xref: /linux-6.15/include/linux/mmzone.h (revision 1f330c32)
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 enum {
39 	MIGRATE_UNMOVABLE,
40 	MIGRATE_MOVABLE,
41 	MIGRATE_RECLAIMABLE,
42 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
43 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 	/*
46 	 * MIGRATE_CMA migration type is designed to mimic the way
47 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
48 	 * from MIGRATE_CMA pageblocks and page allocator never
49 	 * implicitly change migration type of MIGRATE_CMA pageblock.
50 	 *
51 	 * The way to use it is to change migratetype of a range of
52 	 * pageblocks to MIGRATE_CMA which can be done by
53 	 * __free_pageblock_cma() function.  What is important though
54 	 * is that a range of pageblocks must be aligned to
55 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 	 * a single pageblock.
57 	 */
58 	MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 	MIGRATE_ISOLATE,	/* can't allocate from here */
62 #endif
63 	MIGRATE_TYPES
64 };
65 
66 #ifdef CONFIG_CMA
67 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 #  define is_migrate_cma(migratetype) false
70 #endif
71 
72 #define for_each_migratetype_order(order, type) \
73 	for (order = 0; order < MAX_ORDER; order++) \
74 		for (type = 0; type < MIGRATE_TYPES; type++)
75 
76 extern int page_group_by_mobility_disabled;
77 
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80 
81 #define get_pageblock_migratetype(page)					\
82 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
83 			PB_migrate_end, MIGRATETYPE_MASK)
84 
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 	BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 	return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 					MIGRATETYPE_MASK);
90 }
91 
92 struct free_area {
93 	struct list_head	free_list[MIGRATE_TYPES];
94 	unsigned long		nr_free;
95 };
96 
97 struct pglist_data;
98 
99 /*
100  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101  * So add a wild amount of padding here to ensure that they fall into separate
102  * cachelines.  There are very few zone structures in the machine, so space
103  * consumption is not a concern here.
104  */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 	char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name)	struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113 
114 enum zone_stat_item {
115 	/* First 128 byte cacheline (assuming 64 bit words) */
116 	NR_FREE_PAGES,
117 	NR_ALLOC_BATCH,
118 	NR_LRU_BASE,
119 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
121 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
122 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
123 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
124 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
125 	NR_ANON_PAGES,	/* Mapped anonymous pages */
126 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
127 			   only modified from process context */
128 	NR_FILE_PAGES,
129 	NR_FILE_DIRTY,
130 	NR_WRITEBACK,
131 	NR_SLAB_RECLAIMABLE,
132 	NR_SLAB_UNRECLAIMABLE,
133 	NR_PAGETABLE,		/* used for pagetables */
134 	NR_KERNEL_STACK,
135 	/* Second 128 byte cacheline */
136 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
137 	NR_BOUNCE,
138 	NR_VMSCAN_WRITE,
139 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
140 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
141 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
142 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
143 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
144 	NR_DIRTIED,		/* page dirtyings since bootup */
145 	NR_WRITTEN,		/* page writings since bootup */
146 	NR_PAGES_SCANNED,	/* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 	NUMA_HIT,		/* allocated in intended node */
149 	NUMA_MISS,		/* allocated in non intended node */
150 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
151 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
152 	NUMA_LOCAL,		/* allocation from local node */
153 	NUMA_OTHER,		/* allocation from other node */
154 #endif
155 	WORKINGSET_REFAULT,
156 	WORKINGSET_ACTIVATE,
157 	WORKINGSET_NODERECLAIM,
158 	NR_ANON_TRANSPARENT_HUGEPAGES,
159 	NR_FREE_CMA_PAGES,
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 /*
163  * We do arithmetic on the LRU lists in various places in the code,
164  * so it is important to keep the active lists LRU_ACTIVE higher in
165  * the array than the corresponding inactive lists, and to keep
166  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167  *
168  * This has to be kept in sync with the statistics in zone_stat_item
169  * above and the descriptions in vmstat_text in mm/vmstat.c
170  */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174 
175 enum lru_list {
176 	LRU_INACTIVE_ANON = LRU_BASE,
177 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 	LRU_UNEVICTABLE,
181 	NR_LRU_LISTS
182 };
183 
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185 
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187 
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192 
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197 
198 struct zone_reclaim_stat {
199 	/*
200 	 * The pageout code in vmscan.c keeps track of how many of the
201 	 * mem/swap backed and file backed pages are referenced.
202 	 * The higher the rotated/scanned ratio, the more valuable
203 	 * that cache is.
204 	 *
205 	 * The anon LRU stats live in [0], file LRU stats in [1]
206 	 */
207 	unsigned long		recent_rotated[2];
208 	unsigned long		recent_scanned[2];
209 };
210 
211 struct lruvec {
212 	struct list_head lists[NR_LRU_LISTS];
213 	struct zone_reclaim_stat reclaim_stat;
214 #ifdef CONFIG_MEMCG
215 	struct zone *zone;
216 #endif
217 };
218 
219 /* Mask used at gathering information at once (see memcontrol.c) */
220 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
221 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
222 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
223 
224 /* Isolate clean file */
225 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x1)
226 /* Isolate unmapped file */
227 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
228 /* Isolate for asynchronous migration */
229 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
230 /* Isolate unevictable pages */
231 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
232 
233 /* LRU Isolation modes. */
234 typedef unsigned __bitwise__ isolate_mode_t;
235 
236 enum zone_watermarks {
237 	WMARK_MIN,
238 	WMARK_LOW,
239 	WMARK_HIGH,
240 	NR_WMARK
241 };
242 
243 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
244 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
245 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
246 
247 struct per_cpu_pages {
248 	int count;		/* number of pages in the list */
249 	int high;		/* high watermark, emptying needed */
250 	int batch;		/* chunk size for buddy add/remove */
251 
252 	/* Lists of pages, one per migrate type stored on the pcp-lists */
253 	struct list_head lists[MIGRATE_PCPTYPES];
254 };
255 
256 struct per_cpu_pageset {
257 	struct per_cpu_pages pcp;
258 #ifdef CONFIG_NUMA
259 	s8 expire;
260 #endif
261 #ifdef CONFIG_SMP
262 	s8 stat_threshold;
263 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
264 #endif
265 };
266 
267 #endif /* !__GENERATING_BOUNDS.H */
268 
269 enum zone_type {
270 #ifdef CONFIG_ZONE_DMA
271 	/*
272 	 * ZONE_DMA is used when there are devices that are not able
273 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
274 	 * carve out the portion of memory that is needed for these devices.
275 	 * The range is arch specific.
276 	 *
277 	 * Some examples
278 	 *
279 	 * Architecture		Limit
280 	 * ---------------------------
281 	 * parisc, ia64, sparc	<4G
282 	 * s390			<2G
283 	 * arm			Various
284 	 * alpha		Unlimited or 0-16MB.
285 	 *
286 	 * i386, x86_64 and multiple other arches
287 	 * 			<16M.
288 	 */
289 	ZONE_DMA,
290 #endif
291 #ifdef CONFIG_ZONE_DMA32
292 	/*
293 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
294 	 * only able to do DMA to the lower 16M but also 32 bit devices that
295 	 * can only do DMA areas below 4G.
296 	 */
297 	ZONE_DMA32,
298 #endif
299 	/*
300 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
301 	 * performed on pages in ZONE_NORMAL if the DMA devices support
302 	 * transfers to all addressable memory.
303 	 */
304 	ZONE_NORMAL,
305 #ifdef CONFIG_HIGHMEM
306 	/*
307 	 * A memory area that is only addressable by the kernel through
308 	 * mapping portions into its own address space. This is for example
309 	 * used by i386 to allow the kernel to address the memory beyond
310 	 * 900MB. The kernel will set up special mappings (page
311 	 * table entries on i386) for each page that the kernel needs to
312 	 * access.
313 	 */
314 	ZONE_HIGHMEM,
315 #endif
316 	ZONE_MOVABLE,
317 #ifdef CONFIG_ZONE_DEVICE
318 	ZONE_DEVICE,
319 #endif
320 	__MAX_NR_ZONES
321 
322 };
323 
324 #ifndef __GENERATING_BOUNDS_H
325 
326 struct zone {
327 	/* Read-mostly fields */
328 
329 	/* zone watermarks, access with *_wmark_pages(zone) macros */
330 	unsigned long watermark[NR_WMARK];
331 
332 	unsigned long nr_reserved_highatomic;
333 
334 	/*
335 	 * We don't know if the memory that we're going to allocate will be
336 	 * freeable or/and it will be released eventually, so to avoid totally
337 	 * wasting several GB of ram we must reserve some of the lower zone
338 	 * memory (otherwise we risk to run OOM on the lower zones despite
339 	 * there being tons of freeable ram on the higher zones).  This array is
340 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
341 	 * changes.
342 	 */
343 	long lowmem_reserve[MAX_NR_ZONES];
344 
345 #ifdef CONFIG_NUMA
346 	int node;
347 #endif
348 
349 	/*
350 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
351 	 * this zone's LRU.  Maintained by the pageout code.
352 	 */
353 	unsigned int inactive_ratio;
354 
355 	struct pglist_data	*zone_pgdat;
356 	struct per_cpu_pageset __percpu *pageset;
357 
358 	/*
359 	 * This is a per-zone reserve of pages that are not available
360 	 * to userspace allocations.
361 	 */
362 	unsigned long		totalreserve_pages;
363 
364 #ifndef CONFIG_SPARSEMEM
365 	/*
366 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
367 	 * In SPARSEMEM, this map is stored in struct mem_section
368 	 */
369 	unsigned long		*pageblock_flags;
370 #endif /* CONFIG_SPARSEMEM */
371 
372 #ifdef CONFIG_NUMA
373 	/*
374 	 * zone reclaim becomes active if more unmapped pages exist.
375 	 */
376 	unsigned long		min_unmapped_pages;
377 	unsigned long		min_slab_pages;
378 #endif /* CONFIG_NUMA */
379 
380 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
381 	unsigned long		zone_start_pfn;
382 
383 	/*
384 	 * spanned_pages is the total pages spanned by the zone, including
385 	 * holes, which is calculated as:
386 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
387 	 *
388 	 * present_pages is physical pages existing within the zone, which
389 	 * is calculated as:
390 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
391 	 *
392 	 * managed_pages is present pages managed by the buddy system, which
393 	 * is calculated as (reserved_pages includes pages allocated by the
394 	 * bootmem allocator):
395 	 *	managed_pages = present_pages - reserved_pages;
396 	 *
397 	 * So present_pages may be used by memory hotplug or memory power
398 	 * management logic to figure out unmanaged pages by checking
399 	 * (present_pages - managed_pages). And managed_pages should be used
400 	 * by page allocator and vm scanner to calculate all kinds of watermarks
401 	 * and thresholds.
402 	 *
403 	 * Locking rules:
404 	 *
405 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
406 	 * It is a seqlock because it has to be read outside of zone->lock,
407 	 * and it is done in the main allocator path.  But, it is written
408 	 * quite infrequently.
409 	 *
410 	 * The span_seq lock is declared along with zone->lock because it is
411 	 * frequently read in proximity to zone->lock.  It's good to
412 	 * give them a chance of being in the same cacheline.
413 	 *
414 	 * Write access to present_pages at runtime should be protected by
415 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
416 	 * present_pages should get_online_mems() to get a stable value.
417 	 *
418 	 * Read access to managed_pages should be safe because it's unsigned
419 	 * long. Write access to zone->managed_pages and totalram_pages are
420 	 * protected by managed_page_count_lock at runtime. Idealy only
421 	 * adjust_managed_page_count() should be used instead of directly
422 	 * touching zone->managed_pages and totalram_pages.
423 	 */
424 	unsigned long		managed_pages;
425 	unsigned long		spanned_pages;
426 	unsigned long		present_pages;
427 
428 	const char		*name;
429 
430 #ifdef CONFIG_MEMORY_ISOLATION
431 	/*
432 	 * Number of isolated pageblock. It is used to solve incorrect
433 	 * freepage counting problem due to racy retrieving migratetype
434 	 * of pageblock. Protected by zone->lock.
435 	 */
436 	unsigned long		nr_isolate_pageblock;
437 #endif
438 
439 #ifdef CONFIG_MEMORY_HOTPLUG
440 	/* see spanned/present_pages for more description */
441 	seqlock_t		span_seqlock;
442 #endif
443 
444 	/*
445 	 * wait_table		-- the array holding the hash table
446 	 * wait_table_hash_nr_entries	-- the size of the hash table array
447 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
448 	 *
449 	 * The purpose of all these is to keep track of the people
450 	 * waiting for a page to become available and make them
451 	 * runnable again when possible. The trouble is that this
452 	 * consumes a lot of space, especially when so few things
453 	 * wait on pages at a given time. So instead of using
454 	 * per-page waitqueues, we use a waitqueue hash table.
455 	 *
456 	 * The bucket discipline is to sleep on the same queue when
457 	 * colliding and wake all in that wait queue when removing.
458 	 * When something wakes, it must check to be sure its page is
459 	 * truly available, a la thundering herd. The cost of a
460 	 * collision is great, but given the expected load of the
461 	 * table, they should be so rare as to be outweighed by the
462 	 * benefits from the saved space.
463 	 *
464 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
465 	 * primary users of these fields, and in mm/page_alloc.c
466 	 * free_area_init_core() performs the initialization of them.
467 	 */
468 	wait_queue_head_t	*wait_table;
469 	unsigned long		wait_table_hash_nr_entries;
470 	unsigned long		wait_table_bits;
471 
472 	ZONE_PADDING(_pad1_)
473 	/* free areas of different sizes */
474 	struct free_area	free_area[MAX_ORDER];
475 
476 	/* zone flags, see below */
477 	unsigned long		flags;
478 
479 	/* Write-intensive fields used from the page allocator */
480 	spinlock_t		lock;
481 
482 	ZONE_PADDING(_pad2_)
483 
484 	/* Write-intensive fields used by page reclaim */
485 
486 	/* Fields commonly accessed by the page reclaim scanner */
487 	spinlock_t		lru_lock;
488 	struct lruvec		lruvec;
489 
490 	/* Evictions & activations on the inactive file list */
491 	atomic_long_t		inactive_age;
492 
493 	/*
494 	 * When free pages are below this point, additional steps are taken
495 	 * when reading the number of free pages to avoid per-cpu counter
496 	 * drift allowing watermarks to be breached
497 	 */
498 	unsigned long percpu_drift_mark;
499 
500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 	/* pfn where compaction free scanner should start */
502 	unsigned long		compact_cached_free_pfn;
503 	/* pfn where async and sync compaction migration scanner should start */
504 	unsigned long		compact_cached_migrate_pfn[2];
505 #endif
506 
507 #ifdef CONFIG_COMPACTION
508 	/*
509 	 * On compaction failure, 1<<compact_defer_shift compactions
510 	 * are skipped before trying again. The number attempted since
511 	 * last failure is tracked with compact_considered.
512 	 */
513 	unsigned int		compact_considered;
514 	unsigned int		compact_defer_shift;
515 	int			compact_order_failed;
516 #endif
517 
518 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
519 	/* Set to true when the PG_migrate_skip bits should be cleared */
520 	bool			compact_blockskip_flush;
521 #endif
522 
523 	ZONE_PADDING(_pad3_)
524 	/* Zone statistics */
525 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
526 } ____cacheline_internodealigned_in_smp;
527 
528 enum zone_flags {
529 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
530 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
531 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
532 					 * a congested BDI
533 					 */
534 	ZONE_DIRTY,			/* reclaim scanning has recently found
535 					 * many dirty file pages at the tail
536 					 * of the LRU.
537 					 */
538 	ZONE_WRITEBACK,			/* reclaim scanning has recently found
539 					 * many pages under writeback
540 					 */
541 	ZONE_FAIR_DEPLETED,		/* fair zone policy batch depleted */
542 };
543 
544 static inline unsigned long zone_end_pfn(const struct zone *zone)
545 {
546 	return zone->zone_start_pfn + zone->spanned_pages;
547 }
548 
549 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
550 {
551 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
552 }
553 
554 static inline bool zone_is_initialized(struct zone *zone)
555 {
556 	return !!zone->wait_table;
557 }
558 
559 static inline bool zone_is_empty(struct zone *zone)
560 {
561 	return zone->spanned_pages == 0;
562 }
563 
564 /*
565  * The "priority" of VM scanning is how much of the queues we will scan in one
566  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
567  * queues ("queue_length >> 12") during an aging round.
568  */
569 #define DEF_PRIORITY 12
570 
571 /* Maximum number of zones on a zonelist */
572 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
573 
574 enum {
575 	ZONELIST_FALLBACK,	/* zonelist with fallback */
576 #ifdef CONFIG_NUMA
577 	/*
578 	 * The NUMA zonelists are doubled because we need zonelists that
579 	 * restrict the allocations to a single node for __GFP_THISNODE.
580 	 */
581 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
582 #endif
583 	MAX_ZONELISTS
584 };
585 
586 /*
587  * This struct contains information about a zone in a zonelist. It is stored
588  * here to avoid dereferences into large structures and lookups of tables
589  */
590 struct zoneref {
591 	struct zone *zone;	/* Pointer to actual zone */
592 	int zone_idx;		/* zone_idx(zoneref->zone) */
593 };
594 
595 /*
596  * One allocation request operates on a zonelist. A zonelist
597  * is a list of zones, the first one is the 'goal' of the
598  * allocation, the other zones are fallback zones, in decreasing
599  * priority.
600  *
601  * To speed the reading of the zonelist, the zonerefs contain the zone index
602  * of the entry being read. Helper functions to access information given
603  * a struct zoneref are
604  *
605  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
606  * zonelist_zone_idx()	- Return the index of the zone for an entry
607  * zonelist_node_idx()	- Return the index of the node for an entry
608  */
609 struct zonelist {
610 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
611 };
612 
613 #ifndef CONFIG_DISCONTIGMEM
614 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
615 extern struct page *mem_map;
616 #endif
617 
618 /*
619  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
620  * (mostly NUMA machines?) to denote a higher-level memory zone than the
621  * zone denotes.
622  *
623  * On NUMA machines, each NUMA node would have a pg_data_t to describe
624  * it's memory layout.
625  *
626  * Memory statistics and page replacement data structures are maintained on a
627  * per-zone basis.
628  */
629 struct bootmem_data;
630 typedef struct pglist_data {
631 	struct zone node_zones[MAX_NR_ZONES];
632 	struct zonelist node_zonelists[MAX_ZONELISTS];
633 	int nr_zones;
634 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
635 	struct page *node_mem_map;
636 #ifdef CONFIG_PAGE_EXTENSION
637 	struct page_ext *node_page_ext;
638 #endif
639 #endif
640 #ifndef CONFIG_NO_BOOTMEM
641 	struct bootmem_data *bdata;
642 #endif
643 #ifdef CONFIG_MEMORY_HOTPLUG
644 	/*
645 	 * Must be held any time you expect node_start_pfn, node_present_pages
646 	 * or node_spanned_pages stay constant.  Holding this will also
647 	 * guarantee that any pfn_valid() stays that way.
648 	 *
649 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
650 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
651 	 *
652 	 * Nests above zone->lock and zone->span_seqlock
653 	 */
654 	spinlock_t node_size_lock;
655 #endif
656 	unsigned long node_start_pfn;
657 	unsigned long node_present_pages; /* total number of physical pages */
658 	unsigned long node_spanned_pages; /* total size of physical page
659 					     range, including holes */
660 	int node_id;
661 	wait_queue_head_t kswapd_wait;
662 	wait_queue_head_t pfmemalloc_wait;
663 	struct task_struct *kswapd;	/* Protected by
664 					   mem_hotplug_begin/end() */
665 	int kswapd_max_order;
666 	enum zone_type classzone_idx;
667 #ifdef CONFIG_NUMA_BALANCING
668 	/* Lock serializing the migrate rate limiting window */
669 	spinlock_t numabalancing_migrate_lock;
670 
671 	/* Rate limiting time interval */
672 	unsigned long numabalancing_migrate_next_window;
673 
674 	/* Number of pages migrated during the rate limiting time interval */
675 	unsigned long numabalancing_migrate_nr_pages;
676 #endif
677 
678 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
679 	/*
680 	 * If memory initialisation on large machines is deferred then this
681 	 * is the first PFN that needs to be initialised.
682 	 */
683 	unsigned long first_deferred_pfn;
684 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
685 } pg_data_t;
686 
687 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
688 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
689 #ifdef CONFIG_FLAT_NODE_MEM_MAP
690 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
691 #else
692 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
693 #endif
694 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
695 
696 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
697 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
698 
699 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
700 {
701 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
702 }
703 
704 static inline bool pgdat_is_empty(pg_data_t *pgdat)
705 {
706 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
707 }
708 
709 static inline int zone_id(const struct zone *zone)
710 {
711 	struct pglist_data *pgdat = zone->zone_pgdat;
712 
713 	return zone - pgdat->node_zones;
714 }
715 
716 #ifdef CONFIG_ZONE_DEVICE
717 static inline bool is_dev_zone(const struct zone *zone)
718 {
719 	return zone_id(zone) == ZONE_DEVICE;
720 }
721 #else
722 static inline bool is_dev_zone(const struct zone *zone)
723 {
724 	return false;
725 }
726 #endif
727 
728 #include <linux/memory_hotplug.h>
729 
730 extern struct mutex zonelists_mutex;
731 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
732 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
733 bool zone_watermark_ok(struct zone *z, unsigned int order,
734 		unsigned long mark, int classzone_idx, int alloc_flags);
735 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
736 		unsigned long mark, int classzone_idx);
737 enum memmap_context {
738 	MEMMAP_EARLY,
739 	MEMMAP_HOTPLUG,
740 };
741 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
742 				     unsigned long size);
743 
744 extern void lruvec_init(struct lruvec *lruvec);
745 
746 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
747 {
748 #ifdef CONFIG_MEMCG
749 	return lruvec->zone;
750 #else
751 	return container_of(lruvec, struct zone, lruvec);
752 #endif
753 }
754 
755 #ifdef CONFIG_HAVE_MEMORY_PRESENT
756 void memory_present(int nid, unsigned long start, unsigned long end);
757 #else
758 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
759 #endif
760 
761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
762 int local_memory_node(int node_id);
763 #else
764 static inline int local_memory_node(int node_id) { return node_id; };
765 #endif
766 
767 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
768 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
769 #endif
770 
771 /*
772  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
773  */
774 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
775 
776 static inline int populated_zone(struct zone *zone)
777 {
778 	return (!!zone->present_pages);
779 }
780 
781 extern int movable_zone;
782 
783 #ifdef CONFIG_HIGHMEM
784 static inline int zone_movable_is_highmem(void)
785 {
786 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
787 	return movable_zone == ZONE_HIGHMEM;
788 #else
789 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
790 #endif
791 }
792 #endif
793 
794 static inline int is_highmem_idx(enum zone_type idx)
795 {
796 #ifdef CONFIG_HIGHMEM
797 	return (idx == ZONE_HIGHMEM ||
798 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
799 #else
800 	return 0;
801 #endif
802 }
803 
804 /**
805  * is_highmem - helper function to quickly check if a struct zone is a
806  *              highmem zone or not.  This is an attempt to keep references
807  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
808  * @zone - pointer to struct zone variable
809  */
810 static inline int is_highmem(struct zone *zone)
811 {
812 #ifdef CONFIG_HIGHMEM
813 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
814 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
815 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
816 		zone_movable_is_highmem());
817 #else
818 	return 0;
819 #endif
820 }
821 
822 /* These two functions are used to setup the per zone pages min values */
823 struct ctl_table;
824 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
825 					void __user *, size_t *, loff_t *);
826 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
827 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
828 					void __user *, size_t *, loff_t *);
829 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
830 					void __user *, size_t *, loff_t *);
831 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
832 			void __user *, size_t *, loff_t *);
833 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
834 			void __user *, size_t *, loff_t *);
835 
836 extern int numa_zonelist_order_handler(struct ctl_table *, int,
837 			void __user *, size_t *, loff_t *);
838 extern char numa_zonelist_order[];
839 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
840 
841 #ifndef CONFIG_NEED_MULTIPLE_NODES
842 
843 extern struct pglist_data contig_page_data;
844 #define NODE_DATA(nid)		(&contig_page_data)
845 #define NODE_MEM_MAP(nid)	mem_map
846 
847 #else /* CONFIG_NEED_MULTIPLE_NODES */
848 
849 #include <asm/mmzone.h>
850 
851 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
852 
853 extern struct pglist_data *first_online_pgdat(void);
854 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
855 extern struct zone *next_zone(struct zone *zone);
856 
857 /**
858  * for_each_online_pgdat - helper macro to iterate over all online nodes
859  * @pgdat - pointer to a pg_data_t variable
860  */
861 #define for_each_online_pgdat(pgdat)			\
862 	for (pgdat = first_online_pgdat();		\
863 	     pgdat;					\
864 	     pgdat = next_online_pgdat(pgdat))
865 /**
866  * for_each_zone - helper macro to iterate over all memory zones
867  * @zone - pointer to struct zone variable
868  *
869  * The user only needs to declare the zone variable, for_each_zone
870  * fills it in.
871  */
872 #define for_each_zone(zone)			        \
873 	for (zone = (first_online_pgdat())->node_zones; \
874 	     zone;					\
875 	     zone = next_zone(zone))
876 
877 #define for_each_populated_zone(zone)		        \
878 	for (zone = (first_online_pgdat())->node_zones; \
879 	     zone;					\
880 	     zone = next_zone(zone))			\
881 		if (!populated_zone(zone))		\
882 			; /* do nothing */		\
883 		else
884 
885 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
886 {
887 	return zoneref->zone;
888 }
889 
890 static inline int zonelist_zone_idx(struct zoneref *zoneref)
891 {
892 	return zoneref->zone_idx;
893 }
894 
895 static inline int zonelist_node_idx(struct zoneref *zoneref)
896 {
897 #ifdef CONFIG_NUMA
898 	/* zone_to_nid not available in this context */
899 	return zoneref->zone->node;
900 #else
901 	return 0;
902 #endif /* CONFIG_NUMA */
903 }
904 
905 /**
906  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
907  * @z - The cursor used as a starting point for the search
908  * @highest_zoneidx - The zone index of the highest zone to return
909  * @nodes - An optional nodemask to filter the zonelist with
910  *
911  * This function returns the next zone at or below a given zone index that is
912  * within the allowed nodemask using a cursor as the starting point for the
913  * search. The zoneref returned is a cursor that represents the current zone
914  * being examined. It should be advanced by one before calling
915  * next_zones_zonelist again.
916  */
917 struct zoneref *next_zones_zonelist(struct zoneref *z,
918 					enum zone_type highest_zoneidx,
919 					nodemask_t *nodes);
920 
921 /**
922  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
923  * @zonelist - The zonelist to search for a suitable zone
924  * @highest_zoneidx - The zone index of the highest zone to return
925  * @nodes - An optional nodemask to filter the zonelist with
926  * @zone - The first suitable zone found is returned via this parameter
927  *
928  * This function returns the first zone at or below a given zone index that is
929  * within the allowed nodemask. The zoneref returned is a cursor that can be
930  * used to iterate the zonelist with next_zones_zonelist by advancing it by
931  * one before calling.
932  */
933 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
934 					enum zone_type highest_zoneidx,
935 					nodemask_t *nodes,
936 					struct zone **zone)
937 {
938 	struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
939 							highest_zoneidx, nodes);
940 	*zone = zonelist_zone(z);
941 	return z;
942 }
943 
944 /**
945  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
946  * @zone - The current zone in the iterator
947  * @z - The current pointer within zonelist->zones being iterated
948  * @zlist - The zonelist being iterated
949  * @highidx - The zone index of the highest zone to return
950  * @nodemask - Nodemask allowed by the allocator
951  *
952  * This iterator iterates though all zones at or below a given zone index and
953  * within a given nodemask
954  */
955 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
956 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
957 		zone;							\
958 		z = next_zones_zonelist(++z, highidx, nodemask),	\
959 			zone = zonelist_zone(z))			\
960 
961 /**
962  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
963  * @zone - The current zone in the iterator
964  * @z - The current pointer within zonelist->zones being iterated
965  * @zlist - The zonelist being iterated
966  * @highidx - The zone index of the highest zone to return
967  *
968  * This iterator iterates though all zones at or below a given zone index.
969  */
970 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
971 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
972 
973 #ifdef CONFIG_SPARSEMEM
974 #include <asm/sparsemem.h>
975 #endif
976 
977 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
978 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
979 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
980 {
981 	return 0;
982 }
983 #endif
984 
985 #ifdef CONFIG_FLATMEM
986 #define pfn_to_nid(pfn)		(0)
987 #endif
988 
989 #ifdef CONFIG_SPARSEMEM
990 
991 /*
992  * SECTION_SHIFT    		#bits space required to store a section #
993  *
994  * PA_SECTION_SHIFT		physical address to/from section number
995  * PFN_SECTION_SHIFT		pfn to/from section number
996  */
997 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
998 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
999 
1000 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1001 
1002 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1003 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1004 
1005 #define SECTION_BLOCKFLAGS_BITS \
1006 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1007 
1008 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1009 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1010 #endif
1011 
1012 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1013 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1014 
1015 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1016 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1017 
1018 struct page;
1019 struct page_ext;
1020 struct mem_section {
1021 	/*
1022 	 * This is, logically, a pointer to an array of struct
1023 	 * pages.  However, it is stored with some other magic.
1024 	 * (see sparse.c::sparse_init_one_section())
1025 	 *
1026 	 * Additionally during early boot we encode node id of
1027 	 * the location of the section here to guide allocation.
1028 	 * (see sparse.c::memory_present())
1029 	 *
1030 	 * Making it a UL at least makes someone do a cast
1031 	 * before using it wrong.
1032 	 */
1033 	unsigned long section_mem_map;
1034 
1035 	/* See declaration of similar field in struct zone */
1036 	unsigned long *pageblock_flags;
1037 #ifdef CONFIG_PAGE_EXTENSION
1038 	/*
1039 	 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1040 	 * section. (see page_ext.h about this.)
1041 	 */
1042 	struct page_ext *page_ext;
1043 	unsigned long pad;
1044 #endif
1045 	/*
1046 	 * WARNING: mem_section must be a power-of-2 in size for the
1047 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1048 	 */
1049 };
1050 
1051 #ifdef CONFIG_SPARSEMEM_EXTREME
1052 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1053 #else
1054 #define SECTIONS_PER_ROOT	1
1055 #endif
1056 
1057 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1058 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1059 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1060 
1061 #ifdef CONFIG_SPARSEMEM_EXTREME
1062 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1063 #else
1064 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1065 #endif
1066 
1067 static inline struct mem_section *__nr_to_section(unsigned long nr)
1068 {
1069 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1070 		return NULL;
1071 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1072 }
1073 extern int __section_nr(struct mem_section* ms);
1074 extern unsigned long usemap_size(void);
1075 
1076 /*
1077  * We use the lower bits of the mem_map pointer to store
1078  * a little bit of information.  There should be at least
1079  * 3 bits here due to 32-bit alignment.
1080  */
1081 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1082 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1083 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1084 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1085 #define SECTION_NID_SHIFT	2
1086 
1087 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1088 {
1089 	unsigned long map = section->section_mem_map;
1090 	map &= SECTION_MAP_MASK;
1091 	return (struct page *)map;
1092 }
1093 
1094 static inline int present_section(struct mem_section *section)
1095 {
1096 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1097 }
1098 
1099 static inline int present_section_nr(unsigned long nr)
1100 {
1101 	return present_section(__nr_to_section(nr));
1102 }
1103 
1104 static inline int valid_section(struct mem_section *section)
1105 {
1106 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1107 }
1108 
1109 static inline int valid_section_nr(unsigned long nr)
1110 {
1111 	return valid_section(__nr_to_section(nr));
1112 }
1113 
1114 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1115 {
1116 	return __nr_to_section(pfn_to_section_nr(pfn));
1117 }
1118 
1119 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1120 static inline int pfn_valid(unsigned long pfn)
1121 {
1122 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1123 		return 0;
1124 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1125 }
1126 #endif
1127 
1128 static inline int pfn_present(unsigned long pfn)
1129 {
1130 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1131 		return 0;
1132 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1133 }
1134 
1135 /*
1136  * These are _only_ used during initialisation, therefore they
1137  * can use __initdata ...  They could have names to indicate
1138  * this restriction.
1139  */
1140 #ifdef CONFIG_NUMA
1141 #define pfn_to_nid(pfn)							\
1142 ({									\
1143 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1144 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1145 })
1146 #else
1147 #define pfn_to_nid(pfn)		(0)
1148 #endif
1149 
1150 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1151 void sparse_init(void);
1152 #else
1153 #define sparse_init()	do {} while (0)
1154 #define sparse_index_init(_sec, _nid)  do {} while (0)
1155 #endif /* CONFIG_SPARSEMEM */
1156 
1157 /*
1158  * During memory init memblocks map pfns to nids. The search is expensive and
1159  * this caches recent lookups. The implementation of __early_pfn_to_nid
1160  * may treat start/end as pfns or sections.
1161  */
1162 struct mminit_pfnnid_cache {
1163 	unsigned long last_start;
1164 	unsigned long last_end;
1165 	int last_nid;
1166 };
1167 
1168 #ifndef early_pfn_valid
1169 #define early_pfn_valid(pfn)	(1)
1170 #endif
1171 
1172 void memory_present(int nid, unsigned long start, unsigned long end);
1173 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1174 
1175 /*
1176  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1177  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1178  * pfn_valid_within() should be used in this case; we optimise this away
1179  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1180  */
1181 #ifdef CONFIG_HOLES_IN_ZONE
1182 #define pfn_valid_within(pfn) pfn_valid(pfn)
1183 #else
1184 #define pfn_valid_within(pfn) (1)
1185 #endif
1186 
1187 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1188 /*
1189  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1190  * associated with it or not. In FLATMEM, it is expected that holes always
1191  * have valid memmap as long as there is valid PFNs either side of the hole.
1192  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1193  * entire section.
1194  *
1195  * However, an ARM, and maybe other embedded architectures in the future
1196  * free memmap backing holes to save memory on the assumption the memmap is
1197  * never used. The page_zone linkages are then broken even though pfn_valid()
1198  * returns true. A walker of the full memmap must then do this additional
1199  * check to ensure the memmap they are looking at is sane by making sure
1200  * the zone and PFN linkages are still valid. This is expensive, but walkers
1201  * of the full memmap are extremely rare.
1202  */
1203 bool memmap_valid_within(unsigned long pfn,
1204 					struct page *page, struct zone *zone);
1205 #else
1206 static inline bool memmap_valid_within(unsigned long pfn,
1207 					struct page *page, struct zone *zone)
1208 {
1209 	return true;
1210 }
1211 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1212 
1213 #endif /* !__GENERATING_BOUNDS.H */
1214 #endif /* !__ASSEMBLY__ */
1215 #endif /* _LINUX_MMZONE_H */
1216