xref: /linux-6.15/include/linux/mmzone.h (revision 2277ab4a)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_RESERVE       3
42 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
43 #define MIGRATE_TYPES         5
44 
45 #define for_each_migratetype_order(order, type) \
46 	for (order = 0; order < MAX_ORDER; order++) \
47 		for (type = 0; type < MIGRATE_TYPES; type++)
48 
49 extern int page_group_by_mobility_disabled;
50 
51 static inline int get_pageblock_migratetype(struct page *page)
52 {
53 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54 }
55 
56 struct free_area {
57 	struct list_head	free_list[MIGRATE_TYPES];
58 	unsigned long		nr_free;
59 };
60 
61 struct pglist_data;
62 
63 /*
64  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65  * So add a wild amount of padding here to ensure that they fall into separate
66  * cachelines.  There are very few zone structures in the machine, so space
67  * consumption is not a concern here.
68  */
69 #if defined(CONFIG_SMP)
70 struct zone_padding {
71 	char x[0];
72 } ____cacheline_internodealigned_in_smp;
73 #define ZONE_PADDING(name)	struct zone_padding name;
74 #else
75 #define ZONE_PADDING(name)
76 #endif
77 
78 enum zone_stat_item {
79 	/* First 128 byte cacheline (assuming 64 bit words) */
80 	NR_FREE_PAGES,
81 	NR_LRU_BASE,
82 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
84 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
85 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
86 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
87 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
88 	NR_ANON_PAGES,	/* Mapped anonymous pages */
89 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
90 			   only modified from process context */
91 	NR_FILE_PAGES,
92 	NR_FILE_DIRTY,
93 	NR_WRITEBACK,
94 	NR_SLAB_RECLAIMABLE,
95 	NR_SLAB_UNRECLAIMABLE,
96 	NR_PAGETABLE,		/* used for pagetables */
97 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
98 	NR_BOUNCE,
99 	NR_VMSCAN_WRITE,
100 	/* Second 128 byte cacheline */
101 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
102 #ifdef CONFIG_NUMA
103 	NUMA_HIT,		/* allocated in intended node */
104 	NUMA_MISS,		/* allocated in non intended node */
105 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
106 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
107 	NUMA_LOCAL,		/* allocation from local node */
108 	NUMA_OTHER,		/* allocation from other node */
109 #endif
110 	NR_VM_ZONE_STAT_ITEMS };
111 
112 /*
113  * We do arithmetic on the LRU lists in various places in the code,
114  * so it is important to keep the active lists LRU_ACTIVE higher in
115  * the array than the corresponding inactive lists, and to keep
116  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
117  *
118  * This has to be kept in sync with the statistics in zone_stat_item
119  * above and the descriptions in vmstat_text in mm/vmstat.c
120  */
121 #define LRU_BASE 0
122 #define LRU_ACTIVE 1
123 #define LRU_FILE 2
124 
125 enum lru_list {
126 	LRU_INACTIVE_ANON = LRU_BASE,
127 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
128 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
129 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
130 	LRU_UNEVICTABLE,
131 	NR_LRU_LISTS
132 };
133 
134 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
135 
136 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
137 
138 static inline int is_file_lru(enum lru_list l)
139 {
140 	return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
141 }
142 
143 static inline int is_active_lru(enum lru_list l)
144 {
145 	return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
146 }
147 
148 static inline int is_unevictable_lru(enum lru_list l)
149 {
150 	return (l == LRU_UNEVICTABLE);
151 }
152 
153 enum zone_watermarks {
154 	WMARK_MIN,
155 	WMARK_LOW,
156 	WMARK_HIGH,
157 	NR_WMARK
158 };
159 
160 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
161 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
162 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
163 
164 struct per_cpu_pages {
165 	int count;		/* number of pages in the list */
166 	int high;		/* high watermark, emptying needed */
167 	int batch;		/* chunk size for buddy add/remove */
168 	struct list_head list;	/* the list of pages */
169 };
170 
171 struct per_cpu_pageset {
172 	struct per_cpu_pages pcp;
173 #ifdef CONFIG_NUMA
174 	s8 expire;
175 #endif
176 #ifdef CONFIG_SMP
177 	s8 stat_threshold;
178 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
179 #endif
180 } ____cacheline_aligned_in_smp;
181 
182 #ifdef CONFIG_NUMA
183 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
184 #else
185 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
186 #endif
187 
188 #endif /* !__GENERATING_BOUNDS.H */
189 
190 enum zone_type {
191 #ifdef CONFIG_ZONE_DMA
192 	/*
193 	 * ZONE_DMA is used when there are devices that are not able
194 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
195 	 * carve out the portion of memory that is needed for these devices.
196 	 * The range is arch specific.
197 	 *
198 	 * Some examples
199 	 *
200 	 * Architecture		Limit
201 	 * ---------------------------
202 	 * parisc, ia64, sparc	<4G
203 	 * s390			<2G
204 	 * arm			Various
205 	 * alpha		Unlimited or 0-16MB.
206 	 *
207 	 * i386, x86_64 and multiple other arches
208 	 * 			<16M.
209 	 */
210 	ZONE_DMA,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 	/*
214 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
215 	 * only able to do DMA to the lower 16M but also 32 bit devices that
216 	 * can only do DMA areas below 4G.
217 	 */
218 	ZONE_DMA32,
219 #endif
220 	/*
221 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
222 	 * performed on pages in ZONE_NORMAL if the DMA devices support
223 	 * transfers to all addressable memory.
224 	 */
225 	ZONE_NORMAL,
226 #ifdef CONFIG_HIGHMEM
227 	/*
228 	 * A memory area that is only addressable by the kernel through
229 	 * mapping portions into its own address space. This is for example
230 	 * used by i386 to allow the kernel to address the memory beyond
231 	 * 900MB. The kernel will set up special mappings (page
232 	 * table entries on i386) for each page that the kernel needs to
233 	 * access.
234 	 */
235 	ZONE_HIGHMEM,
236 #endif
237 	ZONE_MOVABLE,
238 	__MAX_NR_ZONES
239 };
240 
241 #ifndef __GENERATING_BOUNDS_H
242 
243 /*
244  * When a memory allocation must conform to specific limitations (such
245  * as being suitable for DMA) the caller will pass in hints to the
246  * allocator in the gfp_mask, in the zone modifier bits.  These bits
247  * are used to select a priority ordered list of memory zones which
248  * match the requested limits. See gfp_zone() in include/linux/gfp.h
249  */
250 
251 #if MAX_NR_ZONES < 2
252 #define ZONES_SHIFT 0
253 #elif MAX_NR_ZONES <= 2
254 #define ZONES_SHIFT 1
255 #elif MAX_NR_ZONES <= 4
256 #define ZONES_SHIFT 2
257 #else
258 #error ZONES_SHIFT -- too many zones configured adjust calculation
259 #endif
260 
261 struct zone_reclaim_stat {
262 	/*
263 	 * The pageout code in vmscan.c keeps track of how many of the
264 	 * mem/swap backed and file backed pages are refeferenced.
265 	 * The higher the rotated/scanned ratio, the more valuable
266 	 * that cache is.
267 	 *
268 	 * The anon LRU stats live in [0], file LRU stats in [1]
269 	 */
270 	unsigned long		recent_rotated[2];
271 	unsigned long		recent_scanned[2];
272 };
273 
274 struct zone {
275 	/* Fields commonly accessed by the page allocator */
276 
277 	/* zone watermarks, access with *_wmark_pages(zone) macros */
278 	unsigned long watermark[NR_WMARK];
279 
280 	/*
281 	 * We don't know if the memory that we're going to allocate will be freeable
282 	 * or/and it will be released eventually, so to avoid totally wasting several
283 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
284 	 * to run OOM on the lower zones despite there's tons of freeable ram
285 	 * on the higher zones). This array is recalculated at runtime if the
286 	 * sysctl_lowmem_reserve_ratio sysctl changes.
287 	 */
288 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
289 
290 #ifdef CONFIG_NUMA
291 	int node;
292 	/*
293 	 * zone reclaim becomes active if more unmapped pages exist.
294 	 */
295 	unsigned long		min_unmapped_pages;
296 	unsigned long		min_slab_pages;
297 	struct per_cpu_pageset	*pageset[NR_CPUS];
298 #else
299 	struct per_cpu_pageset	pageset[NR_CPUS];
300 #endif
301 	/*
302 	 * free areas of different sizes
303 	 */
304 	spinlock_t		lock;
305 #ifdef CONFIG_MEMORY_HOTPLUG
306 	/* see spanned/present_pages for more description */
307 	seqlock_t		span_seqlock;
308 #endif
309 	struct free_area	free_area[MAX_ORDER];
310 
311 #ifndef CONFIG_SPARSEMEM
312 	/*
313 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
314 	 * In SPARSEMEM, this map is stored in struct mem_section
315 	 */
316 	unsigned long		*pageblock_flags;
317 #endif /* CONFIG_SPARSEMEM */
318 
319 
320 	ZONE_PADDING(_pad1_)
321 
322 	/* Fields commonly accessed by the page reclaim scanner */
323 	spinlock_t		lru_lock;
324 	struct zone_lru {
325 		struct list_head list;
326 		unsigned long nr_saved_scan;	/* accumulated for batching */
327 	} lru[NR_LRU_LISTS];
328 
329 	struct zone_reclaim_stat reclaim_stat;
330 
331 	unsigned long		pages_scanned;	   /* since last reclaim */
332 	unsigned long		flags;		   /* zone flags, see below */
333 
334 	/* Zone statistics */
335 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
336 
337 	/*
338 	 * prev_priority holds the scanning priority for this zone.  It is
339 	 * defined as the scanning priority at which we achieved our reclaim
340 	 * target at the previous try_to_free_pages() or balance_pgdat()
341 	 * invokation.
342 	 *
343 	 * We use prev_priority as a measure of how much stress page reclaim is
344 	 * under - it drives the swappiness decision: whether to unmap mapped
345 	 * pages.
346 	 *
347 	 * Access to both this field is quite racy even on uniprocessor.  But
348 	 * it is expected to average out OK.
349 	 */
350 	int prev_priority;
351 
352 	/*
353 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 	 * this zone's LRU.  Maintained by the pageout code.
355 	 */
356 	unsigned int inactive_ratio;
357 
358 
359 	ZONE_PADDING(_pad2_)
360 	/* Rarely used or read-mostly fields */
361 
362 	/*
363 	 * wait_table		-- the array holding the hash table
364 	 * wait_table_hash_nr_entries	-- the size of the hash table array
365 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
366 	 *
367 	 * The purpose of all these is to keep track of the people
368 	 * waiting for a page to become available and make them
369 	 * runnable again when possible. The trouble is that this
370 	 * consumes a lot of space, especially when so few things
371 	 * wait on pages at a given time. So instead of using
372 	 * per-page waitqueues, we use a waitqueue hash table.
373 	 *
374 	 * The bucket discipline is to sleep on the same queue when
375 	 * colliding and wake all in that wait queue when removing.
376 	 * When something wakes, it must check to be sure its page is
377 	 * truly available, a la thundering herd. The cost of a
378 	 * collision is great, but given the expected load of the
379 	 * table, they should be so rare as to be outweighed by the
380 	 * benefits from the saved space.
381 	 *
382 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
383 	 * primary users of these fields, and in mm/page_alloc.c
384 	 * free_area_init_core() performs the initialization of them.
385 	 */
386 	wait_queue_head_t	* wait_table;
387 	unsigned long		wait_table_hash_nr_entries;
388 	unsigned long		wait_table_bits;
389 
390 	/*
391 	 * Discontig memory support fields.
392 	 */
393 	struct pglist_data	*zone_pgdat;
394 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
395 	unsigned long		zone_start_pfn;
396 
397 	/*
398 	 * zone_start_pfn, spanned_pages and present_pages are all
399 	 * protected by span_seqlock.  It is a seqlock because it has
400 	 * to be read outside of zone->lock, and it is done in the main
401 	 * allocator path.  But, it is written quite infrequently.
402 	 *
403 	 * The lock is declared along with zone->lock because it is
404 	 * frequently read in proximity to zone->lock.  It's good to
405 	 * give them a chance of being in the same cacheline.
406 	 */
407 	unsigned long		spanned_pages;	/* total size, including holes */
408 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
409 
410 	/*
411 	 * rarely used fields:
412 	 */
413 	const char		*name;
414 } ____cacheline_internodealigned_in_smp;
415 
416 typedef enum {
417 	ZONE_ALL_UNRECLAIMABLE,		/* all pages pinned */
418 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
419 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
420 } zone_flags_t;
421 
422 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
423 {
424 	set_bit(flag, &zone->flags);
425 }
426 
427 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
428 {
429 	return test_and_set_bit(flag, &zone->flags);
430 }
431 
432 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
433 {
434 	clear_bit(flag, &zone->flags);
435 }
436 
437 static inline int zone_is_all_unreclaimable(const struct zone *zone)
438 {
439 	return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
440 }
441 
442 static inline int zone_is_reclaim_locked(const struct zone *zone)
443 {
444 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
445 }
446 
447 static inline int zone_is_oom_locked(const struct zone *zone)
448 {
449 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
450 }
451 
452 /*
453  * The "priority" of VM scanning is how much of the queues we will scan in one
454  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
455  * queues ("queue_length >> 12") during an aging round.
456  */
457 #define DEF_PRIORITY 12
458 
459 /* Maximum number of zones on a zonelist */
460 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
461 
462 #ifdef CONFIG_NUMA
463 
464 /*
465  * The NUMA zonelists are doubled becausse we need zonelists that restrict the
466  * allocations to a single node for GFP_THISNODE.
467  *
468  * [0]	: Zonelist with fallback
469  * [1]	: No fallback (GFP_THISNODE)
470  */
471 #define MAX_ZONELISTS 2
472 
473 
474 /*
475  * We cache key information from each zonelist for smaller cache
476  * footprint when scanning for free pages in get_page_from_freelist().
477  *
478  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
479  *    up short of free memory since the last time (last_fullzone_zap)
480  *    we zero'd fullzones.
481  * 2) The array z_to_n[] maps each zone in the zonelist to its node
482  *    id, so that we can efficiently evaluate whether that node is
483  *    set in the current tasks mems_allowed.
484  *
485  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
486  * indexed by a zones offset in the zonelist zones[] array.
487  *
488  * The get_page_from_freelist() routine does two scans.  During the
489  * first scan, we skip zones whose corresponding bit in 'fullzones'
490  * is set or whose corresponding node in current->mems_allowed (which
491  * comes from cpusets) is not set.  During the second scan, we bypass
492  * this zonelist_cache, to ensure we look methodically at each zone.
493  *
494  * Once per second, we zero out (zap) fullzones, forcing us to
495  * reconsider nodes that might have regained more free memory.
496  * The field last_full_zap is the time we last zapped fullzones.
497  *
498  * This mechanism reduces the amount of time we waste repeatedly
499  * reexaming zones for free memory when they just came up low on
500  * memory momentarilly ago.
501  *
502  * The zonelist_cache struct members logically belong in struct
503  * zonelist.  However, the mempolicy zonelists constructed for
504  * MPOL_BIND are intentionally variable length (and usually much
505  * shorter).  A general purpose mechanism for handling structs with
506  * multiple variable length members is more mechanism than we want
507  * here.  We resort to some special case hackery instead.
508  *
509  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
510  * part because they are shorter), so we put the fixed length stuff
511  * at the front of the zonelist struct, ending in a variable length
512  * zones[], as is needed by MPOL_BIND.
513  *
514  * Then we put the optional zonelist cache on the end of the zonelist
515  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
516  * the fixed length portion at the front of the struct.  This pointer
517  * both enables us to find the zonelist cache, and in the case of
518  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
519  * to know that the zonelist cache is not there.
520  *
521  * The end result is that struct zonelists come in two flavors:
522  *  1) The full, fixed length version, shown below, and
523  *  2) The custom zonelists for MPOL_BIND.
524  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
525  *
526  * Even though there may be multiple CPU cores on a node modifying
527  * fullzones or last_full_zap in the same zonelist_cache at the same
528  * time, we don't lock it.  This is just hint data - if it is wrong now
529  * and then, the allocator will still function, perhaps a bit slower.
530  */
531 
532 
533 struct zonelist_cache {
534 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
535 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
536 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
537 };
538 #else
539 #define MAX_ZONELISTS 1
540 struct zonelist_cache;
541 #endif
542 
543 /*
544  * This struct contains information about a zone in a zonelist. It is stored
545  * here to avoid dereferences into large structures and lookups of tables
546  */
547 struct zoneref {
548 	struct zone *zone;	/* Pointer to actual zone */
549 	int zone_idx;		/* zone_idx(zoneref->zone) */
550 };
551 
552 /*
553  * One allocation request operates on a zonelist. A zonelist
554  * is a list of zones, the first one is the 'goal' of the
555  * allocation, the other zones are fallback zones, in decreasing
556  * priority.
557  *
558  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
559  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
560  * *
561  * To speed the reading of the zonelist, the zonerefs contain the zone index
562  * of the entry being read. Helper functions to access information given
563  * a struct zoneref are
564  *
565  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
566  * zonelist_zone_idx()	- Return the index of the zone for an entry
567  * zonelist_node_idx()	- Return the index of the node for an entry
568  */
569 struct zonelist {
570 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
571 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
572 #ifdef CONFIG_NUMA
573 	struct zonelist_cache zlcache;			     // optional ...
574 #endif
575 };
576 
577 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
578 struct node_active_region {
579 	unsigned long start_pfn;
580 	unsigned long end_pfn;
581 	int nid;
582 };
583 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
584 
585 #ifndef CONFIG_DISCONTIGMEM
586 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
587 extern struct page *mem_map;
588 #endif
589 
590 /*
591  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
592  * (mostly NUMA machines?) to denote a higher-level memory zone than the
593  * zone denotes.
594  *
595  * On NUMA machines, each NUMA node would have a pg_data_t to describe
596  * it's memory layout.
597  *
598  * Memory statistics and page replacement data structures are maintained on a
599  * per-zone basis.
600  */
601 struct bootmem_data;
602 typedef struct pglist_data {
603 	struct zone node_zones[MAX_NR_ZONES];
604 	struct zonelist node_zonelists[MAX_ZONELISTS];
605 	int nr_zones;
606 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
607 	struct page *node_mem_map;
608 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
609 	struct page_cgroup *node_page_cgroup;
610 #endif
611 #endif
612 	struct bootmem_data *bdata;
613 #ifdef CONFIG_MEMORY_HOTPLUG
614 	/*
615 	 * Must be held any time you expect node_start_pfn, node_present_pages
616 	 * or node_spanned_pages stay constant.  Holding this will also
617 	 * guarantee that any pfn_valid() stays that way.
618 	 *
619 	 * Nests above zone->lock and zone->size_seqlock.
620 	 */
621 	spinlock_t node_size_lock;
622 #endif
623 	unsigned long node_start_pfn;
624 	unsigned long node_present_pages; /* total number of physical pages */
625 	unsigned long node_spanned_pages; /* total size of physical page
626 					     range, including holes */
627 	int node_id;
628 	wait_queue_head_t kswapd_wait;
629 	struct task_struct *kswapd;
630 	int kswapd_max_order;
631 } pg_data_t;
632 
633 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
634 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
635 #ifdef CONFIG_FLAT_NODE_MEM_MAP
636 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
637 #else
638 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
639 #endif
640 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
641 
642 #include <linux/memory_hotplug.h>
643 
644 void get_zone_counts(unsigned long *active, unsigned long *inactive,
645 			unsigned long *free);
646 void build_all_zonelists(void);
647 void wakeup_kswapd(struct zone *zone, int order);
648 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
649 		int classzone_idx, int alloc_flags);
650 enum memmap_context {
651 	MEMMAP_EARLY,
652 	MEMMAP_HOTPLUG,
653 };
654 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
655 				     unsigned long size,
656 				     enum memmap_context context);
657 
658 #ifdef CONFIG_HAVE_MEMORY_PRESENT
659 void memory_present(int nid, unsigned long start, unsigned long end);
660 #else
661 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
662 #endif
663 
664 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
665 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
666 #endif
667 
668 /*
669  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
670  */
671 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
672 
673 static inline int populated_zone(struct zone *zone)
674 {
675 	return (!!zone->present_pages);
676 }
677 
678 extern int movable_zone;
679 
680 static inline int zone_movable_is_highmem(void)
681 {
682 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 	return movable_zone == ZONE_HIGHMEM;
684 #else
685 	return 0;
686 #endif
687 }
688 
689 static inline int is_highmem_idx(enum zone_type idx)
690 {
691 #ifdef CONFIG_HIGHMEM
692 	return (idx == ZONE_HIGHMEM ||
693 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
694 #else
695 	return 0;
696 #endif
697 }
698 
699 static inline int is_normal_idx(enum zone_type idx)
700 {
701 	return (idx == ZONE_NORMAL);
702 }
703 
704 /**
705  * is_highmem - helper function to quickly check if a struct zone is a
706  *              highmem zone or not.  This is an attempt to keep references
707  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
708  * @zone - pointer to struct zone variable
709  */
710 static inline int is_highmem(struct zone *zone)
711 {
712 #ifdef CONFIG_HIGHMEM
713 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
714 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
715 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
716 		zone_movable_is_highmem());
717 #else
718 	return 0;
719 #endif
720 }
721 
722 static inline int is_normal(struct zone *zone)
723 {
724 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
725 }
726 
727 static inline int is_dma32(struct zone *zone)
728 {
729 #ifdef CONFIG_ZONE_DMA32
730 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
731 #else
732 	return 0;
733 #endif
734 }
735 
736 static inline int is_dma(struct zone *zone)
737 {
738 #ifdef CONFIG_ZONE_DMA
739 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
740 #else
741 	return 0;
742 #endif
743 }
744 
745 /* These two functions are used to setup the per zone pages min values */
746 struct ctl_table;
747 struct file;
748 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
749 					void __user *, size_t *, loff_t *);
750 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
751 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
752 					void __user *, size_t *, loff_t *);
753 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
754 					void __user *, size_t *, loff_t *);
755 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
756 			struct file *, void __user *, size_t *, loff_t *);
757 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
758 			struct file *, void __user *, size_t *, loff_t *);
759 
760 extern int numa_zonelist_order_handler(struct ctl_table *, int,
761 			struct file *, void __user *, size_t *, loff_t *);
762 extern char numa_zonelist_order[];
763 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
764 
765 #ifndef CONFIG_NEED_MULTIPLE_NODES
766 
767 extern struct pglist_data contig_page_data;
768 #define NODE_DATA(nid)		(&contig_page_data)
769 #define NODE_MEM_MAP(nid)	mem_map
770 
771 #else /* CONFIG_NEED_MULTIPLE_NODES */
772 
773 #include <asm/mmzone.h>
774 
775 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
776 
777 extern struct pglist_data *first_online_pgdat(void);
778 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
779 extern struct zone *next_zone(struct zone *zone);
780 
781 /**
782  * for_each_online_pgdat - helper macro to iterate over all online nodes
783  * @pgdat - pointer to a pg_data_t variable
784  */
785 #define for_each_online_pgdat(pgdat)			\
786 	for (pgdat = first_online_pgdat();		\
787 	     pgdat;					\
788 	     pgdat = next_online_pgdat(pgdat))
789 /**
790  * for_each_zone - helper macro to iterate over all memory zones
791  * @zone - pointer to struct zone variable
792  *
793  * The user only needs to declare the zone variable, for_each_zone
794  * fills it in.
795  */
796 #define for_each_zone(zone)			        \
797 	for (zone = (first_online_pgdat())->node_zones; \
798 	     zone;					\
799 	     zone = next_zone(zone))
800 
801 #define for_each_populated_zone(zone)		        \
802 	for (zone = (first_online_pgdat())->node_zones; \
803 	     zone;					\
804 	     zone = next_zone(zone))			\
805 		if (!populated_zone(zone))		\
806 			; /* do nothing */		\
807 		else
808 
809 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
810 {
811 	return zoneref->zone;
812 }
813 
814 static inline int zonelist_zone_idx(struct zoneref *zoneref)
815 {
816 	return zoneref->zone_idx;
817 }
818 
819 static inline int zonelist_node_idx(struct zoneref *zoneref)
820 {
821 #ifdef CONFIG_NUMA
822 	/* zone_to_nid not available in this context */
823 	return zoneref->zone->node;
824 #else
825 	return 0;
826 #endif /* CONFIG_NUMA */
827 }
828 
829 /**
830  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
831  * @z - The cursor used as a starting point for the search
832  * @highest_zoneidx - The zone index of the highest zone to return
833  * @nodes - An optional nodemask to filter the zonelist with
834  * @zone - The first suitable zone found is returned via this parameter
835  *
836  * This function returns the next zone at or below a given zone index that is
837  * within the allowed nodemask using a cursor as the starting point for the
838  * search. The zoneref returned is a cursor that represents the current zone
839  * being examined. It should be advanced by one before calling
840  * next_zones_zonelist again.
841  */
842 struct zoneref *next_zones_zonelist(struct zoneref *z,
843 					enum zone_type highest_zoneidx,
844 					nodemask_t *nodes,
845 					struct zone **zone);
846 
847 /**
848  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
849  * @zonelist - The zonelist to search for a suitable zone
850  * @highest_zoneidx - The zone index of the highest zone to return
851  * @nodes - An optional nodemask to filter the zonelist with
852  * @zone - The first suitable zone found is returned via this parameter
853  *
854  * This function returns the first zone at or below a given zone index that is
855  * within the allowed nodemask. The zoneref returned is a cursor that can be
856  * used to iterate the zonelist with next_zones_zonelist by advancing it by
857  * one before calling.
858  */
859 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
860 					enum zone_type highest_zoneidx,
861 					nodemask_t *nodes,
862 					struct zone **zone)
863 {
864 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
865 								zone);
866 }
867 
868 /**
869  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
870  * @zone - The current zone in the iterator
871  * @z - The current pointer within zonelist->zones being iterated
872  * @zlist - The zonelist being iterated
873  * @highidx - The zone index of the highest zone to return
874  * @nodemask - Nodemask allowed by the allocator
875  *
876  * This iterator iterates though all zones at or below a given zone index and
877  * within a given nodemask
878  */
879 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
880 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
881 		zone;							\
882 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
883 
884 /**
885  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
886  * @zone - The current zone in the iterator
887  * @z - The current pointer within zonelist->zones being iterated
888  * @zlist - The zonelist being iterated
889  * @highidx - The zone index of the highest zone to return
890  *
891  * This iterator iterates though all zones at or below a given zone index.
892  */
893 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
894 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
895 
896 #ifdef CONFIG_SPARSEMEM
897 #include <asm/sparsemem.h>
898 #endif
899 
900 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
901 	!defined(CONFIG_ARCH_POPULATES_NODE_MAP)
902 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
903 {
904 	return 0;
905 }
906 #endif
907 
908 #ifdef CONFIG_FLATMEM
909 #define pfn_to_nid(pfn)		(0)
910 #endif
911 
912 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
913 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
914 
915 #ifdef CONFIG_SPARSEMEM
916 
917 /*
918  * SECTION_SHIFT    		#bits space required to store a section #
919  *
920  * PA_SECTION_SHIFT		physical address to/from section number
921  * PFN_SECTION_SHIFT		pfn to/from section number
922  */
923 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
924 
925 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
926 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
927 
928 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
929 
930 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
931 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
932 
933 #define SECTION_BLOCKFLAGS_BITS \
934 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
935 
936 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
937 #error Allocator MAX_ORDER exceeds SECTION_SIZE
938 #endif
939 
940 struct page;
941 struct page_cgroup;
942 struct mem_section {
943 	/*
944 	 * This is, logically, a pointer to an array of struct
945 	 * pages.  However, it is stored with some other magic.
946 	 * (see sparse.c::sparse_init_one_section())
947 	 *
948 	 * Additionally during early boot we encode node id of
949 	 * the location of the section here to guide allocation.
950 	 * (see sparse.c::memory_present())
951 	 *
952 	 * Making it a UL at least makes someone do a cast
953 	 * before using it wrong.
954 	 */
955 	unsigned long section_mem_map;
956 
957 	/* See declaration of similar field in struct zone */
958 	unsigned long *pageblock_flags;
959 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
960 	/*
961 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
962 	 * section. (see memcontrol.h/page_cgroup.h about this.)
963 	 */
964 	struct page_cgroup *page_cgroup;
965 	unsigned long pad;
966 #endif
967 };
968 
969 #ifdef CONFIG_SPARSEMEM_EXTREME
970 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
971 #else
972 #define SECTIONS_PER_ROOT	1
973 #endif
974 
975 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
976 #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
977 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
978 
979 #ifdef CONFIG_SPARSEMEM_EXTREME
980 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
981 #else
982 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
983 #endif
984 
985 static inline struct mem_section *__nr_to_section(unsigned long nr)
986 {
987 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
988 		return NULL;
989 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
990 }
991 extern int __section_nr(struct mem_section* ms);
992 extern unsigned long usemap_size(void);
993 
994 /*
995  * We use the lower bits of the mem_map pointer to store
996  * a little bit of information.  There should be at least
997  * 3 bits here due to 32-bit alignment.
998  */
999 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1000 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1001 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1002 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1003 #define SECTION_NID_SHIFT	2
1004 
1005 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1006 {
1007 	unsigned long map = section->section_mem_map;
1008 	map &= SECTION_MAP_MASK;
1009 	return (struct page *)map;
1010 }
1011 
1012 static inline int present_section(struct mem_section *section)
1013 {
1014 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1015 }
1016 
1017 static inline int present_section_nr(unsigned long nr)
1018 {
1019 	return present_section(__nr_to_section(nr));
1020 }
1021 
1022 static inline int valid_section(struct mem_section *section)
1023 {
1024 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1025 }
1026 
1027 static inline int valid_section_nr(unsigned long nr)
1028 {
1029 	return valid_section(__nr_to_section(nr));
1030 }
1031 
1032 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1033 {
1034 	return __nr_to_section(pfn_to_section_nr(pfn));
1035 }
1036 
1037 static inline int pfn_valid(unsigned long pfn)
1038 {
1039 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1040 		return 0;
1041 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1042 }
1043 
1044 static inline int pfn_present(unsigned long pfn)
1045 {
1046 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1047 		return 0;
1048 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1049 }
1050 
1051 /*
1052  * These are _only_ used during initialisation, therefore they
1053  * can use __initdata ...  They could have names to indicate
1054  * this restriction.
1055  */
1056 #ifdef CONFIG_NUMA
1057 #define pfn_to_nid(pfn)							\
1058 ({									\
1059 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1060 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1061 })
1062 #else
1063 #define pfn_to_nid(pfn)		(0)
1064 #endif
1065 
1066 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1067 void sparse_init(void);
1068 #else
1069 #define sparse_init()	do {} while (0)
1070 #define sparse_index_init(_sec, _nid)  do {} while (0)
1071 #endif /* CONFIG_SPARSEMEM */
1072 
1073 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1074 bool early_pfn_in_nid(unsigned long pfn, int nid);
1075 #else
1076 #define early_pfn_in_nid(pfn, nid)	(1)
1077 #endif
1078 
1079 #ifndef early_pfn_valid
1080 #define early_pfn_valid(pfn)	(1)
1081 #endif
1082 
1083 void memory_present(int nid, unsigned long start, unsigned long end);
1084 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1085 
1086 /*
1087  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1088  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1089  * pfn_valid_within() should be used in this case; we optimise this away
1090  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1091  */
1092 #ifdef CONFIG_HOLES_IN_ZONE
1093 #define pfn_valid_within(pfn) pfn_valid(pfn)
1094 #else
1095 #define pfn_valid_within(pfn) (1)
1096 #endif
1097 
1098 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1099 /*
1100  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1101  * associated with it or not. In FLATMEM, it is expected that holes always
1102  * have valid memmap as long as there is valid PFNs either side of the hole.
1103  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1104  * entire section.
1105  *
1106  * However, an ARM, and maybe other embedded architectures in the future
1107  * free memmap backing holes to save memory on the assumption the memmap is
1108  * never used. The page_zone linkages are then broken even though pfn_valid()
1109  * returns true. A walker of the full memmap must then do this additional
1110  * check to ensure the memmap they are looking at is sane by making sure
1111  * the zone and PFN linkages are still valid. This is expensive, but walkers
1112  * of the full memmap are extremely rare.
1113  */
1114 int memmap_valid_within(unsigned long pfn,
1115 					struct page *page, struct zone *zone);
1116 #else
1117 static inline int memmap_valid_within(unsigned long pfn,
1118 					struct page *page, struct zone *zone)
1119 {
1120 	return 1;
1121 }
1122 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1123 
1124 #endif /* !__GENERATING_BOUNDS.H */
1125 #endif /* !__ASSEMBLY__ */
1126 #endif /* _LINUX_MMZONE_H */
1127