1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <linux/mm_types.h> 22 #include <linux/page-flags.h> 23 #include <asm/page.h> 24 25 /* Free memory management - zoned buddy allocator. */ 26 #ifndef CONFIG_FORCE_MAX_ZONEORDER 27 #define MAX_ORDER 11 28 #else 29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30 #endif 31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33 /* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39 #define PAGE_ALLOC_COSTLY_ORDER 3 40 41 enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47 #ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62 #endif 63 #ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65 #endif 66 MIGRATE_TYPES 67 }; 68 69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70 extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72 #ifdef CONFIG_CMA 73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75 #else 76 # define is_migrate_cma(migratetype) false 77 # define is_migrate_cma_page(_page) false 78 #endif 79 80 static inline bool is_migrate_movable(int mt) 81 { 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83 } 84 85 #define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89 extern int page_group_by_mobility_disabled; 90 91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 92 93 #define get_pageblock_migratetype(page) \ 94 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 static inline struct page *get_page_from_free_area(struct free_area *area, 102 int migratetype) 103 { 104 return list_first_entry_or_null(&area->free_list[migratetype], 105 struct page, lru); 106 } 107 108 static inline bool free_area_empty(struct free_area *area, int migratetype) 109 { 110 return list_empty(&area->free_list[migratetype]); 111 } 112 113 struct pglist_data; 114 115 /* 116 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 117 * So add a wild amount of padding here to ensure that they fall into separate 118 * cachelines. There are very few zone structures in the machine, so space 119 * consumption is not a concern here. 120 */ 121 #if defined(CONFIG_SMP) 122 struct zone_padding { 123 char x[0]; 124 } ____cacheline_internodealigned_in_smp; 125 #define ZONE_PADDING(name) struct zone_padding name; 126 #else 127 #define ZONE_PADDING(name) 128 #endif 129 130 #ifdef CONFIG_NUMA 131 enum numa_stat_item { 132 NUMA_HIT, /* allocated in intended node */ 133 NUMA_MISS, /* allocated in non intended node */ 134 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 136 NUMA_LOCAL, /* allocation from local node */ 137 NUMA_OTHER, /* allocation from other node */ 138 NR_VM_NUMA_STAT_ITEMS 139 }; 140 #else 141 #define NR_VM_NUMA_STAT_ITEMS 0 142 #endif 143 144 enum zone_stat_item { 145 /* First 128 byte cacheline (assuming 64 bit words) */ 146 NR_FREE_PAGES, 147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 149 NR_ZONE_ACTIVE_ANON, 150 NR_ZONE_INACTIVE_FILE, 151 NR_ZONE_ACTIVE_FILE, 152 NR_ZONE_UNEVICTABLE, 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 155 NR_PAGETABLE, /* used for pagetables */ 156 /* Second 128 byte cacheline */ 157 NR_BOUNCE, 158 #if IS_ENABLED(CONFIG_ZSMALLOC) 159 NR_ZSPAGES, /* allocated in zsmalloc */ 160 #endif 161 NR_FREE_CMA_PAGES, 162 NR_VM_ZONE_STAT_ITEMS }; 163 164 enum node_stat_item { 165 NR_LRU_BASE, 166 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 167 NR_ACTIVE_ANON, /* " " " " " */ 168 NR_INACTIVE_FILE, /* " " " " " */ 169 NR_ACTIVE_FILE, /* " " " " " */ 170 NR_UNEVICTABLE, /* " " " " " */ 171 NR_SLAB_RECLAIMABLE_B, 172 NR_SLAB_UNRECLAIMABLE_B, 173 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 174 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 175 WORKINGSET_NODES, 176 WORKINGSET_REFAULT, 177 WORKINGSET_ACTIVATE, 178 WORKINGSET_RESTORE, 179 WORKINGSET_NODERECLAIM, 180 NR_ANON_MAPPED, /* Mapped anonymous pages */ 181 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 182 only modified from process context */ 183 NR_FILE_PAGES, 184 NR_FILE_DIRTY, 185 NR_WRITEBACK, 186 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 187 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 188 NR_SHMEM_THPS, 189 NR_SHMEM_PMDMAPPED, 190 NR_FILE_THPS, 191 NR_FILE_PMDMAPPED, 192 NR_ANON_THPS, 193 NR_VMSCAN_WRITE, 194 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 195 NR_DIRTIED, /* page dirtyings since bootup */ 196 NR_WRITTEN, /* page writings since bootup */ 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 200 NR_KERNEL_STACK_KB, /* measured in KiB */ 201 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 202 NR_KERNEL_SCS_KB, /* measured in KiB */ 203 #endif 204 NR_VM_NODE_STAT_ITEMS 205 }; 206 207 /* 208 * Returns true if the value is measured in bytes (most vmstat values are 209 * measured in pages). This defines the API part, the internal representation 210 * might be different. 211 */ 212 static __always_inline bool vmstat_item_in_bytes(int idx) 213 { 214 /* 215 * Global and per-node slab counters track slab pages. 216 * It's expected that changes are multiples of PAGE_SIZE. 217 * Internally values are stored in pages. 218 * 219 * Per-memcg and per-lruvec counters track memory, consumed 220 * by individual slab objects. These counters are actually 221 * byte-precise. 222 */ 223 return (idx == NR_SLAB_RECLAIMABLE_B || 224 idx == NR_SLAB_UNRECLAIMABLE_B); 225 } 226 227 /* 228 * We do arithmetic on the LRU lists in various places in the code, 229 * so it is important to keep the active lists LRU_ACTIVE higher in 230 * the array than the corresponding inactive lists, and to keep 231 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 232 * 233 * This has to be kept in sync with the statistics in zone_stat_item 234 * above and the descriptions in vmstat_text in mm/vmstat.c 235 */ 236 #define LRU_BASE 0 237 #define LRU_ACTIVE 1 238 #define LRU_FILE 2 239 240 enum lru_list { 241 LRU_INACTIVE_ANON = LRU_BASE, 242 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 243 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 244 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 245 LRU_UNEVICTABLE, 246 NR_LRU_LISTS 247 }; 248 249 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 250 251 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 252 253 static inline bool is_file_lru(enum lru_list lru) 254 { 255 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 256 } 257 258 static inline bool is_active_lru(enum lru_list lru) 259 { 260 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 261 } 262 263 enum lruvec_flags { 264 LRUVEC_CONGESTED, /* lruvec has many dirty pages 265 * backed by a congested BDI 266 */ 267 }; 268 269 struct lruvec { 270 struct list_head lists[NR_LRU_LISTS]; 271 /* 272 * These track the cost of reclaiming one LRU - file or anon - 273 * over the other. As the observed cost of reclaiming one LRU 274 * increases, the reclaim scan balance tips toward the other. 275 */ 276 unsigned long anon_cost; 277 unsigned long file_cost; 278 /* Non-resident age, driven by LRU movement */ 279 atomic_long_t nonresident_age; 280 /* Refaults at the time of last reclaim cycle */ 281 unsigned long refaults; 282 /* Various lruvec state flags (enum lruvec_flags) */ 283 unsigned long flags; 284 #ifdef CONFIG_MEMCG 285 struct pglist_data *pgdat; 286 #endif 287 }; 288 289 /* Isolate unmapped pages */ 290 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 291 /* Isolate for asynchronous migration */ 292 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 293 /* Isolate unevictable pages */ 294 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 295 296 /* LRU Isolation modes. */ 297 typedef unsigned __bitwise isolate_mode_t; 298 299 enum zone_watermarks { 300 WMARK_MIN, 301 WMARK_LOW, 302 WMARK_HIGH, 303 NR_WMARK 304 }; 305 306 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 307 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 308 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 309 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 310 311 struct per_cpu_pages { 312 int count; /* number of pages in the list */ 313 int high; /* high watermark, emptying needed */ 314 int batch; /* chunk size for buddy add/remove */ 315 316 /* Lists of pages, one per migrate type stored on the pcp-lists */ 317 struct list_head lists[MIGRATE_PCPTYPES]; 318 }; 319 320 struct per_cpu_pageset { 321 struct per_cpu_pages pcp; 322 #ifdef CONFIG_NUMA 323 s8 expire; 324 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 325 #endif 326 #ifdef CONFIG_SMP 327 s8 stat_threshold; 328 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 329 #endif 330 }; 331 332 struct per_cpu_nodestat { 333 s8 stat_threshold; 334 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 335 }; 336 337 #endif /* !__GENERATING_BOUNDS.H */ 338 339 enum zone_type { 340 /* 341 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 342 * to DMA to all of the addressable memory (ZONE_NORMAL). 343 * On architectures where this area covers the whole 32 bit address 344 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 345 * DMA addressing constraints. This distinction is important as a 32bit 346 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 347 * platforms may need both zones as they support peripherals with 348 * different DMA addressing limitations. 349 * 350 * Some examples: 351 * 352 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 353 * rest of the lower 4G. 354 * 355 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 356 * the specific device. 357 * 358 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 359 * lower 4G. 360 * 361 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 362 * depending on the specific device. 363 * 364 * - s390 uses ZONE_DMA fixed to the lower 2G. 365 * 366 * - ia64 and riscv only use ZONE_DMA32. 367 * 368 * - parisc uses neither. 369 */ 370 #ifdef CONFIG_ZONE_DMA 371 ZONE_DMA, 372 #endif 373 #ifdef CONFIG_ZONE_DMA32 374 ZONE_DMA32, 375 #endif 376 /* 377 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 378 * performed on pages in ZONE_NORMAL if the DMA devices support 379 * transfers to all addressable memory. 380 */ 381 ZONE_NORMAL, 382 #ifdef CONFIG_HIGHMEM 383 /* 384 * A memory area that is only addressable by the kernel through 385 * mapping portions into its own address space. This is for example 386 * used by i386 to allow the kernel to address the memory beyond 387 * 900MB. The kernel will set up special mappings (page 388 * table entries on i386) for each page that the kernel needs to 389 * access. 390 */ 391 ZONE_HIGHMEM, 392 #endif 393 ZONE_MOVABLE, 394 #ifdef CONFIG_ZONE_DEVICE 395 ZONE_DEVICE, 396 #endif 397 __MAX_NR_ZONES 398 399 }; 400 401 #ifndef __GENERATING_BOUNDS_H 402 403 struct zone { 404 /* Read-mostly fields */ 405 406 /* zone watermarks, access with *_wmark_pages(zone) macros */ 407 unsigned long _watermark[NR_WMARK]; 408 unsigned long watermark_boost; 409 410 unsigned long nr_reserved_highatomic; 411 412 /* 413 * We don't know if the memory that we're going to allocate will be 414 * freeable or/and it will be released eventually, so to avoid totally 415 * wasting several GB of ram we must reserve some of the lower zone 416 * memory (otherwise we risk to run OOM on the lower zones despite 417 * there being tons of freeable ram on the higher zones). This array is 418 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 419 * changes. 420 */ 421 long lowmem_reserve[MAX_NR_ZONES]; 422 423 #ifdef CONFIG_NUMA 424 int node; 425 #endif 426 struct pglist_data *zone_pgdat; 427 struct per_cpu_pageset __percpu *pageset; 428 429 #ifndef CONFIG_SPARSEMEM 430 /* 431 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 432 * In SPARSEMEM, this map is stored in struct mem_section 433 */ 434 unsigned long *pageblock_flags; 435 #endif /* CONFIG_SPARSEMEM */ 436 437 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 438 unsigned long zone_start_pfn; 439 440 /* 441 * spanned_pages is the total pages spanned by the zone, including 442 * holes, which is calculated as: 443 * spanned_pages = zone_end_pfn - zone_start_pfn; 444 * 445 * present_pages is physical pages existing within the zone, which 446 * is calculated as: 447 * present_pages = spanned_pages - absent_pages(pages in holes); 448 * 449 * managed_pages is present pages managed by the buddy system, which 450 * is calculated as (reserved_pages includes pages allocated by the 451 * bootmem allocator): 452 * managed_pages = present_pages - reserved_pages; 453 * 454 * So present_pages may be used by memory hotplug or memory power 455 * management logic to figure out unmanaged pages by checking 456 * (present_pages - managed_pages). And managed_pages should be used 457 * by page allocator and vm scanner to calculate all kinds of watermarks 458 * and thresholds. 459 * 460 * Locking rules: 461 * 462 * zone_start_pfn and spanned_pages are protected by span_seqlock. 463 * It is a seqlock because it has to be read outside of zone->lock, 464 * and it is done in the main allocator path. But, it is written 465 * quite infrequently. 466 * 467 * The span_seq lock is declared along with zone->lock because it is 468 * frequently read in proximity to zone->lock. It's good to 469 * give them a chance of being in the same cacheline. 470 * 471 * Write access to present_pages at runtime should be protected by 472 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 473 * present_pages should get_online_mems() to get a stable value. 474 */ 475 atomic_long_t managed_pages; 476 unsigned long spanned_pages; 477 unsigned long present_pages; 478 479 const char *name; 480 481 #ifdef CONFIG_MEMORY_ISOLATION 482 /* 483 * Number of isolated pageblock. It is used to solve incorrect 484 * freepage counting problem due to racy retrieving migratetype 485 * of pageblock. Protected by zone->lock. 486 */ 487 unsigned long nr_isolate_pageblock; 488 #endif 489 490 #ifdef CONFIG_MEMORY_HOTPLUG 491 /* see spanned/present_pages for more description */ 492 seqlock_t span_seqlock; 493 #endif 494 495 int initialized; 496 497 /* Write-intensive fields used from the page allocator */ 498 ZONE_PADDING(_pad1_) 499 500 /* free areas of different sizes */ 501 struct free_area free_area[MAX_ORDER]; 502 503 /* zone flags, see below */ 504 unsigned long flags; 505 506 /* Primarily protects free_area */ 507 spinlock_t lock; 508 509 /* Write-intensive fields used by compaction and vmstats. */ 510 ZONE_PADDING(_pad2_) 511 512 /* 513 * When free pages are below this point, additional steps are taken 514 * when reading the number of free pages to avoid per-cpu counter 515 * drift allowing watermarks to be breached 516 */ 517 unsigned long percpu_drift_mark; 518 519 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 520 /* pfn where compaction free scanner should start */ 521 unsigned long compact_cached_free_pfn; 522 /* pfn where async and sync compaction migration scanner should start */ 523 unsigned long compact_cached_migrate_pfn[2]; 524 unsigned long compact_init_migrate_pfn; 525 unsigned long compact_init_free_pfn; 526 #endif 527 528 #ifdef CONFIG_COMPACTION 529 /* 530 * On compaction failure, 1<<compact_defer_shift compactions 531 * are skipped before trying again. The number attempted since 532 * last failure is tracked with compact_considered. 533 */ 534 unsigned int compact_considered; 535 unsigned int compact_defer_shift; 536 int compact_order_failed; 537 #endif 538 539 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 540 /* Set to true when the PG_migrate_skip bits should be cleared */ 541 bool compact_blockskip_flush; 542 #endif 543 544 bool contiguous; 545 546 ZONE_PADDING(_pad3_) 547 /* Zone statistics */ 548 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 549 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 550 } ____cacheline_internodealigned_in_smp; 551 552 enum pgdat_flags { 553 PGDAT_DIRTY, /* reclaim scanning has recently found 554 * many dirty file pages at the tail 555 * of the LRU. 556 */ 557 PGDAT_WRITEBACK, /* reclaim scanning has recently found 558 * many pages under writeback 559 */ 560 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 561 }; 562 563 enum zone_flags { 564 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 565 * Cleared when kswapd is woken. 566 */ 567 }; 568 569 static inline unsigned long zone_managed_pages(struct zone *zone) 570 { 571 return (unsigned long)atomic_long_read(&zone->managed_pages); 572 } 573 574 static inline unsigned long zone_end_pfn(const struct zone *zone) 575 { 576 return zone->zone_start_pfn + zone->spanned_pages; 577 } 578 579 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 580 { 581 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 582 } 583 584 static inline bool zone_is_initialized(struct zone *zone) 585 { 586 return zone->initialized; 587 } 588 589 static inline bool zone_is_empty(struct zone *zone) 590 { 591 return zone->spanned_pages == 0; 592 } 593 594 /* 595 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 596 * intersection with the given zone 597 */ 598 static inline bool zone_intersects(struct zone *zone, 599 unsigned long start_pfn, unsigned long nr_pages) 600 { 601 if (zone_is_empty(zone)) 602 return false; 603 if (start_pfn >= zone_end_pfn(zone) || 604 start_pfn + nr_pages <= zone->zone_start_pfn) 605 return false; 606 607 return true; 608 } 609 610 /* 611 * The "priority" of VM scanning is how much of the queues we will scan in one 612 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 613 * queues ("queue_length >> 12") during an aging round. 614 */ 615 #define DEF_PRIORITY 12 616 617 /* Maximum number of zones on a zonelist */ 618 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 619 620 enum { 621 ZONELIST_FALLBACK, /* zonelist with fallback */ 622 #ifdef CONFIG_NUMA 623 /* 624 * The NUMA zonelists are doubled because we need zonelists that 625 * restrict the allocations to a single node for __GFP_THISNODE. 626 */ 627 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 628 #endif 629 MAX_ZONELISTS 630 }; 631 632 /* 633 * This struct contains information about a zone in a zonelist. It is stored 634 * here to avoid dereferences into large structures and lookups of tables 635 */ 636 struct zoneref { 637 struct zone *zone; /* Pointer to actual zone */ 638 int zone_idx; /* zone_idx(zoneref->zone) */ 639 }; 640 641 /* 642 * One allocation request operates on a zonelist. A zonelist 643 * is a list of zones, the first one is the 'goal' of the 644 * allocation, the other zones are fallback zones, in decreasing 645 * priority. 646 * 647 * To speed the reading of the zonelist, the zonerefs contain the zone index 648 * of the entry being read. Helper functions to access information given 649 * a struct zoneref are 650 * 651 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 652 * zonelist_zone_idx() - Return the index of the zone for an entry 653 * zonelist_node_idx() - Return the index of the node for an entry 654 */ 655 struct zonelist { 656 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 657 }; 658 659 #ifndef CONFIG_DISCONTIGMEM 660 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 661 extern struct page *mem_map; 662 #endif 663 664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 665 struct deferred_split { 666 spinlock_t split_queue_lock; 667 struct list_head split_queue; 668 unsigned long split_queue_len; 669 }; 670 #endif 671 672 /* 673 * On NUMA machines, each NUMA node would have a pg_data_t to describe 674 * it's memory layout. On UMA machines there is a single pglist_data which 675 * describes the whole memory. 676 * 677 * Memory statistics and page replacement data structures are maintained on a 678 * per-zone basis. 679 */ 680 typedef struct pglist_data { 681 /* 682 * node_zones contains just the zones for THIS node. Not all of the 683 * zones may be populated, but it is the full list. It is referenced by 684 * this node's node_zonelists as well as other node's node_zonelists. 685 */ 686 struct zone node_zones[MAX_NR_ZONES]; 687 688 /* 689 * node_zonelists contains references to all zones in all nodes. 690 * Generally the first zones will be references to this node's 691 * node_zones. 692 */ 693 struct zonelist node_zonelists[MAX_ZONELISTS]; 694 695 int nr_zones; /* number of populated zones in this node */ 696 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 697 struct page *node_mem_map; 698 #ifdef CONFIG_PAGE_EXTENSION 699 struct page_ext *node_page_ext; 700 #endif 701 #endif 702 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 703 /* 704 * Must be held any time you expect node_start_pfn, 705 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 706 * Also synchronizes pgdat->first_deferred_pfn during deferred page 707 * init. 708 * 709 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 710 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 711 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 712 * 713 * Nests above zone->lock and zone->span_seqlock 714 */ 715 spinlock_t node_size_lock; 716 #endif 717 unsigned long node_start_pfn; 718 unsigned long node_present_pages; /* total number of physical pages */ 719 unsigned long node_spanned_pages; /* total size of physical page 720 range, including holes */ 721 int node_id; 722 wait_queue_head_t kswapd_wait; 723 wait_queue_head_t pfmemalloc_wait; 724 struct task_struct *kswapd; /* Protected by 725 mem_hotplug_begin/end() */ 726 int kswapd_order; 727 enum zone_type kswapd_highest_zoneidx; 728 729 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 730 731 #ifdef CONFIG_COMPACTION 732 int kcompactd_max_order; 733 enum zone_type kcompactd_highest_zoneidx; 734 wait_queue_head_t kcompactd_wait; 735 struct task_struct *kcompactd; 736 #endif 737 /* 738 * This is a per-node reserve of pages that are not available 739 * to userspace allocations. 740 */ 741 unsigned long totalreserve_pages; 742 743 #ifdef CONFIG_NUMA 744 /* 745 * node reclaim becomes active if more unmapped pages exist. 746 */ 747 unsigned long min_unmapped_pages; 748 unsigned long min_slab_pages; 749 #endif /* CONFIG_NUMA */ 750 751 /* Write-intensive fields used by page reclaim */ 752 ZONE_PADDING(_pad1_) 753 spinlock_t lru_lock; 754 755 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 756 /* 757 * If memory initialisation on large machines is deferred then this 758 * is the first PFN that needs to be initialised. 759 */ 760 unsigned long first_deferred_pfn; 761 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 762 763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 764 struct deferred_split deferred_split_queue; 765 #endif 766 767 /* Fields commonly accessed by the page reclaim scanner */ 768 769 /* 770 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 771 * 772 * Use mem_cgroup_lruvec() to look up lruvecs. 773 */ 774 struct lruvec __lruvec; 775 776 unsigned long flags; 777 778 ZONE_PADDING(_pad2_) 779 780 /* Per-node vmstats */ 781 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 782 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 783 } pg_data_t; 784 785 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 786 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 787 #ifdef CONFIG_FLAT_NODE_MEM_MAP 788 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 789 #else 790 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 791 #endif 792 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 793 794 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 795 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 796 797 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 798 { 799 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 800 } 801 802 static inline bool pgdat_is_empty(pg_data_t *pgdat) 803 { 804 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 805 } 806 807 #include <linux/memory_hotplug.h> 808 809 void build_all_zonelists(pg_data_t *pgdat); 810 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 811 enum zone_type highest_zoneidx); 812 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 813 int highest_zoneidx, unsigned int alloc_flags, 814 long free_pages); 815 bool zone_watermark_ok(struct zone *z, unsigned int order, 816 unsigned long mark, int highest_zoneidx, 817 unsigned int alloc_flags); 818 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 819 unsigned long mark, int highest_zoneidx); 820 enum memmap_context { 821 MEMMAP_EARLY, 822 MEMMAP_HOTPLUG, 823 }; 824 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 825 unsigned long size); 826 827 extern void lruvec_init(struct lruvec *lruvec); 828 829 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 830 { 831 #ifdef CONFIG_MEMCG 832 return lruvec->pgdat; 833 #else 834 return container_of(lruvec, struct pglist_data, __lruvec); 835 #endif 836 } 837 838 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 839 840 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 841 int local_memory_node(int node_id); 842 #else 843 static inline int local_memory_node(int node_id) { return node_id; }; 844 #endif 845 846 /* 847 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 848 */ 849 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 850 851 /* 852 * Returns true if a zone has pages managed by the buddy allocator. 853 * All the reclaim decisions have to use this function rather than 854 * populated_zone(). If the whole zone is reserved then we can easily 855 * end up with populated_zone() && !managed_zone(). 856 */ 857 static inline bool managed_zone(struct zone *zone) 858 { 859 return zone_managed_pages(zone); 860 } 861 862 /* Returns true if a zone has memory */ 863 static inline bool populated_zone(struct zone *zone) 864 { 865 return zone->present_pages; 866 } 867 868 #ifdef CONFIG_NUMA 869 static inline int zone_to_nid(struct zone *zone) 870 { 871 return zone->node; 872 } 873 874 static inline void zone_set_nid(struct zone *zone, int nid) 875 { 876 zone->node = nid; 877 } 878 #else 879 static inline int zone_to_nid(struct zone *zone) 880 { 881 return 0; 882 } 883 884 static inline void zone_set_nid(struct zone *zone, int nid) {} 885 #endif 886 887 extern int movable_zone; 888 889 #ifdef CONFIG_HIGHMEM 890 static inline int zone_movable_is_highmem(void) 891 { 892 #ifdef CONFIG_NEED_MULTIPLE_NODES 893 return movable_zone == ZONE_HIGHMEM; 894 #else 895 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 896 #endif 897 } 898 #endif 899 900 static inline int is_highmem_idx(enum zone_type idx) 901 { 902 #ifdef CONFIG_HIGHMEM 903 return (idx == ZONE_HIGHMEM || 904 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 905 #else 906 return 0; 907 #endif 908 } 909 910 /** 911 * is_highmem - helper function to quickly check if a struct zone is a 912 * highmem zone or not. This is an attempt to keep references 913 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 914 * @zone - pointer to struct zone variable 915 */ 916 static inline int is_highmem(struct zone *zone) 917 { 918 #ifdef CONFIG_HIGHMEM 919 return is_highmem_idx(zone_idx(zone)); 920 #else 921 return 0; 922 #endif 923 } 924 925 /* These two functions are used to setup the per zone pages min values */ 926 struct ctl_table; 927 928 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 929 loff_t *); 930 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 931 size_t *, loff_t *); 932 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 933 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 934 size_t *, loff_t *); 935 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 936 void *, size_t *, loff_t *); 937 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 938 void *, size_t *, loff_t *); 939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 940 void *, size_t *, loff_t *); 941 int numa_zonelist_order_handler(struct ctl_table *, int, 942 void *, size_t *, loff_t *); 943 extern int percpu_pagelist_fraction; 944 extern char numa_zonelist_order[]; 945 #define NUMA_ZONELIST_ORDER_LEN 16 946 947 #ifndef CONFIG_NEED_MULTIPLE_NODES 948 949 extern struct pglist_data contig_page_data; 950 #define NODE_DATA(nid) (&contig_page_data) 951 #define NODE_MEM_MAP(nid) mem_map 952 953 #else /* CONFIG_NEED_MULTIPLE_NODES */ 954 955 #include <asm/mmzone.h> 956 957 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 958 959 extern struct pglist_data *first_online_pgdat(void); 960 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 961 extern struct zone *next_zone(struct zone *zone); 962 963 /** 964 * for_each_online_pgdat - helper macro to iterate over all online nodes 965 * @pgdat - pointer to a pg_data_t variable 966 */ 967 #define for_each_online_pgdat(pgdat) \ 968 for (pgdat = first_online_pgdat(); \ 969 pgdat; \ 970 pgdat = next_online_pgdat(pgdat)) 971 /** 972 * for_each_zone - helper macro to iterate over all memory zones 973 * @zone - pointer to struct zone variable 974 * 975 * The user only needs to declare the zone variable, for_each_zone 976 * fills it in. 977 */ 978 #define for_each_zone(zone) \ 979 for (zone = (first_online_pgdat())->node_zones; \ 980 zone; \ 981 zone = next_zone(zone)) 982 983 #define for_each_populated_zone(zone) \ 984 for (zone = (first_online_pgdat())->node_zones; \ 985 zone; \ 986 zone = next_zone(zone)) \ 987 if (!populated_zone(zone)) \ 988 ; /* do nothing */ \ 989 else 990 991 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 992 { 993 return zoneref->zone; 994 } 995 996 static inline int zonelist_zone_idx(struct zoneref *zoneref) 997 { 998 return zoneref->zone_idx; 999 } 1000 1001 static inline int zonelist_node_idx(struct zoneref *zoneref) 1002 { 1003 return zone_to_nid(zoneref->zone); 1004 } 1005 1006 struct zoneref *__next_zones_zonelist(struct zoneref *z, 1007 enum zone_type highest_zoneidx, 1008 nodemask_t *nodes); 1009 1010 /** 1011 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1012 * @z - The cursor used as a starting point for the search 1013 * @highest_zoneidx - The zone index of the highest zone to return 1014 * @nodes - An optional nodemask to filter the zonelist with 1015 * 1016 * This function returns the next zone at or below a given zone index that is 1017 * within the allowed nodemask using a cursor as the starting point for the 1018 * search. The zoneref returned is a cursor that represents the current zone 1019 * being examined. It should be advanced by one before calling 1020 * next_zones_zonelist again. 1021 */ 1022 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1023 enum zone_type highest_zoneidx, 1024 nodemask_t *nodes) 1025 { 1026 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1027 return z; 1028 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1029 } 1030 1031 /** 1032 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1033 * @zonelist - The zonelist to search for a suitable zone 1034 * @highest_zoneidx - The zone index of the highest zone to return 1035 * @nodes - An optional nodemask to filter the zonelist with 1036 * @return - Zoneref pointer for the first suitable zone found (see below) 1037 * 1038 * This function returns the first zone at or below a given zone index that is 1039 * within the allowed nodemask. The zoneref returned is a cursor that can be 1040 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1041 * one before calling. 1042 * 1043 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1044 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1045 * update due to cpuset modification. 1046 */ 1047 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1048 enum zone_type highest_zoneidx, 1049 nodemask_t *nodes) 1050 { 1051 return next_zones_zonelist(zonelist->_zonerefs, 1052 highest_zoneidx, nodes); 1053 } 1054 1055 /** 1056 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1057 * @zone - The current zone in the iterator 1058 * @z - The current pointer within zonelist->_zonerefs being iterated 1059 * @zlist - The zonelist being iterated 1060 * @highidx - The zone index of the highest zone to return 1061 * @nodemask - Nodemask allowed by the allocator 1062 * 1063 * This iterator iterates though all zones at or below a given zone index and 1064 * within a given nodemask 1065 */ 1066 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1067 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1068 zone; \ 1069 z = next_zones_zonelist(++z, highidx, nodemask), \ 1070 zone = zonelist_zone(z)) 1071 1072 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1073 for (zone = z->zone; \ 1074 zone; \ 1075 z = next_zones_zonelist(++z, highidx, nodemask), \ 1076 zone = zonelist_zone(z)) 1077 1078 1079 /** 1080 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1081 * @zone - The current zone in the iterator 1082 * @z - The current pointer within zonelist->zones being iterated 1083 * @zlist - The zonelist being iterated 1084 * @highidx - The zone index of the highest zone to return 1085 * 1086 * This iterator iterates though all zones at or below a given zone index. 1087 */ 1088 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1089 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1090 1091 #ifdef CONFIG_SPARSEMEM 1092 #include <asm/sparsemem.h> 1093 #endif 1094 1095 #ifdef CONFIG_FLATMEM 1096 #define pfn_to_nid(pfn) (0) 1097 #endif 1098 1099 #ifdef CONFIG_SPARSEMEM 1100 1101 /* 1102 * SECTION_SHIFT #bits space required to store a section # 1103 * 1104 * PA_SECTION_SHIFT physical address to/from section number 1105 * PFN_SECTION_SHIFT pfn to/from section number 1106 */ 1107 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1108 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1109 1110 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1111 1112 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1113 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1114 1115 #define SECTION_BLOCKFLAGS_BITS \ 1116 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1117 1118 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1119 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1120 #endif 1121 1122 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1123 { 1124 return pfn >> PFN_SECTION_SHIFT; 1125 } 1126 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1127 { 1128 return sec << PFN_SECTION_SHIFT; 1129 } 1130 1131 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1132 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1133 1134 #define SUBSECTION_SHIFT 21 1135 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1136 1137 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1138 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1139 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1140 1141 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1142 #error Subsection size exceeds section size 1143 #else 1144 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1145 #endif 1146 1147 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1148 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1149 1150 struct mem_section_usage { 1151 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1152 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1153 #endif 1154 /* See declaration of similar field in struct zone */ 1155 unsigned long pageblock_flags[0]; 1156 }; 1157 1158 void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1159 1160 struct page; 1161 struct page_ext; 1162 struct mem_section { 1163 /* 1164 * This is, logically, a pointer to an array of struct 1165 * pages. However, it is stored with some other magic. 1166 * (see sparse.c::sparse_init_one_section()) 1167 * 1168 * Additionally during early boot we encode node id of 1169 * the location of the section here to guide allocation. 1170 * (see sparse.c::memory_present()) 1171 * 1172 * Making it a UL at least makes someone do a cast 1173 * before using it wrong. 1174 */ 1175 unsigned long section_mem_map; 1176 1177 struct mem_section_usage *usage; 1178 #ifdef CONFIG_PAGE_EXTENSION 1179 /* 1180 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1181 * section. (see page_ext.h about this.) 1182 */ 1183 struct page_ext *page_ext; 1184 unsigned long pad; 1185 #endif 1186 /* 1187 * WARNING: mem_section must be a power-of-2 in size for the 1188 * calculation and use of SECTION_ROOT_MASK to make sense. 1189 */ 1190 }; 1191 1192 #ifdef CONFIG_SPARSEMEM_EXTREME 1193 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1194 #else 1195 #define SECTIONS_PER_ROOT 1 1196 #endif 1197 1198 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1199 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1200 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1201 1202 #ifdef CONFIG_SPARSEMEM_EXTREME 1203 extern struct mem_section **mem_section; 1204 #else 1205 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1206 #endif 1207 1208 static inline unsigned long *section_to_usemap(struct mem_section *ms) 1209 { 1210 return ms->usage->pageblock_flags; 1211 } 1212 1213 static inline struct mem_section *__nr_to_section(unsigned long nr) 1214 { 1215 #ifdef CONFIG_SPARSEMEM_EXTREME 1216 if (!mem_section) 1217 return NULL; 1218 #endif 1219 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1220 return NULL; 1221 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1222 } 1223 extern unsigned long __section_nr(struct mem_section *ms); 1224 extern size_t mem_section_usage_size(void); 1225 1226 /* 1227 * We use the lower bits of the mem_map pointer to store 1228 * a little bit of information. The pointer is calculated 1229 * as mem_map - section_nr_to_pfn(pnum). The result is 1230 * aligned to the minimum alignment of the two values: 1231 * 1. All mem_map arrays are page-aligned. 1232 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1233 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1234 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1235 * worst combination is powerpc with 256k pages, 1236 * which results in PFN_SECTION_SHIFT equal 6. 1237 * To sum it up, at least 6 bits are available. 1238 */ 1239 #define SECTION_MARKED_PRESENT (1UL<<0) 1240 #define SECTION_HAS_MEM_MAP (1UL<<1) 1241 #define SECTION_IS_ONLINE (1UL<<2) 1242 #define SECTION_IS_EARLY (1UL<<3) 1243 #define SECTION_MAP_LAST_BIT (1UL<<4) 1244 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1245 #define SECTION_NID_SHIFT 3 1246 1247 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1248 { 1249 unsigned long map = section->section_mem_map; 1250 map &= SECTION_MAP_MASK; 1251 return (struct page *)map; 1252 } 1253 1254 static inline int present_section(struct mem_section *section) 1255 { 1256 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1257 } 1258 1259 static inline int present_section_nr(unsigned long nr) 1260 { 1261 return present_section(__nr_to_section(nr)); 1262 } 1263 1264 static inline int valid_section(struct mem_section *section) 1265 { 1266 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1267 } 1268 1269 static inline int early_section(struct mem_section *section) 1270 { 1271 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1272 } 1273 1274 static inline int valid_section_nr(unsigned long nr) 1275 { 1276 return valid_section(__nr_to_section(nr)); 1277 } 1278 1279 static inline int online_section(struct mem_section *section) 1280 { 1281 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1282 } 1283 1284 static inline int online_section_nr(unsigned long nr) 1285 { 1286 return online_section(__nr_to_section(nr)); 1287 } 1288 1289 #ifdef CONFIG_MEMORY_HOTPLUG 1290 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1291 #ifdef CONFIG_MEMORY_HOTREMOVE 1292 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1293 #endif 1294 #endif 1295 1296 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1297 { 1298 return __nr_to_section(pfn_to_section_nr(pfn)); 1299 } 1300 1301 extern unsigned long __highest_present_section_nr; 1302 1303 static inline int subsection_map_index(unsigned long pfn) 1304 { 1305 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1306 } 1307 1308 #ifdef CONFIG_SPARSEMEM_VMEMMAP 1309 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1310 { 1311 int idx = subsection_map_index(pfn); 1312 1313 return test_bit(idx, ms->usage->subsection_map); 1314 } 1315 #else 1316 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1317 { 1318 return 1; 1319 } 1320 #endif 1321 1322 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1323 static inline int pfn_valid(unsigned long pfn) 1324 { 1325 struct mem_section *ms; 1326 1327 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1328 return 0; 1329 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1330 if (!valid_section(ms)) 1331 return 0; 1332 /* 1333 * Traditionally early sections always returned pfn_valid() for 1334 * the entire section-sized span. 1335 */ 1336 return early_section(ms) || pfn_section_valid(ms, pfn); 1337 } 1338 #endif 1339 1340 static inline int pfn_in_present_section(unsigned long pfn) 1341 { 1342 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1343 return 0; 1344 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1345 } 1346 1347 static inline unsigned long next_present_section_nr(unsigned long section_nr) 1348 { 1349 while (++section_nr <= __highest_present_section_nr) { 1350 if (present_section_nr(section_nr)) 1351 return section_nr; 1352 } 1353 1354 return -1; 1355 } 1356 1357 /* 1358 * These are _only_ used during initialisation, therefore they 1359 * can use __initdata ... They could have names to indicate 1360 * this restriction. 1361 */ 1362 #ifdef CONFIG_NUMA 1363 #define pfn_to_nid(pfn) \ 1364 ({ \ 1365 unsigned long __pfn_to_nid_pfn = (pfn); \ 1366 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1367 }) 1368 #else 1369 #define pfn_to_nid(pfn) (0) 1370 #endif 1371 1372 #define early_pfn_valid(pfn) pfn_valid(pfn) 1373 void sparse_init(void); 1374 #else 1375 #define sparse_init() do {} while (0) 1376 #define sparse_index_init(_sec, _nid) do {} while (0) 1377 #define pfn_in_present_section pfn_valid 1378 #define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1379 #endif /* CONFIG_SPARSEMEM */ 1380 1381 /* 1382 * During memory init memblocks map pfns to nids. The search is expensive and 1383 * this caches recent lookups. The implementation of __early_pfn_to_nid 1384 * may treat start/end as pfns or sections. 1385 */ 1386 struct mminit_pfnnid_cache { 1387 unsigned long last_start; 1388 unsigned long last_end; 1389 int last_nid; 1390 }; 1391 1392 #ifndef early_pfn_valid 1393 #define early_pfn_valid(pfn) (1) 1394 #endif 1395 1396 /* 1397 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1398 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1399 * pfn_valid_within() should be used in this case; we optimise this away 1400 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1401 */ 1402 #ifdef CONFIG_HOLES_IN_ZONE 1403 #define pfn_valid_within(pfn) pfn_valid(pfn) 1404 #else 1405 #define pfn_valid_within(pfn) (1) 1406 #endif 1407 1408 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1409 /* 1410 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1411 * associated with it or not. This means that a struct page exists for this 1412 * pfn. The caller cannot assume the page is fully initialized in general. 1413 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1414 * will ensure the struct page is fully online and initialized. Special pages 1415 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1416 * 1417 * In FLATMEM, it is expected that holes always have valid memmap as long as 1418 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1419 * that a valid section has a memmap for the entire section. 1420 * 1421 * However, an ARM, and maybe other embedded architectures in the future 1422 * free memmap backing holes to save memory on the assumption the memmap is 1423 * never used. The page_zone linkages are then broken even though pfn_valid() 1424 * returns true. A walker of the full memmap must then do this additional 1425 * check to ensure the memmap they are looking at is sane by making sure 1426 * the zone and PFN linkages are still valid. This is expensive, but walkers 1427 * of the full memmap are extremely rare. 1428 */ 1429 bool memmap_valid_within(unsigned long pfn, 1430 struct page *page, struct zone *zone); 1431 #else 1432 static inline bool memmap_valid_within(unsigned long pfn, 1433 struct page *page, struct zone *zone) 1434 { 1435 return true; 1436 } 1437 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1438 1439 #endif /* !__GENERATING_BOUNDS.H */ 1440 #endif /* !__ASSEMBLY__ */ 1441 #endif /* _LINUX_MMZONE_H */ 1442