xref: /linux-6.15/include/linux/mmzone.h (revision 247dbcdb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34 
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36 
37 /*
38  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39  * costly to service.  That is between allocation orders which should
40  * coalesce naturally under reasonable reclaim pressure and those which
41  * will not.
42  */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44 
45 enum migratetype {
46 	MIGRATE_UNMOVABLE,
47 	MIGRATE_MOVABLE,
48 	MIGRATE_RECLAIMABLE,
49 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
50 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
51 #ifdef CONFIG_CMA
52 	/*
53 	 * MIGRATE_CMA migration type is designed to mimic the way
54 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
55 	 * from MIGRATE_CMA pageblocks and page allocator never
56 	 * implicitly change migration type of MIGRATE_CMA pageblock.
57 	 *
58 	 * The way to use it is to change migratetype of a range of
59 	 * pageblocks to MIGRATE_CMA which can be done by
60 	 * __free_pageblock_cma() function.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 #  define is_migrate_cma(migratetype) false
78 #  define is_migrate_cma_page(_page) false
79 #endif
80 
81 static inline bool is_migrate_movable(int mt)
82 {
83 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85 
86 /*
87  * Check whether a migratetype can be merged with another migratetype.
88  *
89  * It is only mergeable when it can fall back to other migratetypes for
90  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91  */
92 static inline bool migratetype_is_mergeable(int mt)
93 {
94 	return mt < MIGRATE_PCPTYPES;
95 }
96 
97 #define for_each_migratetype_order(order, type) \
98 	for (order = 0; order <= MAX_ORDER; order++) \
99 		for (type = 0; type < MIGRATE_TYPES; type++)
100 
101 extern int page_group_by_mobility_disabled;
102 
103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104 
105 #define get_pageblock_migratetype(page)					\
106 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107 
108 #define folio_migratetype(folio)				\
109 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
110 			MIGRATETYPE_MASK)
111 struct free_area {
112 	struct list_head	free_list[MIGRATE_TYPES];
113 	unsigned long		nr_free;
114 };
115 
116 struct pglist_data;
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_EVENT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_EVENT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	/* Second 128 byte cacheline */
144 	NR_BOUNCE,
145 #if IS_ENABLED(CONFIG_ZSMALLOC)
146 	NR_ZSPAGES,		/* allocated in zsmalloc */
147 #endif
148 	NR_FREE_CMA_PAGES,
149 #ifdef CONFIG_UNACCEPTED_MEMORY
150 	NR_UNACCEPTED,
151 #endif
152 	NR_VM_ZONE_STAT_ITEMS };
153 
154 enum node_stat_item {
155 	NR_LRU_BASE,
156 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
157 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
158 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
159 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
160 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
161 	NR_SLAB_RECLAIMABLE_B,
162 	NR_SLAB_UNRECLAIMABLE_B,
163 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
164 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
165 	WORKINGSET_NODES,
166 	WORKINGSET_REFAULT_BASE,
167 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
168 	WORKINGSET_REFAULT_FILE,
169 	WORKINGSET_ACTIVATE_BASE,
170 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
171 	WORKINGSET_ACTIVATE_FILE,
172 	WORKINGSET_RESTORE_BASE,
173 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
174 	WORKINGSET_RESTORE_FILE,
175 	WORKINGSET_NODERECLAIM,
176 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
177 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
178 			   only modified from process context */
179 	NR_FILE_PAGES,
180 	NR_FILE_DIRTY,
181 	NR_WRITEBACK,
182 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
183 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
184 	NR_SHMEM_THPS,
185 	NR_SHMEM_PMDMAPPED,
186 	NR_FILE_THPS,
187 	NR_FILE_PMDMAPPED,
188 	NR_ANON_THPS,
189 	NR_VMSCAN_WRITE,
190 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
191 	NR_DIRTIED,		/* page dirtyings since bootup */
192 	NR_WRITTEN,		/* page writings since bootup */
193 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
194 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
195 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
196 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
197 	NR_KERNEL_STACK_KB,	/* measured in KiB */
198 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
199 	NR_KERNEL_SCS_KB,	/* measured in KiB */
200 #endif
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
203 #ifdef CONFIG_SWAP
204 	NR_SWAPCACHE,
205 #endif
206 #ifdef CONFIG_NUMA_BALANCING
207 	PGPROMOTE_SUCCESS,	/* promote successfully */
208 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
209 #endif
210 	NR_VM_NODE_STAT_ITEMS
211 };
212 
213 /*
214  * Returns true if the item should be printed in THPs (/proc/vmstat
215  * currently prints number of anon, file and shmem THPs. But the item
216  * is charged in pages).
217  */
218 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
219 {
220 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
221 		return false;
222 
223 	return item == NR_ANON_THPS ||
224 	       item == NR_FILE_THPS ||
225 	       item == NR_SHMEM_THPS ||
226 	       item == NR_SHMEM_PMDMAPPED ||
227 	       item == NR_FILE_PMDMAPPED;
228 }
229 
230 /*
231  * Returns true if the value is measured in bytes (most vmstat values are
232  * measured in pages). This defines the API part, the internal representation
233  * might be different.
234  */
235 static __always_inline bool vmstat_item_in_bytes(int idx)
236 {
237 	/*
238 	 * Global and per-node slab counters track slab pages.
239 	 * It's expected that changes are multiples of PAGE_SIZE.
240 	 * Internally values are stored in pages.
241 	 *
242 	 * Per-memcg and per-lruvec counters track memory, consumed
243 	 * by individual slab objects. These counters are actually
244 	 * byte-precise.
245 	 */
246 	return (idx == NR_SLAB_RECLAIMABLE_B ||
247 		idx == NR_SLAB_UNRECLAIMABLE_B);
248 }
249 
250 /*
251  * We do arithmetic on the LRU lists in various places in the code,
252  * so it is important to keep the active lists LRU_ACTIVE higher in
253  * the array than the corresponding inactive lists, and to keep
254  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255  *
256  * This has to be kept in sync with the statistics in zone_stat_item
257  * above and the descriptions in vmstat_text in mm/vmstat.c
258  */
259 #define LRU_BASE 0
260 #define LRU_ACTIVE 1
261 #define LRU_FILE 2
262 
263 enum lru_list {
264 	LRU_INACTIVE_ANON = LRU_BASE,
265 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
268 	LRU_UNEVICTABLE,
269 	NR_LRU_LISTS
270 };
271 
272 enum vmscan_throttle_state {
273 	VMSCAN_THROTTLE_WRITEBACK,
274 	VMSCAN_THROTTLE_ISOLATED,
275 	VMSCAN_THROTTLE_NOPROGRESS,
276 	VMSCAN_THROTTLE_CONGESTED,
277 	NR_VMSCAN_THROTTLE,
278 };
279 
280 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
281 
282 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
283 
284 static inline bool is_file_lru(enum lru_list lru)
285 {
286 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
287 }
288 
289 static inline bool is_active_lru(enum lru_list lru)
290 {
291 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
292 }
293 
294 #define WORKINGSET_ANON 0
295 #define WORKINGSET_FILE 1
296 #define ANON_AND_FILE 2
297 
298 enum lruvec_flags {
299 	/*
300 	 * An lruvec has many dirty pages backed by a congested BDI:
301 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
302 	 *    It can be cleared by cgroup reclaim or kswapd.
303 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
304 	 *    It can only be cleared by kswapd.
305 	 *
306 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
307 	 * reclaim, but not vice versa. This only applies to the root cgroup.
308 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
309 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
310 	 * by kswapd).
311 	 */
312 	LRUVEC_CGROUP_CONGESTED,
313 	LRUVEC_NODE_CONGESTED,
314 };
315 
316 #endif /* !__GENERATING_BOUNDS_H */
317 
318 /*
319  * Evictable pages are divided into multiple generations. The youngest and the
320  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
321  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
322  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
323  * corresponding generation. The gen counter in folio->flags stores gen+1 while
324  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
325  *
326  * A page is added to the youngest generation on faulting. The aging needs to
327  * check the accessed bit at least twice before handing this page over to the
328  * eviction. The first check takes care of the accessed bit set on the initial
329  * fault; the second check makes sure this page hasn't been used since then.
330  * This process, AKA second chance, requires a minimum of two generations,
331  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
332  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
333  * rest of generations, if they exist, are considered inactive. See
334  * lru_gen_is_active().
335  *
336  * PG_active is always cleared while a page is on one of lrugen->folios[] so
337  * that the aging needs not to worry about it. And it's set again when a page
338  * considered active is isolated for non-reclaiming purposes, e.g., migration.
339  * See lru_gen_add_folio() and lru_gen_del_folio().
340  *
341  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
342  * number of categories of the active/inactive LRU when keeping track of
343  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
344  * in folio->flags.
345  */
346 #define MIN_NR_GENS		2U
347 #define MAX_NR_GENS		4U
348 
349 /*
350  * Each generation is divided into multiple tiers. A page accessed N times
351  * through file descriptors is in tier order_base_2(N). A page in the first tier
352  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
353  * tables or read ahead. A page in any other tier (N>1) is marked by
354  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
355  * supported without using additional bits in folio->flags.
356  *
357  * In contrast to moving across generations which requires the LRU lock, moving
358  * across tiers only involves atomic operations on folio->flags and therefore
359  * has a negligible cost in the buffered access path. In the eviction path,
360  * comparisons of refaulted/(evicted+protected) from the first tier and the
361  * rest infer whether pages accessed multiple times through file descriptors
362  * are statistically hot and thus worth protecting.
363  *
364  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
365  * number of categories of the active/inactive LRU when keeping track of
366  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
367  * folio->flags.
368  */
369 #define MAX_NR_TIERS		4U
370 
371 #ifndef __GENERATING_BOUNDS_H
372 
373 struct lruvec;
374 struct page_vma_mapped_walk;
375 
376 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
377 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
378 
379 #ifdef CONFIG_LRU_GEN
380 
381 enum {
382 	LRU_GEN_ANON,
383 	LRU_GEN_FILE,
384 };
385 
386 enum {
387 	LRU_GEN_CORE,
388 	LRU_GEN_MM_WALK,
389 	LRU_GEN_NONLEAF_YOUNG,
390 	NR_LRU_GEN_CAPS
391 };
392 
393 #define MIN_LRU_BATCH		BITS_PER_LONG
394 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
395 
396 /* whether to keep historical stats from evicted generations */
397 #ifdef CONFIG_LRU_GEN_STATS
398 #define NR_HIST_GENS		MAX_NR_GENS
399 #else
400 #define NR_HIST_GENS		1U
401 #endif
402 
403 /*
404  * The youngest generation number is stored in max_seq for both anon and file
405  * types as they are aged on an equal footing. The oldest generation numbers are
406  * stored in min_seq[] separately for anon and file types as clean file pages
407  * can be evicted regardless of swap constraints.
408  *
409  * Normally anon and file min_seq are in sync. But if swapping is constrained,
410  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
411  * min_seq behind.
412  *
413  * The number of pages in each generation is eventually consistent and therefore
414  * can be transiently negative when reset_batch_size() is pending.
415  */
416 struct lru_gen_folio {
417 	/* the aging increments the youngest generation number */
418 	unsigned long max_seq;
419 	/* the eviction increments the oldest generation numbers */
420 	unsigned long min_seq[ANON_AND_FILE];
421 	/* the birth time of each generation in jiffies */
422 	unsigned long timestamps[MAX_NR_GENS];
423 	/* the multi-gen LRU lists, lazily sorted on eviction */
424 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
425 	/* the multi-gen LRU sizes, eventually consistent */
426 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
427 	/* the exponential moving average of refaulted */
428 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
429 	/* the exponential moving average of evicted+protected */
430 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
431 	/* the first tier doesn't need protection, hence the minus one */
432 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
433 	/* can be modified without holding the LRU lock */
434 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
435 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
436 	/* whether the multi-gen LRU is enabled */
437 	bool enabled;
438 #ifdef CONFIG_MEMCG
439 	/* the memcg generation this lru_gen_folio belongs to */
440 	u8 gen;
441 	/* the list segment this lru_gen_folio belongs to */
442 	u8 seg;
443 	/* per-node lru_gen_folio list for global reclaim */
444 	struct hlist_nulls_node list;
445 #endif
446 };
447 
448 enum {
449 	MM_LEAF_TOTAL,		/* total leaf entries */
450 	MM_LEAF_OLD,		/* old leaf entries */
451 	MM_LEAF_YOUNG,		/* young leaf entries */
452 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
453 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
454 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
455 	NR_MM_STATS
456 };
457 
458 /* double-buffering Bloom filters */
459 #define NR_BLOOM_FILTERS	2
460 
461 struct lru_gen_mm_state {
462 	/* set to max_seq after each iteration */
463 	unsigned long seq;
464 	/* where the current iteration continues after */
465 	struct list_head *head;
466 	/* where the last iteration ended before */
467 	struct list_head *tail;
468 	/* Bloom filters flip after each iteration */
469 	unsigned long *filters[NR_BLOOM_FILTERS];
470 	/* the mm stats for debugging */
471 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
472 };
473 
474 struct lru_gen_mm_walk {
475 	/* the lruvec under reclaim */
476 	struct lruvec *lruvec;
477 	/* unstable max_seq from lru_gen_folio */
478 	unsigned long max_seq;
479 	/* the next address within an mm to scan */
480 	unsigned long next_addr;
481 	/* to batch promoted pages */
482 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
483 	/* to batch the mm stats */
484 	int mm_stats[NR_MM_STATS];
485 	/* total batched items */
486 	int batched;
487 	bool can_swap;
488 	bool force_scan;
489 };
490 
491 void lru_gen_init_lruvec(struct lruvec *lruvec);
492 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
493 
494 #ifdef CONFIG_MEMCG
495 
496 /*
497  * For each node, memcgs are divided into two generations: the old and the
498  * young. For each generation, memcgs are randomly sharded into multiple bins
499  * to improve scalability. For each bin, the hlist_nulls is virtually divided
500  * into three segments: the head, the tail and the default.
501  *
502  * An onlining memcg is added to the tail of a random bin in the old generation.
503  * The eviction starts at the head of a random bin in the old generation. The
504  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
505  * the old generation, is incremented when all its bins become empty.
506  *
507  * There are four operations:
508  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
509  *    current generation (old or young) and updates its "seg" to "head";
510  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
511  *    current generation (old or young) and updates its "seg" to "tail";
512  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
513  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
514  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
515  *    young generation, updates its "gen" to "young" and resets its "seg" to
516  *    "default".
517  *
518  * The events that trigger the above operations are:
519  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
520  * 2. The first attempt to reclaim an memcg below low, which triggers
521  *    MEMCG_LRU_TAIL;
522  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
523  *    which triggers MEMCG_LRU_TAIL;
524  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
525  *    which triggers MEMCG_LRU_YOUNG;
526  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
527  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
528  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
529  *
530  * Note that memcg LRU only applies to global reclaim, and the round-robin
531  * incrementing of their max_seq counters ensures the eventual fairness to all
532  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
533  */
534 #define MEMCG_NR_GENS	2
535 #define MEMCG_NR_BINS	8
536 
537 struct lru_gen_memcg {
538 	/* the per-node memcg generation counter */
539 	unsigned long seq;
540 	/* each memcg has one lru_gen_folio per node */
541 	unsigned long nr_memcgs[MEMCG_NR_GENS];
542 	/* per-node lru_gen_folio list for global reclaim */
543 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
544 	/* protects the above */
545 	spinlock_t lock;
546 };
547 
548 void lru_gen_init_pgdat(struct pglist_data *pgdat);
549 
550 void lru_gen_init_memcg(struct mem_cgroup *memcg);
551 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
552 void lru_gen_online_memcg(struct mem_cgroup *memcg);
553 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
554 void lru_gen_release_memcg(struct mem_cgroup *memcg);
555 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
556 
557 #else /* !CONFIG_MEMCG */
558 
559 #define MEMCG_NR_GENS	1
560 
561 struct lru_gen_memcg {
562 };
563 
564 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
565 {
566 }
567 
568 #endif /* CONFIG_MEMCG */
569 
570 #else /* !CONFIG_LRU_GEN */
571 
572 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
573 {
574 }
575 
576 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
577 {
578 }
579 
580 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
581 {
582 }
583 
584 #ifdef CONFIG_MEMCG
585 
586 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
587 {
588 }
589 
590 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
591 {
592 }
593 
594 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
595 {
596 }
597 
598 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
599 {
600 }
601 
602 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
603 {
604 }
605 
606 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
607 {
608 }
609 
610 #endif /* CONFIG_MEMCG */
611 
612 #endif /* CONFIG_LRU_GEN */
613 
614 struct lruvec {
615 	struct list_head		lists[NR_LRU_LISTS];
616 	/* per lruvec lru_lock for memcg */
617 	spinlock_t			lru_lock;
618 	/*
619 	 * These track the cost of reclaiming one LRU - file or anon -
620 	 * over the other. As the observed cost of reclaiming one LRU
621 	 * increases, the reclaim scan balance tips toward the other.
622 	 */
623 	unsigned long			anon_cost;
624 	unsigned long			file_cost;
625 	/* Non-resident age, driven by LRU movement */
626 	atomic_long_t			nonresident_age;
627 	/* Refaults at the time of last reclaim cycle */
628 	unsigned long			refaults[ANON_AND_FILE];
629 	/* Various lruvec state flags (enum lruvec_flags) */
630 	unsigned long			flags;
631 #ifdef CONFIG_LRU_GEN
632 	/* evictable pages divided into generations */
633 	struct lru_gen_folio		lrugen;
634 	/* to concurrently iterate lru_gen_mm_list */
635 	struct lru_gen_mm_state		mm_state;
636 #endif
637 #ifdef CONFIG_MEMCG
638 	struct pglist_data *pgdat;
639 #endif
640 };
641 
642 /* Isolate for asynchronous migration */
643 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
644 /* Isolate unevictable pages */
645 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
646 
647 /* LRU Isolation modes. */
648 typedef unsigned __bitwise isolate_mode_t;
649 
650 enum zone_watermarks {
651 	WMARK_MIN,
652 	WMARK_LOW,
653 	WMARK_HIGH,
654 	WMARK_PROMO,
655 	NR_WMARK
656 };
657 
658 /*
659  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
660  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
661  * it should not contribute to serious fragmentation causing THP allocation
662  * failures.
663  */
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 #define NR_PCP_THP 1
666 #else
667 #define NR_PCP_THP 0
668 #endif
669 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
670 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
671 
672 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
673 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
674 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
675 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
676 
677 struct per_cpu_pages {
678 	spinlock_t lock;	/* Protects lists field */
679 	int count;		/* number of pages in the list */
680 	int high;		/* high watermark, emptying needed */
681 	int batch;		/* chunk size for buddy add/remove */
682 	short free_factor;	/* batch scaling factor during free */
683 #ifdef CONFIG_NUMA
684 	short expire;		/* When 0, remote pagesets are drained */
685 #endif
686 
687 	/* Lists of pages, one per migrate type stored on the pcp-lists */
688 	struct list_head lists[NR_PCP_LISTS];
689 } ____cacheline_aligned_in_smp;
690 
691 struct per_cpu_zonestat {
692 #ifdef CONFIG_SMP
693 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
694 	s8 stat_threshold;
695 #endif
696 #ifdef CONFIG_NUMA
697 	/*
698 	 * Low priority inaccurate counters that are only folded
699 	 * on demand. Use a large type to avoid the overhead of
700 	 * folding during refresh_cpu_vm_stats.
701 	 */
702 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
703 #endif
704 };
705 
706 struct per_cpu_nodestat {
707 	s8 stat_threshold;
708 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
709 };
710 
711 #endif /* !__GENERATING_BOUNDS.H */
712 
713 enum zone_type {
714 	/*
715 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
716 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
717 	 * On architectures where this area covers the whole 32 bit address
718 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
719 	 * DMA addressing constraints. This distinction is important as a 32bit
720 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
721 	 * platforms may need both zones as they support peripherals with
722 	 * different DMA addressing limitations.
723 	 */
724 #ifdef CONFIG_ZONE_DMA
725 	ZONE_DMA,
726 #endif
727 #ifdef CONFIG_ZONE_DMA32
728 	ZONE_DMA32,
729 #endif
730 	/*
731 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
732 	 * performed on pages in ZONE_NORMAL if the DMA devices support
733 	 * transfers to all addressable memory.
734 	 */
735 	ZONE_NORMAL,
736 #ifdef CONFIG_HIGHMEM
737 	/*
738 	 * A memory area that is only addressable by the kernel through
739 	 * mapping portions into its own address space. This is for example
740 	 * used by i386 to allow the kernel to address the memory beyond
741 	 * 900MB. The kernel will set up special mappings (page
742 	 * table entries on i386) for each page that the kernel needs to
743 	 * access.
744 	 */
745 	ZONE_HIGHMEM,
746 #endif
747 	/*
748 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
749 	 * movable pages with few exceptional cases described below. Main use
750 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
751 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
752 	 * to increase the number of THP/huge pages. Notable special cases are:
753 	 *
754 	 * 1. Pinned pages: (long-term) pinning of movable pages might
755 	 *    essentially turn such pages unmovable. Therefore, we do not allow
756 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
757 	 *    faulted, they come from the right zone right away. However, it is
758 	 *    still possible that address space already has pages in
759 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
760 	 *    touches that memory before pinning). In such case we migrate them
761 	 *    to a different zone. When migration fails - pinning fails.
762 	 * 2. memblock allocations: kernelcore/movablecore setups might create
763 	 *    situations where ZONE_MOVABLE contains unmovable allocations
764 	 *    after boot. Memory offlining and allocations fail early.
765 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
766 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
767 	 *    for example, if we have sections that are only partially
768 	 *    populated. Memory offlining and allocations fail early.
769 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
770 	 *    memory offlining, such pages cannot be allocated.
771 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
772 	 *    hotplugged memory blocks might only partially be managed by the
773 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
774 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
775 	 *    some cases (virtio-mem), such pages can be skipped during
776 	 *    memory offlining, however, cannot be moved/allocated. These
777 	 *    techniques might use alloc_contig_range() to hide previously
778 	 *    exposed pages from the buddy again (e.g., to implement some sort
779 	 *    of memory unplug in virtio-mem).
780 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
781 	 *    situations where ZERO_PAGE(0) which is allocated differently
782 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
783 	 *    cannot be migrated.
784 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
785 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
786 	 *    such zone. Such pages cannot be really moved around as they are
787 	 *    self-stored in the range, but they are treated as movable when
788 	 *    the range they describe is about to be offlined.
789 	 *
790 	 * In general, no unmovable allocations that degrade memory offlining
791 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
792 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
793 	 * if has_unmovable_pages() states that there are no unmovable pages,
794 	 * there can be false negatives).
795 	 */
796 	ZONE_MOVABLE,
797 #ifdef CONFIG_ZONE_DEVICE
798 	ZONE_DEVICE,
799 #endif
800 	__MAX_NR_ZONES
801 
802 };
803 
804 #ifndef __GENERATING_BOUNDS_H
805 
806 #define ASYNC_AND_SYNC 2
807 
808 struct zone {
809 	/* Read-mostly fields */
810 
811 	/* zone watermarks, access with *_wmark_pages(zone) macros */
812 	unsigned long _watermark[NR_WMARK];
813 	unsigned long watermark_boost;
814 
815 	unsigned long nr_reserved_highatomic;
816 
817 	/*
818 	 * We don't know if the memory that we're going to allocate will be
819 	 * freeable or/and it will be released eventually, so to avoid totally
820 	 * wasting several GB of ram we must reserve some of the lower zone
821 	 * memory (otherwise we risk to run OOM on the lower zones despite
822 	 * there being tons of freeable ram on the higher zones).  This array is
823 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
824 	 * changes.
825 	 */
826 	long lowmem_reserve[MAX_NR_ZONES];
827 
828 #ifdef CONFIG_NUMA
829 	int node;
830 #endif
831 	struct pglist_data	*zone_pgdat;
832 	struct per_cpu_pages	__percpu *per_cpu_pageset;
833 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
834 	/*
835 	 * the high and batch values are copied to individual pagesets for
836 	 * faster access
837 	 */
838 	int pageset_high;
839 	int pageset_batch;
840 
841 #ifndef CONFIG_SPARSEMEM
842 	/*
843 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
844 	 * In SPARSEMEM, this map is stored in struct mem_section
845 	 */
846 	unsigned long		*pageblock_flags;
847 #endif /* CONFIG_SPARSEMEM */
848 
849 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
850 	unsigned long		zone_start_pfn;
851 
852 	/*
853 	 * spanned_pages is the total pages spanned by the zone, including
854 	 * holes, which is calculated as:
855 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
856 	 *
857 	 * present_pages is physical pages existing within the zone, which
858 	 * is calculated as:
859 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
860 	 *
861 	 * present_early_pages is present pages existing within the zone
862 	 * located on memory available since early boot, excluding hotplugged
863 	 * memory.
864 	 *
865 	 * managed_pages is present pages managed by the buddy system, which
866 	 * is calculated as (reserved_pages includes pages allocated by the
867 	 * bootmem allocator):
868 	 *	managed_pages = present_pages - reserved_pages;
869 	 *
870 	 * cma pages is present pages that are assigned for CMA use
871 	 * (MIGRATE_CMA).
872 	 *
873 	 * So present_pages may be used by memory hotplug or memory power
874 	 * management logic to figure out unmanaged pages by checking
875 	 * (present_pages - managed_pages). And managed_pages should be used
876 	 * by page allocator and vm scanner to calculate all kinds of watermarks
877 	 * and thresholds.
878 	 *
879 	 * Locking rules:
880 	 *
881 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
882 	 * It is a seqlock because it has to be read outside of zone->lock,
883 	 * and it is done in the main allocator path.  But, it is written
884 	 * quite infrequently.
885 	 *
886 	 * The span_seq lock is declared along with zone->lock because it is
887 	 * frequently read in proximity to zone->lock.  It's good to
888 	 * give them a chance of being in the same cacheline.
889 	 *
890 	 * Write access to present_pages at runtime should be protected by
891 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
892 	 * present_pages should use get_online_mems() to get a stable value.
893 	 */
894 	atomic_long_t		managed_pages;
895 	unsigned long		spanned_pages;
896 	unsigned long		present_pages;
897 #if defined(CONFIG_MEMORY_HOTPLUG)
898 	unsigned long		present_early_pages;
899 #endif
900 #ifdef CONFIG_CMA
901 	unsigned long		cma_pages;
902 #endif
903 
904 	const char		*name;
905 
906 #ifdef CONFIG_MEMORY_ISOLATION
907 	/*
908 	 * Number of isolated pageblock. It is used to solve incorrect
909 	 * freepage counting problem due to racy retrieving migratetype
910 	 * of pageblock. Protected by zone->lock.
911 	 */
912 	unsigned long		nr_isolate_pageblock;
913 #endif
914 
915 #ifdef CONFIG_MEMORY_HOTPLUG
916 	/* see spanned/present_pages for more description */
917 	seqlock_t		span_seqlock;
918 #endif
919 
920 	int initialized;
921 
922 	/* Write-intensive fields used from the page allocator */
923 	CACHELINE_PADDING(_pad1_);
924 
925 	/* free areas of different sizes */
926 	struct free_area	free_area[MAX_ORDER + 1];
927 
928 #ifdef CONFIG_UNACCEPTED_MEMORY
929 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
930 	struct list_head	unaccepted_pages;
931 #endif
932 
933 	/* zone flags, see below */
934 	unsigned long		flags;
935 
936 	/* Primarily protects free_area */
937 	spinlock_t		lock;
938 
939 	/* Write-intensive fields used by compaction and vmstats. */
940 	CACHELINE_PADDING(_pad2_);
941 
942 	/*
943 	 * When free pages are below this point, additional steps are taken
944 	 * when reading the number of free pages to avoid per-cpu counter
945 	 * drift allowing watermarks to be breached
946 	 */
947 	unsigned long percpu_drift_mark;
948 
949 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
950 	/* pfn where compaction free scanner should start */
951 	unsigned long		compact_cached_free_pfn;
952 	/* pfn where compaction migration scanner should start */
953 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
954 	unsigned long		compact_init_migrate_pfn;
955 	unsigned long		compact_init_free_pfn;
956 #endif
957 
958 #ifdef CONFIG_COMPACTION
959 	/*
960 	 * On compaction failure, 1<<compact_defer_shift compactions
961 	 * are skipped before trying again. The number attempted since
962 	 * last failure is tracked with compact_considered.
963 	 * compact_order_failed is the minimum compaction failed order.
964 	 */
965 	unsigned int		compact_considered;
966 	unsigned int		compact_defer_shift;
967 	int			compact_order_failed;
968 #endif
969 
970 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
971 	/* Set to true when the PG_migrate_skip bits should be cleared */
972 	bool			compact_blockskip_flush;
973 #endif
974 
975 	bool			contiguous;
976 
977 	CACHELINE_PADDING(_pad3_);
978 	/* Zone statistics */
979 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
980 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
981 } ____cacheline_internodealigned_in_smp;
982 
983 enum pgdat_flags {
984 	PGDAT_DIRTY,			/* reclaim scanning has recently found
985 					 * many dirty file pages at the tail
986 					 * of the LRU.
987 					 */
988 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
989 					 * many pages under writeback
990 					 */
991 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
992 };
993 
994 enum zone_flags {
995 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
996 					 * Cleared when kswapd is woken.
997 					 */
998 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
999 };
1000 
1001 static inline unsigned long zone_managed_pages(struct zone *zone)
1002 {
1003 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1004 }
1005 
1006 static inline unsigned long zone_cma_pages(struct zone *zone)
1007 {
1008 #ifdef CONFIG_CMA
1009 	return zone->cma_pages;
1010 #else
1011 	return 0;
1012 #endif
1013 }
1014 
1015 static inline unsigned long zone_end_pfn(const struct zone *zone)
1016 {
1017 	return zone->zone_start_pfn + zone->spanned_pages;
1018 }
1019 
1020 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1021 {
1022 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1023 }
1024 
1025 static inline bool zone_is_initialized(struct zone *zone)
1026 {
1027 	return zone->initialized;
1028 }
1029 
1030 static inline bool zone_is_empty(struct zone *zone)
1031 {
1032 	return zone->spanned_pages == 0;
1033 }
1034 
1035 #ifndef BUILD_VDSO32_64
1036 /*
1037  * The zone field is never updated after free_area_init_core()
1038  * sets it, so none of the operations on it need to be atomic.
1039  */
1040 
1041 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1042 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1043 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1044 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1045 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1046 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1047 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1048 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1049 
1050 /*
1051  * Define the bit shifts to access each section.  For non-existent
1052  * sections we define the shift as 0; that plus a 0 mask ensures
1053  * the compiler will optimise away reference to them.
1054  */
1055 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1056 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1057 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1058 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1059 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1060 
1061 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1062 #ifdef NODE_NOT_IN_PAGE_FLAGS
1063 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1064 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1065 						SECTIONS_PGOFF : ZONES_PGOFF)
1066 #else
1067 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1068 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1069 						NODES_PGOFF : ZONES_PGOFF)
1070 #endif
1071 
1072 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1073 
1074 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1075 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1076 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1077 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1078 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1079 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1080 
1081 static inline enum zone_type page_zonenum(const struct page *page)
1082 {
1083 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1084 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1085 }
1086 
1087 static inline enum zone_type folio_zonenum(const struct folio *folio)
1088 {
1089 	return page_zonenum(&folio->page);
1090 }
1091 
1092 #ifdef CONFIG_ZONE_DEVICE
1093 static inline bool is_zone_device_page(const struct page *page)
1094 {
1095 	return page_zonenum(page) == ZONE_DEVICE;
1096 }
1097 
1098 /*
1099  * Consecutive zone device pages should not be merged into the same sgl
1100  * or bvec segment with other types of pages or if they belong to different
1101  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1102  * without scanning the entire segment. This helper returns true either if
1103  * both pages are not zone device pages or both pages are zone device pages
1104  * with the same pgmap.
1105  */
1106 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1107 						     const struct page *b)
1108 {
1109 	if (is_zone_device_page(a) != is_zone_device_page(b))
1110 		return false;
1111 	if (!is_zone_device_page(a))
1112 		return true;
1113 	return a->pgmap == b->pgmap;
1114 }
1115 
1116 extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 				    unsigned long, struct dev_pagemap *);
1118 #else
1119 static inline bool is_zone_device_page(const struct page *page)
1120 {
1121 	return false;
1122 }
1123 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1124 						     const struct page *b)
1125 {
1126 	return true;
1127 }
1128 #endif
1129 
1130 static inline bool folio_is_zone_device(const struct folio *folio)
1131 {
1132 	return is_zone_device_page(&folio->page);
1133 }
1134 
1135 static inline bool is_zone_movable_page(const struct page *page)
1136 {
1137 	return page_zonenum(page) == ZONE_MOVABLE;
1138 }
1139 
1140 static inline bool folio_is_zone_movable(const struct folio *folio)
1141 {
1142 	return folio_zonenum(folio) == ZONE_MOVABLE;
1143 }
1144 #endif
1145 
1146 /*
1147  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1148  * intersection with the given zone
1149  */
1150 static inline bool zone_intersects(struct zone *zone,
1151 		unsigned long start_pfn, unsigned long nr_pages)
1152 {
1153 	if (zone_is_empty(zone))
1154 		return false;
1155 	if (start_pfn >= zone_end_pfn(zone) ||
1156 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 /*
1163  * The "priority" of VM scanning is how much of the queues we will scan in one
1164  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1165  * queues ("queue_length >> 12") during an aging round.
1166  */
1167 #define DEF_PRIORITY 12
1168 
1169 /* Maximum number of zones on a zonelist */
1170 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1171 
1172 enum {
1173 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1174 #ifdef CONFIG_NUMA
1175 	/*
1176 	 * The NUMA zonelists are doubled because we need zonelists that
1177 	 * restrict the allocations to a single node for __GFP_THISNODE.
1178 	 */
1179 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1180 #endif
1181 	MAX_ZONELISTS
1182 };
1183 
1184 /*
1185  * This struct contains information about a zone in a zonelist. It is stored
1186  * here to avoid dereferences into large structures and lookups of tables
1187  */
1188 struct zoneref {
1189 	struct zone *zone;	/* Pointer to actual zone */
1190 	int zone_idx;		/* zone_idx(zoneref->zone) */
1191 };
1192 
1193 /*
1194  * One allocation request operates on a zonelist. A zonelist
1195  * is a list of zones, the first one is the 'goal' of the
1196  * allocation, the other zones are fallback zones, in decreasing
1197  * priority.
1198  *
1199  * To speed the reading of the zonelist, the zonerefs contain the zone index
1200  * of the entry being read. Helper functions to access information given
1201  * a struct zoneref are
1202  *
1203  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1204  * zonelist_zone_idx()	- Return the index of the zone for an entry
1205  * zonelist_node_idx()	- Return the index of the node for an entry
1206  */
1207 struct zonelist {
1208 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1209 };
1210 
1211 /*
1212  * The array of struct pages for flatmem.
1213  * It must be declared for SPARSEMEM as well because there are configurations
1214  * that rely on that.
1215  */
1216 extern struct page *mem_map;
1217 
1218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1219 struct deferred_split {
1220 	spinlock_t split_queue_lock;
1221 	struct list_head split_queue;
1222 	unsigned long split_queue_len;
1223 };
1224 #endif
1225 
1226 #ifdef CONFIG_MEMORY_FAILURE
1227 /*
1228  * Per NUMA node memory failure handling statistics.
1229  */
1230 struct memory_failure_stats {
1231 	/*
1232 	 * Number of raw pages poisoned.
1233 	 * Cases not accounted: memory outside kernel control, offline page,
1234 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1235 	 * error events, and unpoison actions from hwpoison_unpoison.
1236 	 */
1237 	unsigned long total;
1238 	/*
1239 	 * Recovery results of poisoned raw pages handled by memory_failure,
1240 	 * in sync with mf_result.
1241 	 * total = ignored + failed + delayed + recovered.
1242 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1243 	 */
1244 	unsigned long ignored;
1245 	unsigned long failed;
1246 	unsigned long delayed;
1247 	unsigned long recovered;
1248 };
1249 #endif
1250 
1251 /*
1252  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1253  * it's memory layout. On UMA machines there is a single pglist_data which
1254  * describes the whole memory.
1255  *
1256  * Memory statistics and page replacement data structures are maintained on a
1257  * per-zone basis.
1258  */
1259 typedef struct pglist_data {
1260 	/*
1261 	 * node_zones contains just the zones for THIS node. Not all of the
1262 	 * zones may be populated, but it is the full list. It is referenced by
1263 	 * this node's node_zonelists as well as other node's node_zonelists.
1264 	 */
1265 	struct zone node_zones[MAX_NR_ZONES];
1266 
1267 	/*
1268 	 * node_zonelists contains references to all zones in all nodes.
1269 	 * Generally the first zones will be references to this node's
1270 	 * node_zones.
1271 	 */
1272 	struct zonelist node_zonelists[MAX_ZONELISTS];
1273 
1274 	int nr_zones; /* number of populated zones in this node */
1275 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1276 	struct page *node_mem_map;
1277 #ifdef CONFIG_PAGE_EXTENSION
1278 	struct page_ext *node_page_ext;
1279 #endif
1280 #endif
1281 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1282 	/*
1283 	 * Must be held any time you expect node_start_pfn,
1284 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1285 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1286 	 * init.
1287 	 *
1288 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1289 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1290 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1291 	 *
1292 	 * Nests above zone->lock and zone->span_seqlock
1293 	 */
1294 	spinlock_t node_size_lock;
1295 #endif
1296 	unsigned long node_start_pfn;
1297 	unsigned long node_present_pages; /* total number of physical pages */
1298 	unsigned long node_spanned_pages; /* total size of physical page
1299 					     range, including holes */
1300 	int node_id;
1301 	wait_queue_head_t kswapd_wait;
1302 	wait_queue_head_t pfmemalloc_wait;
1303 
1304 	/* workqueues for throttling reclaim for different reasons. */
1305 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1306 
1307 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1308 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1309 					 * when throttling started. */
1310 #ifdef CONFIG_MEMORY_HOTPLUG
1311 	struct mutex kswapd_lock;
1312 #endif
1313 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1314 	int kswapd_order;
1315 	enum zone_type kswapd_highest_zoneidx;
1316 
1317 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1318 
1319 #ifdef CONFIG_COMPACTION
1320 	int kcompactd_max_order;
1321 	enum zone_type kcompactd_highest_zoneidx;
1322 	wait_queue_head_t kcompactd_wait;
1323 	struct task_struct *kcompactd;
1324 	bool proactive_compact_trigger;
1325 #endif
1326 	/*
1327 	 * This is a per-node reserve of pages that are not available
1328 	 * to userspace allocations.
1329 	 */
1330 	unsigned long		totalreserve_pages;
1331 
1332 #ifdef CONFIG_NUMA
1333 	/*
1334 	 * node reclaim becomes active if more unmapped pages exist.
1335 	 */
1336 	unsigned long		min_unmapped_pages;
1337 	unsigned long		min_slab_pages;
1338 #endif /* CONFIG_NUMA */
1339 
1340 	/* Write-intensive fields used by page reclaim */
1341 	CACHELINE_PADDING(_pad1_);
1342 
1343 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1344 	/*
1345 	 * If memory initialisation on large machines is deferred then this
1346 	 * is the first PFN that needs to be initialised.
1347 	 */
1348 	unsigned long first_deferred_pfn;
1349 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1350 
1351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1352 	struct deferred_split deferred_split_queue;
1353 #endif
1354 
1355 #ifdef CONFIG_NUMA_BALANCING
1356 	/* start time in ms of current promote rate limit period */
1357 	unsigned int nbp_rl_start;
1358 	/* number of promote candidate pages at start time of current rate limit period */
1359 	unsigned long nbp_rl_nr_cand;
1360 	/* promote threshold in ms */
1361 	unsigned int nbp_threshold;
1362 	/* start time in ms of current promote threshold adjustment period */
1363 	unsigned int nbp_th_start;
1364 	/*
1365 	 * number of promote candidate pages at start time of current promote
1366 	 * threshold adjustment period
1367 	 */
1368 	unsigned long nbp_th_nr_cand;
1369 #endif
1370 	/* Fields commonly accessed by the page reclaim scanner */
1371 
1372 	/*
1373 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1374 	 *
1375 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1376 	 */
1377 	struct lruvec		__lruvec;
1378 
1379 	unsigned long		flags;
1380 
1381 #ifdef CONFIG_LRU_GEN
1382 	/* kswap mm walk data */
1383 	struct lru_gen_mm_walk mm_walk;
1384 	/* lru_gen_folio list */
1385 	struct lru_gen_memcg memcg_lru;
1386 #endif
1387 
1388 	CACHELINE_PADDING(_pad2_);
1389 
1390 	/* Per-node vmstats */
1391 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1392 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1393 #ifdef CONFIG_NUMA
1394 	struct memory_tier __rcu *memtier;
1395 #endif
1396 #ifdef CONFIG_MEMORY_FAILURE
1397 	struct memory_failure_stats mf_stats;
1398 #endif
1399 } pg_data_t;
1400 
1401 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1402 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1403 
1404 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1405 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1406 
1407 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1408 {
1409 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1410 }
1411 
1412 #include <linux/memory_hotplug.h>
1413 
1414 void build_all_zonelists(pg_data_t *pgdat);
1415 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1416 		   enum zone_type highest_zoneidx);
1417 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1418 			 int highest_zoneidx, unsigned int alloc_flags,
1419 			 long free_pages);
1420 bool zone_watermark_ok(struct zone *z, unsigned int order,
1421 		unsigned long mark, int highest_zoneidx,
1422 		unsigned int alloc_flags);
1423 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1424 		unsigned long mark, int highest_zoneidx);
1425 /*
1426  * Memory initialization context, use to differentiate memory added by
1427  * the platform statically or via memory hotplug interface.
1428  */
1429 enum meminit_context {
1430 	MEMINIT_EARLY,
1431 	MEMINIT_HOTPLUG,
1432 };
1433 
1434 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1435 				     unsigned long size);
1436 
1437 extern void lruvec_init(struct lruvec *lruvec);
1438 
1439 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1440 {
1441 #ifdef CONFIG_MEMCG
1442 	return lruvec->pgdat;
1443 #else
1444 	return container_of(lruvec, struct pglist_data, __lruvec);
1445 #endif
1446 }
1447 
1448 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1449 int local_memory_node(int node_id);
1450 #else
1451 static inline int local_memory_node(int node_id) { return node_id; };
1452 #endif
1453 
1454 /*
1455  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1456  */
1457 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1458 
1459 #ifdef CONFIG_ZONE_DEVICE
1460 static inline bool zone_is_zone_device(struct zone *zone)
1461 {
1462 	return zone_idx(zone) == ZONE_DEVICE;
1463 }
1464 #else
1465 static inline bool zone_is_zone_device(struct zone *zone)
1466 {
1467 	return false;
1468 }
1469 #endif
1470 
1471 /*
1472  * Returns true if a zone has pages managed by the buddy allocator.
1473  * All the reclaim decisions have to use this function rather than
1474  * populated_zone(). If the whole zone is reserved then we can easily
1475  * end up with populated_zone() && !managed_zone().
1476  */
1477 static inline bool managed_zone(struct zone *zone)
1478 {
1479 	return zone_managed_pages(zone);
1480 }
1481 
1482 /* Returns true if a zone has memory */
1483 static inline bool populated_zone(struct zone *zone)
1484 {
1485 	return zone->present_pages;
1486 }
1487 
1488 #ifdef CONFIG_NUMA
1489 static inline int zone_to_nid(struct zone *zone)
1490 {
1491 	return zone->node;
1492 }
1493 
1494 static inline void zone_set_nid(struct zone *zone, int nid)
1495 {
1496 	zone->node = nid;
1497 }
1498 #else
1499 static inline int zone_to_nid(struct zone *zone)
1500 {
1501 	return 0;
1502 }
1503 
1504 static inline void zone_set_nid(struct zone *zone, int nid) {}
1505 #endif
1506 
1507 extern int movable_zone;
1508 
1509 static inline int is_highmem_idx(enum zone_type idx)
1510 {
1511 #ifdef CONFIG_HIGHMEM
1512 	return (idx == ZONE_HIGHMEM ||
1513 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1514 #else
1515 	return 0;
1516 #endif
1517 }
1518 
1519 /**
1520  * is_highmem - helper function to quickly check if a struct zone is a
1521  *              highmem zone or not.  This is an attempt to keep references
1522  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1523  * @zone: pointer to struct zone variable
1524  * Return: 1 for a highmem zone, 0 otherwise
1525  */
1526 static inline int is_highmem(struct zone *zone)
1527 {
1528 	return is_highmem_idx(zone_idx(zone));
1529 }
1530 
1531 #ifdef CONFIG_ZONE_DMA
1532 bool has_managed_dma(void);
1533 #else
1534 static inline bool has_managed_dma(void)
1535 {
1536 	return false;
1537 }
1538 #endif
1539 
1540 
1541 #ifndef CONFIG_NUMA
1542 
1543 extern struct pglist_data contig_page_data;
1544 static inline struct pglist_data *NODE_DATA(int nid)
1545 {
1546 	return &contig_page_data;
1547 }
1548 
1549 #else /* CONFIG_NUMA */
1550 
1551 #include <asm/mmzone.h>
1552 
1553 #endif /* !CONFIG_NUMA */
1554 
1555 extern struct pglist_data *first_online_pgdat(void);
1556 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1557 extern struct zone *next_zone(struct zone *zone);
1558 
1559 /**
1560  * for_each_online_pgdat - helper macro to iterate over all online nodes
1561  * @pgdat: pointer to a pg_data_t variable
1562  */
1563 #define for_each_online_pgdat(pgdat)			\
1564 	for (pgdat = first_online_pgdat();		\
1565 	     pgdat;					\
1566 	     pgdat = next_online_pgdat(pgdat))
1567 /**
1568  * for_each_zone - helper macro to iterate over all memory zones
1569  * @zone: pointer to struct zone variable
1570  *
1571  * The user only needs to declare the zone variable, for_each_zone
1572  * fills it in.
1573  */
1574 #define for_each_zone(zone)			        \
1575 	for (zone = (first_online_pgdat())->node_zones; \
1576 	     zone;					\
1577 	     zone = next_zone(zone))
1578 
1579 #define for_each_populated_zone(zone)		        \
1580 	for (zone = (first_online_pgdat())->node_zones; \
1581 	     zone;					\
1582 	     zone = next_zone(zone))			\
1583 		if (!populated_zone(zone))		\
1584 			; /* do nothing */		\
1585 		else
1586 
1587 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1588 {
1589 	return zoneref->zone;
1590 }
1591 
1592 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1593 {
1594 	return zoneref->zone_idx;
1595 }
1596 
1597 static inline int zonelist_node_idx(struct zoneref *zoneref)
1598 {
1599 	return zone_to_nid(zoneref->zone);
1600 }
1601 
1602 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1603 					enum zone_type highest_zoneidx,
1604 					nodemask_t *nodes);
1605 
1606 /**
1607  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1608  * @z: The cursor used as a starting point for the search
1609  * @highest_zoneidx: The zone index of the highest zone to return
1610  * @nodes: An optional nodemask to filter the zonelist with
1611  *
1612  * This function returns the next zone at or below a given zone index that is
1613  * within the allowed nodemask using a cursor as the starting point for the
1614  * search. The zoneref returned is a cursor that represents the current zone
1615  * being examined. It should be advanced by one before calling
1616  * next_zones_zonelist again.
1617  *
1618  * Return: the next zone at or below highest_zoneidx within the allowed
1619  * nodemask using a cursor within a zonelist as a starting point
1620  */
1621 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1622 					enum zone_type highest_zoneidx,
1623 					nodemask_t *nodes)
1624 {
1625 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1626 		return z;
1627 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1628 }
1629 
1630 /**
1631  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1632  * @zonelist: The zonelist to search for a suitable zone
1633  * @highest_zoneidx: The zone index of the highest zone to return
1634  * @nodes: An optional nodemask to filter the zonelist with
1635  *
1636  * This function returns the first zone at or below a given zone index that is
1637  * within the allowed nodemask. The zoneref returned is a cursor that can be
1638  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1639  * one before calling.
1640  *
1641  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1642  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1643  * update due to cpuset modification.
1644  *
1645  * Return: Zoneref pointer for the first suitable zone found
1646  */
1647 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1648 					enum zone_type highest_zoneidx,
1649 					nodemask_t *nodes)
1650 {
1651 	return next_zones_zonelist(zonelist->_zonerefs,
1652 							highest_zoneidx, nodes);
1653 }
1654 
1655 /**
1656  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1657  * @zone: The current zone in the iterator
1658  * @z: The current pointer within zonelist->_zonerefs being iterated
1659  * @zlist: The zonelist being iterated
1660  * @highidx: The zone index of the highest zone to return
1661  * @nodemask: Nodemask allowed by the allocator
1662  *
1663  * This iterator iterates though all zones at or below a given zone index and
1664  * within a given nodemask
1665  */
1666 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1667 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1668 		zone;							\
1669 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1670 			zone = zonelist_zone(z))
1671 
1672 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1673 	for (zone = z->zone;	\
1674 		zone;							\
1675 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1676 			zone = zonelist_zone(z))
1677 
1678 
1679 /**
1680  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1681  * @zone: The current zone in the iterator
1682  * @z: The current pointer within zonelist->zones being iterated
1683  * @zlist: The zonelist being iterated
1684  * @highidx: The zone index of the highest zone to return
1685  *
1686  * This iterator iterates though all zones at or below a given zone index.
1687  */
1688 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1689 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1690 
1691 /* Whether the 'nodes' are all movable nodes */
1692 static inline bool movable_only_nodes(nodemask_t *nodes)
1693 {
1694 	struct zonelist *zonelist;
1695 	struct zoneref *z;
1696 	int nid;
1697 
1698 	if (nodes_empty(*nodes))
1699 		return false;
1700 
1701 	/*
1702 	 * We can chose arbitrary node from the nodemask to get a
1703 	 * zonelist as they are interlinked. We just need to find
1704 	 * at least one zone that can satisfy kernel allocations.
1705 	 */
1706 	nid = first_node(*nodes);
1707 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1708 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1709 	return (!z->zone) ? true : false;
1710 }
1711 
1712 
1713 #ifdef CONFIG_SPARSEMEM
1714 #include <asm/sparsemem.h>
1715 #endif
1716 
1717 #ifdef CONFIG_FLATMEM
1718 #define pfn_to_nid(pfn)		(0)
1719 #endif
1720 
1721 #ifdef CONFIG_SPARSEMEM
1722 
1723 /*
1724  * PA_SECTION_SHIFT		physical address to/from section number
1725  * PFN_SECTION_SHIFT		pfn to/from section number
1726  */
1727 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1728 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1729 
1730 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1731 
1732 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1733 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1734 
1735 #define SECTION_BLOCKFLAGS_BITS \
1736 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1737 
1738 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1739 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1740 #endif
1741 
1742 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1743 {
1744 	return pfn >> PFN_SECTION_SHIFT;
1745 }
1746 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1747 {
1748 	return sec << PFN_SECTION_SHIFT;
1749 }
1750 
1751 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1752 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1753 
1754 #define SUBSECTION_SHIFT 21
1755 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1756 
1757 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1758 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1759 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1760 
1761 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1762 #error Subsection size exceeds section size
1763 #else
1764 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1765 #endif
1766 
1767 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1768 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1769 
1770 struct mem_section_usage {
1771 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1772 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1773 #endif
1774 	/* See declaration of similar field in struct zone */
1775 	unsigned long pageblock_flags[0];
1776 };
1777 
1778 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1779 
1780 struct page;
1781 struct page_ext;
1782 struct mem_section {
1783 	/*
1784 	 * This is, logically, a pointer to an array of struct
1785 	 * pages.  However, it is stored with some other magic.
1786 	 * (see sparse.c::sparse_init_one_section())
1787 	 *
1788 	 * Additionally during early boot we encode node id of
1789 	 * the location of the section here to guide allocation.
1790 	 * (see sparse.c::memory_present())
1791 	 *
1792 	 * Making it a UL at least makes someone do a cast
1793 	 * before using it wrong.
1794 	 */
1795 	unsigned long section_mem_map;
1796 
1797 	struct mem_section_usage *usage;
1798 #ifdef CONFIG_PAGE_EXTENSION
1799 	/*
1800 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1801 	 * section. (see page_ext.h about this.)
1802 	 */
1803 	struct page_ext *page_ext;
1804 	unsigned long pad;
1805 #endif
1806 	/*
1807 	 * WARNING: mem_section must be a power-of-2 in size for the
1808 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1809 	 */
1810 };
1811 
1812 #ifdef CONFIG_SPARSEMEM_EXTREME
1813 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1814 #else
1815 #define SECTIONS_PER_ROOT	1
1816 #endif
1817 
1818 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1819 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1820 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1821 
1822 #ifdef CONFIG_SPARSEMEM_EXTREME
1823 extern struct mem_section **mem_section;
1824 #else
1825 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1826 #endif
1827 
1828 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1829 {
1830 	return ms->usage->pageblock_flags;
1831 }
1832 
1833 static inline struct mem_section *__nr_to_section(unsigned long nr)
1834 {
1835 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1836 
1837 	if (unlikely(root >= NR_SECTION_ROOTS))
1838 		return NULL;
1839 
1840 #ifdef CONFIG_SPARSEMEM_EXTREME
1841 	if (!mem_section || !mem_section[root])
1842 		return NULL;
1843 #endif
1844 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1845 }
1846 extern size_t mem_section_usage_size(void);
1847 
1848 /*
1849  * We use the lower bits of the mem_map pointer to store
1850  * a little bit of information.  The pointer is calculated
1851  * as mem_map - section_nr_to_pfn(pnum).  The result is
1852  * aligned to the minimum alignment of the two values:
1853  *   1. All mem_map arrays are page-aligned.
1854  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1855  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1856  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1857  *      worst combination is powerpc with 256k pages,
1858  *      which results in PFN_SECTION_SHIFT equal 6.
1859  * To sum it up, at least 6 bits are available on all architectures.
1860  * However, we can exceed 6 bits on some other architectures except
1861  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1862  * with the worst case of 64K pages on arm64) if we make sure the
1863  * exceeded bit is not applicable to powerpc.
1864  */
1865 enum {
1866 	SECTION_MARKED_PRESENT_BIT,
1867 	SECTION_HAS_MEM_MAP_BIT,
1868 	SECTION_IS_ONLINE_BIT,
1869 	SECTION_IS_EARLY_BIT,
1870 #ifdef CONFIG_ZONE_DEVICE
1871 	SECTION_TAINT_ZONE_DEVICE_BIT,
1872 #endif
1873 	SECTION_MAP_LAST_BIT,
1874 };
1875 
1876 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1877 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1878 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1879 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1880 #ifdef CONFIG_ZONE_DEVICE
1881 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1882 #endif
1883 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1884 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1885 
1886 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1887 {
1888 	unsigned long map = section->section_mem_map;
1889 	map &= SECTION_MAP_MASK;
1890 	return (struct page *)map;
1891 }
1892 
1893 static inline int present_section(struct mem_section *section)
1894 {
1895 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1896 }
1897 
1898 static inline int present_section_nr(unsigned long nr)
1899 {
1900 	return present_section(__nr_to_section(nr));
1901 }
1902 
1903 static inline int valid_section(struct mem_section *section)
1904 {
1905 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1906 }
1907 
1908 static inline int early_section(struct mem_section *section)
1909 {
1910 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1911 }
1912 
1913 static inline int valid_section_nr(unsigned long nr)
1914 {
1915 	return valid_section(__nr_to_section(nr));
1916 }
1917 
1918 static inline int online_section(struct mem_section *section)
1919 {
1920 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1921 }
1922 
1923 #ifdef CONFIG_ZONE_DEVICE
1924 static inline int online_device_section(struct mem_section *section)
1925 {
1926 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1927 
1928 	return section && ((section->section_mem_map & flags) == flags);
1929 }
1930 #else
1931 static inline int online_device_section(struct mem_section *section)
1932 {
1933 	return 0;
1934 }
1935 #endif
1936 
1937 static inline int online_section_nr(unsigned long nr)
1938 {
1939 	return online_section(__nr_to_section(nr));
1940 }
1941 
1942 #ifdef CONFIG_MEMORY_HOTPLUG
1943 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1944 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1945 #endif
1946 
1947 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1948 {
1949 	return __nr_to_section(pfn_to_section_nr(pfn));
1950 }
1951 
1952 extern unsigned long __highest_present_section_nr;
1953 
1954 static inline int subsection_map_index(unsigned long pfn)
1955 {
1956 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1957 }
1958 
1959 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1960 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1961 {
1962 	int idx = subsection_map_index(pfn);
1963 
1964 	return test_bit(idx, ms->usage->subsection_map);
1965 }
1966 #else
1967 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1968 {
1969 	return 1;
1970 }
1971 #endif
1972 
1973 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1974 /**
1975  * pfn_valid - check if there is a valid memory map entry for a PFN
1976  * @pfn: the page frame number to check
1977  *
1978  * Check if there is a valid memory map entry aka struct page for the @pfn.
1979  * Note, that availability of the memory map entry does not imply that
1980  * there is actual usable memory at that @pfn. The struct page may
1981  * represent a hole or an unusable page frame.
1982  *
1983  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1984  */
1985 static inline int pfn_valid(unsigned long pfn)
1986 {
1987 	struct mem_section *ms;
1988 
1989 	/*
1990 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1991 	 * pfn. Else it might lead to false positives when
1992 	 * some of the upper bits are set, but the lower bits
1993 	 * match a valid pfn.
1994 	 */
1995 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1996 		return 0;
1997 
1998 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1999 		return 0;
2000 	ms = __pfn_to_section(pfn);
2001 	if (!valid_section(ms))
2002 		return 0;
2003 	/*
2004 	 * Traditionally early sections always returned pfn_valid() for
2005 	 * the entire section-sized span.
2006 	 */
2007 	return early_section(ms) || pfn_section_valid(ms, pfn);
2008 }
2009 #endif
2010 
2011 static inline int pfn_in_present_section(unsigned long pfn)
2012 {
2013 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2014 		return 0;
2015 	return present_section(__pfn_to_section(pfn));
2016 }
2017 
2018 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2019 {
2020 	while (++section_nr <= __highest_present_section_nr) {
2021 		if (present_section_nr(section_nr))
2022 			return section_nr;
2023 	}
2024 
2025 	return -1;
2026 }
2027 
2028 /*
2029  * These are _only_ used during initialisation, therefore they
2030  * can use __initdata ...  They could have names to indicate
2031  * this restriction.
2032  */
2033 #ifdef CONFIG_NUMA
2034 #define pfn_to_nid(pfn)							\
2035 ({									\
2036 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2037 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2038 })
2039 #else
2040 #define pfn_to_nid(pfn)		(0)
2041 #endif
2042 
2043 void sparse_init(void);
2044 #else
2045 #define sparse_init()	do {} while (0)
2046 #define sparse_index_init(_sec, _nid)  do {} while (0)
2047 #define pfn_in_present_section pfn_valid
2048 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2049 #endif /* CONFIG_SPARSEMEM */
2050 
2051 #endif /* !__GENERATING_BOUNDS.H */
2052 #endif /* !__ASSEMBLY__ */
2053 #endif /* _LINUX_MMZONE_H */
2054