim */ 490 491 /* Fields commonly accessed by the page reclaim scanner */ 492 spinlock_t lru_lock; 493 struct lruvec lruvec; 494 495 /* 496 * When free pages are below this point, additional steps are taken 497 * when reading the number of free pages to avoid per-cpu counter 498 * drift allowing watermarks to be breached 499 */ 500 unsigned long percpu_drift_mark; 501 502 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 503 /* pfn where compaction free scanner should start */ 504 unsigned long compact_cached_free_pfn; 505 /* pfn where async and sync compaction migration scanner should start */ 506 unsigned long compact_cached_migrate_pfn[2]; 507 #endif 508 509 #ifdef CONFIG_COMPACTION 510 /* 511 * On compaction failure, 1<<compact_defer_shift compactions 512 * are skipped before trying again. The number attempted since 513 * last failure is tracked with compact_considered. 514 */ 515 unsigned int compact_considered; 516 unsigned int compact_defer_shift; 517 int compact_order_failed; 518 #endif 519 520 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 521 /* Set to true when the PG_migrate_skip bits should be cleared */ 522 bool compact_blockskip_flush; 523 #endif 524 525 bool contiguous; 526 527 ZONE_PADDING(_pad3_) 528 /* Zone statistics */ 529 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 530 } ____cacheline_internodealigned_in_smp; 531 532 enum zone_flags { 533 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 534 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 535 ZONE_CONGESTED, /* zone has many dirty pages backed by 536 * a congested BDI 537 */ 538 ZONE_DIRTY, /* reclaim scanning has recently found 539 * many dirty file pages at the tail 540 * of the LRU. 541 */ 542 ZONE_WRITEBACK, /* reclaim scanning has recently found 543 * many pages under writeback 544 */ 545 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 546 }; 547 548 static inline unsigned long zone_end_pfn(const struct zone *zone) 549 { 550 return zone->zone_start_pfn + zone->spanned_pages; 551 } 552 553 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 554 { 555 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 556 } 557 558 static inline bool zone_is_initialized(struct zone *zone) 559 { 560 return !!zone->wait_table; 561 } 562 563 static inline bool zone_is_empty(struct zone *zone) 564 { 565 return zone->spanned_pages == 0; 566 } 567 568 /* 569 * The "priority" of VM scanning is how much of the queues we will scan in one 570 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 571 * queues ("queue_length >> 12") during an aging round. 572 */ 573 #define DEF_PRIORITY 12 574 575 /* Maximum number of zones on a zonelist */ 576 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 577 578 enum { 579 ZONELIST_FALLBACK, /* zonelist with fallback */ 580 #ifdef CONFIG_NUMA 581 /* 582 * The NUMA zonelists are doubled because we need zonelists that 583 * restrict the allocations to a single node for __GFP_THISNODE. 584 */ 585 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 586 #endif 587 MAX_ZONELISTS 588 }; 589 590 /* 591 * This struct contains information about a zone in a zonelist. It is stored 592 * here to avoid dereferences into large structures and lookups of tables 593 */ 594 struct zoneref { 595 struct zone *zone; /* Pointer to actual zone */ 596 int zone_idx; /* zone_idx(zoneref->zone) */ 597 }; 598 599 /* 600 * One allocation request operates on a zonelist. A zonelist 601 * is a list of zones, the first one is the 'goal' of the 602 * allocation, the other zones are fallback zones, in decreasing 603 * priority. 604 * 605 * To speed the reading of the zonelist, the zonerefs contain the zone index 606 * of the entry being read. Helper functions to access information given 607 * a struct zoneref are 608 * 609 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 610 * zonelist_zone_idx() - Return the index of the zone for an entry 611 * zonelist_node_idx() - Return the index of the node for an entry 612 */ 613 struct zonelist { 614 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 615 }; 616 617 #ifndef CONFIG_DISCONTIGMEM 618 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 619 extern struct page *mem_map; 620 #endif 621 622 /* 623 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 624 * (mostly NUMA machines?) to denote a higher-level memory zone than the 625 * zone denotes. 626 * 627 * On NUMA machines, each NUMA node would have a pg_data_t to describe 628 * it's memory layout. 629 * 630 * Memory statistics and page replacement data structures are maintained on a 631 * per-zone basis. 632 */ 633 struct bootmem_data; 634 typedef struct pglist_data { 635 struct zone node_zones[MAX_NR_ZONES]; 636 struct zonelist node_zonelists[MAX_ZONELISTS]; 637 int nr_zones; 638 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 639 struct page *node_mem_map; 640 #ifdef CONFIG_PAGE_EXTENSION 641 struct page_ext *node_page_ext; 642 #endif 643 #endif 644 #ifndef CONFIG_NO_BOOTMEM 645 struct bootmem_data *bdata; 646 #endif 647 #ifdef CONFIG_MEMORY_HOTPLUG 648 /* 649 * Must be held any time you expect node_start_pfn, node_present_pages 650 * or node_spanned_pages stay constant. Holding this will also 651 * guarantee that any pfn_valid() stays that way. 652 * 653 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 654 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 655 * 656 * Nests above zone->lock and zone->span_seqlock 657 */ 658 spinlock_t node_size_lock; 659 #endif 660 unsigned long node_start_pfn; 661 unsigned long node_present_pages; /* total number of physical pages */ 662 unsigned long node_spanned_pages; /* total size of physical page 663 range, including holes */ 664 int node_id; 665 wait_queue_head_t kswapd_wait; 666 wait_queue_head_t pfmemalloc_wait; 667 struct task_struct *kswapd; /* Protected by 668 mem_hotplug_begin/end() */ 669 int kswapd_max_order; 670 enum zone_type classzone_idx; 671 #ifdef CONFIG_COMPACTION 672 int kcompactd_max_order; 673 enum zone_type kcompactd_classzone_idx; 674 wait_queue_head_t kcompactd_wait; 675 struct task_struct *kcompactd; 676 #endif 677 #ifdef CONFIG_NUMA_BALANCING 678 /* Lock serializing the migrate rate limiting window */ 679 spinlock_t numabalancing_migrate_lock; 680 681 /* Rate limiting time interval */ 682 unsigned long numabalancing_migrate_next_window; 683 684 /* Number of pages migrated during the rate limiting time interval */ 685 unsigned long numabalancing_migrate_nr_pages; 686 #endif 687 688 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 689 /* 690 * If memory initialisation on large machines is deferred then this 691 * is the first PFN that needs to be initialised. 692 */ 693 unsigned long first_deferred_pfn; 694 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 695 696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 697 spinlock_t split_queue_lock; 698 struct list_head split_queue; 699 unsigned long split_queue_len; 700 #endif 701 } pg_data_t; 702 703 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 704 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 705 #ifdef CONFIG_FLAT_NODE_MEM_MAP 706 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 707 #else 708 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 709 #endif 710 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 711 712 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 713 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 714 715 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 716 { 717 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 718 } 719 720 static inline bool pgdat_is_empty(pg_data_t *pgdat) 721 { 722 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 723 } 724 725 static inline int zone_id(const struct zone *zone) 726 { 727 struct pglist_data *pgdat = zone->zone_pgdat; 728 729 return zone - pgdat->node_zones; 730 } 731 732 #ifdef CONFIG_ZONE_DEVICE 733 static inline bool is_dev_zone(const struct zone *zone) 734 { 735 return zone_id(zone) == ZONE_DEVICE; 736 } 737 #else 738 static inline bool is_dev_zone(const struct zone *zone) 739 { 740 return false; 741 } 742 #endif 743 744 #include <linux/memory_hotplug.h> 745 746 extern struct mutex zonelists_mutex; 747 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 748 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 749 bool zone_watermark_ok(struct zone *z, unsigned int order, 750 unsigned long mark, int classzone_idx, int alloc_flags); 751 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 752 unsigned long mark, int classzone_idx); 753 enum memmap_context { 754 MEMMAP_EARLY, 755 MEMMAP_HOTPLUG, 756 }; 757 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 758 unsigned long size); 759 760 extern void lruvec_init(struct lruvec *lruvec); 761 762 static inline struct zone *lruvec_zone(struct lruvec *lruvec) 763 { 764 #ifdef CONFIG_MEMCG 765 return lruvec->zone; 766 #else 767 return container_of(lruvec, struct zone, lruvec); 768 #endif 769 } 770 771 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru); 772 773 #ifdef CONFIG_HAVE_MEMORY_PRESENT 774 void memory_present(int nid, unsigned long start, unsigned long end); 775 #else 776 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 777 #endif 778 779 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 780 int local_memory_node(int node_id); 781 #else 782 static inline int local_memory_node(int node_id) { return node_id; }; 783 #endif 784 785 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 786 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 787 #endif 788 789 /* 790 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 791 */ 792 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 793 794 static inline int populated_zone(struct zone *zone) 795 { 796 return (!!zone->present_pages); 797 } 798 799 extern int movable_zone; 800 801 #ifdef CONFIG_HIGHMEM 802 static inline int zone_movable_is_highmem(void) 803 { 804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 805 return movable_zone == ZONE_HIGHMEM; 806 #else 807 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 808 #endif 809 } 810 #endif 811 812 static inline int is_highmem_idx(enum zone_type idx) 813 { 814 #ifdef CONFIG_HIGHMEM 815 return (idx == ZONE_HIGHMEM || 816 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 817 #else 818 return 0; 819 #endif 820 } 821 822 /** 823 * is_highmem - helper function to quickly check if a struct zone is a 824 * highmem zone or not. This is an attempt to keep references 825 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 826 * @zone - pointer to struct zone variable 827 */ 828 static inline int is_highmem(struct zone *zone) 829 { 830 #ifdef CONFIG_HIGHMEM 831 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 832 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 833 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 834 zone_movable_is_highmem()); 835 #else 836 return 0; 837 #endif 838 } 839 840 /* These two functions are used to setup the per zone pages min values */ 841 struct ctl_table; 842 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 843 void __user *, size_t *, loff_t *); 844 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 845 void __user *, size_t *, loff_t *); 846 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 847 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 848 void __user *, size_t *, loff_t *); 849 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 850 void __user *, size_t *, loff_t *); 851 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 852 void __user *, size_t *, loff_t *); 853 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 854 void __user *, size_t *, loff_t *); 855 856 extern int numa_zonelist_order_handler(struct ctl_table *, int, 857 void __user *, size_t *, loff_t *); 858 extern char numa_zonelist_order[]; 859 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 860 861 #ifndef CONFIG_NEED_MULTIPLE_NODES 862 863 extern struct pglist_data contig_page_data; 864 #define NODE_DATA(nid) (&contig_page_data) 865 #define NODE_MEM_MAP(nid) mem_map 866 867 #else /* CONFIG_NEED_MULTIPLE_NODES */ 868 869 #include <asm/mmzone.h> 870 871 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 872 873 extern struct pglist_data *first_online_pgdat(void); 874 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 875 extern struct zone *next_zone(struct zone *zone); 876 877 /** 878 * for_each_online_pgdat - helper macro to iterate over all online nodes 879 * @pgdat - pointer to a pg_data_t variable 880 */ 881 #define for_each_online_pgdat(pgdat) \ 882 for (pgdat = first_online_pgdat(); \ 883 pgdat; \ 884 pgdat = next_online_pgdat(pgdat)) 885 /** 886 * for_each_zone - helper macro to iterate over all memory zones 887 * @zone - pointer to struct zone variable 888 * 889 * The user only needs to declare the zone variable, for_each_zone 890 * fills it in. 891 */ 892 #define for_each_zone(zone) \ 893 for (zone = (first_online_pgdat())->node_zones; \ 894 zone; \ 895 zone = next_zone(zone)) 896 897 #define for_each_populated_zone(zone) \ 898 for (zone = (first_online_pgdat())->node_zones; \ 899 zone; \ 900 zone = next_zone(zone)) \ 901 if (!populated_zone(zone)) \ 902 ; /* do nothing */ \ 903 else 904 905 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 906 { 907 return zoneref->zone; 908 } 909 910 static inline int zonelist_zone_idx(struct zoneref *zoneref) 911 { 912 return zoneref->zone_idx; 913 } 914 915 static inline int zonelist_node_idx(struct zoneref *zoneref) 916 { 917 #ifdef CONFIG_NUMA 918 /* zone_to_nid not available in this context */ 919 return zoneref->zone->node; 920 #else 921 return 0; 922 #endif /* CONFIG_NUMA */ 923 } 924 925 /** 926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 927 * @z - The cursor used as a starting point for the search 928 * @highest_zoneidx - The zone index of the highest zone to return 929 * @nodes - An optional nodemask to filter the zonelist with 930 * 931 * This function returns the next zone at or below a given zone index that is 932 * within the allowed nodemask using a cursor as the starting point for the 933 * search. The zoneref returned is a cursor that represents the current zone 934 * being examined. It should be advanced by one before calling 935 * next_zones_zonelist again. 936 */ 937 struct zoneref *next_zones_zonelist(struct zoneref *z, 938 enum zone_type highest_zoneidx, 939 nodemask_t *nodes); 940 941 /** 942 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 943 * @zonelist - The zonelist to search for a suitable zone 944 * @highest_zoneidx - The zone index of the highest zone to return 945 * @nodes - An optional nodemask to filter the zonelist with 946 * @zone - The first suitable zone found is returned via this parameter 947 * 948 * This function returns the first zone at or below a given zone index that is 949 * within the allowed nodemask. The zoneref returned is a cursor that can be 950 * used to iterate the zonelist with next_zones_zonelist by advancing it by 951 * one before calling. 952 */ 953 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 954 enum zone_type highest_zoneidx, 955 nodemask_t *nodes, 956 struct zone **zone) 957 { 958 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs, 959 highest_zoneidx, nodes); 960 *zone = zonelist_zone(z); 961 return z; 962 } 963 964 /** 965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 966 * @zone - The current zone in the iterator 967 * @z - The current pointer within zonelist->zones being iterated 968 * @zlist - The zonelist being iterated 969 * @highidx - The zone index of the highest zone to return 970 * @nodemask - Nodemask allowed by the allocator 971 * 972 * This iterator iterates though all zones at or below a given zone index and 973 * within a given nodemask 974 */ 975 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 976 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 977 zone; \ 978 z = next_zones_zonelist(++z, highidx, nodemask), \ 979 zone = zonelist_zone(z)) \ 980 981 /** 982 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 983 * @zone - The current zone in the iterator 984 * @z - The current pointer within zonelist->zones being iterated 985 * @zlist - The zonelist being iterated 986 * @highidx - The zone index of the highest zone to return 987 * 988 * This iterator iterates though all zones at or below a given zone index. 989 */ 990 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 991 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 992 993 #ifdef CONFIG_SPARSEMEM 994 #include <asm/sparsemem.h> 995 #endif 996 997 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 998 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 999 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1000 { 1001 return 0; 1002 } 1003 #endif 1004 1005 #ifdef CONFIG_FLATMEM 1006 #define pfn_to_nid(pfn) (0) 1007 #endif 1008 1009 #ifdef CONFIG_SPARSEMEM 1010 1011 /* 1012 * SECTION_SHIFT #bits space required to store a section # 1013 * 1014 * PA_SECTION_SHIFT physical address to/from section number 1015 * PFN_SECTION_SHIFT pfn to/from section number 1016 */ 1017 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1018 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1019 1020 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1021 1022 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1023 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1024 1025 #define SECTION_BLOCKFLAGS_BITS \ 1026 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1027 1028 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1029 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1030 #endif 1031 1032 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1033 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1034 1035 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1036 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1037 1038 struct page; 1039 struct page_ext; 1040 struct mem_section { 1041 /* 1042 * This is, logically, a pointer to an array of struct 1043 * pages. However, it is stored with some other magic. 1044 * (see sparse.c::sparse_init_one_section()) 1045 * 1046 * Additionally during early boot we encode node id of 1047 * the location of the section here to guide allocation. 1048 * (see sparse.c::memory_present()) 1049 * 1050 * Making it a UL at least makes someone do a cast 1051 * before using it wrong. 1052 */ 1053 unsigned long section_mem_map; 1054 1055 /* See declaration of similar field in struct zone */ 1056 unsigned long *pageblock_flags; 1057 #ifdef CONFIG_PAGE_EXTENSION 1058 /* 1059 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1060 * section. (see page_ext.h about this.) 1061 */ 1062 struct page_ext *page_ext; 1063 unsigned long pad; 1064 #endif 1065 /* 1066 * WARNING: mem_section must be a power-of-2 in size for the 1067 * calculation and use of SECTION_ROOT_MASK to make sense. 1068 */ 1069 }; 1070 1071 #ifdef CONFIG_SPARSEMEM_EXTREME 1072 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1073 #else 1074 #define SECTIONS_PER_ROOT 1 1075 #endif 1076 1077 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1078 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1079 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1080 1081 #ifdef CONFIG_SPARSEMEM_EXTREME 1082 extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1083 #else 1084 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1085 #endif 1086 1087 static inline struct mem_section *__nr_to_section(unsigned long nr) 1088 { 1089 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1090 return NULL; 1091 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1092 } 1093 extern int __section_nr(struct mem_section* ms); 1094 extern unsigned long usemap_size(void); 1095 1096 /* 1097 * We use the lower bits of the mem_map pointer to store 1098 * a little bit of information. There should be at least 1099 * 3 bits here due to 32-bit alignment. 1100 */ 1101 #define SECTION_MARKED_PRESENT (1UL<<0) 1102 #define SECTION_HAS_MEM_MAP (1UL<<1) 1103 #define SECTION_MAP_LAST_BIT (1UL<<2) 1104 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1105 #define SECTION_NID_SHIFT 2 1106 1107 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1108 { 1109 unsigned long map = section->section_mem_map; 1110 map &= SECTION_MAP_MASK; 1111 return (struct page *)map; 1112 } 1113 1114 static inline int present_section(struct mem_section *section) 1115 { 1116 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1117 } 1118 1119 static inline int present_section_nr(unsigned long nr) 1120 { 1121 return present_section(__nr_to_section(nr)); 1122 } 1123 1124 static inline int valid_section(struct mem_section *section) 1125 { 1126 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1127 } 1128 1129 static inline int valid_section_nr(unsigned long nr) 1130 { 1131 return valid_section(__nr_to_section(nr)); 1132 } 1133 1134 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1135 { 1136 return __nr_to_section(pfn_to_section_nr(pfn)); 1137 } 1138 1139 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1140 static inline int pfn_valid(unsigned long pfn) 1141 { 1142 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1143 return 0; 1144 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1145 } 1146 #endif 1147 1148 static inline int pfn_present(unsigned long pfn) 1149 { 1150 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1151 return 0; 1152 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1153 } 1154 1155 /* 1156 * These are _only_ used during initialisation, therefore they 1157 * can use __initdata ... They could have names to indicate 1158 * this restriction. 1159 */ 1160 #ifdef CONFIG_NUMA 1161 #define pfn_to_nid(pfn) \ 1162 ({ \ 1163 unsigned long __pfn_to_nid_pfn = (pfn); \ 1164 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1165 }) 1166 #else 1167 #define pfn_to_nid(pfn) (0) 1168 #endif 1169 1170 #define early_pfn_valid(pfn) pfn_valid(pfn) 1171 void sparse_init(void); 1172 #else 1173 #define sparse_init() do {} while (0) 1174 #define sparse_index_init(_sec, _nid) do {} while (0) 1175 #endif /* CONFIG_SPARSEMEM */ 1176 1177 /* 1178 * During memory init memblocks map pfns to nids. The search is expensive and 1179 * this caches recent lookups. The implementation of __early_pfn_to_nid 1180 * may treat start/end as pfns or sections. 1181 */ 1182 struct mminit_pfnnid_cache { 1183 unsigned long last_start; 1184 unsigned long last_end; 1185 int last_nid; 1186 }; 1187 1188 #ifndef early_pfn_valid 1189 #define early_pfn_valid(pfn) (1) 1190 #endif 1191 1192 void memory_present(int nid, unsigned long start, unsigned long end); 1193 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1194 1195 /* 1196 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1197 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1198 * pfn_valid_within() should be used in this case; we optimise this away 1199 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1200 */ 1201 #ifdef CONFIG_HOLES_IN_ZONE 1202 #define pfn_valid_within(pfn) pfn_valid(pfn) 1203 #else 1204 #define pfn_valid_within(pfn) (1) 1205 #endif 1206 1207 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1208 /* 1209 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1210 * associated with it or not. In FLATMEM, it is expected that holes always 1211 * have valid memmap as long as there is valid PFNs either side of the hole. 1212 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1213 * entire section. 1214 * 1215 * However, an ARM, and maybe other embedded architectures in the future 1216 * free memmap backing holes to save memory on the assumption the memmap is 1217 * never used. The page_zone linkages are then broken even though pfn_valid() 1218 * returns true. A walker of the full memmap must then do this additional 1219 * check to ensure the memmap they are looking at is sane by making sure 1220 * the zone and PFN linkages are still valid. This is expensive, but walkers 1221 * of the full memmap are extremely rare. 1222 */ 1223 bool memmap_valid_within(unsigned long pfn, 1224 struct page *page, struct zone *zone); 1225 #else 1226 static inline bool memmap_valid_within(unsigned long pfn, 1227 struct page *page, struct zone *zone) 1228 { 1229 return true; 1230 } 1231 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1232 1233 #endif /* !__GENERATING_BOUNDS.H */ 1234 #endif /* !__ASSEMBLY__ */ 1235 #endif /* _LINUX_MMZONE_H */ 1236