1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MMZONE_H 3 #define _LINUX_MMZONE_H 4 5 #ifndef __ASSEMBLY__ 6 #ifndef __GENERATING_BOUNDS_H 7 8 #include <linux/spinlock.h> 9 #include <linux/list.h> 10 #include <linux/wait.h> 11 #include <linux/bitops.h> 12 #include <linux/cache.h> 13 #include <linux/threads.h> 14 #include <linux/numa.h> 15 #include <linux/init.h> 16 #include <linux/seqlock.h> 17 #include <linux/nodemask.h> 18 #include <linux/pageblock-flags.h> 19 #include <linux/page-flags-layout.h> 20 #include <linux/atomic.h> 21 #include <asm/page.h> 22 23 /* Free memory management - zoned buddy allocator. */ 24 #ifndef CONFIG_FORCE_MAX_ZONEORDER 25 #define MAX_ORDER 11 26 #else 27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 28 #endif 29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 30 31 /* 32 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 33 * costly to service. That is between allocation orders which should 34 * coalesce naturally under reasonable reclaim pressure and those which 35 * will not. 36 */ 37 #define PAGE_ALLOC_COSTLY_ORDER 3 38 39 enum migratetype { 40 MIGRATE_UNMOVABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_RECLAIMABLE, 43 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 44 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 45 #ifdef CONFIG_CMA 46 /* 47 * MIGRATE_CMA migration type is designed to mimic the way 48 * ZONE_MOVABLE works. Only movable pages can be allocated 49 * from MIGRATE_CMA pageblocks and page allocator never 50 * implicitly change migration type of MIGRATE_CMA pageblock. 51 * 52 * The way to use it is to change migratetype of a range of 53 * pageblocks to MIGRATE_CMA which can be done by 54 * __free_pageblock_cma() function. What is important though 55 * is that a range of pageblocks must be aligned to 56 * MAX_ORDER_NR_PAGES should biggest page be bigger then 57 * a single pageblock. 58 */ 59 MIGRATE_CMA, 60 #endif 61 #ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63 #endif 64 MIGRATE_TYPES 65 }; 66 67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68 extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70 #ifdef CONFIG_CMA 71 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73 #else 74 # define is_migrate_cma(migratetype) false 75 # define is_migrate_cma_page(_page) false 76 #endif 77 78 static inline bool is_migrate_movable(int mt) 79 { 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81 } 82 83 #define for_each_migratetype_order(order, type) \ 84 for (order = 0; order < MAX_ORDER; order++) \ 85 for (type = 0; type < MIGRATE_TYPES; type++) 86 87 extern int page_group_by_mobility_disabled; 88 89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 91 92 #define get_pageblock_migratetype(page) \ 93 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 94 PB_migrate_end, MIGRATETYPE_MASK) 95 96 struct free_area { 97 struct list_head free_list[MIGRATE_TYPES]; 98 unsigned long nr_free; 99 }; 100 101 struct pglist_data; 102 103 /* 104 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 105 * So add a wild amount of padding here to ensure that they fall into separate 106 * cachelines. There are very few zone structures in the machine, so space 107 * consumption is not a concern here. 108 */ 109 #if defined(CONFIG_SMP) 110 struct zone_padding { 111 char x[0]; 112 } ____cacheline_internodealigned_in_smp; 113 #define ZONE_PADDING(name) struct zone_padding name; 114 #else 115 #define ZONE_PADDING(name) 116 #endif 117 118 #ifdef CONFIG_NUMA 119 enum numa_stat_item { 120 NUMA_HIT, /* allocated in intended node */ 121 NUMA_MISS, /* allocated in non intended node */ 122 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 123 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 124 NUMA_LOCAL, /* allocation from local node */ 125 NUMA_OTHER, /* allocation from other node */ 126 NR_VM_NUMA_STAT_ITEMS 127 }; 128 #else 129 #define NR_VM_NUMA_STAT_ITEMS 0 130 #endif 131 132 enum zone_stat_item { 133 /* First 128 byte cacheline (assuming 64 bit words) */ 134 NR_FREE_PAGES, 135 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 136 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 137 NR_ZONE_ACTIVE_ANON, 138 NR_ZONE_INACTIVE_FILE, 139 NR_ZONE_ACTIVE_FILE, 140 NR_ZONE_UNEVICTABLE, 141 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 142 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 143 NR_PAGETABLE, /* used for pagetables */ 144 NR_KERNEL_STACK_KB, /* measured in KiB */ 145 /* Second 128 byte cacheline */ 146 NR_BOUNCE, 147 #if IS_ENABLED(CONFIG_ZSMALLOC) 148 NR_ZSPAGES, /* allocated in zsmalloc */ 149 #endif 150 NR_FREE_CMA_PAGES, 151 NR_VM_ZONE_STAT_ITEMS }; 152 153 enum node_stat_item { 154 NR_LRU_BASE, 155 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 156 NR_ACTIVE_ANON, /* " " " " " */ 157 NR_INACTIVE_FILE, /* " " " " " */ 158 NR_ACTIVE_FILE, /* " " " " " */ 159 NR_UNEVICTABLE, /* " " " " " */ 160 NR_SLAB_RECLAIMABLE, 161 NR_SLAB_UNRECLAIMABLE, 162 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 163 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 164 WORKINGSET_NODES, 165 WORKINGSET_REFAULT, 166 WORKINGSET_ACTIVATE, 167 WORKINGSET_RESTORE, 168 WORKINGSET_NODERECLAIM, 169 NR_ANON_MAPPED, /* Mapped anonymous pages */ 170 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 171 only modified from process context */ 172 NR_FILE_PAGES, 173 NR_FILE_DIRTY, 174 NR_WRITEBACK, 175 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 176 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 177 NR_SHMEM_THPS, 178 NR_SHMEM_PMDMAPPED, 179 NR_ANON_THPS, 180 NR_UNSTABLE_NFS, /* NFS unstable pages */ 181 NR_VMSCAN_WRITE, 182 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 183 NR_DIRTIED, /* page dirtyings since bootup */ 184 NR_WRITTEN, /* page writings since bootup */ 185 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 186 NR_VM_NODE_STAT_ITEMS 187 }; 188 189 /* 190 * We do arithmetic on the LRU lists in various places in the code, 191 * so it is important to keep the active lists LRU_ACTIVE higher in 192 * the array than the corresponding inactive lists, and to keep 193 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 194 * 195 * This has to be kept in sync with the statistics in zone_stat_item 196 * above and the descriptions in vmstat_text in mm/vmstat.c 197 */ 198 #define LRU_BASE 0 199 #define LRU_ACTIVE 1 200 #define LRU_FILE 2 201 202 enum lru_list { 203 LRU_INACTIVE_ANON = LRU_BASE, 204 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 205 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 206 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 207 LRU_UNEVICTABLE, 208 NR_LRU_LISTS 209 }; 210 211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 212 213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 214 215 static inline int is_file_lru(enum lru_list lru) 216 { 217 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 218 } 219 220 static inline int is_active_lru(enum lru_list lru) 221 { 222 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 223 } 224 225 struct zone_reclaim_stat { 226 /* 227 * The pageout code in vmscan.c keeps track of how many of the 228 * mem/swap backed and file backed pages are referenced. 229 * The higher the rotated/scanned ratio, the more valuable 230 * that cache is. 231 * 232 * The anon LRU stats live in [0], file LRU stats in [1] 233 */ 234 unsigned long recent_rotated[2]; 235 unsigned long recent_scanned[2]; 236 }; 237 238 struct lruvec { 239 struct list_head lists[NR_LRU_LISTS]; 240 struct zone_reclaim_stat reclaim_stat; 241 /* Evictions & activations on the inactive file list */ 242 atomic_long_t inactive_age; 243 /* Refaults at the time of last reclaim cycle */ 244 unsigned long refaults; 245 #ifdef CONFIG_MEMCG 246 struct pglist_data *pgdat; 247 #endif 248 }; 249 250 /* Mask used at gathering information at once (see memcontrol.c) */ 251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 253 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 254 255 /* Isolate unmapped file */ 256 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 257 /* Isolate for asynchronous migration */ 258 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 259 /* Isolate unevictable pages */ 260 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 261 262 /* LRU Isolation modes. */ 263 typedef unsigned __bitwise isolate_mode_t; 264 265 enum zone_watermarks { 266 WMARK_MIN, 267 WMARK_LOW, 268 WMARK_HIGH, 269 NR_WMARK 270 }; 271 272 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 273 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 274 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 275 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 276 277 struct per_cpu_pages { 278 int count; /* number of pages in the list */ 279 int high; /* high watermark, emptying needed */ 280 int batch; /* chunk size for buddy add/remove */ 281 282 /* Lists of pages, one per migrate type stored on the pcp-lists */ 283 struct list_head lists[MIGRATE_PCPTYPES]; 284 }; 285 286 struct per_cpu_pageset { 287 struct per_cpu_pages pcp; 288 #ifdef CONFIG_NUMA 289 s8 expire; 290 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 291 #endif 292 #ifdef CONFIG_SMP 293 s8 stat_threshold; 294 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 295 #endif 296 }; 297 298 struct per_cpu_nodestat { 299 s8 stat_threshold; 300 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 301 }; 302 303 #endif /* !__GENERATING_BOUNDS.H */ 304 305 enum zone_type { 306 #ifdef CONFIG_ZONE_DMA 307 /* 308 * ZONE_DMA is used when there are devices that are not able 309 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 310 * carve out the portion of memory that is needed for these devices. 311 * The range is arch specific. 312 * 313 * Some examples 314 * 315 * Architecture Limit 316 * --------------------------- 317 * parisc, ia64, sparc <4G 318 * s390, powerpc <2G 319 * arm Various 320 * alpha Unlimited or 0-16MB. 321 * 322 * i386, x86_64 and multiple other arches 323 * <16M. 324 */ 325 ZONE_DMA, 326 #endif 327 #ifdef CONFIG_ZONE_DMA32 328 /* 329 * x86_64 needs two ZONE_DMAs because it supports devices that are 330 * only able to do DMA to the lower 16M but also 32 bit devices that 331 * can only do DMA areas below 4G. 332 */ 333 ZONE_DMA32, 334 #endif 335 /* 336 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 337 * performed on pages in ZONE_NORMAL if the DMA devices support 338 * transfers to all addressable memory. 339 */ 340 ZONE_NORMAL, 341 #ifdef CONFIG_HIGHMEM 342 /* 343 * A memory area that is only addressable by the kernel through 344 * mapping portions into its own address space. This is for example 345 * used by i386 to allow the kernel to address the memory beyond 346 * 900MB. The kernel will set up special mappings (page 347 * table entries on i386) for each page that the kernel needs to 348 * access. 349 */ 350 ZONE_HIGHMEM, 351 #endif 352 ZONE_MOVABLE, 353 #ifdef CONFIG_ZONE_DEVICE 354 ZONE_DEVICE, 355 #endif 356 __MAX_NR_ZONES 357 358 }; 359 360 #ifndef __GENERATING_BOUNDS_H 361 362 struct zone { 363 /* Read-mostly fields */ 364 365 /* zone watermarks, access with *_wmark_pages(zone) macros */ 366 unsigned long _watermark[NR_WMARK]; 367 unsigned long watermark_boost; 368 369 unsigned long nr_reserved_highatomic; 370 371 /* 372 * We don't know if the memory that we're going to allocate will be 373 * freeable or/and it will be released eventually, so to avoid totally 374 * wasting several GB of ram we must reserve some of the lower zone 375 * memory (otherwise we risk to run OOM on the lower zones despite 376 * there being tons of freeable ram on the higher zones). This array is 377 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 378 * changes. 379 */ 380 long lowmem_reserve[MAX_NR_ZONES]; 381 382 #ifdef CONFIG_NUMA 383 int node; 384 #endif 385 struct pglist_data *zone_pgdat; 386 struct per_cpu_pageset __percpu *pageset; 387 388 #ifndef CONFIG_SPARSEMEM 389 /* 390 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 391 * In SPARSEMEM, this map is stored in struct mem_section 392 */ 393 unsigned long *pageblock_flags; 394 #endif /* CONFIG_SPARSEMEM */ 395 396 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 397 unsigned long zone_start_pfn; 398 399 /* 400 * spanned_pages is the total pages spanned by the zone, including 401 * holes, which is calculated as: 402 * spanned_pages = zone_end_pfn - zone_start_pfn; 403 * 404 * present_pages is physical pages existing within the zone, which 405 * is calculated as: 406 * present_pages = spanned_pages - absent_pages(pages in holes); 407 * 408 * managed_pages is present pages managed by the buddy system, which 409 * is calculated as (reserved_pages includes pages allocated by the 410 * bootmem allocator): 411 * managed_pages = present_pages - reserved_pages; 412 * 413 * So present_pages may be used by memory hotplug or memory power 414 * management logic to figure out unmanaged pages by checking 415 * (present_pages - managed_pages). And managed_pages should be used 416 * by page allocator and vm scanner to calculate all kinds of watermarks 417 * and thresholds. 418 * 419 * Locking rules: 420 * 421 * zone_start_pfn and spanned_pages are protected by span_seqlock. 422 * It is a seqlock because it has to be read outside of zone->lock, 423 * and it is done in the main allocator path. But, it is written 424 * quite infrequently. 425 * 426 * The span_seq lock is declared along with zone->lock because it is 427 * frequently read in proximity to zone->lock. It's good to 428 * give them a chance of being in the same cacheline. 429 * 430 * Write access to present_pages at runtime should be protected by 431 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 432 * present_pages should get_online_mems() to get a stable value. 433 */ 434 atomic_long_t managed_pages; 435 unsigned long spanned_pages; 436 unsigned long present_pages; 437 438 const char *name; 439 440 #ifdef CONFIG_MEMORY_ISOLATION 441 /* 442 * Number of isolated pageblock. It is used to solve incorrect 443 * freepage counting problem due to racy retrieving migratetype 444 * of pageblock. Protected by zone->lock. 445 */ 446 unsigned long nr_isolate_pageblock; 447 #endif 448 449 #ifdef CONFIG_MEMORY_HOTPLUG 450 /* see spanned/present_pages for more description */ 451 seqlock_t span_seqlock; 452 #endif 453 454 int initialized; 455 456 /* Write-intensive fields used from the page allocator */ 457 ZONE_PADDING(_pad1_) 458 459 /* free areas of different sizes */ 460 struct free_area free_area[MAX_ORDER]; 461 462 /* zone flags, see below */ 463 unsigned long flags; 464 465 /* Primarily protects free_area */ 466 spinlock_t lock; 467 468 /* Write-intensive fields used by compaction and vmstats. */ 469 ZONE_PADDING(_pad2_) 470 471 /* 472 * When free pages are below this point, additional steps are taken 473 * when reading the number of free pages to avoid per-cpu counter 474 * drift allowing watermarks to be breached 475 */ 476 unsigned long percpu_drift_mark; 477 478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 479 /* pfn where compaction free scanner should start */ 480 unsigned long compact_cached_free_pfn; 481 /* pfn where async and sync compaction migration scanner should start */ 482 unsigned long compact_cached_migrate_pfn[2]; 483 unsigned long compact_init_migrate_pfn; 484 unsigned long compact_init_free_pfn; 485 #endif 486 487 #ifdef CONFIG_COMPACTION 488 /* 489 * On compaction failure, 1<<compact_defer_shift compactions 490 * are skipped before trying again. The number attempted since 491 * last failure is tracked with compact_considered. 492 */ 493 unsigned int compact_considered; 494 unsigned int compact_defer_shift; 495 int compact_order_failed; 496 #endif 497 498 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 499 /* Set to true when the PG_migrate_skip bits should be cleared */ 500 bool compact_blockskip_flush; 501 #endif 502 503 bool contiguous; 504 505 ZONE_PADDING(_pad3_) 506 /* Zone statistics */ 507 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 508 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 509 } ____cacheline_internodealigned_in_smp; 510 511 enum pgdat_flags { 512 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 513 * a congested BDI 514 */ 515 PGDAT_DIRTY, /* reclaim scanning has recently found 516 * many dirty file pages at the tail 517 * of the LRU. 518 */ 519 PGDAT_WRITEBACK, /* reclaim scanning has recently found 520 * many pages under writeback 521 */ 522 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 523 }; 524 525 enum zone_flags { 526 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 527 * Cleared when kswapd is woken. 528 */ 529 }; 530 531 static inline unsigned long zone_managed_pages(struct zone *zone) 532 { 533 return (unsigned long)atomic_long_read(&zone->managed_pages); 534 } 535 536 static inline unsigned long zone_end_pfn(const struct zone *zone) 537 { 538 return zone->zone_start_pfn + zone->spanned_pages; 539 } 540 541 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 542 { 543 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 544 } 545 546 static inline bool zone_is_initialized(struct zone *zone) 547 { 548 return zone->initialized; 549 } 550 551 static inline bool zone_is_empty(struct zone *zone) 552 { 553 return zone->spanned_pages == 0; 554 } 555 556 /* 557 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 558 * intersection with the given zone 559 */ 560 static inline bool zone_intersects(struct zone *zone, 561 unsigned long start_pfn, unsigned long nr_pages) 562 { 563 if (zone_is_empty(zone)) 564 return false; 565 if (start_pfn >= zone_end_pfn(zone) || 566 start_pfn + nr_pages <= zone->zone_start_pfn) 567 return false; 568 569 return true; 570 } 571 572 /* 573 * The "priority" of VM scanning is how much of the queues we will scan in one 574 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 575 * queues ("queue_length >> 12") during an aging round. 576 */ 577 #define DEF_PRIORITY 12 578 579 /* Maximum number of zones on a zonelist */ 580 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 581 582 enum { 583 ZONELIST_FALLBACK, /* zonelist with fallback */ 584 #ifdef CONFIG_NUMA 585 /* 586 * The NUMA zonelists are doubled because we need zonelists that 587 * restrict the allocations to a single node for __GFP_THISNODE. 588 */ 589 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 590 #endif 591 MAX_ZONELISTS 592 }; 593 594 /* 595 * This struct contains information about a zone in a zonelist. It is stored 596 * here to avoid dereferences into large structures and lookups of tables 597 */ 598 struct zoneref { 599 struct zone *zone; /* Pointer to actual zone */ 600 int zone_idx; /* zone_idx(zoneref->zone) */ 601 }; 602 603 /* 604 * One allocation request operates on a zonelist. A zonelist 605 * is a list of zones, the first one is the 'goal' of the 606 * allocation, the other zones are fallback zones, in decreasing 607 * priority. 608 * 609 * To speed the reading of the zonelist, the zonerefs contain the zone index 610 * of the entry being read. Helper functions to access information given 611 * a struct zoneref are 612 * 613 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 614 * zonelist_zone_idx() - Return the index of the zone for an entry 615 * zonelist_node_idx() - Return the index of the node for an entry 616 */ 617 struct zonelist { 618 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 619 }; 620 621 #ifndef CONFIG_DISCONTIGMEM 622 /* The array of struct pages - for discontigmem use pgdat->lmem_map */ 623 extern struct page *mem_map; 624 #endif 625 626 /* 627 * On NUMA machines, each NUMA node would have a pg_data_t to describe 628 * it's memory layout. On UMA machines there is a single pglist_data which 629 * describes the whole memory. 630 * 631 * Memory statistics and page replacement data structures are maintained on a 632 * per-zone basis. 633 */ 634 struct bootmem_data; 635 typedef struct pglist_data { 636 struct zone node_zones[MAX_NR_ZONES]; 637 struct zonelist node_zonelists[MAX_ZONELISTS]; 638 int nr_zones; 639 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 640 struct page *node_mem_map; 641 #ifdef CONFIG_PAGE_EXTENSION 642 struct page_ext *node_page_ext; 643 #endif 644 #endif 645 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 646 /* 647 * Must be held any time you expect node_start_pfn, 648 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 649 * 650 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 651 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 652 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 653 * 654 * Nests above zone->lock and zone->span_seqlock 655 */ 656 spinlock_t node_size_lock; 657 #endif 658 unsigned long node_start_pfn; 659 unsigned long node_present_pages; /* total number of physical pages */ 660 unsigned long node_spanned_pages; /* total size of physical page 661 range, including holes */ 662 int node_id; 663 wait_queue_head_t kswapd_wait; 664 wait_queue_head_t pfmemalloc_wait; 665 struct task_struct *kswapd; /* Protected by 666 mem_hotplug_begin/end() */ 667 int kswapd_order; 668 enum zone_type kswapd_classzone_idx; 669 670 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 671 672 #ifdef CONFIG_COMPACTION 673 int kcompactd_max_order; 674 enum zone_type kcompactd_classzone_idx; 675 wait_queue_head_t kcompactd_wait; 676 struct task_struct *kcompactd; 677 #endif 678 /* 679 * This is a per-node reserve of pages that are not available 680 * to userspace allocations. 681 */ 682 unsigned long totalreserve_pages; 683 684 #ifdef CONFIG_NUMA 685 /* 686 * zone reclaim becomes active if more unmapped pages exist. 687 */ 688 unsigned long min_unmapped_pages; 689 unsigned long min_slab_pages; 690 #endif /* CONFIG_NUMA */ 691 692 /* Write-intensive fields used by page reclaim */ 693 ZONE_PADDING(_pad1_) 694 spinlock_t lru_lock; 695 696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 697 /* 698 * If memory initialisation on large machines is deferred then this 699 * is the first PFN that needs to be initialised. 700 */ 701 unsigned long first_deferred_pfn; 702 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 703 704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 705 spinlock_t split_queue_lock; 706 struct list_head split_queue; 707 unsigned long split_queue_len; 708 #endif 709 710 /* Fields commonly accessed by the page reclaim scanner */ 711 struct lruvec lruvec; 712 713 unsigned long flags; 714 715 ZONE_PADDING(_pad2_) 716 717 /* Per-node vmstats */ 718 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 719 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 720 } pg_data_t; 721 722 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 723 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 724 #ifdef CONFIG_FLAT_NODE_MEM_MAP 725 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 726 #else 727 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 728 #endif 729 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 730 731 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 732 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 733 734 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 735 { 736 return &pgdat->lruvec; 737 } 738 739 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 740 { 741 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 742 } 743 744 static inline bool pgdat_is_empty(pg_data_t *pgdat) 745 { 746 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 747 } 748 749 #include <linux/memory_hotplug.h> 750 751 void build_all_zonelists(pg_data_t *pgdat); 752 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 753 enum zone_type classzone_idx); 754 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 755 int classzone_idx, unsigned int alloc_flags, 756 long free_pages); 757 bool zone_watermark_ok(struct zone *z, unsigned int order, 758 unsigned long mark, int classzone_idx, 759 unsigned int alloc_flags); 760 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 761 unsigned long mark, int classzone_idx); 762 enum memmap_context { 763 MEMMAP_EARLY, 764 MEMMAP_HOTPLUG, 765 }; 766 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 767 unsigned long size); 768 769 extern void lruvec_init(struct lruvec *lruvec); 770 771 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 772 { 773 #ifdef CONFIG_MEMCG 774 return lruvec->pgdat; 775 #else 776 return container_of(lruvec, struct pglist_data, lruvec); 777 #endif 778 } 779 780 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 781 782 #ifdef CONFIG_HAVE_MEMORY_PRESENT 783 void memory_present(int nid, unsigned long start, unsigned long end); 784 #else 785 static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 786 #endif 787 788 #if defined(CONFIG_SPARSEMEM) 789 void memblocks_present(void); 790 #else 791 static inline void memblocks_present(void) {} 792 #endif 793 794 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 795 int local_memory_node(int node_id); 796 #else 797 static inline int local_memory_node(int node_id) { return node_id; }; 798 #endif 799 800 /* 801 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 802 */ 803 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 804 805 #ifdef CONFIG_ZONE_DEVICE 806 static inline bool is_dev_zone(const struct zone *zone) 807 { 808 return zone_idx(zone) == ZONE_DEVICE; 809 } 810 #else 811 static inline bool is_dev_zone(const struct zone *zone) 812 { 813 return false; 814 } 815 #endif 816 817 /* 818 * Returns true if a zone has pages managed by the buddy allocator. 819 * All the reclaim decisions have to use this function rather than 820 * populated_zone(). If the whole zone is reserved then we can easily 821 * end up with populated_zone() && !managed_zone(). 822 */ 823 static inline bool managed_zone(struct zone *zone) 824 { 825 return zone_managed_pages(zone); 826 } 827 828 /* Returns true if a zone has memory */ 829 static inline bool populated_zone(struct zone *zone) 830 { 831 return zone->present_pages; 832 } 833 834 #ifdef CONFIG_NUMA 835 static inline int zone_to_nid(struct zone *zone) 836 { 837 return zone->node; 838 } 839 840 static inline void zone_set_nid(struct zone *zone, int nid) 841 { 842 zone->node = nid; 843 } 844 #else 845 static inline int zone_to_nid(struct zone *zone) 846 { 847 return 0; 848 } 849 850 static inline void zone_set_nid(struct zone *zone, int nid) {} 851 #endif 852 853 extern int movable_zone; 854 855 #ifdef CONFIG_HIGHMEM 856 static inline int zone_movable_is_highmem(void) 857 { 858 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 859 return movable_zone == ZONE_HIGHMEM; 860 #else 861 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 862 #endif 863 } 864 #endif 865 866 static inline int is_highmem_idx(enum zone_type idx) 867 { 868 #ifdef CONFIG_HIGHMEM 869 return (idx == ZONE_HIGHMEM || 870 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 871 #else 872 return 0; 873 #endif 874 } 875 876 /** 877 * is_highmem - helper function to quickly check if a struct zone is a 878 * highmem zone or not. This is an attempt to keep references 879 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 880 * @zone - pointer to struct zone variable 881 */ 882 static inline int is_highmem(struct zone *zone) 883 { 884 #ifdef CONFIG_HIGHMEM 885 return is_highmem_idx(zone_idx(zone)); 886 #else 887 return 0; 888 #endif 889 } 890 891 /* These two functions are used to setup the per zone pages min values */ 892 struct ctl_table; 893 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 894 void __user *, size_t *, loff_t *); 895 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, 896 void __user *, size_t *, loff_t *); 897 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 898 void __user *, size_t *, loff_t *); 899 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 900 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 901 void __user *, size_t *, loff_t *); 902 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 903 void __user *, size_t *, loff_t *); 904 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 905 void __user *, size_t *, loff_t *); 906 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 907 void __user *, size_t *, loff_t *); 908 909 extern int numa_zonelist_order_handler(struct ctl_table *, int, 910 void __user *, size_t *, loff_t *); 911 extern char numa_zonelist_order[]; 912 #define NUMA_ZONELIST_ORDER_LEN 16 913 914 #ifndef CONFIG_NEED_MULTIPLE_NODES 915 916 extern struct pglist_data contig_page_data; 917 #define NODE_DATA(nid) (&contig_page_data) 918 #define NODE_MEM_MAP(nid) mem_map 919 920 #else /* CONFIG_NEED_MULTIPLE_NODES */ 921 922 #include <asm/mmzone.h> 923 924 #endif /* !CONFIG_NEED_MULTIPLE_NODES */ 925 926 extern struct pglist_data *first_online_pgdat(void); 927 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 928 extern struct zone *next_zone(struct zone *zone); 929 930 /** 931 * for_each_online_pgdat - helper macro to iterate over all online nodes 932 * @pgdat - pointer to a pg_data_t variable 933 */ 934 #define for_each_online_pgdat(pgdat) \ 935 for (pgdat = first_online_pgdat(); \ 936 pgdat; \ 937 pgdat = next_online_pgdat(pgdat)) 938 /** 939 * for_each_zone - helper macro to iterate over all memory zones 940 * @zone - pointer to struct zone variable 941 * 942 * The user only needs to declare the zone variable, for_each_zone 943 * fills it in. 944 */ 945 #define for_each_zone(zone) \ 946 for (zone = (first_online_pgdat())->node_zones; \ 947 zone; \ 948 zone = next_zone(zone)) 949 950 #define for_each_populated_zone(zone) \ 951 for (zone = (first_online_pgdat())->node_zones; \ 952 zone; \ 953 zone = next_zone(zone)) \ 954 if (!populated_zone(zone)) \ 955 ; /* do nothing */ \ 956 else 957 958 static inline struct zone *zonelist_zone(struct zoneref *zoneref) 959 { 960 return zoneref->zone; 961 } 962 963 static inline int zonelist_zone_idx(struct zoneref *zoneref) 964 { 965 return zoneref->zone_idx; 966 } 967 968 static inline int zonelist_node_idx(struct zoneref *zoneref) 969 { 970 return zone_to_nid(zoneref->zone); 971 } 972 973 struct zoneref *__next_zones_zonelist(struct zoneref *z, 974 enum zone_type highest_zoneidx, 975 nodemask_t *nodes); 976 977 /** 978 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 979 * @z - The cursor used as a starting point for the search 980 * @highest_zoneidx - The zone index of the highest zone to return 981 * @nodes - An optional nodemask to filter the zonelist with 982 * 983 * This function returns the next zone at or below a given zone index that is 984 * within the allowed nodemask using a cursor as the starting point for the 985 * search. The zoneref returned is a cursor that represents the current zone 986 * being examined. It should be advanced by one before calling 987 * next_zones_zonelist again. 988 */ 989 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 990 enum zone_type highest_zoneidx, 991 nodemask_t *nodes) 992 { 993 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 994 return z; 995 return __next_zones_zonelist(z, highest_zoneidx, nodes); 996 } 997 998 /** 999 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1000 * @zonelist - The zonelist to search for a suitable zone 1001 * @highest_zoneidx - The zone index of the highest zone to return 1002 * @nodes - An optional nodemask to filter the zonelist with 1003 * @return - Zoneref pointer for the first suitable zone found (see below) 1004 * 1005 * This function returns the first zone at or below a given zone index that is 1006 * within the allowed nodemask. The zoneref returned is a cursor that can be 1007 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1008 * one before calling. 1009 * 1010 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1011 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1012 * update due to cpuset modification. 1013 */ 1014 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1015 enum zone_type highest_zoneidx, 1016 nodemask_t *nodes) 1017 { 1018 return next_zones_zonelist(zonelist->_zonerefs, 1019 highest_zoneidx, nodes); 1020 } 1021 1022 /** 1023 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1024 * @zone - The current zone in the iterator 1025 * @z - The current pointer within zonelist->zones being iterated 1026 * @zlist - The zonelist being iterated 1027 * @highidx - The zone index of the highest zone to return 1028 * @nodemask - Nodemask allowed by the allocator 1029 * 1030 * This iterator iterates though all zones at or below a given zone index and 1031 * within a given nodemask 1032 */ 1033 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1034 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1035 zone; \ 1036 z = next_zones_zonelist(++z, highidx, nodemask), \ 1037 zone = zonelist_zone(z)) 1038 1039 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1040 for (zone = z->zone; \ 1041 zone; \ 1042 z = next_zones_zonelist(++z, highidx, nodemask), \ 1043 zone = zonelist_zone(z)) 1044 1045 1046 /** 1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1048 * @zone - The current zone in the iterator 1049 * @z - The current pointer within zonelist->zones being iterated 1050 * @zlist - The zonelist being iterated 1051 * @highidx - The zone index of the highest zone to return 1052 * 1053 * This iterator iterates though all zones at or below a given zone index. 1054 */ 1055 #define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1056 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1057 1058 #ifdef CONFIG_SPARSEMEM 1059 #include <asm/sparsemem.h> 1060 #endif 1061 1062 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1063 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1064 static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1065 { 1066 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1067 return 0; 1068 } 1069 #endif 1070 1071 #ifdef CONFIG_FLATMEM 1072 #define pfn_to_nid(pfn) (0) 1073 #endif 1074 1075 #ifdef CONFIG_SPARSEMEM 1076 1077 /* 1078 * SECTION_SHIFT #bits space required to store a section # 1079 * 1080 * PA_SECTION_SHIFT physical address to/from section number 1081 * PFN_SECTION_SHIFT pfn to/from section number 1082 */ 1083 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1084 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1085 1086 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1087 1088 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1089 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1090 1091 #define SECTION_BLOCKFLAGS_BITS \ 1092 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1093 1094 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1095 #error Allocator MAX_ORDER exceeds SECTION_SIZE 1096 #endif 1097 1098 static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1099 { 1100 return pfn >> PFN_SECTION_SHIFT; 1101 } 1102 static inline unsigned long section_nr_to_pfn(unsigned long sec) 1103 { 1104 return sec << PFN_SECTION_SHIFT; 1105 } 1106 1107 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1108 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1109 1110 struct page; 1111 struct page_ext; 1112 struct mem_section { 1113 /* 1114 * This is, logically, a pointer to an array of struct 1115 * pages. However, it is stored with some other magic. 1116 * (see sparse.c::sparse_init_one_section()) 1117 * 1118 * Additionally during early boot we encode node id of 1119 * the location of the section here to guide allocation. 1120 * (see sparse.c::memory_present()) 1121 * 1122 * Making it a UL at least makes someone do a cast 1123 * before using it wrong. 1124 */ 1125 unsigned long section_mem_map; 1126 1127 /* See declaration of similar field in struct zone */ 1128 unsigned long *pageblock_flags; 1129 #ifdef CONFIG_PAGE_EXTENSION 1130 /* 1131 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1132 * section. (see page_ext.h about this.) 1133 */ 1134 struct page_ext *page_ext; 1135 unsigned long pad; 1136 #endif 1137 /* 1138 * WARNING: mem_section must be a power-of-2 in size for the 1139 * calculation and use of SECTION_ROOT_MASK to make sense. 1140 */ 1141 }; 1142 1143 #ifdef CONFIG_SPARSEMEM_EXTREME 1144 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1145 #else 1146 #define SECTIONS_PER_ROOT 1 1147 #endif 1148 1149 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1150 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1151 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1152 1153 #ifdef CONFIG_SPARSEMEM_EXTREME 1154 extern struct mem_section **mem_section; 1155 #else 1156 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1157 #endif 1158 1159 static inline struct mem_section *__nr_to_section(unsigned long nr) 1160 { 1161 #ifdef CONFIG_SPARSEMEM_EXTREME 1162 if (!mem_section) 1163 return NULL; 1164 #endif 1165 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1166 return NULL; 1167 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1168 } 1169 extern int __section_nr(struct mem_section* ms); 1170 extern unsigned long usemap_size(void); 1171 1172 /* 1173 * We use the lower bits of the mem_map pointer to store 1174 * a little bit of information. The pointer is calculated 1175 * as mem_map - section_nr_to_pfn(pnum). The result is 1176 * aligned to the minimum alignment of the two values: 1177 * 1. All mem_map arrays are page-aligned. 1178 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1179 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1180 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1181 * worst combination is powerpc with 256k pages, 1182 * which results in PFN_SECTION_SHIFT equal 6. 1183 * To sum it up, at least 6 bits are available. 1184 */ 1185 #define SECTION_MARKED_PRESENT (1UL<<0) 1186 #define SECTION_HAS_MEM_MAP (1UL<<1) 1187 #define SECTION_IS_ONLINE (1UL<<2) 1188 #define SECTION_MAP_LAST_BIT (1UL<<3) 1189 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1190 #define SECTION_NID_SHIFT 3 1191 1192 static inline struct page *__section_mem_map_addr(struct mem_section *section) 1193 { 1194 unsigned long map = section->section_mem_map; 1195 map &= SECTION_MAP_MASK; 1196 return (struct page *)map; 1197 } 1198 1199 static inline int present_section(struct mem_section *section) 1200 { 1201 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1202 } 1203 1204 static inline int present_section_nr(unsigned long nr) 1205 { 1206 return present_section(__nr_to_section(nr)); 1207 } 1208 1209 static inline int valid_section(struct mem_section *section) 1210 { 1211 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1212 } 1213 1214 static inline int valid_section_nr(unsigned long nr) 1215 { 1216 return valid_section(__nr_to_section(nr)); 1217 } 1218 1219 static inline int online_section(struct mem_section *section) 1220 { 1221 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1222 } 1223 1224 static inline int online_section_nr(unsigned long nr) 1225 { 1226 return online_section(__nr_to_section(nr)); 1227 } 1228 1229 #ifdef CONFIG_MEMORY_HOTPLUG 1230 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1231 #ifdef CONFIG_MEMORY_HOTREMOVE 1232 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1233 #endif 1234 #endif 1235 1236 static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1237 { 1238 return __nr_to_section(pfn_to_section_nr(pfn)); 1239 } 1240 1241 extern int __highest_present_section_nr; 1242 1243 #ifndef CONFIG_HAVE_ARCH_PFN_VALID 1244 static inline int pfn_valid(unsigned long pfn) 1245 { 1246 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1247 return 0; 1248 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1249 } 1250 #endif 1251 1252 static inline int pfn_present(unsigned long pfn) 1253 { 1254 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1255 return 0; 1256 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1257 } 1258 1259 /* 1260 * These are _only_ used during initialisation, therefore they 1261 * can use __initdata ... They could have names to indicate 1262 * this restriction. 1263 */ 1264 #ifdef CONFIG_NUMA 1265 #define pfn_to_nid(pfn) \ 1266 ({ \ 1267 unsigned long __pfn_to_nid_pfn = (pfn); \ 1268 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1269 }) 1270 #else 1271 #define pfn_to_nid(pfn) (0) 1272 #endif 1273 1274 #define early_pfn_valid(pfn) pfn_valid(pfn) 1275 void sparse_init(void); 1276 #else 1277 #define sparse_init() do {} while (0) 1278 #define sparse_index_init(_sec, _nid) do {} while (0) 1279 #endif /* CONFIG_SPARSEMEM */ 1280 1281 /* 1282 * During memory init memblocks map pfns to nids. The search is expensive and 1283 * this caches recent lookups. The implementation of __early_pfn_to_nid 1284 * may treat start/end as pfns or sections. 1285 */ 1286 struct mminit_pfnnid_cache { 1287 unsigned long last_start; 1288 unsigned long last_end; 1289 int last_nid; 1290 }; 1291 1292 #ifndef early_pfn_valid 1293 #define early_pfn_valid(pfn) (1) 1294 #endif 1295 1296 void memory_present(int nid, unsigned long start, unsigned long end); 1297 1298 /* 1299 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1300 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1301 * pfn_valid_within() should be used in this case; we optimise this away 1302 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1303 */ 1304 #ifdef CONFIG_HOLES_IN_ZONE 1305 #define pfn_valid_within(pfn) pfn_valid(pfn) 1306 #else 1307 #define pfn_valid_within(pfn) (1) 1308 #endif 1309 1310 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1311 /* 1312 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1313 * associated with it or not. This means that a struct page exists for this 1314 * pfn. The caller cannot assume the page is fully initialized in general. 1315 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1316 * will ensure the struct page is fully online and initialized. Special pages 1317 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1318 * 1319 * In FLATMEM, it is expected that holes always have valid memmap as long as 1320 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1321 * that a valid section has a memmap for the entire section. 1322 * 1323 * However, an ARM, and maybe other embedded architectures in the future 1324 * free memmap backing holes to save memory on the assumption the memmap is 1325 * never used. The page_zone linkages are then broken even though pfn_valid() 1326 * returns true. A walker of the full memmap must then do this additional 1327 * check to ensure the memmap they are looking at is sane by making sure 1328 * the zone and PFN linkages are still valid. This is expensive, but walkers 1329 * of the full memmap are extremely rare. 1330 */ 1331 bool memmap_valid_within(unsigned long pfn, 1332 struct page *page, struct zone *zone); 1333 #else 1334 static inline bool memmap_valid_within(unsigned long pfn, 1335 struct page *page, struct zone *zone) 1336 { 1337 return true; 1338 } 1339 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1340 1341 #endif /* !__GENERATING_BOUNDS.H */ 1342 #endif /* !__ASSEMBLY__ */ 1343 #endif /* _LINUX_MMZONE_H */ 1344