xref: /linux-6.15/include/linux/mmzone.h (revision 23db762b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
92 
93 #define get_pageblock_migratetype(page)					\
94 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 static inline struct page *get_page_from_free_area(struct free_area *area,
102 					    int migratetype)
103 {
104 	return list_first_entry_or_null(&area->free_list[migratetype],
105 					struct page, lru);
106 }
107 
108 static inline bool free_area_empty(struct free_area *area, int migratetype)
109 {
110 	return list_empty(&area->free_list[migratetype]);
111 }
112 
113 struct pglist_data;
114 
115 /*
116  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
117  * So add a wild amount of padding here to ensure that they fall into separate
118  * cachelines.  There are very few zone structures in the machine, so space
119  * consumption is not a concern here.
120  */
121 #if defined(CONFIG_SMP)
122 struct zone_padding {
123 	char x[0];
124 } ____cacheline_internodealigned_in_smp;
125 #define ZONE_PADDING(name)	struct zone_padding name;
126 #else
127 #define ZONE_PADDING(name)
128 #endif
129 
130 #ifdef CONFIG_NUMA
131 enum numa_stat_item {
132 	NUMA_HIT,		/* allocated in intended node */
133 	NUMA_MISS,		/* allocated in non intended node */
134 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
135 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
136 	NUMA_LOCAL,		/* allocation from local node */
137 	NUMA_OTHER,		/* allocation from other node */
138 	NR_VM_NUMA_STAT_ITEMS
139 };
140 #else
141 #define NR_VM_NUMA_STAT_ITEMS 0
142 #endif
143 
144 enum zone_stat_item {
145 	/* First 128 byte cacheline (assuming 64 bit words) */
146 	NR_FREE_PAGES,
147 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
148 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
149 	NR_ZONE_ACTIVE_ANON,
150 	NR_ZONE_INACTIVE_FILE,
151 	NR_ZONE_ACTIVE_FILE,
152 	NR_ZONE_UNEVICTABLE,
153 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
154 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
155 	NR_PAGETABLE,		/* used for pagetables */
156 	/* Second 128 byte cacheline */
157 	NR_BOUNCE,
158 #if IS_ENABLED(CONFIG_ZSMALLOC)
159 	NR_ZSPAGES,		/* allocated in zsmalloc */
160 #endif
161 	NR_FREE_CMA_PAGES,
162 	NR_VM_ZONE_STAT_ITEMS };
163 
164 enum node_stat_item {
165 	NR_LRU_BASE,
166 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
167 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
168 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
169 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
170 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
171 	NR_SLAB_RECLAIMABLE_B,
172 	NR_SLAB_UNRECLAIMABLE_B,
173 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
174 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
175 	WORKINGSET_NODES,
176 	WORKINGSET_REFAULT,
177 	WORKINGSET_ACTIVATE,
178 	WORKINGSET_RESTORE,
179 	WORKINGSET_NODERECLAIM,
180 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
181 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
182 			   only modified from process context */
183 	NR_FILE_PAGES,
184 	NR_FILE_DIRTY,
185 	NR_WRITEBACK,
186 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
187 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
188 	NR_SHMEM_THPS,
189 	NR_SHMEM_PMDMAPPED,
190 	NR_FILE_THPS,
191 	NR_FILE_PMDMAPPED,
192 	NR_ANON_THPS,
193 	NR_VMSCAN_WRITE,
194 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
195 	NR_DIRTIED,		/* page dirtyings since bootup */
196 	NR_WRITTEN,		/* page writings since bootup */
197 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
198 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
199 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
200 	NR_KERNEL_STACK_KB,	/* measured in KiB */
201 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
202 	NR_KERNEL_SCS_KB,	/* measured in KiB */
203 #endif
204 	NR_VM_NODE_STAT_ITEMS
205 };
206 
207 /*
208  * Returns true if the value is measured in bytes (most vmstat values are
209  * measured in pages). This defines the API part, the internal representation
210  * might be different.
211  */
212 static __always_inline bool vmstat_item_in_bytes(int idx)
213 {
214 	/*
215 	 * Global and per-node slab counters track slab pages.
216 	 * It's expected that changes are multiples of PAGE_SIZE.
217 	 * Internally values are stored in pages.
218 	 *
219 	 * Per-memcg and per-lruvec counters track memory, consumed
220 	 * by individual slab objects. These counters are actually
221 	 * byte-precise.
222 	 */
223 	return (idx == NR_SLAB_RECLAIMABLE_B ||
224 		idx == NR_SLAB_UNRECLAIMABLE_B);
225 }
226 
227 /*
228  * We do arithmetic on the LRU lists in various places in the code,
229  * so it is important to keep the active lists LRU_ACTIVE higher in
230  * the array than the corresponding inactive lists, and to keep
231  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
232  *
233  * This has to be kept in sync with the statistics in zone_stat_item
234  * above and the descriptions in vmstat_text in mm/vmstat.c
235  */
236 #define LRU_BASE 0
237 #define LRU_ACTIVE 1
238 #define LRU_FILE 2
239 
240 enum lru_list {
241 	LRU_INACTIVE_ANON = LRU_BASE,
242 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
243 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
244 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
245 	LRU_UNEVICTABLE,
246 	NR_LRU_LISTS
247 };
248 
249 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
250 
251 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
252 
253 static inline bool is_file_lru(enum lru_list lru)
254 {
255 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
256 }
257 
258 static inline bool is_active_lru(enum lru_list lru)
259 {
260 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
261 }
262 
263 enum lruvec_flags {
264 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
265 					 * backed by a congested BDI
266 					 */
267 };
268 
269 struct lruvec {
270 	struct list_head		lists[NR_LRU_LISTS];
271 	/*
272 	 * These track the cost of reclaiming one LRU - file or anon -
273 	 * over the other. As the observed cost of reclaiming one LRU
274 	 * increases, the reclaim scan balance tips toward the other.
275 	 */
276 	unsigned long			anon_cost;
277 	unsigned long			file_cost;
278 	/* Non-resident age, driven by LRU movement */
279 	atomic_long_t			nonresident_age;
280 	/* Refaults at the time of last reclaim cycle */
281 	unsigned long			refaults;
282 	/* Various lruvec state flags (enum lruvec_flags) */
283 	unsigned long			flags;
284 #ifdef CONFIG_MEMCG
285 	struct pglist_data *pgdat;
286 #endif
287 };
288 
289 /* Isolate unmapped pages */
290 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
291 /* Isolate for asynchronous migration */
292 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
293 /* Isolate unevictable pages */
294 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
295 
296 /* LRU Isolation modes. */
297 typedef unsigned __bitwise isolate_mode_t;
298 
299 enum zone_watermarks {
300 	WMARK_MIN,
301 	WMARK_LOW,
302 	WMARK_HIGH,
303 	NR_WMARK
304 };
305 
306 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
307 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
308 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
309 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
310 
311 struct per_cpu_pages {
312 	int count;		/* number of pages in the list */
313 	int high;		/* high watermark, emptying needed */
314 	int batch;		/* chunk size for buddy add/remove */
315 
316 	/* Lists of pages, one per migrate type stored on the pcp-lists */
317 	struct list_head lists[MIGRATE_PCPTYPES];
318 };
319 
320 struct per_cpu_pageset {
321 	struct per_cpu_pages pcp;
322 #ifdef CONFIG_NUMA
323 	s8 expire;
324 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
325 #endif
326 #ifdef CONFIG_SMP
327 	s8 stat_threshold;
328 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
329 #endif
330 };
331 
332 struct per_cpu_nodestat {
333 	s8 stat_threshold;
334 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
335 };
336 
337 #endif /* !__GENERATING_BOUNDS.H */
338 
339 enum zone_type {
340 	/*
341 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
342 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
343 	 * On architectures where this area covers the whole 32 bit address
344 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
345 	 * DMA addressing constraints. This distinction is important as a 32bit
346 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
347 	 * platforms may need both zones as they support peripherals with
348 	 * different DMA addressing limitations.
349 	 *
350 	 * Some examples:
351 	 *
352 	 *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
353 	 *    rest of the lower 4G.
354 	 *
355 	 *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
356 	 *    the specific device.
357 	 *
358 	 *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
359 	 *    lower 4G.
360 	 *
361 	 *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
362 	 *    depending on the specific device.
363 	 *
364 	 *  - s390 uses ZONE_DMA fixed to the lower 2G.
365 	 *
366 	 *  - ia64 and riscv only use ZONE_DMA32.
367 	 *
368 	 *  - parisc uses neither.
369 	 */
370 #ifdef CONFIG_ZONE_DMA
371 	ZONE_DMA,
372 #endif
373 #ifdef CONFIG_ZONE_DMA32
374 	ZONE_DMA32,
375 #endif
376 	/*
377 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
378 	 * performed on pages in ZONE_NORMAL if the DMA devices support
379 	 * transfers to all addressable memory.
380 	 */
381 	ZONE_NORMAL,
382 #ifdef CONFIG_HIGHMEM
383 	/*
384 	 * A memory area that is only addressable by the kernel through
385 	 * mapping portions into its own address space. This is for example
386 	 * used by i386 to allow the kernel to address the memory beyond
387 	 * 900MB. The kernel will set up special mappings (page
388 	 * table entries on i386) for each page that the kernel needs to
389 	 * access.
390 	 */
391 	ZONE_HIGHMEM,
392 #endif
393 	ZONE_MOVABLE,
394 #ifdef CONFIG_ZONE_DEVICE
395 	ZONE_DEVICE,
396 #endif
397 	__MAX_NR_ZONES
398 
399 };
400 
401 #ifndef __GENERATING_BOUNDS_H
402 
403 struct zone {
404 	/* Read-mostly fields */
405 
406 	/* zone watermarks, access with *_wmark_pages(zone) macros */
407 	unsigned long _watermark[NR_WMARK];
408 	unsigned long watermark_boost;
409 
410 	unsigned long nr_reserved_highatomic;
411 
412 	/*
413 	 * We don't know if the memory that we're going to allocate will be
414 	 * freeable or/and it will be released eventually, so to avoid totally
415 	 * wasting several GB of ram we must reserve some of the lower zone
416 	 * memory (otherwise we risk to run OOM on the lower zones despite
417 	 * there being tons of freeable ram on the higher zones).  This array is
418 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
419 	 * changes.
420 	 */
421 	long lowmem_reserve[MAX_NR_ZONES];
422 
423 #ifdef CONFIG_NUMA
424 	int node;
425 #endif
426 	struct pglist_data	*zone_pgdat;
427 	struct per_cpu_pageset __percpu *pageset;
428 
429 #ifndef CONFIG_SPARSEMEM
430 	/*
431 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
432 	 * In SPARSEMEM, this map is stored in struct mem_section
433 	 */
434 	unsigned long		*pageblock_flags;
435 #endif /* CONFIG_SPARSEMEM */
436 
437 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
438 	unsigned long		zone_start_pfn;
439 
440 	/*
441 	 * spanned_pages is the total pages spanned by the zone, including
442 	 * holes, which is calculated as:
443 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
444 	 *
445 	 * present_pages is physical pages existing within the zone, which
446 	 * is calculated as:
447 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
448 	 *
449 	 * managed_pages is present pages managed by the buddy system, which
450 	 * is calculated as (reserved_pages includes pages allocated by the
451 	 * bootmem allocator):
452 	 *	managed_pages = present_pages - reserved_pages;
453 	 *
454 	 * So present_pages may be used by memory hotplug or memory power
455 	 * management logic to figure out unmanaged pages by checking
456 	 * (present_pages - managed_pages). And managed_pages should be used
457 	 * by page allocator and vm scanner to calculate all kinds of watermarks
458 	 * and thresholds.
459 	 *
460 	 * Locking rules:
461 	 *
462 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
463 	 * It is a seqlock because it has to be read outside of zone->lock,
464 	 * and it is done in the main allocator path.  But, it is written
465 	 * quite infrequently.
466 	 *
467 	 * The span_seq lock is declared along with zone->lock because it is
468 	 * frequently read in proximity to zone->lock.  It's good to
469 	 * give them a chance of being in the same cacheline.
470 	 *
471 	 * Write access to present_pages at runtime should be protected by
472 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
473 	 * present_pages should get_online_mems() to get a stable value.
474 	 */
475 	atomic_long_t		managed_pages;
476 	unsigned long		spanned_pages;
477 	unsigned long		present_pages;
478 
479 	const char		*name;
480 
481 #ifdef CONFIG_MEMORY_ISOLATION
482 	/*
483 	 * Number of isolated pageblock. It is used to solve incorrect
484 	 * freepage counting problem due to racy retrieving migratetype
485 	 * of pageblock. Protected by zone->lock.
486 	 */
487 	unsigned long		nr_isolate_pageblock;
488 #endif
489 
490 #ifdef CONFIG_MEMORY_HOTPLUG
491 	/* see spanned/present_pages for more description */
492 	seqlock_t		span_seqlock;
493 #endif
494 
495 	int initialized;
496 
497 	/* Write-intensive fields used from the page allocator */
498 	ZONE_PADDING(_pad1_)
499 
500 	/* free areas of different sizes */
501 	struct free_area	free_area[MAX_ORDER];
502 
503 	/* zone flags, see below */
504 	unsigned long		flags;
505 
506 	/* Primarily protects free_area */
507 	spinlock_t		lock;
508 
509 	/* Write-intensive fields used by compaction and vmstats. */
510 	ZONE_PADDING(_pad2_)
511 
512 	/*
513 	 * When free pages are below this point, additional steps are taken
514 	 * when reading the number of free pages to avoid per-cpu counter
515 	 * drift allowing watermarks to be breached
516 	 */
517 	unsigned long percpu_drift_mark;
518 
519 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
520 	/* pfn where compaction free scanner should start */
521 	unsigned long		compact_cached_free_pfn;
522 	/* pfn where async and sync compaction migration scanner should start */
523 	unsigned long		compact_cached_migrate_pfn[2];
524 	unsigned long		compact_init_migrate_pfn;
525 	unsigned long		compact_init_free_pfn;
526 #endif
527 
528 #ifdef CONFIG_COMPACTION
529 	/*
530 	 * On compaction failure, 1<<compact_defer_shift compactions
531 	 * are skipped before trying again. The number attempted since
532 	 * last failure is tracked with compact_considered.
533 	 */
534 	unsigned int		compact_considered;
535 	unsigned int		compact_defer_shift;
536 	int			compact_order_failed;
537 #endif
538 
539 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
540 	/* Set to true when the PG_migrate_skip bits should be cleared */
541 	bool			compact_blockskip_flush;
542 #endif
543 
544 	bool			contiguous;
545 
546 	ZONE_PADDING(_pad3_)
547 	/* Zone statistics */
548 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
549 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
550 } ____cacheline_internodealigned_in_smp;
551 
552 enum pgdat_flags {
553 	PGDAT_DIRTY,			/* reclaim scanning has recently found
554 					 * many dirty file pages at the tail
555 					 * of the LRU.
556 					 */
557 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
558 					 * many pages under writeback
559 					 */
560 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
561 };
562 
563 enum zone_flags {
564 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
565 					 * Cleared when kswapd is woken.
566 					 */
567 };
568 
569 static inline unsigned long zone_managed_pages(struct zone *zone)
570 {
571 	return (unsigned long)atomic_long_read(&zone->managed_pages);
572 }
573 
574 static inline unsigned long zone_end_pfn(const struct zone *zone)
575 {
576 	return zone->zone_start_pfn + zone->spanned_pages;
577 }
578 
579 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
580 {
581 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
582 }
583 
584 static inline bool zone_is_initialized(struct zone *zone)
585 {
586 	return zone->initialized;
587 }
588 
589 static inline bool zone_is_empty(struct zone *zone)
590 {
591 	return zone->spanned_pages == 0;
592 }
593 
594 /*
595  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
596  * intersection with the given zone
597  */
598 static inline bool zone_intersects(struct zone *zone,
599 		unsigned long start_pfn, unsigned long nr_pages)
600 {
601 	if (zone_is_empty(zone))
602 		return false;
603 	if (start_pfn >= zone_end_pfn(zone) ||
604 	    start_pfn + nr_pages <= zone->zone_start_pfn)
605 		return false;
606 
607 	return true;
608 }
609 
610 /*
611  * The "priority" of VM scanning is how much of the queues we will scan in one
612  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
613  * queues ("queue_length >> 12") during an aging round.
614  */
615 #define DEF_PRIORITY 12
616 
617 /* Maximum number of zones on a zonelist */
618 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
619 
620 enum {
621 	ZONELIST_FALLBACK,	/* zonelist with fallback */
622 #ifdef CONFIG_NUMA
623 	/*
624 	 * The NUMA zonelists are doubled because we need zonelists that
625 	 * restrict the allocations to a single node for __GFP_THISNODE.
626 	 */
627 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
628 #endif
629 	MAX_ZONELISTS
630 };
631 
632 /*
633  * This struct contains information about a zone in a zonelist. It is stored
634  * here to avoid dereferences into large structures and lookups of tables
635  */
636 struct zoneref {
637 	struct zone *zone;	/* Pointer to actual zone */
638 	int zone_idx;		/* zone_idx(zoneref->zone) */
639 };
640 
641 /*
642  * One allocation request operates on a zonelist. A zonelist
643  * is a list of zones, the first one is the 'goal' of the
644  * allocation, the other zones are fallback zones, in decreasing
645  * priority.
646  *
647  * To speed the reading of the zonelist, the zonerefs contain the zone index
648  * of the entry being read. Helper functions to access information given
649  * a struct zoneref are
650  *
651  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
652  * zonelist_zone_idx()	- Return the index of the zone for an entry
653  * zonelist_node_idx()	- Return the index of the node for an entry
654  */
655 struct zonelist {
656 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
657 };
658 
659 #ifndef CONFIG_DISCONTIGMEM
660 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
661 extern struct page *mem_map;
662 #endif
663 
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 struct deferred_split {
666 	spinlock_t split_queue_lock;
667 	struct list_head split_queue;
668 	unsigned long split_queue_len;
669 };
670 #endif
671 
672 /*
673  * On NUMA machines, each NUMA node would have a pg_data_t to describe
674  * it's memory layout. On UMA machines there is a single pglist_data which
675  * describes the whole memory.
676  *
677  * Memory statistics and page replacement data structures are maintained on a
678  * per-zone basis.
679  */
680 typedef struct pglist_data {
681 	/*
682 	 * node_zones contains just the zones for THIS node. Not all of the
683 	 * zones may be populated, but it is the full list. It is referenced by
684 	 * this node's node_zonelists as well as other node's node_zonelists.
685 	 */
686 	struct zone node_zones[MAX_NR_ZONES];
687 
688 	/*
689 	 * node_zonelists contains references to all zones in all nodes.
690 	 * Generally the first zones will be references to this node's
691 	 * node_zones.
692 	 */
693 	struct zonelist node_zonelists[MAX_ZONELISTS];
694 
695 	int nr_zones; /* number of populated zones in this node */
696 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
697 	struct page *node_mem_map;
698 #ifdef CONFIG_PAGE_EXTENSION
699 	struct page_ext *node_page_ext;
700 #endif
701 #endif
702 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
703 	/*
704 	 * Must be held any time you expect node_start_pfn,
705 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
706 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
707 	 * init.
708 	 *
709 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
710 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
711 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
712 	 *
713 	 * Nests above zone->lock and zone->span_seqlock
714 	 */
715 	spinlock_t node_size_lock;
716 #endif
717 	unsigned long node_start_pfn;
718 	unsigned long node_present_pages; /* total number of physical pages */
719 	unsigned long node_spanned_pages; /* total size of physical page
720 					     range, including holes */
721 	int node_id;
722 	wait_queue_head_t kswapd_wait;
723 	wait_queue_head_t pfmemalloc_wait;
724 	struct task_struct *kswapd;	/* Protected by
725 					   mem_hotplug_begin/end() */
726 	int kswapd_order;
727 	enum zone_type kswapd_highest_zoneidx;
728 
729 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
730 
731 #ifdef CONFIG_COMPACTION
732 	int kcompactd_max_order;
733 	enum zone_type kcompactd_highest_zoneidx;
734 	wait_queue_head_t kcompactd_wait;
735 	struct task_struct *kcompactd;
736 #endif
737 	/*
738 	 * This is a per-node reserve of pages that are not available
739 	 * to userspace allocations.
740 	 */
741 	unsigned long		totalreserve_pages;
742 
743 #ifdef CONFIG_NUMA
744 	/*
745 	 * node reclaim becomes active if more unmapped pages exist.
746 	 */
747 	unsigned long		min_unmapped_pages;
748 	unsigned long		min_slab_pages;
749 #endif /* CONFIG_NUMA */
750 
751 	/* Write-intensive fields used by page reclaim */
752 	ZONE_PADDING(_pad1_)
753 	spinlock_t		lru_lock;
754 
755 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
756 	/*
757 	 * If memory initialisation on large machines is deferred then this
758 	 * is the first PFN that needs to be initialised.
759 	 */
760 	unsigned long first_deferred_pfn;
761 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
762 
763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
764 	struct deferred_split deferred_split_queue;
765 #endif
766 
767 	/* Fields commonly accessed by the page reclaim scanner */
768 
769 	/*
770 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
771 	 *
772 	 * Use mem_cgroup_lruvec() to look up lruvecs.
773 	 */
774 	struct lruvec		__lruvec;
775 
776 	unsigned long		flags;
777 
778 	ZONE_PADDING(_pad2_)
779 
780 	/* Per-node vmstats */
781 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
782 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
783 } pg_data_t;
784 
785 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
786 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
787 #ifdef CONFIG_FLAT_NODE_MEM_MAP
788 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
789 #else
790 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
791 #endif
792 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
793 
794 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
795 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
796 
797 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
798 {
799 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
800 }
801 
802 static inline bool pgdat_is_empty(pg_data_t *pgdat)
803 {
804 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
805 }
806 
807 #include <linux/memory_hotplug.h>
808 
809 void build_all_zonelists(pg_data_t *pgdat);
810 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
811 		   enum zone_type highest_zoneidx);
812 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
813 			 int highest_zoneidx, unsigned int alloc_flags,
814 			 long free_pages);
815 bool zone_watermark_ok(struct zone *z, unsigned int order,
816 		unsigned long mark, int highest_zoneidx,
817 		unsigned int alloc_flags);
818 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
819 		unsigned long mark, int highest_zoneidx);
820 enum memmap_context {
821 	MEMMAP_EARLY,
822 	MEMMAP_HOTPLUG,
823 };
824 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
825 				     unsigned long size);
826 
827 extern void lruvec_init(struct lruvec *lruvec);
828 
829 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
830 {
831 #ifdef CONFIG_MEMCG
832 	return lruvec->pgdat;
833 #else
834 	return container_of(lruvec, struct pglist_data, __lruvec);
835 #endif
836 }
837 
838 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
839 
840 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
841 int local_memory_node(int node_id);
842 #else
843 static inline int local_memory_node(int node_id) { return node_id; };
844 #endif
845 
846 /*
847  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
848  */
849 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
850 
851 /*
852  * Returns true if a zone has pages managed by the buddy allocator.
853  * All the reclaim decisions have to use this function rather than
854  * populated_zone(). If the whole zone is reserved then we can easily
855  * end up with populated_zone() && !managed_zone().
856  */
857 static inline bool managed_zone(struct zone *zone)
858 {
859 	return zone_managed_pages(zone);
860 }
861 
862 /* Returns true if a zone has memory */
863 static inline bool populated_zone(struct zone *zone)
864 {
865 	return zone->present_pages;
866 }
867 
868 #ifdef CONFIG_NUMA
869 static inline int zone_to_nid(struct zone *zone)
870 {
871 	return zone->node;
872 }
873 
874 static inline void zone_set_nid(struct zone *zone, int nid)
875 {
876 	zone->node = nid;
877 }
878 #else
879 static inline int zone_to_nid(struct zone *zone)
880 {
881 	return 0;
882 }
883 
884 static inline void zone_set_nid(struct zone *zone, int nid) {}
885 #endif
886 
887 extern int movable_zone;
888 
889 #ifdef CONFIG_HIGHMEM
890 static inline int zone_movable_is_highmem(void)
891 {
892 #ifdef CONFIG_NEED_MULTIPLE_NODES
893 	return movable_zone == ZONE_HIGHMEM;
894 #else
895 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
896 #endif
897 }
898 #endif
899 
900 static inline int is_highmem_idx(enum zone_type idx)
901 {
902 #ifdef CONFIG_HIGHMEM
903 	return (idx == ZONE_HIGHMEM ||
904 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
905 #else
906 	return 0;
907 #endif
908 }
909 
910 /**
911  * is_highmem - helper function to quickly check if a struct zone is a
912  *              highmem zone or not.  This is an attempt to keep references
913  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
914  * @zone - pointer to struct zone variable
915  */
916 static inline int is_highmem(struct zone *zone)
917 {
918 #ifdef CONFIG_HIGHMEM
919 	return is_highmem_idx(zone_idx(zone));
920 #else
921 	return 0;
922 #endif
923 }
924 
925 /* These two functions are used to setup the per zone pages min values */
926 struct ctl_table;
927 
928 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
929 		loff_t *);
930 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
931 		size_t *, loff_t *);
932 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
933 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
934 		size_t *, loff_t *);
935 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
936 		void *, size_t *, loff_t *);
937 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
938 		void *, size_t *, loff_t *);
939 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
940 		void *, size_t *, loff_t *);
941 int numa_zonelist_order_handler(struct ctl_table *, int,
942 		void *, size_t *, loff_t *);
943 extern int percpu_pagelist_fraction;
944 extern char numa_zonelist_order[];
945 #define NUMA_ZONELIST_ORDER_LEN	16
946 
947 #ifndef CONFIG_NEED_MULTIPLE_NODES
948 
949 extern struct pglist_data contig_page_data;
950 #define NODE_DATA(nid)		(&contig_page_data)
951 #define NODE_MEM_MAP(nid)	mem_map
952 
953 #else /* CONFIG_NEED_MULTIPLE_NODES */
954 
955 #include <asm/mmzone.h>
956 
957 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
958 
959 extern struct pglist_data *first_online_pgdat(void);
960 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
961 extern struct zone *next_zone(struct zone *zone);
962 
963 /**
964  * for_each_online_pgdat - helper macro to iterate over all online nodes
965  * @pgdat - pointer to a pg_data_t variable
966  */
967 #define for_each_online_pgdat(pgdat)			\
968 	for (pgdat = first_online_pgdat();		\
969 	     pgdat;					\
970 	     pgdat = next_online_pgdat(pgdat))
971 /**
972  * for_each_zone - helper macro to iterate over all memory zones
973  * @zone - pointer to struct zone variable
974  *
975  * The user only needs to declare the zone variable, for_each_zone
976  * fills it in.
977  */
978 #define for_each_zone(zone)			        \
979 	for (zone = (first_online_pgdat())->node_zones; \
980 	     zone;					\
981 	     zone = next_zone(zone))
982 
983 #define for_each_populated_zone(zone)		        \
984 	for (zone = (first_online_pgdat())->node_zones; \
985 	     zone;					\
986 	     zone = next_zone(zone))			\
987 		if (!populated_zone(zone))		\
988 			; /* do nothing */		\
989 		else
990 
991 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
992 {
993 	return zoneref->zone;
994 }
995 
996 static inline int zonelist_zone_idx(struct zoneref *zoneref)
997 {
998 	return zoneref->zone_idx;
999 }
1000 
1001 static inline int zonelist_node_idx(struct zoneref *zoneref)
1002 {
1003 	return zone_to_nid(zoneref->zone);
1004 }
1005 
1006 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1007 					enum zone_type highest_zoneidx,
1008 					nodemask_t *nodes);
1009 
1010 /**
1011  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1012  * @z - The cursor used as a starting point for the search
1013  * @highest_zoneidx - The zone index of the highest zone to return
1014  * @nodes - An optional nodemask to filter the zonelist with
1015  *
1016  * This function returns the next zone at or below a given zone index that is
1017  * within the allowed nodemask using a cursor as the starting point for the
1018  * search. The zoneref returned is a cursor that represents the current zone
1019  * being examined. It should be advanced by one before calling
1020  * next_zones_zonelist again.
1021  */
1022 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1023 					enum zone_type highest_zoneidx,
1024 					nodemask_t *nodes)
1025 {
1026 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1027 		return z;
1028 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1029 }
1030 
1031 /**
1032  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1033  * @zonelist - The zonelist to search for a suitable zone
1034  * @highest_zoneidx - The zone index of the highest zone to return
1035  * @nodes - An optional nodemask to filter the zonelist with
1036  * @return - Zoneref pointer for the first suitable zone found (see below)
1037  *
1038  * This function returns the first zone at or below a given zone index that is
1039  * within the allowed nodemask. The zoneref returned is a cursor that can be
1040  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1041  * one before calling.
1042  *
1043  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1044  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1045  * update due to cpuset modification.
1046  */
1047 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1048 					enum zone_type highest_zoneidx,
1049 					nodemask_t *nodes)
1050 {
1051 	return next_zones_zonelist(zonelist->_zonerefs,
1052 							highest_zoneidx, nodes);
1053 }
1054 
1055 /**
1056  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1057  * @zone - The current zone in the iterator
1058  * @z - The current pointer within zonelist->_zonerefs being iterated
1059  * @zlist - The zonelist being iterated
1060  * @highidx - The zone index of the highest zone to return
1061  * @nodemask - Nodemask allowed by the allocator
1062  *
1063  * This iterator iterates though all zones at or below a given zone index and
1064  * within a given nodemask
1065  */
1066 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1067 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1068 		zone;							\
1069 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1070 			zone = zonelist_zone(z))
1071 
1072 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1073 	for (zone = z->zone;	\
1074 		zone;							\
1075 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1076 			zone = zonelist_zone(z))
1077 
1078 
1079 /**
1080  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1081  * @zone - The current zone in the iterator
1082  * @z - The current pointer within zonelist->zones being iterated
1083  * @zlist - The zonelist being iterated
1084  * @highidx - The zone index of the highest zone to return
1085  *
1086  * This iterator iterates though all zones at or below a given zone index.
1087  */
1088 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1089 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1090 
1091 #ifdef CONFIG_SPARSEMEM
1092 #include <asm/sparsemem.h>
1093 #endif
1094 
1095 #ifdef CONFIG_FLATMEM
1096 #define pfn_to_nid(pfn)		(0)
1097 #endif
1098 
1099 #ifdef CONFIG_SPARSEMEM
1100 
1101 /*
1102  * SECTION_SHIFT    		#bits space required to store a section #
1103  *
1104  * PA_SECTION_SHIFT		physical address to/from section number
1105  * PFN_SECTION_SHIFT		pfn to/from section number
1106  */
1107 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1108 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1109 
1110 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1111 
1112 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1113 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1114 
1115 #define SECTION_BLOCKFLAGS_BITS \
1116 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1117 
1118 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1119 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1120 #endif
1121 
1122 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1123 {
1124 	return pfn >> PFN_SECTION_SHIFT;
1125 }
1126 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1127 {
1128 	return sec << PFN_SECTION_SHIFT;
1129 }
1130 
1131 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1132 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1133 
1134 #define SUBSECTION_SHIFT 21
1135 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1136 
1137 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1138 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1139 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1140 
1141 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1142 #error Subsection size exceeds section size
1143 #else
1144 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1145 #endif
1146 
1147 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1148 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1149 
1150 struct mem_section_usage {
1151 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1152 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1153 #endif
1154 	/* See declaration of similar field in struct zone */
1155 	unsigned long pageblock_flags[0];
1156 };
1157 
1158 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1159 
1160 struct page;
1161 struct page_ext;
1162 struct mem_section {
1163 	/*
1164 	 * This is, logically, a pointer to an array of struct
1165 	 * pages.  However, it is stored with some other magic.
1166 	 * (see sparse.c::sparse_init_one_section())
1167 	 *
1168 	 * Additionally during early boot we encode node id of
1169 	 * the location of the section here to guide allocation.
1170 	 * (see sparse.c::memory_present())
1171 	 *
1172 	 * Making it a UL at least makes someone do a cast
1173 	 * before using it wrong.
1174 	 */
1175 	unsigned long section_mem_map;
1176 
1177 	struct mem_section_usage *usage;
1178 #ifdef CONFIG_PAGE_EXTENSION
1179 	/*
1180 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1181 	 * section. (see page_ext.h about this.)
1182 	 */
1183 	struct page_ext *page_ext;
1184 	unsigned long pad;
1185 #endif
1186 	/*
1187 	 * WARNING: mem_section must be a power-of-2 in size for the
1188 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1189 	 */
1190 };
1191 
1192 #ifdef CONFIG_SPARSEMEM_EXTREME
1193 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1194 #else
1195 #define SECTIONS_PER_ROOT	1
1196 #endif
1197 
1198 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1199 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1200 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1201 
1202 #ifdef CONFIG_SPARSEMEM_EXTREME
1203 extern struct mem_section **mem_section;
1204 #else
1205 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1206 #endif
1207 
1208 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1209 {
1210 	return ms->usage->pageblock_flags;
1211 }
1212 
1213 static inline struct mem_section *__nr_to_section(unsigned long nr)
1214 {
1215 #ifdef CONFIG_SPARSEMEM_EXTREME
1216 	if (!mem_section)
1217 		return NULL;
1218 #endif
1219 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1220 		return NULL;
1221 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1222 }
1223 extern unsigned long __section_nr(struct mem_section *ms);
1224 extern size_t mem_section_usage_size(void);
1225 
1226 /*
1227  * We use the lower bits of the mem_map pointer to store
1228  * a little bit of information.  The pointer is calculated
1229  * as mem_map - section_nr_to_pfn(pnum).  The result is
1230  * aligned to the minimum alignment of the two values:
1231  *   1. All mem_map arrays are page-aligned.
1232  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1233  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1234  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1235  *      worst combination is powerpc with 256k pages,
1236  *      which results in PFN_SECTION_SHIFT equal 6.
1237  * To sum it up, at least 6 bits are available.
1238  */
1239 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1240 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1241 #define SECTION_IS_ONLINE	(1UL<<2)
1242 #define SECTION_IS_EARLY	(1UL<<3)
1243 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1244 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1245 #define SECTION_NID_SHIFT	3
1246 
1247 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1248 {
1249 	unsigned long map = section->section_mem_map;
1250 	map &= SECTION_MAP_MASK;
1251 	return (struct page *)map;
1252 }
1253 
1254 static inline int present_section(struct mem_section *section)
1255 {
1256 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1257 }
1258 
1259 static inline int present_section_nr(unsigned long nr)
1260 {
1261 	return present_section(__nr_to_section(nr));
1262 }
1263 
1264 static inline int valid_section(struct mem_section *section)
1265 {
1266 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1267 }
1268 
1269 static inline int early_section(struct mem_section *section)
1270 {
1271 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1272 }
1273 
1274 static inline int valid_section_nr(unsigned long nr)
1275 {
1276 	return valid_section(__nr_to_section(nr));
1277 }
1278 
1279 static inline int online_section(struct mem_section *section)
1280 {
1281 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1282 }
1283 
1284 static inline int online_section_nr(unsigned long nr)
1285 {
1286 	return online_section(__nr_to_section(nr));
1287 }
1288 
1289 #ifdef CONFIG_MEMORY_HOTPLUG
1290 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1291 #ifdef CONFIG_MEMORY_HOTREMOVE
1292 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1293 #endif
1294 #endif
1295 
1296 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1297 {
1298 	return __nr_to_section(pfn_to_section_nr(pfn));
1299 }
1300 
1301 extern unsigned long __highest_present_section_nr;
1302 
1303 static inline int subsection_map_index(unsigned long pfn)
1304 {
1305 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1306 }
1307 
1308 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1309 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1310 {
1311 	int idx = subsection_map_index(pfn);
1312 
1313 	return test_bit(idx, ms->usage->subsection_map);
1314 }
1315 #else
1316 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1317 {
1318 	return 1;
1319 }
1320 #endif
1321 
1322 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1323 static inline int pfn_valid(unsigned long pfn)
1324 {
1325 	struct mem_section *ms;
1326 
1327 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1328 		return 0;
1329 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1330 	if (!valid_section(ms))
1331 		return 0;
1332 	/*
1333 	 * Traditionally early sections always returned pfn_valid() for
1334 	 * the entire section-sized span.
1335 	 */
1336 	return early_section(ms) || pfn_section_valid(ms, pfn);
1337 }
1338 #endif
1339 
1340 static inline int pfn_in_present_section(unsigned long pfn)
1341 {
1342 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1343 		return 0;
1344 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1345 }
1346 
1347 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1348 {
1349 	while (++section_nr <= __highest_present_section_nr) {
1350 		if (present_section_nr(section_nr))
1351 			return section_nr;
1352 	}
1353 
1354 	return -1;
1355 }
1356 
1357 /*
1358  * These are _only_ used during initialisation, therefore they
1359  * can use __initdata ...  They could have names to indicate
1360  * this restriction.
1361  */
1362 #ifdef CONFIG_NUMA
1363 #define pfn_to_nid(pfn)							\
1364 ({									\
1365 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1366 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1367 })
1368 #else
1369 #define pfn_to_nid(pfn)		(0)
1370 #endif
1371 
1372 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1373 void sparse_init(void);
1374 #else
1375 #define sparse_init()	do {} while (0)
1376 #define sparse_index_init(_sec, _nid)  do {} while (0)
1377 #define pfn_in_present_section pfn_valid
1378 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1379 #endif /* CONFIG_SPARSEMEM */
1380 
1381 /*
1382  * During memory init memblocks map pfns to nids. The search is expensive and
1383  * this caches recent lookups. The implementation of __early_pfn_to_nid
1384  * may treat start/end as pfns or sections.
1385  */
1386 struct mminit_pfnnid_cache {
1387 	unsigned long last_start;
1388 	unsigned long last_end;
1389 	int last_nid;
1390 };
1391 
1392 #ifndef early_pfn_valid
1393 #define early_pfn_valid(pfn)	(1)
1394 #endif
1395 
1396 /*
1397  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1398  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1399  * pfn_valid_within() should be used in this case; we optimise this away
1400  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1401  */
1402 #ifdef CONFIG_HOLES_IN_ZONE
1403 #define pfn_valid_within(pfn) pfn_valid(pfn)
1404 #else
1405 #define pfn_valid_within(pfn) (1)
1406 #endif
1407 
1408 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1409 /*
1410  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1411  * associated with it or not. This means that a struct page exists for this
1412  * pfn. The caller cannot assume the page is fully initialized in general.
1413  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1414  * will ensure the struct page is fully online and initialized. Special pages
1415  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1416  *
1417  * In FLATMEM, it is expected that holes always have valid memmap as long as
1418  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1419  * that a valid section has a memmap for the entire section.
1420  *
1421  * However, an ARM, and maybe other embedded architectures in the future
1422  * free memmap backing holes to save memory on the assumption the memmap is
1423  * never used. The page_zone linkages are then broken even though pfn_valid()
1424  * returns true. A walker of the full memmap must then do this additional
1425  * check to ensure the memmap they are looking at is sane by making sure
1426  * the zone and PFN linkages are still valid. This is expensive, but walkers
1427  * of the full memmap are extremely rare.
1428  */
1429 bool memmap_valid_within(unsigned long pfn,
1430 					struct page *page, struct zone *zone);
1431 #else
1432 static inline bool memmap_valid_within(unsigned long pfn,
1433 					struct page *page, struct zone *zone)
1434 {
1435 	return true;
1436 }
1437 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1438 
1439 #endif /* !__GENERATING_BOUNDS.H */
1440 #endif /* !__ASSEMBLY__ */
1441 #endif /* _LINUX_MMZONE_H */
1442