xref: /linux-6.15/include/linux/mmzone.h (revision 228cd2db)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <asm/page.h>
22 
23 /* Free memory management - zoned buddy allocator.  */
24 #ifndef CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER 11
26 #else
27 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
28 #endif
29 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
30 
31 /*
32  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
33  * costly to service.  That is between allocation orders which should
34  * coalesce naturally under reasonable reclaim pressure and those which
35  * will not.
36  */
37 #define PAGE_ALLOC_COSTLY_ORDER 3
38 
39 enum migratetype {
40 	MIGRATE_UNMOVABLE,
41 	MIGRATE_MOVABLE,
42 	MIGRATE_RECLAIMABLE,
43 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
44 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
45 #ifdef CONFIG_CMA
46 	/*
47 	 * MIGRATE_CMA migration type is designed to mimic the way
48 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
49 	 * from MIGRATE_CMA pageblocks and page allocator never
50 	 * implicitly change migration type of MIGRATE_CMA pageblock.
51 	 *
52 	 * The way to use it is to change migratetype of a range of
53 	 * pageblocks to MIGRATE_CMA which can be done by
54 	 * __free_pageblock_cma() function.  What is important though
55 	 * is that a range of pageblocks must be aligned to
56 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
57 	 * a single pageblock.
58 	 */
59 	MIGRATE_CMA,
60 #endif
61 #ifdef CONFIG_MEMORY_ISOLATION
62 	MIGRATE_ISOLATE,	/* can't allocate from here */
63 #endif
64 	MIGRATE_TYPES
65 };
66 
67 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
68 extern const char * const migratetype_names[MIGRATE_TYPES];
69 
70 #ifdef CONFIG_CMA
71 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
72 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
73 #else
74 #  define is_migrate_cma(migratetype) false
75 #  define is_migrate_cma_page(_page) false
76 #endif
77 
78 static inline bool is_migrate_movable(int mt)
79 {
80 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
81 }
82 
83 #define for_each_migratetype_order(order, type) \
84 	for (order = 0; order < MAX_ORDER; order++) \
85 		for (type = 0; type < MIGRATE_TYPES; type++)
86 
87 extern int page_group_by_mobility_disabled;
88 
89 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
90 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
91 
92 #define get_pageblock_migratetype(page)					\
93 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
94 			PB_migrate_end, MIGRATETYPE_MASK)
95 
96 struct free_area {
97 	struct list_head	free_list[MIGRATE_TYPES];
98 	unsigned long		nr_free;
99 };
100 
101 struct pglist_data;
102 
103 /*
104  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
105  * So add a wild amount of padding here to ensure that they fall into separate
106  * cachelines.  There are very few zone structures in the machine, so space
107  * consumption is not a concern here.
108  */
109 #if defined(CONFIG_SMP)
110 struct zone_padding {
111 	char x[0];
112 } ____cacheline_internodealigned_in_smp;
113 #define ZONE_PADDING(name)	struct zone_padding name;
114 #else
115 #define ZONE_PADDING(name)
116 #endif
117 
118 #ifdef CONFIG_NUMA
119 enum numa_stat_item {
120 	NUMA_HIT,		/* allocated in intended node */
121 	NUMA_MISS,		/* allocated in non intended node */
122 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
123 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
124 	NUMA_LOCAL,		/* allocation from local node */
125 	NUMA_OTHER,		/* allocation from other node */
126 	NR_VM_NUMA_STAT_ITEMS
127 };
128 #else
129 #define NR_VM_NUMA_STAT_ITEMS 0
130 #endif
131 
132 enum zone_stat_item {
133 	/* First 128 byte cacheline (assuming 64 bit words) */
134 	NR_FREE_PAGES,
135 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
136 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
137 	NR_ZONE_ACTIVE_ANON,
138 	NR_ZONE_INACTIVE_FILE,
139 	NR_ZONE_ACTIVE_FILE,
140 	NR_ZONE_UNEVICTABLE,
141 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
142 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
143 	NR_PAGETABLE,		/* used for pagetables */
144 	NR_KERNEL_STACK_KB,	/* measured in KiB */
145 	/* Second 128 byte cacheline */
146 	NR_BOUNCE,
147 #if IS_ENABLED(CONFIG_ZSMALLOC)
148 	NR_ZSPAGES,		/* allocated in zsmalloc */
149 #endif
150 	NR_FREE_CMA_PAGES,
151 	NR_VM_ZONE_STAT_ITEMS };
152 
153 enum node_stat_item {
154 	NR_LRU_BASE,
155 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
156 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
157 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
158 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
159 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
160 	NR_SLAB_RECLAIMABLE,
161 	NR_SLAB_UNRECLAIMABLE,
162 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
163 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
164 	WORKINGSET_NODES,
165 	WORKINGSET_REFAULT,
166 	WORKINGSET_ACTIVATE,
167 	WORKINGSET_RESTORE,
168 	WORKINGSET_NODERECLAIM,
169 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
170 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
171 			   only modified from process context */
172 	NR_FILE_PAGES,
173 	NR_FILE_DIRTY,
174 	NR_WRITEBACK,
175 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
176 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
177 	NR_SHMEM_THPS,
178 	NR_SHMEM_PMDMAPPED,
179 	NR_ANON_THPS,
180 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
181 	NR_VMSCAN_WRITE,
182 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
183 	NR_DIRTIED,		/* page dirtyings since bootup */
184 	NR_WRITTEN,		/* page writings since bootup */
185 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
186 	NR_VM_NODE_STAT_ITEMS
187 };
188 
189 /*
190  * We do arithmetic on the LRU lists in various places in the code,
191  * so it is important to keep the active lists LRU_ACTIVE higher in
192  * the array than the corresponding inactive lists, and to keep
193  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
194  *
195  * This has to be kept in sync with the statistics in zone_stat_item
196  * above and the descriptions in vmstat_text in mm/vmstat.c
197  */
198 #define LRU_BASE 0
199 #define LRU_ACTIVE 1
200 #define LRU_FILE 2
201 
202 enum lru_list {
203 	LRU_INACTIVE_ANON = LRU_BASE,
204 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
205 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
206 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
207 	LRU_UNEVICTABLE,
208 	NR_LRU_LISTS
209 };
210 
211 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
212 
213 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
214 
215 static inline int is_file_lru(enum lru_list lru)
216 {
217 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
218 }
219 
220 static inline int is_active_lru(enum lru_list lru)
221 {
222 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
223 }
224 
225 struct zone_reclaim_stat {
226 	/*
227 	 * The pageout code in vmscan.c keeps track of how many of the
228 	 * mem/swap backed and file backed pages are referenced.
229 	 * The higher the rotated/scanned ratio, the more valuable
230 	 * that cache is.
231 	 *
232 	 * The anon LRU stats live in [0], file LRU stats in [1]
233 	 */
234 	unsigned long		recent_rotated[2];
235 	unsigned long		recent_scanned[2];
236 };
237 
238 struct lruvec {
239 	struct list_head		lists[NR_LRU_LISTS];
240 	struct zone_reclaim_stat	reclaim_stat;
241 	/* Evictions & activations on the inactive file list */
242 	atomic_long_t			inactive_age;
243 	/* Refaults at the time of last reclaim cycle */
244 	unsigned long			refaults;
245 #ifdef CONFIG_MEMCG
246 	struct pglist_data *pgdat;
247 #endif
248 };
249 
250 /* Mask used at gathering information at once (see memcontrol.c) */
251 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
252 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
253 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
254 
255 /* Isolate unmapped file */
256 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
257 /* Isolate for asynchronous migration */
258 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
259 /* Isolate unevictable pages */
260 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
261 
262 /* LRU Isolation modes. */
263 typedef unsigned __bitwise isolate_mode_t;
264 
265 enum zone_watermarks {
266 	WMARK_MIN,
267 	WMARK_LOW,
268 	WMARK_HIGH,
269 	NR_WMARK
270 };
271 
272 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
273 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
274 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
275 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
276 
277 struct per_cpu_pages {
278 	int count;		/* number of pages in the list */
279 	int high;		/* high watermark, emptying needed */
280 	int batch;		/* chunk size for buddy add/remove */
281 
282 	/* Lists of pages, one per migrate type stored on the pcp-lists */
283 	struct list_head lists[MIGRATE_PCPTYPES];
284 };
285 
286 struct per_cpu_pageset {
287 	struct per_cpu_pages pcp;
288 #ifdef CONFIG_NUMA
289 	s8 expire;
290 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
291 #endif
292 #ifdef CONFIG_SMP
293 	s8 stat_threshold;
294 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
295 #endif
296 };
297 
298 struct per_cpu_nodestat {
299 	s8 stat_threshold;
300 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
301 };
302 
303 #endif /* !__GENERATING_BOUNDS.H */
304 
305 enum zone_type {
306 #ifdef CONFIG_ZONE_DMA
307 	/*
308 	 * ZONE_DMA is used when there are devices that are not able
309 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
310 	 * carve out the portion of memory that is needed for these devices.
311 	 * The range is arch specific.
312 	 *
313 	 * Some examples
314 	 *
315 	 * Architecture		Limit
316 	 * ---------------------------
317 	 * parisc, ia64, sparc	<4G
318 	 * s390, powerpc	<2G
319 	 * arm			Various
320 	 * alpha		Unlimited or 0-16MB.
321 	 *
322 	 * i386, x86_64 and multiple other arches
323 	 * 			<16M.
324 	 */
325 	ZONE_DMA,
326 #endif
327 #ifdef CONFIG_ZONE_DMA32
328 	/*
329 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
330 	 * only able to do DMA to the lower 16M but also 32 bit devices that
331 	 * can only do DMA areas below 4G.
332 	 */
333 	ZONE_DMA32,
334 #endif
335 	/*
336 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
337 	 * performed on pages in ZONE_NORMAL if the DMA devices support
338 	 * transfers to all addressable memory.
339 	 */
340 	ZONE_NORMAL,
341 #ifdef CONFIG_HIGHMEM
342 	/*
343 	 * A memory area that is only addressable by the kernel through
344 	 * mapping portions into its own address space. This is for example
345 	 * used by i386 to allow the kernel to address the memory beyond
346 	 * 900MB. The kernel will set up special mappings (page
347 	 * table entries on i386) for each page that the kernel needs to
348 	 * access.
349 	 */
350 	ZONE_HIGHMEM,
351 #endif
352 	ZONE_MOVABLE,
353 #ifdef CONFIG_ZONE_DEVICE
354 	ZONE_DEVICE,
355 #endif
356 	__MAX_NR_ZONES
357 
358 };
359 
360 #ifndef __GENERATING_BOUNDS_H
361 
362 struct zone {
363 	/* Read-mostly fields */
364 
365 	/* zone watermarks, access with *_wmark_pages(zone) macros */
366 	unsigned long _watermark[NR_WMARK];
367 	unsigned long watermark_boost;
368 
369 	unsigned long nr_reserved_highatomic;
370 
371 	/*
372 	 * We don't know if the memory that we're going to allocate will be
373 	 * freeable or/and it will be released eventually, so to avoid totally
374 	 * wasting several GB of ram we must reserve some of the lower zone
375 	 * memory (otherwise we risk to run OOM on the lower zones despite
376 	 * there being tons of freeable ram on the higher zones).  This array is
377 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
378 	 * changes.
379 	 */
380 	long lowmem_reserve[MAX_NR_ZONES];
381 
382 #ifdef CONFIG_NUMA
383 	int node;
384 #endif
385 	struct pglist_data	*zone_pgdat;
386 	struct per_cpu_pageset __percpu *pageset;
387 
388 #ifndef CONFIG_SPARSEMEM
389 	/*
390 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
391 	 * In SPARSEMEM, this map is stored in struct mem_section
392 	 */
393 	unsigned long		*pageblock_flags;
394 #endif /* CONFIG_SPARSEMEM */
395 
396 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
397 	unsigned long		zone_start_pfn;
398 
399 	/*
400 	 * spanned_pages is the total pages spanned by the zone, including
401 	 * holes, which is calculated as:
402 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
403 	 *
404 	 * present_pages is physical pages existing within the zone, which
405 	 * is calculated as:
406 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
407 	 *
408 	 * managed_pages is present pages managed by the buddy system, which
409 	 * is calculated as (reserved_pages includes pages allocated by the
410 	 * bootmem allocator):
411 	 *	managed_pages = present_pages - reserved_pages;
412 	 *
413 	 * So present_pages may be used by memory hotplug or memory power
414 	 * management logic to figure out unmanaged pages by checking
415 	 * (present_pages - managed_pages). And managed_pages should be used
416 	 * by page allocator and vm scanner to calculate all kinds of watermarks
417 	 * and thresholds.
418 	 *
419 	 * Locking rules:
420 	 *
421 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
422 	 * It is a seqlock because it has to be read outside of zone->lock,
423 	 * and it is done in the main allocator path.  But, it is written
424 	 * quite infrequently.
425 	 *
426 	 * The span_seq lock is declared along with zone->lock because it is
427 	 * frequently read in proximity to zone->lock.  It's good to
428 	 * give them a chance of being in the same cacheline.
429 	 *
430 	 * Write access to present_pages at runtime should be protected by
431 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
432 	 * present_pages should get_online_mems() to get a stable value.
433 	 */
434 	atomic_long_t		managed_pages;
435 	unsigned long		spanned_pages;
436 	unsigned long		present_pages;
437 
438 	const char		*name;
439 
440 #ifdef CONFIG_MEMORY_ISOLATION
441 	/*
442 	 * Number of isolated pageblock. It is used to solve incorrect
443 	 * freepage counting problem due to racy retrieving migratetype
444 	 * of pageblock. Protected by zone->lock.
445 	 */
446 	unsigned long		nr_isolate_pageblock;
447 #endif
448 
449 #ifdef CONFIG_MEMORY_HOTPLUG
450 	/* see spanned/present_pages for more description */
451 	seqlock_t		span_seqlock;
452 #endif
453 
454 	int initialized;
455 
456 	/* Write-intensive fields used from the page allocator */
457 	ZONE_PADDING(_pad1_)
458 
459 	/* free areas of different sizes */
460 	struct free_area	free_area[MAX_ORDER];
461 
462 	/* zone flags, see below */
463 	unsigned long		flags;
464 
465 	/* Primarily protects free_area */
466 	spinlock_t		lock;
467 
468 	/* Write-intensive fields used by compaction and vmstats. */
469 	ZONE_PADDING(_pad2_)
470 
471 	/*
472 	 * When free pages are below this point, additional steps are taken
473 	 * when reading the number of free pages to avoid per-cpu counter
474 	 * drift allowing watermarks to be breached
475 	 */
476 	unsigned long percpu_drift_mark;
477 
478 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
479 	/* pfn where compaction free scanner should start */
480 	unsigned long		compact_cached_free_pfn;
481 	/* pfn where async and sync compaction migration scanner should start */
482 	unsigned long		compact_cached_migrate_pfn[2];
483 	unsigned long		compact_init_migrate_pfn;
484 	unsigned long		compact_init_free_pfn;
485 #endif
486 
487 #ifdef CONFIG_COMPACTION
488 	/*
489 	 * On compaction failure, 1<<compact_defer_shift compactions
490 	 * are skipped before trying again. The number attempted since
491 	 * last failure is tracked with compact_considered.
492 	 */
493 	unsigned int		compact_considered;
494 	unsigned int		compact_defer_shift;
495 	int			compact_order_failed;
496 #endif
497 
498 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
499 	/* Set to true when the PG_migrate_skip bits should be cleared */
500 	bool			compact_blockskip_flush;
501 #endif
502 
503 	bool			contiguous;
504 
505 	ZONE_PADDING(_pad3_)
506 	/* Zone statistics */
507 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
508 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
509 } ____cacheline_internodealigned_in_smp;
510 
511 enum pgdat_flags {
512 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
513 					 * a congested BDI
514 					 */
515 	PGDAT_DIRTY,			/* reclaim scanning has recently found
516 					 * many dirty file pages at the tail
517 					 * of the LRU.
518 					 */
519 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
520 					 * many pages under writeback
521 					 */
522 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
523 };
524 
525 enum zone_flags {
526 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
527 					 * Cleared when kswapd is woken.
528 					 */
529 };
530 
531 static inline unsigned long zone_managed_pages(struct zone *zone)
532 {
533 	return (unsigned long)atomic_long_read(&zone->managed_pages);
534 }
535 
536 static inline unsigned long zone_end_pfn(const struct zone *zone)
537 {
538 	return zone->zone_start_pfn + zone->spanned_pages;
539 }
540 
541 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
542 {
543 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
544 }
545 
546 static inline bool zone_is_initialized(struct zone *zone)
547 {
548 	return zone->initialized;
549 }
550 
551 static inline bool zone_is_empty(struct zone *zone)
552 {
553 	return zone->spanned_pages == 0;
554 }
555 
556 /*
557  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
558  * intersection with the given zone
559  */
560 static inline bool zone_intersects(struct zone *zone,
561 		unsigned long start_pfn, unsigned long nr_pages)
562 {
563 	if (zone_is_empty(zone))
564 		return false;
565 	if (start_pfn >= zone_end_pfn(zone) ||
566 	    start_pfn + nr_pages <= zone->zone_start_pfn)
567 		return false;
568 
569 	return true;
570 }
571 
572 /*
573  * The "priority" of VM scanning is how much of the queues we will scan in one
574  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
575  * queues ("queue_length >> 12") during an aging round.
576  */
577 #define DEF_PRIORITY 12
578 
579 /* Maximum number of zones on a zonelist */
580 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
581 
582 enum {
583 	ZONELIST_FALLBACK,	/* zonelist with fallback */
584 #ifdef CONFIG_NUMA
585 	/*
586 	 * The NUMA zonelists are doubled because we need zonelists that
587 	 * restrict the allocations to a single node for __GFP_THISNODE.
588 	 */
589 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
590 #endif
591 	MAX_ZONELISTS
592 };
593 
594 /*
595  * This struct contains information about a zone in a zonelist. It is stored
596  * here to avoid dereferences into large structures and lookups of tables
597  */
598 struct zoneref {
599 	struct zone *zone;	/* Pointer to actual zone */
600 	int zone_idx;		/* zone_idx(zoneref->zone) */
601 };
602 
603 /*
604  * One allocation request operates on a zonelist. A zonelist
605  * is a list of zones, the first one is the 'goal' of the
606  * allocation, the other zones are fallback zones, in decreasing
607  * priority.
608  *
609  * To speed the reading of the zonelist, the zonerefs contain the zone index
610  * of the entry being read. Helper functions to access information given
611  * a struct zoneref are
612  *
613  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
614  * zonelist_zone_idx()	- Return the index of the zone for an entry
615  * zonelist_node_idx()	- Return the index of the node for an entry
616  */
617 struct zonelist {
618 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
619 };
620 
621 #ifndef CONFIG_DISCONTIGMEM
622 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
623 extern struct page *mem_map;
624 #endif
625 
626 /*
627  * On NUMA machines, each NUMA node would have a pg_data_t to describe
628  * it's memory layout. On UMA machines there is a single pglist_data which
629  * describes the whole memory.
630  *
631  * Memory statistics and page replacement data structures are maintained on a
632  * per-zone basis.
633  */
634 struct bootmem_data;
635 typedef struct pglist_data {
636 	struct zone node_zones[MAX_NR_ZONES];
637 	struct zonelist node_zonelists[MAX_ZONELISTS];
638 	int nr_zones;
639 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
640 	struct page *node_mem_map;
641 #ifdef CONFIG_PAGE_EXTENSION
642 	struct page_ext *node_page_ext;
643 #endif
644 #endif
645 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
646 	/*
647 	 * Must be held any time you expect node_start_pfn,
648 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
649 	 *
650 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
651 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
652 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
653 	 *
654 	 * Nests above zone->lock and zone->span_seqlock
655 	 */
656 	spinlock_t node_size_lock;
657 #endif
658 	unsigned long node_start_pfn;
659 	unsigned long node_present_pages; /* total number of physical pages */
660 	unsigned long node_spanned_pages; /* total size of physical page
661 					     range, including holes */
662 	int node_id;
663 	wait_queue_head_t kswapd_wait;
664 	wait_queue_head_t pfmemalloc_wait;
665 	struct task_struct *kswapd;	/* Protected by
666 					   mem_hotplug_begin/end() */
667 	int kswapd_order;
668 	enum zone_type kswapd_classzone_idx;
669 
670 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
671 
672 #ifdef CONFIG_COMPACTION
673 	int kcompactd_max_order;
674 	enum zone_type kcompactd_classzone_idx;
675 	wait_queue_head_t kcompactd_wait;
676 	struct task_struct *kcompactd;
677 #endif
678 	/*
679 	 * This is a per-node reserve of pages that are not available
680 	 * to userspace allocations.
681 	 */
682 	unsigned long		totalreserve_pages;
683 
684 #ifdef CONFIG_NUMA
685 	/*
686 	 * zone reclaim becomes active if more unmapped pages exist.
687 	 */
688 	unsigned long		min_unmapped_pages;
689 	unsigned long		min_slab_pages;
690 #endif /* CONFIG_NUMA */
691 
692 	/* Write-intensive fields used by page reclaim */
693 	ZONE_PADDING(_pad1_)
694 	spinlock_t		lru_lock;
695 
696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
697 	/*
698 	 * If memory initialisation on large machines is deferred then this
699 	 * is the first PFN that needs to be initialised.
700 	 */
701 	unsigned long first_deferred_pfn;
702 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
703 
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	spinlock_t split_queue_lock;
706 	struct list_head split_queue;
707 	unsigned long split_queue_len;
708 #endif
709 
710 	/* Fields commonly accessed by the page reclaim scanner */
711 	struct lruvec		lruvec;
712 
713 	unsigned long		flags;
714 
715 	ZONE_PADDING(_pad2_)
716 
717 	/* Per-node vmstats */
718 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
719 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
720 } pg_data_t;
721 
722 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
723 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
724 #ifdef CONFIG_FLAT_NODE_MEM_MAP
725 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
726 #else
727 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
728 #endif
729 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
730 
731 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
732 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
733 
734 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
735 {
736 	return &pgdat->lruvec;
737 }
738 
739 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
740 {
741 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
742 }
743 
744 static inline bool pgdat_is_empty(pg_data_t *pgdat)
745 {
746 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
747 }
748 
749 #include <linux/memory_hotplug.h>
750 
751 void build_all_zonelists(pg_data_t *pgdat);
752 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
753 		   enum zone_type classzone_idx);
754 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
755 			 int classzone_idx, unsigned int alloc_flags,
756 			 long free_pages);
757 bool zone_watermark_ok(struct zone *z, unsigned int order,
758 		unsigned long mark, int classzone_idx,
759 		unsigned int alloc_flags);
760 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
761 		unsigned long mark, int classzone_idx);
762 enum memmap_context {
763 	MEMMAP_EARLY,
764 	MEMMAP_HOTPLUG,
765 };
766 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
767 				     unsigned long size);
768 
769 extern void lruvec_init(struct lruvec *lruvec);
770 
771 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
772 {
773 #ifdef CONFIG_MEMCG
774 	return lruvec->pgdat;
775 #else
776 	return container_of(lruvec, struct pglist_data, lruvec);
777 #endif
778 }
779 
780 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
781 
782 #ifdef CONFIG_HAVE_MEMORY_PRESENT
783 void memory_present(int nid, unsigned long start, unsigned long end);
784 #else
785 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
786 #endif
787 
788 #if defined(CONFIG_SPARSEMEM)
789 void memblocks_present(void);
790 #else
791 static inline void memblocks_present(void) {}
792 #endif
793 
794 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
795 int local_memory_node(int node_id);
796 #else
797 static inline int local_memory_node(int node_id) { return node_id; };
798 #endif
799 
800 /*
801  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
802  */
803 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
804 
805 #ifdef CONFIG_ZONE_DEVICE
806 static inline bool is_dev_zone(const struct zone *zone)
807 {
808 	return zone_idx(zone) == ZONE_DEVICE;
809 }
810 #else
811 static inline bool is_dev_zone(const struct zone *zone)
812 {
813 	return false;
814 }
815 #endif
816 
817 /*
818  * Returns true if a zone has pages managed by the buddy allocator.
819  * All the reclaim decisions have to use this function rather than
820  * populated_zone(). If the whole zone is reserved then we can easily
821  * end up with populated_zone() && !managed_zone().
822  */
823 static inline bool managed_zone(struct zone *zone)
824 {
825 	return zone_managed_pages(zone);
826 }
827 
828 /* Returns true if a zone has memory */
829 static inline bool populated_zone(struct zone *zone)
830 {
831 	return zone->present_pages;
832 }
833 
834 #ifdef CONFIG_NUMA
835 static inline int zone_to_nid(struct zone *zone)
836 {
837 	return zone->node;
838 }
839 
840 static inline void zone_set_nid(struct zone *zone, int nid)
841 {
842 	zone->node = nid;
843 }
844 #else
845 static inline int zone_to_nid(struct zone *zone)
846 {
847 	return 0;
848 }
849 
850 static inline void zone_set_nid(struct zone *zone, int nid) {}
851 #endif
852 
853 extern int movable_zone;
854 
855 #ifdef CONFIG_HIGHMEM
856 static inline int zone_movable_is_highmem(void)
857 {
858 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
859 	return movable_zone == ZONE_HIGHMEM;
860 #else
861 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
862 #endif
863 }
864 #endif
865 
866 static inline int is_highmem_idx(enum zone_type idx)
867 {
868 #ifdef CONFIG_HIGHMEM
869 	return (idx == ZONE_HIGHMEM ||
870 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
871 #else
872 	return 0;
873 #endif
874 }
875 
876 /**
877  * is_highmem - helper function to quickly check if a struct zone is a
878  *              highmem zone or not.  This is an attempt to keep references
879  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
880  * @zone - pointer to struct zone variable
881  */
882 static inline int is_highmem(struct zone *zone)
883 {
884 #ifdef CONFIG_HIGHMEM
885 	return is_highmem_idx(zone_idx(zone));
886 #else
887 	return 0;
888 #endif
889 }
890 
891 /* These two functions are used to setup the per zone pages min values */
892 struct ctl_table;
893 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
894 					void __user *, size_t *, loff_t *);
895 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
896 					void __user *, size_t *, loff_t *);
897 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
898 					void __user *, size_t *, loff_t *);
899 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
900 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
901 					void __user *, size_t *, loff_t *);
902 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
903 					void __user *, size_t *, loff_t *);
904 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
905 			void __user *, size_t *, loff_t *);
906 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
907 			void __user *, size_t *, loff_t *);
908 
909 extern int numa_zonelist_order_handler(struct ctl_table *, int,
910 			void __user *, size_t *, loff_t *);
911 extern char numa_zonelist_order[];
912 #define NUMA_ZONELIST_ORDER_LEN	16
913 
914 #ifndef CONFIG_NEED_MULTIPLE_NODES
915 
916 extern struct pglist_data contig_page_data;
917 #define NODE_DATA(nid)		(&contig_page_data)
918 #define NODE_MEM_MAP(nid)	mem_map
919 
920 #else /* CONFIG_NEED_MULTIPLE_NODES */
921 
922 #include <asm/mmzone.h>
923 
924 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
925 
926 extern struct pglist_data *first_online_pgdat(void);
927 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
928 extern struct zone *next_zone(struct zone *zone);
929 
930 /**
931  * for_each_online_pgdat - helper macro to iterate over all online nodes
932  * @pgdat - pointer to a pg_data_t variable
933  */
934 #define for_each_online_pgdat(pgdat)			\
935 	for (pgdat = first_online_pgdat();		\
936 	     pgdat;					\
937 	     pgdat = next_online_pgdat(pgdat))
938 /**
939  * for_each_zone - helper macro to iterate over all memory zones
940  * @zone - pointer to struct zone variable
941  *
942  * The user only needs to declare the zone variable, for_each_zone
943  * fills it in.
944  */
945 #define for_each_zone(zone)			        \
946 	for (zone = (first_online_pgdat())->node_zones; \
947 	     zone;					\
948 	     zone = next_zone(zone))
949 
950 #define for_each_populated_zone(zone)		        \
951 	for (zone = (first_online_pgdat())->node_zones; \
952 	     zone;					\
953 	     zone = next_zone(zone))			\
954 		if (!populated_zone(zone))		\
955 			; /* do nothing */		\
956 		else
957 
958 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
959 {
960 	return zoneref->zone;
961 }
962 
963 static inline int zonelist_zone_idx(struct zoneref *zoneref)
964 {
965 	return zoneref->zone_idx;
966 }
967 
968 static inline int zonelist_node_idx(struct zoneref *zoneref)
969 {
970 	return zone_to_nid(zoneref->zone);
971 }
972 
973 struct zoneref *__next_zones_zonelist(struct zoneref *z,
974 					enum zone_type highest_zoneidx,
975 					nodemask_t *nodes);
976 
977 /**
978  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
979  * @z - The cursor used as a starting point for the search
980  * @highest_zoneidx - The zone index of the highest zone to return
981  * @nodes - An optional nodemask to filter the zonelist with
982  *
983  * This function returns the next zone at or below a given zone index that is
984  * within the allowed nodemask using a cursor as the starting point for the
985  * search. The zoneref returned is a cursor that represents the current zone
986  * being examined. It should be advanced by one before calling
987  * next_zones_zonelist again.
988  */
989 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
990 					enum zone_type highest_zoneidx,
991 					nodemask_t *nodes)
992 {
993 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
994 		return z;
995 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
996 }
997 
998 /**
999  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1000  * @zonelist - The zonelist to search for a suitable zone
1001  * @highest_zoneidx - The zone index of the highest zone to return
1002  * @nodes - An optional nodemask to filter the zonelist with
1003  * @return - Zoneref pointer for the first suitable zone found (see below)
1004  *
1005  * This function returns the first zone at or below a given zone index that is
1006  * within the allowed nodemask. The zoneref returned is a cursor that can be
1007  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1008  * one before calling.
1009  *
1010  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1011  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1012  * update due to cpuset modification.
1013  */
1014 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1015 					enum zone_type highest_zoneidx,
1016 					nodemask_t *nodes)
1017 {
1018 	return next_zones_zonelist(zonelist->_zonerefs,
1019 							highest_zoneidx, nodes);
1020 }
1021 
1022 /**
1023  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1024  * @zone - The current zone in the iterator
1025  * @z - The current pointer within zonelist->zones being iterated
1026  * @zlist - The zonelist being iterated
1027  * @highidx - The zone index of the highest zone to return
1028  * @nodemask - Nodemask allowed by the allocator
1029  *
1030  * This iterator iterates though all zones at or below a given zone index and
1031  * within a given nodemask
1032  */
1033 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1035 		zone;							\
1036 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1037 			zone = zonelist_zone(z))
1038 
1039 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1040 	for (zone = z->zone;	\
1041 		zone;							\
1042 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1043 			zone = zonelist_zone(z))
1044 
1045 
1046 /**
1047  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1048  * @zone - The current zone in the iterator
1049  * @z - The current pointer within zonelist->zones being iterated
1050  * @zlist - The zonelist being iterated
1051  * @highidx - The zone index of the highest zone to return
1052  *
1053  * This iterator iterates though all zones at or below a given zone index.
1054  */
1055 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1056 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1057 
1058 #ifdef CONFIG_SPARSEMEM
1059 #include <asm/sparsemem.h>
1060 #endif
1061 
1062 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1063 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1064 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1065 {
1066 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1067 	return 0;
1068 }
1069 #endif
1070 
1071 #ifdef CONFIG_FLATMEM
1072 #define pfn_to_nid(pfn)		(0)
1073 #endif
1074 
1075 #ifdef CONFIG_SPARSEMEM
1076 
1077 /*
1078  * SECTION_SHIFT    		#bits space required to store a section #
1079  *
1080  * PA_SECTION_SHIFT		physical address to/from section number
1081  * PFN_SECTION_SHIFT		pfn to/from section number
1082  */
1083 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1084 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1085 
1086 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1087 
1088 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1089 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1090 
1091 #define SECTION_BLOCKFLAGS_BITS \
1092 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1093 
1094 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1095 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1096 #endif
1097 
1098 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1099 {
1100 	return pfn >> PFN_SECTION_SHIFT;
1101 }
1102 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1103 {
1104 	return sec << PFN_SECTION_SHIFT;
1105 }
1106 
1107 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1108 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1109 
1110 struct page;
1111 struct page_ext;
1112 struct mem_section {
1113 	/*
1114 	 * This is, logically, a pointer to an array of struct
1115 	 * pages.  However, it is stored with some other magic.
1116 	 * (see sparse.c::sparse_init_one_section())
1117 	 *
1118 	 * Additionally during early boot we encode node id of
1119 	 * the location of the section here to guide allocation.
1120 	 * (see sparse.c::memory_present())
1121 	 *
1122 	 * Making it a UL at least makes someone do a cast
1123 	 * before using it wrong.
1124 	 */
1125 	unsigned long section_mem_map;
1126 
1127 	/* See declaration of similar field in struct zone */
1128 	unsigned long *pageblock_flags;
1129 #ifdef CONFIG_PAGE_EXTENSION
1130 	/*
1131 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1132 	 * section. (see page_ext.h about this.)
1133 	 */
1134 	struct page_ext *page_ext;
1135 	unsigned long pad;
1136 #endif
1137 	/*
1138 	 * WARNING: mem_section must be a power-of-2 in size for the
1139 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1140 	 */
1141 };
1142 
1143 #ifdef CONFIG_SPARSEMEM_EXTREME
1144 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1145 #else
1146 #define SECTIONS_PER_ROOT	1
1147 #endif
1148 
1149 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1150 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1151 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1152 
1153 #ifdef CONFIG_SPARSEMEM_EXTREME
1154 extern struct mem_section **mem_section;
1155 #else
1156 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1157 #endif
1158 
1159 static inline struct mem_section *__nr_to_section(unsigned long nr)
1160 {
1161 #ifdef CONFIG_SPARSEMEM_EXTREME
1162 	if (!mem_section)
1163 		return NULL;
1164 #endif
1165 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1166 		return NULL;
1167 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1168 }
1169 extern int __section_nr(struct mem_section* ms);
1170 extern unsigned long usemap_size(void);
1171 
1172 /*
1173  * We use the lower bits of the mem_map pointer to store
1174  * a little bit of information.  The pointer is calculated
1175  * as mem_map - section_nr_to_pfn(pnum).  The result is
1176  * aligned to the minimum alignment of the two values:
1177  *   1. All mem_map arrays are page-aligned.
1178  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1179  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1180  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1181  *      worst combination is powerpc with 256k pages,
1182  *      which results in PFN_SECTION_SHIFT equal 6.
1183  * To sum it up, at least 6 bits are available.
1184  */
1185 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1186 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1187 #define SECTION_IS_ONLINE	(1UL<<2)
1188 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1189 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1190 #define SECTION_NID_SHIFT	3
1191 
1192 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1193 {
1194 	unsigned long map = section->section_mem_map;
1195 	map &= SECTION_MAP_MASK;
1196 	return (struct page *)map;
1197 }
1198 
1199 static inline int present_section(struct mem_section *section)
1200 {
1201 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1202 }
1203 
1204 static inline int present_section_nr(unsigned long nr)
1205 {
1206 	return present_section(__nr_to_section(nr));
1207 }
1208 
1209 static inline int valid_section(struct mem_section *section)
1210 {
1211 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1212 }
1213 
1214 static inline int valid_section_nr(unsigned long nr)
1215 {
1216 	return valid_section(__nr_to_section(nr));
1217 }
1218 
1219 static inline int online_section(struct mem_section *section)
1220 {
1221 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1222 }
1223 
1224 static inline int online_section_nr(unsigned long nr)
1225 {
1226 	return online_section(__nr_to_section(nr));
1227 }
1228 
1229 #ifdef CONFIG_MEMORY_HOTPLUG
1230 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1231 #ifdef CONFIG_MEMORY_HOTREMOVE
1232 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1233 #endif
1234 #endif
1235 
1236 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1237 {
1238 	return __nr_to_section(pfn_to_section_nr(pfn));
1239 }
1240 
1241 extern int __highest_present_section_nr;
1242 
1243 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1244 static inline int pfn_valid(unsigned long pfn)
1245 {
1246 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1247 		return 0;
1248 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1249 }
1250 #endif
1251 
1252 static inline int pfn_present(unsigned long pfn)
1253 {
1254 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1255 		return 0;
1256 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1257 }
1258 
1259 /*
1260  * These are _only_ used during initialisation, therefore they
1261  * can use __initdata ...  They could have names to indicate
1262  * this restriction.
1263  */
1264 #ifdef CONFIG_NUMA
1265 #define pfn_to_nid(pfn)							\
1266 ({									\
1267 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1268 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1269 })
1270 #else
1271 #define pfn_to_nid(pfn)		(0)
1272 #endif
1273 
1274 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1275 void sparse_init(void);
1276 #else
1277 #define sparse_init()	do {} while (0)
1278 #define sparse_index_init(_sec, _nid)  do {} while (0)
1279 #endif /* CONFIG_SPARSEMEM */
1280 
1281 /*
1282  * During memory init memblocks map pfns to nids. The search is expensive and
1283  * this caches recent lookups. The implementation of __early_pfn_to_nid
1284  * may treat start/end as pfns or sections.
1285  */
1286 struct mminit_pfnnid_cache {
1287 	unsigned long last_start;
1288 	unsigned long last_end;
1289 	int last_nid;
1290 };
1291 
1292 #ifndef early_pfn_valid
1293 #define early_pfn_valid(pfn)	(1)
1294 #endif
1295 
1296 void memory_present(int nid, unsigned long start, unsigned long end);
1297 
1298 /*
1299  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1300  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1301  * pfn_valid_within() should be used in this case; we optimise this away
1302  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1303  */
1304 #ifdef CONFIG_HOLES_IN_ZONE
1305 #define pfn_valid_within(pfn) pfn_valid(pfn)
1306 #else
1307 #define pfn_valid_within(pfn) (1)
1308 #endif
1309 
1310 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1311 /*
1312  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1313  * associated with it or not. This means that a struct page exists for this
1314  * pfn. The caller cannot assume the page is fully initialized in general.
1315  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1316  * will ensure the struct page is fully online and initialized. Special pages
1317  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1318  *
1319  * In FLATMEM, it is expected that holes always have valid memmap as long as
1320  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1321  * that a valid section has a memmap for the entire section.
1322  *
1323  * However, an ARM, and maybe other embedded architectures in the future
1324  * free memmap backing holes to save memory on the assumption the memmap is
1325  * never used. The page_zone linkages are then broken even though pfn_valid()
1326  * returns true. A walker of the full memmap must then do this additional
1327  * check to ensure the memmap they are looking at is sane by making sure
1328  * the zone and PFN linkages are still valid. This is expensive, but walkers
1329  * of the full memmap are extremely rare.
1330  */
1331 bool memmap_valid_within(unsigned long pfn,
1332 					struct page *page, struct zone *zone);
1333 #else
1334 static inline bool memmap_valid_within(unsigned long pfn,
1335 					struct page *page, struct zone *zone)
1336 {
1337 	return true;
1338 }
1339 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1340 
1341 #endif /* !__GENERATING_BOUNDS.H */
1342 #endif /* !__ASSEMBLY__ */
1343 #endif /* _LINUX_MMZONE_H */
1344