xref: /linux-6.15/include/linux/mmzone.h (revision 151f4e2b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24 
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32 
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40 
41 enum migratetype {
42 	MIGRATE_UNMOVABLE,
43 	MIGRATE_MOVABLE,
44 	MIGRATE_RECLAIMABLE,
45 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
46 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 	/*
49 	 * MIGRATE_CMA migration type is designed to mimic the way
50 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
51 	 * from MIGRATE_CMA pageblocks and page allocator never
52 	 * implicitly change migration type of MIGRATE_CMA pageblock.
53 	 *
54 	 * The way to use it is to change migratetype of a range of
55 	 * pageblocks to MIGRATE_CMA which can be done by
56 	 * __free_pageblock_cma() function.  What is important though
57 	 * is that a range of pageblocks must be aligned to
58 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 	 * a single pageblock.
60 	 */
61 	MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 	MIGRATE_ISOLATE,	/* can't allocate from here */
65 #endif
66 	MIGRATE_TYPES
67 };
68 
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71 
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79 
80 static inline bool is_migrate_movable(int mt)
81 {
82 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84 
85 #define for_each_migratetype_order(order, type) \
86 	for (order = 0; order < MAX_ORDER; order++) \
87 		for (type = 0; type < MIGRATE_TYPES; type++)
88 
89 extern int page_group_by_mobility_disabled;
90 
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93 
94 #define get_pageblock_migratetype(page)					\
95 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
96 			PB_migrate_end, MIGRATETYPE_MASK)
97 
98 struct free_area {
99 	struct list_head	free_list[MIGRATE_TYPES];
100 	unsigned long		nr_free;
101 };
102 
103 /* Used for pages not on another list */
104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105 			     int migratetype)
106 {
107 	list_add(&page->lru, &area->free_list[migratetype]);
108 	area->nr_free++;
109 }
110 
111 /* Used for pages not on another list */
112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 				  int migratetype)
114 {
115 	list_add_tail(&page->lru, &area->free_list[migratetype]);
116 	area->nr_free++;
117 }
118 
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122 		int migratetype);
123 #else
124 static inline void add_to_free_area_random(struct page *page,
125 		struct free_area *area, int migratetype)
126 {
127 	add_to_free_area(page, area, migratetype);
128 }
129 #endif
130 
131 /* Used for pages which are on another list */
132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133 			     int migratetype)
134 {
135 	list_move(&page->lru, &area->free_list[migratetype]);
136 }
137 
138 static inline struct page *get_page_from_free_area(struct free_area *area,
139 					    int migratetype)
140 {
141 	return list_first_entry_or_null(&area->free_list[migratetype],
142 					struct page, lru);
143 }
144 
145 static inline void del_page_from_free_area(struct page *page,
146 		struct free_area *area)
147 {
148 	list_del(&page->lru);
149 	__ClearPageBuddy(page);
150 	set_page_private(page, 0);
151 	area->nr_free--;
152 }
153 
154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156 	return list_empty(&area->free_list[migratetype]);
157 }
158 
159 struct pglist_data;
160 
161 /*
162  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163  * So add a wild amount of padding here to ensure that they fall into separate
164  * cachelines.  There are very few zone structures in the machine, so space
165  * consumption is not a concern here.
166  */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169 	char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name)	struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175 
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178 	NUMA_HIT,		/* allocated in intended node */
179 	NUMA_MISS,		/* allocated in non intended node */
180 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
181 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
182 	NUMA_LOCAL,		/* allocation from local node */
183 	NUMA_OTHER,		/* allocation from other node */
184 	NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189 
190 enum zone_stat_item {
191 	/* First 128 byte cacheline (assuming 64 bit words) */
192 	NR_FREE_PAGES,
193 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 	NR_ZONE_ACTIVE_ANON,
196 	NR_ZONE_INACTIVE_FILE,
197 	NR_ZONE_ACTIVE_FILE,
198 	NR_ZONE_UNEVICTABLE,
199 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
200 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
201 	NR_PAGETABLE,		/* used for pagetables */
202 	NR_KERNEL_STACK_KB,	/* measured in KiB */
203 	/* Second 128 byte cacheline */
204 	NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206 	NR_ZSPAGES,		/* allocated in zsmalloc */
207 #endif
208 	NR_FREE_CMA_PAGES,
209 	NR_VM_ZONE_STAT_ITEMS };
210 
211 enum node_stat_item {
212 	NR_LRU_BASE,
213 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
215 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
216 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
217 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
218 	NR_SLAB_RECLAIMABLE,
219 	NR_SLAB_UNRECLAIMABLE,
220 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
221 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
222 	WORKINGSET_NODES,
223 	WORKINGSET_REFAULT,
224 	WORKINGSET_ACTIVATE,
225 	WORKINGSET_RESTORE,
226 	WORKINGSET_NODERECLAIM,
227 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
228 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
229 			   only modified from process context */
230 	NR_FILE_PAGES,
231 	NR_FILE_DIRTY,
232 	NR_WRITEBACK,
233 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
234 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
235 	NR_SHMEM_THPS,
236 	NR_SHMEM_PMDMAPPED,
237 	NR_ANON_THPS,
238 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
239 	NR_VMSCAN_WRITE,
240 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
241 	NR_DIRTIED,		/* page dirtyings since bootup */
242 	NR_WRITTEN,		/* page writings since bootup */
243 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
244 	NR_VM_NODE_STAT_ITEMS
245 };
246 
247 /*
248  * We do arithmetic on the LRU lists in various places in the code,
249  * so it is important to keep the active lists LRU_ACTIVE higher in
250  * the array than the corresponding inactive lists, and to keep
251  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
252  *
253  * This has to be kept in sync with the statistics in zone_stat_item
254  * above and the descriptions in vmstat_text in mm/vmstat.c
255  */
256 #define LRU_BASE 0
257 #define LRU_ACTIVE 1
258 #define LRU_FILE 2
259 
260 enum lru_list {
261 	LRU_INACTIVE_ANON = LRU_BASE,
262 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
263 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
264 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
265 	LRU_UNEVICTABLE,
266 	NR_LRU_LISTS
267 };
268 
269 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
270 
271 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
272 
273 static inline int is_file_lru(enum lru_list lru)
274 {
275 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
276 }
277 
278 static inline int is_active_lru(enum lru_list lru)
279 {
280 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
281 }
282 
283 struct zone_reclaim_stat {
284 	/*
285 	 * The pageout code in vmscan.c keeps track of how many of the
286 	 * mem/swap backed and file backed pages are referenced.
287 	 * The higher the rotated/scanned ratio, the more valuable
288 	 * that cache is.
289 	 *
290 	 * The anon LRU stats live in [0], file LRU stats in [1]
291 	 */
292 	unsigned long		recent_rotated[2];
293 	unsigned long		recent_scanned[2];
294 };
295 
296 struct lruvec {
297 	struct list_head		lists[NR_LRU_LISTS];
298 	struct zone_reclaim_stat	reclaim_stat;
299 	/* Evictions & activations on the inactive file list */
300 	atomic_long_t			inactive_age;
301 	/* Refaults at the time of last reclaim cycle */
302 	unsigned long			refaults;
303 #ifdef CONFIG_MEMCG
304 	struct pglist_data *pgdat;
305 #endif
306 };
307 
308 /* Isolate unmapped file */
309 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
310 /* Isolate for asynchronous migration */
311 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
312 /* Isolate unevictable pages */
313 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
314 
315 /* LRU Isolation modes. */
316 typedef unsigned __bitwise isolate_mode_t;
317 
318 enum zone_watermarks {
319 	WMARK_MIN,
320 	WMARK_LOW,
321 	WMARK_HIGH,
322 	NR_WMARK
323 };
324 
325 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
326 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
327 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
328 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
329 
330 struct per_cpu_pages {
331 	int count;		/* number of pages in the list */
332 	int high;		/* high watermark, emptying needed */
333 	int batch;		/* chunk size for buddy add/remove */
334 
335 	/* Lists of pages, one per migrate type stored on the pcp-lists */
336 	struct list_head lists[MIGRATE_PCPTYPES];
337 };
338 
339 struct per_cpu_pageset {
340 	struct per_cpu_pages pcp;
341 #ifdef CONFIG_NUMA
342 	s8 expire;
343 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
344 #endif
345 #ifdef CONFIG_SMP
346 	s8 stat_threshold;
347 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
348 #endif
349 };
350 
351 struct per_cpu_nodestat {
352 	s8 stat_threshold;
353 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
354 };
355 
356 #endif /* !__GENERATING_BOUNDS.H */
357 
358 enum zone_type {
359 #ifdef CONFIG_ZONE_DMA
360 	/*
361 	 * ZONE_DMA is used when there are devices that are not able
362 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
363 	 * carve out the portion of memory that is needed for these devices.
364 	 * The range is arch specific.
365 	 *
366 	 * Some examples
367 	 *
368 	 * Architecture		Limit
369 	 * ---------------------------
370 	 * parisc, ia64, sparc	<4G
371 	 * s390, powerpc	<2G
372 	 * arm			Various
373 	 * alpha		Unlimited or 0-16MB.
374 	 *
375 	 * i386, x86_64 and multiple other arches
376 	 * 			<16M.
377 	 */
378 	ZONE_DMA,
379 #endif
380 #ifdef CONFIG_ZONE_DMA32
381 	/*
382 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
383 	 * only able to do DMA to the lower 16M but also 32 bit devices that
384 	 * can only do DMA areas below 4G.
385 	 */
386 	ZONE_DMA32,
387 #endif
388 	/*
389 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
390 	 * performed on pages in ZONE_NORMAL if the DMA devices support
391 	 * transfers to all addressable memory.
392 	 */
393 	ZONE_NORMAL,
394 #ifdef CONFIG_HIGHMEM
395 	/*
396 	 * A memory area that is only addressable by the kernel through
397 	 * mapping portions into its own address space. This is for example
398 	 * used by i386 to allow the kernel to address the memory beyond
399 	 * 900MB. The kernel will set up special mappings (page
400 	 * table entries on i386) for each page that the kernel needs to
401 	 * access.
402 	 */
403 	ZONE_HIGHMEM,
404 #endif
405 	ZONE_MOVABLE,
406 #ifdef CONFIG_ZONE_DEVICE
407 	ZONE_DEVICE,
408 #endif
409 	__MAX_NR_ZONES
410 
411 };
412 
413 #ifndef __GENERATING_BOUNDS_H
414 
415 struct zone {
416 	/* Read-mostly fields */
417 
418 	/* zone watermarks, access with *_wmark_pages(zone) macros */
419 	unsigned long _watermark[NR_WMARK];
420 	unsigned long watermark_boost;
421 
422 	unsigned long nr_reserved_highatomic;
423 
424 	/*
425 	 * We don't know if the memory that we're going to allocate will be
426 	 * freeable or/and it will be released eventually, so to avoid totally
427 	 * wasting several GB of ram we must reserve some of the lower zone
428 	 * memory (otherwise we risk to run OOM on the lower zones despite
429 	 * there being tons of freeable ram on the higher zones).  This array is
430 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
431 	 * changes.
432 	 */
433 	long lowmem_reserve[MAX_NR_ZONES];
434 
435 #ifdef CONFIG_NUMA
436 	int node;
437 #endif
438 	struct pglist_data	*zone_pgdat;
439 	struct per_cpu_pageset __percpu *pageset;
440 
441 #ifndef CONFIG_SPARSEMEM
442 	/*
443 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
444 	 * In SPARSEMEM, this map is stored in struct mem_section
445 	 */
446 	unsigned long		*pageblock_flags;
447 #endif /* CONFIG_SPARSEMEM */
448 
449 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
450 	unsigned long		zone_start_pfn;
451 
452 	/*
453 	 * spanned_pages is the total pages spanned by the zone, including
454 	 * holes, which is calculated as:
455 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
456 	 *
457 	 * present_pages is physical pages existing within the zone, which
458 	 * is calculated as:
459 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
460 	 *
461 	 * managed_pages is present pages managed by the buddy system, which
462 	 * is calculated as (reserved_pages includes pages allocated by the
463 	 * bootmem allocator):
464 	 *	managed_pages = present_pages - reserved_pages;
465 	 *
466 	 * So present_pages may be used by memory hotplug or memory power
467 	 * management logic to figure out unmanaged pages by checking
468 	 * (present_pages - managed_pages). And managed_pages should be used
469 	 * by page allocator and vm scanner to calculate all kinds of watermarks
470 	 * and thresholds.
471 	 *
472 	 * Locking rules:
473 	 *
474 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
475 	 * It is a seqlock because it has to be read outside of zone->lock,
476 	 * and it is done in the main allocator path.  But, it is written
477 	 * quite infrequently.
478 	 *
479 	 * The span_seq lock is declared along with zone->lock because it is
480 	 * frequently read in proximity to zone->lock.  It's good to
481 	 * give them a chance of being in the same cacheline.
482 	 *
483 	 * Write access to present_pages at runtime should be protected by
484 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
485 	 * present_pages should get_online_mems() to get a stable value.
486 	 */
487 	atomic_long_t		managed_pages;
488 	unsigned long		spanned_pages;
489 	unsigned long		present_pages;
490 
491 	const char		*name;
492 
493 #ifdef CONFIG_MEMORY_ISOLATION
494 	/*
495 	 * Number of isolated pageblock. It is used to solve incorrect
496 	 * freepage counting problem due to racy retrieving migratetype
497 	 * of pageblock. Protected by zone->lock.
498 	 */
499 	unsigned long		nr_isolate_pageblock;
500 #endif
501 
502 #ifdef CONFIG_MEMORY_HOTPLUG
503 	/* see spanned/present_pages for more description */
504 	seqlock_t		span_seqlock;
505 #endif
506 
507 	int initialized;
508 
509 	/* Write-intensive fields used from the page allocator */
510 	ZONE_PADDING(_pad1_)
511 
512 	/* free areas of different sizes */
513 	struct free_area	free_area[MAX_ORDER];
514 
515 	/* zone flags, see below */
516 	unsigned long		flags;
517 
518 	/* Primarily protects free_area */
519 	spinlock_t		lock;
520 
521 	/* Write-intensive fields used by compaction and vmstats. */
522 	ZONE_PADDING(_pad2_)
523 
524 	/*
525 	 * When free pages are below this point, additional steps are taken
526 	 * when reading the number of free pages to avoid per-cpu counter
527 	 * drift allowing watermarks to be breached
528 	 */
529 	unsigned long percpu_drift_mark;
530 
531 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
532 	/* pfn where compaction free scanner should start */
533 	unsigned long		compact_cached_free_pfn;
534 	/* pfn where async and sync compaction migration scanner should start */
535 	unsigned long		compact_cached_migrate_pfn[2];
536 	unsigned long		compact_init_migrate_pfn;
537 	unsigned long		compact_init_free_pfn;
538 #endif
539 
540 #ifdef CONFIG_COMPACTION
541 	/*
542 	 * On compaction failure, 1<<compact_defer_shift compactions
543 	 * are skipped before trying again. The number attempted since
544 	 * last failure is tracked with compact_considered.
545 	 */
546 	unsigned int		compact_considered;
547 	unsigned int		compact_defer_shift;
548 	int			compact_order_failed;
549 #endif
550 
551 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
552 	/* Set to true when the PG_migrate_skip bits should be cleared */
553 	bool			compact_blockskip_flush;
554 #endif
555 
556 	bool			contiguous;
557 
558 	ZONE_PADDING(_pad3_)
559 	/* Zone statistics */
560 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
561 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
562 } ____cacheline_internodealigned_in_smp;
563 
564 enum pgdat_flags {
565 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
566 					 * a congested BDI
567 					 */
568 	PGDAT_DIRTY,			/* reclaim scanning has recently found
569 					 * many dirty file pages at the tail
570 					 * of the LRU.
571 					 */
572 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
573 					 * many pages under writeback
574 					 */
575 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
576 };
577 
578 enum zone_flags {
579 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
580 					 * Cleared when kswapd is woken.
581 					 */
582 };
583 
584 static inline unsigned long zone_managed_pages(struct zone *zone)
585 {
586 	return (unsigned long)atomic_long_read(&zone->managed_pages);
587 }
588 
589 static inline unsigned long zone_end_pfn(const struct zone *zone)
590 {
591 	return zone->zone_start_pfn + zone->spanned_pages;
592 }
593 
594 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
595 {
596 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
597 }
598 
599 static inline bool zone_is_initialized(struct zone *zone)
600 {
601 	return zone->initialized;
602 }
603 
604 static inline bool zone_is_empty(struct zone *zone)
605 {
606 	return zone->spanned_pages == 0;
607 }
608 
609 /*
610  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
611  * intersection with the given zone
612  */
613 static inline bool zone_intersects(struct zone *zone,
614 		unsigned long start_pfn, unsigned long nr_pages)
615 {
616 	if (zone_is_empty(zone))
617 		return false;
618 	if (start_pfn >= zone_end_pfn(zone) ||
619 	    start_pfn + nr_pages <= zone->zone_start_pfn)
620 		return false;
621 
622 	return true;
623 }
624 
625 /*
626  * The "priority" of VM scanning is how much of the queues we will scan in one
627  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
628  * queues ("queue_length >> 12") during an aging round.
629  */
630 #define DEF_PRIORITY 12
631 
632 /* Maximum number of zones on a zonelist */
633 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
634 
635 enum {
636 	ZONELIST_FALLBACK,	/* zonelist with fallback */
637 #ifdef CONFIG_NUMA
638 	/*
639 	 * The NUMA zonelists are doubled because we need zonelists that
640 	 * restrict the allocations to a single node for __GFP_THISNODE.
641 	 */
642 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
643 #endif
644 	MAX_ZONELISTS
645 };
646 
647 /*
648  * This struct contains information about a zone in a zonelist. It is stored
649  * here to avoid dereferences into large structures and lookups of tables
650  */
651 struct zoneref {
652 	struct zone *zone;	/* Pointer to actual zone */
653 	int zone_idx;		/* zone_idx(zoneref->zone) */
654 };
655 
656 /*
657  * One allocation request operates on a zonelist. A zonelist
658  * is a list of zones, the first one is the 'goal' of the
659  * allocation, the other zones are fallback zones, in decreasing
660  * priority.
661  *
662  * To speed the reading of the zonelist, the zonerefs contain the zone index
663  * of the entry being read. Helper functions to access information given
664  * a struct zoneref are
665  *
666  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
667  * zonelist_zone_idx()	- Return the index of the zone for an entry
668  * zonelist_node_idx()	- Return the index of the node for an entry
669  */
670 struct zonelist {
671 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
672 };
673 
674 #ifndef CONFIG_DISCONTIGMEM
675 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
676 extern struct page *mem_map;
677 #endif
678 
679 /*
680  * On NUMA machines, each NUMA node would have a pg_data_t to describe
681  * it's memory layout. On UMA machines there is a single pglist_data which
682  * describes the whole memory.
683  *
684  * Memory statistics and page replacement data structures are maintained on a
685  * per-zone basis.
686  */
687 struct bootmem_data;
688 typedef struct pglist_data {
689 	struct zone node_zones[MAX_NR_ZONES];
690 	struct zonelist node_zonelists[MAX_ZONELISTS];
691 	int nr_zones;
692 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
693 	struct page *node_mem_map;
694 #ifdef CONFIG_PAGE_EXTENSION
695 	struct page_ext *node_page_ext;
696 #endif
697 #endif
698 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
699 	/*
700 	 * Must be held any time you expect node_start_pfn,
701 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
702 	 *
703 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
704 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
705 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
706 	 *
707 	 * Nests above zone->lock and zone->span_seqlock
708 	 */
709 	spinlock_t node_size_lock;
710 #endif
711 	unsigned long node_start_pfn;
712 	unsigned long node_present_pages; /* total number of physical pages */
713 	unsigned long node_spanned_pages; /* total size of physical page
714 					     range, including holes */
715 	int node_id;
716 	wait_queue_head_t kswapd_wait;
717 	wait_queue_head_t pfmemalloc_wait;
718 	struct task_struct *kswapd;	/* Protected by
719 					   mem_hotplug_begin/end() */
720 	int kswapd_order;
721 	enum zone_type kswapd_classzone_idx;
722 
723 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
724 
725 #ifdef CONFIG_COMPACTION
726 	int kcompactd_max_order;
727 	enum zone_type kcompactd_classzone_idx;
728 	wait_queue_head_t kcompactd_wait;
729 	struct task_struct *kcompactd;
730 #endif
731 	/*
732 	 * This is a per-node reserve of pages that are not available
733 	 * to userspace allocations.
734 	 */
735 	unsigned long		totalreserve_pages;
736 
737 #ifdef CONFIG_NUMA
738 	/*
739 	 * zone reclaim becomes active if more unmapped pages exist.
740 	 */
741 	unsigned long		min_unmapped_pages;
742 	unsigned long		min_slab_pages;
743 #endif /* CONFIG_NUMA */
744 
745 	/* Write-intensive fields used by page reclaim */
746 	ZONE_PADDING(_pad1_)
747 	spinlock_t		lru_lock;
748 
749 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
750 	/*
751 	 * If memory initialisation on large machines is deferred then this
752 	 * is the first PFN that needs to be initialised.
753 	 */
754 	unsigned long first_deferred_pfn;
755 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
756 
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 	spinlock_t split_queue_lock;
759 	struct list_head split_queue;
760 	unsigned long split_queue_len;
761 #endif
762 
763 	/* Fields commonly accessed by the page reclaim scanner */
764 	struct lruvec		lruvec;
765 
766 	unsigned long		flags;
767 
768 	ZONE_PADDING(_pad2_)
769 
770 	/* Per-node vmstats */
771 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
772 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
773 } pg_data_t;
774 
775 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
776 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
777 #ifdef CONFIG_FLAT_NODE_MEM_MAP
778 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
779 #else
780 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
781 #endif
782 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
783 
784 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
785 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
786 
787 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
788 {
789 	return &pgdat->lruvec;
790 }
791 
792 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
793 {
794 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
795 }
796 
797 static inline bool pgdat_is_empty(pg_data_t *pgdat)
798 {
799 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
800 }
801 
802 #include <linux/memory_hotplug.h>
803 
804 void build_all_zonelists(pg_data_t *pgdat);
805 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
806 		   enum zone_type classzone_idx);
807 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
808 			 int classzone_idx, unsigned int alloc_flags,
809 			 long free_pages);
810 bool zone_watermark_ok(struct zone *z, unsigned int order,
811 		unsigned long mark, int classzone_idx,
812 		unsigned int alloc_flags);
813 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
814 		unsigned long mark, int classzone_idx);
815 enum memmap_context {
816 	MEMMAP_EARLY,
817 	MEMMAP_HOTPLUG,
818 };
819 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
820 				     unsigned long size);
821 
822 extern void lruvec_init(struct lruvec *lruvec);
823 
824 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
825 {
826 #ifdef CONFIG_MEMCG
827 	return lruvec->pgdat;
828 #else
829 	return container_of(lruvec, struct pglist_data, lruvec);
830 #endif
831 }
832 
833 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
834 
835 #ifdef CONFIG_HAVE_MEMORY_PRESENT
836 void memory_present(int nid, unsigned long start, unsigned long end);
837 #else
838 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
839 #endif
840 
841 #if defined(CONFIG_SPARSEMEM)
842 void memblocks_present(void);
843 #else
844 static inline void memblocks_present(void) {}
845 #endif
846 
847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
848 int local_memory_node(int node_id);
849 #else
850 static inline int local_memory_node(int node_id) { return node_id; };
851 #endif
852 
853 /*
854  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
855  */
856 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
857 
858 #ifdef CONFIG_ZONE_DEVICE
859 static inline bool is_dev_zone(const struct zone *zone)
860 {
861 	return zone_idx(zone) == ZONE_DEVICE;
862 }
863 #else
864 static inline bool is_dev_zone(const struct zone *zone)
865 {
866 	return false;
867 }
868 #endif
869 
870 /*
871  * Returns true if a zone has pages managed by the buddy allocator.
872  * All the reclaim decisions have to use this function rather than
873  * populated_zone(). If the whole zone is reserved then we can easily
874  * end up with populated_zone() && !managed_zone().
875  */
876 static inline bool managed_zone(struct zone *zone)
877 {
878 	return zone_managed_pages(zone);
879 }
880 
881 /* Returns true if a zone has memory */
882 static inline bool populated_zone(struct zone *zone)
883 {
884 	return zone->present_pages;
885 }
886 
887 #ifdef CONFIG_NUMA
888 static inline int zone_to_nid(struct zone *zone)
889 {
890 	return zone->node;
891 }
892 
893 static inline void zone_set_nid(struct zone *zone, int nid)
894 {
895 	zone->node = nid;
896 }
897 #else
898 static inline int zone_to_nid(struct zone *zone)
899 {
900 	return 0;
901 }
902 
903 static inline void zone_set_nid(struct zone *zone, int nid) {}
904 #endif
905 
906 extern int movable_zone;
907 
908 #ifdef CONFIG_HIGHMEM
909 static inline int zone_movable_is_highmem(void)
910 {
911 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
912 	return movable_zone == ZONE_HIGHMEM;
913 #else
914 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
915 #endif
916 }
917 #endif
918 
919 static inline int is_highmem_idx(enum zone_type idx)
920 {
921 #ifdef CONFIG_HIGHMEM
922 	return (idx == ZONE_HIGHMEM ||
923 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
924 #else
925 	return 0;
926 #endif
927 }
928 
929 /**
930  * is_highmem - helper function to quickly check if a struct zone is a
931  *              highmem zone or not.  This is an attempt to keep references
932  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
933  * @zone - pointer to struct zone variable
934  */
935 static inline int is_highmem(struct zone *zone)
936 {
937 #ifdef CONFIG_HIGHMEM
938 	return is_highmem_idx(zone_idx(zone));
939 #else
940 	return 0;
941 #endif
942 }
943 
944 /* These two functions are used to setup the per zone pages min values */
945 struct ctl_table;
946 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
947 					void __user *, size_t *, loff_t *);
948 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
949 					void __user *, size_t *, loff_t *);
950 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
951 					void __user *, size_t *, loff_t *);
952 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
953 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
954 					void __user *, size_t *, loff_t *);
955 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
956 					void __user *, size_t *, loff_t *);
957 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
958 			void __user *, size_t *, loff_t *);
959 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
960 			void __user *, size_t *, loff_t *);
961 
962 extern int numa_zonelist_order_handler(struct ctl_table *, int,
963 			void __user *, size_t *, loff_t *);
964 extern char numa_zonelist_order[];
965 #define NUMA_ZONELIST_ORDER_LEN	16
966 
967 #ifndef CONFIG_NEED_MULTIPLE_NODES
968 
969 extern struct pglist_data contig_page_data;
970 #define NODE_DATA(nid)		(&contig_page_data)
971 #define NODE_MEM_MAP(nid)	mem_map
972 
973 #else /* CONFIG_NEED_MULTIPLE_NODES */
974 
975 #include <asm/mmzone.h>
976 
977 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
978 
979 extern struct pglist_data *first_online_pgdat(void);
980 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
981 extern struct zone *next_zone(struct zone *zone);
982 
983 /**
984  * for_each_online_pgdat - helper macro to iterate over all online nodes
985  * @pgdat - pointer to a pg_data_t variable
986  */
987 #define for_each_online_pgdat(pgdat)			\
988 	for (pgdat = first_online_pgdat();		\
989 	     pgdat;					\
990 	     pgdat = next_online_pgdat(pgdat))
991 /**
992  * for_each_zone - helper macro to iterate over all memory zones
993  * @zone - pointer to struct zone variable
994  *
995  * The user only needs to declare the zone variable, for_each_zone
996  * fills it in.
997  */
998 #define for_each_zone(zone)			        \
999 	for (zone = (first_online_pgdat())->node_zones; \
1000 	     zone;					\
1001 	     zone = next_zone(zone))
1002 
1003 #define for_each_populated_zone(zone)		        \
1004 	for (zone = (first_online_pgdat())->node_zones; \
1005 	     zone;					\
1006 	     zone = next_zone(zone))			\
1007 		if (!populated_zone(zone))		\
1008 			; /* do nothing */		\
1009 		else
1010 
1011 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1012 {
1013 	return zoneref->zone;
1014 }
1015 
1016 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1017 {
1018 	return zoneref->zone_idx;
1019 }
1020 
1021 static inline int zonelist_node_idx(struct zoneref *zoneref)
1022 {
1023 	return zone_to_nid(zoneref->zone);
1024 }
1025 
1026 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1027 					enum zone_type highest_zoneidx,
1028 					nodemask_t *nodes);
1029 
1030 /**
1031  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1032  * @z - The cursor used as a starting point for the search
1033  * @highest_zoneidx - The zone index of the highest zone to return
1034  * @nodes - An optional nodemask to filter the zonelist with
1035  *
1036  * This function returns the next zone at or below a given zone index that is
1037  * within the allowed nodemask using a cursor as the starting point for the
1038  * search. The zoneref returned is a cursor that represents the current zone
1039  * being examined. It should be advanced by one before calling
1040  * next_zones_zonelist again.
1041  */
1042 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1043 					enum zone_type highest_zoneidx,
1044 					nodemask_t *nodes)
1045 {
1046 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1047 		return z;
1048 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1049 }
1050 
1051 /**
1052  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1053  * @zonelist - The zonelist to search for a suitable zone
1054  * @highest_zoneidx - The zone index of the highest zone to return
1055  * @nodes - An optional nodemask to filter the zonelist with
1056  * @return - Zoneref pointer for the first suitable zone found (see below)
1057  *
1058  * This function returns the first zone at or below a given zone index that is
1059  * within the allowed nodemask. The zoneref returned is a cursor that can be
1060  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1061  * one before calling.
1062  *
1063  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1064  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1065  * update due to cpuset modification.
1066  */
1067 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1068 					enum zone_type highest_zoneidx,
1069 					nodemask_t *nodes)
1070 {
1071 	return next_zones_zonelist(zonelist->_zonerefs,
1072 							highest_zoneidx, nodes);
1073 }
1074 
1075 /**
1076  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1077  * @zone - The current zone in the iterator
1078  * @z - The current pointer within zonelist->zones being iterated
1079  * @zlist - The zonelist being iterated
1080  * @highidx - The zone index of the highest zone to return
1081  * @nodemask - Nodemask allowed by the allocator
1082  *
1083  * This iterator iterates though all zones at or below a given zone index and
1084  * within a given nodemask
1085  */
1086 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1087 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1088 		zone;							\
1089 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1090 			zone = zonelist_zone(z))
1091 
1092 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1093 	for (zone = z->zone;	\
1094 		zone;							\
1095 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1096 			zone = zonelist_zone(z))
1097 
1098 
1099 /**
1100  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1101  * @zone - The current zone in the iterator
1102  * @z - The current pointer within zonelist->zones being iterated
1103  * @zlist - The zonelist being iterated
1104  * @highidx - The zone index of the highest zone to return
1105  *
1106  * This iterator iterates though all zones at or below a given zone index.
1107  */
1108 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1109 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1110 
1111 #ifdef CONFIG_SPARSEMEM
1112 #include <asm/sparsemem.h>
1113 #endif
1114 
1115 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1116 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1117 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1118 {
1119 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1120 	return 0;
1121 }
1122 #endif
1123 
1124 #ifdef CONFIG_FLATMEM
1125 #define pfn_to_nid(pfn)		(0)
1126 #endif
1127 
1128 #ifdef CONFIG_SPARSEMEM
1129 
1130 /*
1131  * SECTION_SHIFT    		#bits space required to store a section #
1132  *
1133  * PA_SECTION_SHIFT		physical address to/from section number
1134  * PFN_SECTION_SHIFT		pfn to/from section number
1135  */
1136 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1137 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1138 
1139 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1140 
1141 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1142 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1143 
1144 #define SECTION_BLOCKFLAGS_BITS \
1145 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1146 
1147 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1148 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1149 #endif
1150 
1151 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1152 {
1153 	return pfn >> PFN_SECTION_SHIFT;
1154 }
1155 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1156 {
1157 	return sec << PFN_SECTION_SHIFT;
1158 }
1159 
1160 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1161 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1162 
1163 struct page;
1164 struct page_ext;
1165 struct mem_section {
1166 	/*
1167 	 * This is, logically, a pointer to an array of struct
1168 	 * pages.  However, it is stored with some other magic.
1169 	 * (see sparse.c::sparse_init_one_section())
1170 	 *
1171 	 * Additionally during early boot we encode node id of
1172 	 * the location of the section here to guide allocation.
1173 	 * (see sparse.c::memory_present())
1174 	 *
1175 	 * Making it a UL at least makes someone do a cast
1176 	 * before using it wrong.
1177 	 */
1178 	unsigned long section_mem_map;
1179 
1180 	/* See declaration of similar field in struct zone */
1181 	unsigned long *pageblock_flags;
1182 #ifdef CONFIG_PAGE_EXTENSION
1183 	/*
1184 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1185 	 * section. (see page_ext.h about this.)
1186 	 */
1187 	struct page_ext *page_ext;
1188 	unsigned long pad;
1189 #endif
1190 	/*
1191 	 * WARNING: mem_section must be a power-of-2 in size for the
1192 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1193 	 */
1194 };
1195 
1196 #ifdef CONFIG_SPARSEMEM_EXTREME
1197 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1198 #else
1199 #define SECTIONS_PER_ROOT	1
1200 #endif
1201 
1202 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1203 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1204 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1205 
1206 #ifdef CONFIG_SPARSEMEM_EXTREME
1207 extern struct mem_section **mem_section;
1208 #else
1209 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1210 #endif
1211 
1212 static inline struct mem_section *__nr_to_section(unsigned long nr)
1213 {
1214 #ifdef CONFIG_SPARSEMEM_EXTREME
1215 	if (!mem_section)
1216 		return NULL;
1217 #endif
1218 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1219 		return NULL;
1220 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1221 }
1222 extern int __section_nr(struct mem_section* ms);
1223 extern unsigned long usemap_size(void);
1224 
1225 /*
1226  * We use the lower bits of the mem_map pointer to store
1227  * a little bit of information.  The pointer is calculated
1228  * as mem_map - section_nr_to_pfn(pnum).  The result is
1229  * aligned to the minimum alignment of the two values:
1230  *   1. All mem_map arrays are page-aligned.
1231  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1232  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1233  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1234  *      worst combination is powerpc with 256k pages,
1235  *      which results in PFN_SECTION_SHIFT equal 6.
1236  * To sum it up, at least 6 bits are available.
1237  */
1238 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1239 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1240 #define SECTION_IS_ONLINE	(1UL<<2)
1241 #define SECTION_MAP_LAST_BIT	(1UL<<3)
1242 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1243 #define SECTION_NID_SHIFT	3
1244 
1245 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1246 {
1247 	unsigned long map = section->section_mem_map;
1248 	map &= SECTION_MAP_MASK;
1249 	return (struct page *)map;
1250 }
1251 
1252 static inline int present_section(struct mem_section *section)
1253 {
1254 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1255 }
1256 
1257 static inline int present_section_nr(unsigned long nr)
1258 {
1259 	return present_section(__nr_to_section(nr));
1260 }
1261 
1262 static inline int valid_section(struct mem_section *section)
1263 {
1264 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1265 }
1266 
1267 static inline int valid_section_nr(unsigned long nr)
1268 {
1269 	return valid_section(__nr_to_section(nr));
1270 }
1271 
1272 static inline int online_section(struct mem_section *section)
1273 {
1274 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1275 }
1276 
1277 static inline int online_section_nr(unsigned long nr)
1278 {
1279 	return online_section(__nr_to_section(nr));
1280 }
1281 
1282 #ifdef CONFIG_MEMORY_HOTPLUG
1283 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1284 #ifdef CONFIG_MEMORY_HOTREMOVE
1285 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1286 #endif
1287 #endif
1288 
1289 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1290 {
1291 	return __nr_to_section(pfn_to_section_nr(pfn));
1292 }
1293 
1294 extern int __highest_present_section_nr;
1295 
1296 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1297 static inline int pfn_valid(unsigned long pfn)
1298 {
1299 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1300 		return 0;
1301 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1302 }
1303 #endif
1304 
1305 static inline int pfn_present(unsigned long pfn)
1306 {
1307 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1308 		return 0;
1309 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1310 }
1311 
1312 /*
1313  * These are _only_ used during initialisation, therefore they
1314  * can use __initdata ...  They could have names to indicate
1315  * this restriction.
1316  */
1317 #ifdef CONFIG_NUMA
1318 #define pfn_to_nid(pfn)							\
1319 ({									\
1320 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1321 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1322 })
1323 #else
1324 #define pfn_to_nid(pfn)		(0)
1325 #endif
1326 
1327 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1328 void sparse_init(void);
1329 #else
1330 #define sparse_init()	do {} while (0)
1331 #define sparse_index_init(_sec, _nid)  do {} while (0)
1332 #define pfn_present pfn_valid
1333 #endif /* CONFIG_SPARSEMEM */
1334 
1335 /*
1336  * During memory init memblocks map pfns to nids. The search is expensive and
1337  * this caches recent lookups. The implementation of __early_pfn_to_nid
1338  * may treat start/end as pfns or sections.
1339  */
1340 struct mminit_pfnnid_cache {
1341 	unsigned long last_start;
1342 	unsigned long last_end;
1343 	int last_nid;
1344 };
1345 
1346 #ifndef early_pfn_valid
1347 #define early_pfn_valid(pfn)	(1)
1348 #endif
1349 
1350 void memory_present(int nid, unsigned long start, unsigned long end);
1351 
1352 /*
1353  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1354  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1355  * pfn_valid_within() should be used in this case; we optimise this away
1356  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1357  */
1358 #ifdef CONFIG_HOLES_IN_ZONE
1359 #define pfn_valid_within(pfn) pfn_valid(pfn)
1360 #else
1361 #define pfn_valid_within(pfn) (1)
1362 #endif
1363 
1364 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1365 /*
1366  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1367  * associated with it or not. This means that a struct page exists for this
1368  * pfn. The caller cannot assume the page is fully initialized in general.
1369  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1370  * will ensure the struct page is fully online and initialized. Special pages
1371  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1372  *
1373  * In FLATMEM, it is expected that holes always have valid memmap as long as
1374  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1375  * that a valid section has a memmap for the entire section.
1376  *
1377  * However, an ARM, and maybe other embedded architectures in the future
1378  * free memmap backing holes to save memory on the assumption the memmap is
1379  * never used. The page_zone linkages are then broken even though pfn_valid()
1380  * returns true. A walker of the full memmap must then do this additional
1381  * check to ensure the memmap they are looking at is sane by making sure
1382  * the zone and PFN linkages are still valid. This is expensive, but walkers
1383  * of the full memmap are extremely rare.
1384  */
1385 bool memmap_valid_within(unsigned long pfn,
1386 					struct page *page, struct zone *zone);
1387 #else
1388 static inline bool memmap_valid_within(unsigned long pfn,
1389 					struct page *page, struct zone *zone)
1390 {
1391 	return true;
1392 }
1393 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1394 
1395 #endif /* !__GENERATING_BOUNDS.H */
1396 #endif /* !__ASSEMBLY__ */
1397 #endif /* _LINUX_MMZONE_H */
1398