xref: /linux-6.15/include/linux/mmzone.h (revision 024bfd2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	/* PGDEMOTE_*: pages demoted */
220 	PGDEMOTE_KSWAPD,
221 	PGDEMOTE_DIRECT,
222 	PGDEMOTE_KHUGEPAGED,
223 #ifdef CONFIG_HUGETLB_PAGE
224 	NR_HUGETLB,
225 #endif
226 	NR_VM_NODE_STAT_ITEMS
227 };
228 
229 /*
230  * Returns true if the item should be printed in THPs (/proc/vmstat
231  * currently prints number of anon, file and shmem THPs. But the item
232  * is charged in pages).
233  */
234 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
235 {
236 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
237 		return false;
238 
239 	return item == NR_ANON_THPS ||
240 	       item == NR_FILE_THPS ||
241 	       item == NR_SHMEM_THPS ||
242 	       item == NR_SHMEM_PMDMAPPED ||
243 	       item == NR_FILE_PMDMAPPED;
244 }
245 
246 /*
247  * Returns true if the value is measured in bytes (most vmstat values are
248  * measured in pages). This defines the API part, the internal representation
249  * might be different.
250  */
251 static __always_inline bool vmstat_item_in_bytes(int idx)
252 {
253 	/*
254 	 * Global and per-node slab counters track slab pages.
255 	 * It's expected that changes are multiples of PAGE_SIZE.
256 	 * Internally values are stored in pages.
257 	 *
258 	 * Per-memcg and per-lruvec counters track memory, consumed
259 	 * by individual slab objects. These counters are actually
260 	 * byte-precise.
261 	 */
262 	return (idx == NR_SLAB_RECLAIMABLE_B ||
263 		idx == NR_SLAB_UNRECLAIMABLE_B);
264 }
265 
266 /*
267  * We do arithmetic on the LRU lists in various places in the code,
268  * so it is important to keep the active lists LRU_ACTIVE higher in
269  * the array than the corresponding inactive lists, and to keep
270  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
271  *
272  * This has to be kept in sync with the statistics in zone_stat_item
273  * above and the descriptions in vmstat_text in mm/vmstat.c
274  */
275 #define LRU_BASE 0
276 #define LRU_ACTIVE 1
277 #define LRU_FILE 2
278 
279 enum lru_list {
280 	LRU_INACTIVE_ANON = LRU_BASE,
281 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
282 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
283 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
284 	LRU_UNEVICTABLE,
285 	NR_LRU_LISTS
286 };
287 
288 enum vmscan_throttle_state {
289 	VMSCAN_THROTTLE_WRITEBACK,
290 	VMSCAN_THROTTLE_ISOLATED,
291 	VMSCAN_THROTTLE_NOPROGRESS,
292 	VMSCAN_THROTTLE_CONGESTED,
293 	NR_VMSCAN_THROTTLE,
294 };
295 
296 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
297 
298 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
299 
300 static inline bool is_file_lru(enum lru_list lru)
301 {
302 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
303 }
304 
305 static inline bool is_active_lru(enum lru_list lru)
306 {
307 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
308 }
309 
310 #define WORKINGSET_ANON 0
311 #define WORKINGSET_FILE 1
312 #define ANON_AND_FILE 2
313 
314 enum lruvec_flags {
315 	/*
316 	 * An lruvec has many dirty pages backed by a congested BDI:
317 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
318 	 *    It can be cleared by cgroup reclaim or kswapd.
319 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
320 	 *    It can only be cleared by kswapd.
321 	 *
322 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
323 	 * reclaim, but not vice versa. This only applies to the root cgroup.
324 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
325 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
326 	 * by kswapd).
327 	 */
328 	LRUVEC_CGROUP_CONGESTED,
329 	LRUVEC_NODE_CONGESTED,
330 };
331 
332 #endif /* !__GENERATING_BOUNDS_H */
333 
334 /*
335  * Evictable pages are divided into multiple generations. The youngest and the
336  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
337  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
338  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
339  * corresponding generation. The gen counter in folio->flags stores gen+1 while
340  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
341  *
342  * A page is added to the youngest generation on faulting. The aging needs to
343  * check the accessed bit at least twice before handing this page over to the
344  * eviction. The first check takes care of the accessed bit set on the initial
345  * fault; the second check makes sure this page hasn't been used since then.
346  * This process, AKA second chance, requires a minimum of two generations,
347  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
348  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
349  * rest of generations, if they exist, are considered inactive. See
350  * lru_gen_is_active().
351  *
352  * PG_active is always cleared while a page is on one of lrugen->folios[] so
353  * that the aging needs not to worry about it. And it's set again when a page
354  * considered active is isolated for non-reclaiming purposes, e.g., migration.
355  * See lru_gen_add_folio() and lru_gen_del_folio().
356  *
357  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
358  * number of categories of the active/inactive LRU when keeping track of
359  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
360  * in folio->flags.
361  */
362 #define MIN_NR_GENS		2U
363 #define MAX_NR_GENS		4U
364 
365 /*
366  * Each generation is divided into multiple tiers. A page accessed N times
367  * through file descriptors is in tier order_base_2(N). A page in the first tier
368  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
369  * tables or read ahead. A page in any other tier (N>1) is marked by
370  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
371  * supported without using additional bits in folio->flags.
372  *
373  * In contrast to moving across generations which requires the LRU lock, moving
374  * across tiers only involves atomic operations on folio->flags and therefore
375  * has a negligible cost in the buffered access path. In the eviction path,
376  * comparisons of refaulted/(evicted+protected) from the first tier and the
377  * rest infer whether pages accessed multiple times through file descriptors
378  * are statistically hot and thus worth protecting.
379  *
380  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
381  * number of categories of the active/inactive LRU when keeping track of
382  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
383  * folio->flags.
384  */
385 #define MAX_NR_TIERS		4U
386 
387 #ifndef __GENERATING_BOUNDS_H
388 
389 struct lruvec;
390 struct page_vma_mapped_walk;
391 
392 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
393 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
394 
395 #ifdef CONFIG_LRU_GEN
396 
397 enum {
398 	LRU_GEN_ANON,
399 	LRU_GEN_FILE,
400 };
401 
402 enum {
403 	LRU_GEN_CORE,
404 	LRU_GEN_MM_WALK,
405 	LRU_GEN_NONLEAF_YOUNG,
406 	NR_LRU_GEN_CAPS
407 };
408 
409 #define LRU_REFS_FLAGS		(BIT(PG_referenced) | BIT(PG_workingset))
410 
411 #define MIN_LRU_BATCH		BITS_PER_LONG
412 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
413 
414 /* whether to keep historical stats from evicted generations */
415 #ifdef CONFIG_LRU_GEN_STATS
416 #define NR_HIST_GENS		MAX_NR_GENS
417 #else
418 #define NR_HIST_GENS		1U
419 #endif
420 
421 /*
422  * The youngest generation number is stored in max_seq for both anon and file
423  * types as they are aged on an equal footing. The oldest generation numbers are
424  * stored in min_seq[] separately for anon and file types as clean file pages
425  * can be evicted regardless of swap constraints.
426  *
427  * Normally anon and file min_seq are in sync. But if swapping is constrained,
428  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
429  * min_seq behind.
430  *
431  * The number of pages in each generation is eventually consistent and therefore
432  * can be transiently negative when reset_batch_size() is pending.
433  */
434 struct lru_gen_folio {
435 	/* the aging increments the youngest generation number */
436 	unsigned long max_seq;
437 	/* the eviction increments the oldest generation numbers */
438 	unsigned long min_seq[ANON_AND_FILE];
439 	/* the birth time of each generation in jiffies */
440 	unsigned long timestamps[MAX_NR_GENS];
441 	/* the multi-gen LRU lists, lazily sorted on eviction */
442 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
443 	/* the multi-gen LRU sizes, eventually consistent */
444 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
445 	/* the exponential moving average of refaulted */
446 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
447 	/* the exponential moving average of evicted+protected */
448 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
449 	/* the first tier doesn't need protection, hence the minus one */
450 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
451 	/* can be modified without holding the LRU lock */
452 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
453 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
454 	/* whether the multi-gen LRU is enabled */
455 	bool enabled;
456 	/* the memcg generation this lru_gen_folio belongs to */
457 	u8 gen;
458 	/* the list segment this lru_gen_folio belongs to */
459 	u8 seg;
460 	/* per-node lru_gen_folio list for global reclaim */
461 	struct hlist_nulls_node list;
462 };
463 
464 enum {
465 	MM_LEAF_TOTAL,		/* total leaf entries */
466 	MM_LEAF_YOUNG,		/* young leaf entries */
467 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
468 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
469 	NR_MM_STATS
470 };
471 
472 /* double-buffering Bloom filters */
473 #define NR_BLOOM_FILTERS	2
474 
475 struct lru_gen_mm_state {
476 	/* synced with max_seq after each iteration */
477 	unsigned long seq;
478 	/* where the current iteration continues after */
479 	struct list_head *head;
480 	/* where the last iteration ended before */
481 	struct list_head *tail;
482 	/* Bloom filters flip after each iteration */
483 	unsigned long *filters[NR_BLOOM_FILTERS];
484 	/* the mm stats for debugging */
485 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
486 };
487 
488 struct lru_gen_mm_walk {
489 	/* the lruvec under reclaim */
490 	struct lruvec *lruvec;
491 	/* max_seq from lru_gen_folio: can be out of date */
492 	unsigned long seq;
493 	/* the next address within an mm to scan */
494 	unsigned long next_addr;
495 	/* to batch promoted pages */
496 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
497 	/* to batch the mm stats */
498 	int mm_stats[NR_MM_STATS];
499 	/* total batched items */
500 	int batched;
501 	bool can_swap;
502 	bool force_scan;
503 };
504 
505 /*
506  * For each node, memcgs are divided into two generations: the old and the
507  * young. For each generation, memcgs are randomly sharded into multiple bins
508  * to improve scalability. For each bin, the hlist_nulls is virtually divided
509  * into three segments: the head, the tail and the default.
510  *
511  * An onlining memcg is added to the tail of a random bin in the old generation.
512  * The eviction starts at the head of a random bin in the old generation. The
513  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
514  * the old generation, is incremented when all its bins become empty.
515  *
516  * There are four operations:
517  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
518  *    current generation (old or young) and updates its "seg" to "head";
519  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
520  *    current generation (old or young) and updates its "seg" to "tail";
521  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
522  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
523  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
524  *    young generation, updates its "gen" to "young" and resets its "seg" to
525  *    "default".
526  *
527  * The events that trigger the above operations are:
528  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
529  * 2. The first attempt to reclaim a memcg below low, which triggers
530  *    MEMCG_LRU_TAIL;
531  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
532  *    threshold, which triggers MEMCG_LRU_TAIL;
533  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
534  *    threshold, which triggers MEMCG_LRU_YOUNG;
535  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
536  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
537  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
538  *
539  * Notes:
540  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
541  *    of their max_seq counters ensures the eventual fairness to all eligible
542  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
543  * 2. There are only two valid generations: old (seq) and young (seq+1).
544  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
545  *    locklessly, a stale value (seq-1) does not wraparound to young.
546  */
547 #define MEMCG_NR_GENS	3
548 #define MEMCG_NR_BINS	8
549 
550 struct lru_gen_memcg {
551 	/* the per-node memcg generation counter */
552 	unsigned long seq;
553 	/* each memcg has one lru_gen_folio per node */
554 	unsigned long nr_memcgs[MEMCG_NR_GENS];
555 	/* per-node lru_gen_folio list for global reclaim */
556 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
557 	/* protects the above */
558 	spinlock_t lock;
559 };
560 
561 void lru_gen_init_pgdat(struct pglist_data *pgdat);
562 void lru_gen_init_lruvec(struct lruvec *lruvec);
563 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
564 
565 void lru_gen_init_memcg(struct mem_cgroup *memcg);
566 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
567 void lru_gen_online_memcg(struct mem_cgroup *memcg);
568 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
569 void lru_gen_release_memcg(struct mem_cgroup *memcg);
570 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
571 
572 #else /* !CONFIG_LRU_GEN */
573 
574 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
575 {
576 }
577 
578 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
579 {
580 }
581 
582 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
583 {
584 	return false;
585 }
586 
587 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
588 {
589 }
590 
591 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
592 {
593 }
594 
595 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
596 {
597 }
598 
599 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
600 {
601 }
602 
603 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
604 {
605 }
606 
607 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
608 {
609 }
610 
611 #endif /* CONFIG_LRU_GEN */
612 
613 struct lruvec {
614 	struct list_head		lists[NR_LRU_LISTS];
615 	/* per lruvec lru_lock for memcg */
616 	spinlock_t			lru_lock;
617 	/*
618 	 * These track the cost of reclaiming one LRU - file or anon -
619 	 * over the other. As the observed cost of reclaiming one LRU
620 	 * increases, the reclaim scan balance tips toward the other.
621 	 */
622 	unsigned long			anon_cost;
623 	unsigned long			file_cost;
624 	/* Non-resident age, driven by LRU movement */
625 	atomic_long_t			nonresident_age;
626 	/* Refaults at the time of last reclaim cycle */
627 	unsigned long			refaults[ANON_AND_FILE];
628 	/* Various lruvec state flags (enum lruvec_flags) */
629 	unsigned long			flags;
630 #ifdef CONFIG_LRU_GEN
631 	/* evictable pages divided into generations */
632 	struct lru_gen_folio		lrugen;
633 #ifdef CONFIG_LRU_GEN_WALKS_MMU
634 	/* to concurrently iterate lru_gen_mm_list */
635 	struct lru_gen_mm_state		mm_state;
636 #endif
637 #endif /* CONFIG_LRU_GEN */
638 #ifdef CONFIG_MEMCG
639 	struct pglist_data *pgdat;
640 #endif
641 	struct zswap_lruvec_state zswap_lruvec_state;
642 };
643 
644 /* Isolate for asynchronous migration */
645 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
646 /* Isolate unevictable pages */
647 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
648 
649 /* LRU Isolation modes. */
650 typedef unsigned __bitwise isolate_mode_t;
651 
652 enum zone_watermarks {
653 	WMARK_MIN,
654 	WMARK_LOW,
655 	WMARK_HIGH,
656 	WMARK_PROMO,
657 	NR_WMARK
658 };
659 
660 /*
661  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
662  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
663  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
664  */
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 #define NR_PCP_THP 2
667 #else
668 #define NR_PCP_THP 0
669 #endif
670 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
671 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
672 
673 /*
674  * Flags used in pcp->flags field.
675  *
676  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
677  * previous page freeing.  To avoid to drain PCP for an accident
678  * high-order page freeing.
679  *
680  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
681  * draining PCP for consecutive high-order pages freeing without
682  * allocation if data cache slice of CPU is large enough.  To reduce
683  * zone lock contention and keep cache-hot pages reusing.
684  */
685 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
686 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
687 
688 struct per_cpu_pages {
689 	spinlock_t lock;	/* Protects lists field */
690 	int count;		/* number of pages in the list */
691 	int high;		/* high watermark, emptying needed */
692 	int high_min;		/* min high watermark */
693 	int high_max;		/* max high watermark */
694 	int batch;		/* chunk size for buddy add/remove */
695 	u8 flags;		/* protected by pcp->lock */
696 	u8 alloc_factor;	/* batch scaling factor during allocate */
697 #ifdef CONFIG_NUMA
698 	u8 expire;		/* When 0, remote pagesets are drained */
699 #endif
700 	short free_count;	/* consecutive free count */
701 
702 	/* Lists of pages, one per migrate type stored on the pcp-lists */
703 	struct list_head lists[NR_PCP_LISTS];
704 } ____cacheline_aligned_in_smp;
705 
706 struct per_cpu_zonestat {
707 #ifdef CONFIG_SMP
708 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
709 	s8 stat_threshold;
710 #endif
711 #ifdef CONFIG_NUMA
712 	/*
713 	 * Low priority inaccurate counters that are only folded
714 	 * on demand. Use a large type to avoid the overhead of
715 	 * folding during refresh_cpu_vm_stats.
716 	 */
717 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
718 #endif
719 };
720 
721 struct per_cpu_nodestat {
722 	s8 stat_threshold;
723 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
724 };
725 
726 #endif /* !__GENERATING_BOUNDS.H */
727 
728 enum zone_type {
729 	/*
730 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
731 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
732 	 * On architectures where this area covers the whole 32 bit address
733 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
734 	 * DMA addressing constraints. This distinction is important as a 32bit
735 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
736 	 * platforms may need both zones as they support peripherals with
737 	 * different DMA addressing limitations.
738 	 */
739 #ifdef CONFIG_ZONE_DMA
740 	ZONE_DMA,
741 #endif
742 #ifdef CONFIG_ZONE_DMA32
743 	ZONE_DMA32,
744 #endif
745 	/*
746 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
747 	 * performed on pages in ZONE_NORMAL if the DMA devices support
748 	 * transfers to all addressable memory.
749 	 */
750 	ZONE_NORMAL,
751 #ifdef CONFIG_HIGHMEM
752 	/*
753 	 * A memory area that is only addressable by the kernel through
754 	 * mapping portions into its own address space. This is for example
755 	 * used by i386 to allow the kernel to address the memory beyond
756 	 * 900MB. The kernel will set up special mappings (page
757 	 * table entries on i386) for each page that the kernel needs to
758 	 * access.
759 	 */
760 	ZONE_HIGHMEM,
761 #endif
762 	/*
763 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
764 	 * movable pages with few exceptional cases described below. Main use
765 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
766 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
767 	 * to increase the number of THP/huge pages. Notable special cases are:
768 	 *
769 	 * 1. Pinned pages: (long-term) pinning of movable pages might
770 	 *    essentially turn such pages unmovable. Therefore, we do not allow
771 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
772 	 *    faulted, they come from the right zone right away. However, it is
773 	 *    still possible that address space already has pages in
774 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
775 	 *    touches that memory before pinning). In such case we migrate them
776 	 *    to a different zone. When migration fails - pinning fails.
777 	 * 2. memblock allocations: kernelcore/movablecore setups might create
778 	 *    situations where ZONE_MOVABLE contains unmovable allocations
779 	 *    after boot. Memory offlining and allocations fail early.
780 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
781 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
782 	 *    for example, if we have sections that are only partially
783 	 *    populated. Memory offlining and allocations fail early.
784 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
785 	 *    memory offlining, such pages cannot be allocated.
786 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
787 	 *    hotplugged memory blocks might only partially be managed by the
788 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
789 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
790 	 *    some cases (virtio-mem), such pages can be skipped during
791 	 *    memory offlining, however, cannot be moved/allocated. These
792 	 *    techniques might use alloc_contig_range() to hide previously
793 	 *    exposed pages from the buddy again (e.g., to implement some sort
794 	 *    of memory unplug in virtio-mem).
795 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
796 	 *    situations where ZERO_PAGE(0) which is allocated differently
797 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
798 	 *    cannot be migrated.
799 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
800 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
801 	 *    such zone. Such pages cannot be really moved around as they are
802 	 *    self-stored in the range, but they are treated as movable when
803 	 *    the range they describe is about to be offlined.
804 	 *
805 	 * In general, no unmovable allocations that degrade memory offlining
806 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
807 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
808 	 * if has_unmovable_pages() states that there are no unmovable pages,
809 	 * there can be false negatives).
810 	 */
811 	ZONE_MOVABLE,
812 #ifdef CONFIG_ZONE_DEVICE
813 	ZONE_DEVICE,
814 #endif
815 	__MAX_NR_ZONES
816 
817 };
818 
819 #ifndef __GENERATING_BOUNDS_H
820 
821 #define ASYNC_AND_SYNC 2
822 
823 struct zone {
824 	/* Read-mostly fields */
825 
826 	/* zone watermarks, access with *_wmark_pages(zone) macros */
827 	unsigned long _watermark[NR_WMARK];
828 	unsigned long watermark_boost;
829 
830 	unsigned long nr_reserved_highatomic;
831 	unsigned long nr_free_highatomic;
832 
833 	/*
834 	 * We don't know if the memory that we're going to allocate will be
835 	 * freeable or/and it will be released eventually, so to avoid totally
836 	 * wasting several GB of ram we must reserve some of the lower zone
837 	 * memory (otherwise we risk to run OOM on the lower zones despite
838 	 * there being tons of freeable ram on the higher zones).  This array is
839 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
840 	 * changes.
841 	 */
842 	long lowmem_reserve[MAX_NR_ZONES];
843 
844 #ifdef CONFIG_NUMA
845 	int node;
846 #endif
847 	struct pglist_data	*zone_pgdat;
848 	struct per_cpu_pages	__percpu *per_cpu_pageset;
849 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
850 	/*
851 	 * the high and batch values are copied to individual pagesets for
852 	 * faster access
853 	 */
854 	int pageset_high_min;
855 	int pageset_high_max;
856 	int pageset_batch;
857 
858 #ifndef CONFIG_SPARSEMEM
859 	/*
860 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
861 	 * In SPARSEMEM, this map is stored in struct mem_section
862 	 */
863 	unsigned long		*pageblock_flags;
864 #endif /* CONFIG_SPARSEMEM */
865 
866 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
867 	unsigned long		zone_start_pfn;
868 
869 	/*
870 	 * spanned_pages is the total pages spanned by the zone, including
871 	 * holes, which is calculated as:
872 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
873 	 *
874 	 * present_pages is physical pages existing within the zone, which
875 	 * is calculated as:
876 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
877 	 *
878 	 * present_early_pages is present pages existing within the zone
879 	 * located on memory available since early boot, excluding hotplugged
880 	 * memory.
881 	 *
882 	 * managed_pages is present pages managed by the buddy system, which
883 	 * is calculated as (reserved_pages includes pages allocated by the
884 	 * bootmem allocator):
885 	 *	managed_pages = present_pages - reserved_pages;
886 	 *
887 	 * cma pages is present pages that are assigned for CMA use
888 	 * (MIGRATE_CMA).
889 	 *
890 	 * So present_pages may be used by memory hotplug or memory power
891 	 * management logic to figure out unmanaged pages by checking
892 	 * (present_pages - managed_pages). And managed_pages should be used
893 	 * by page allocator and vm scanner to calculate all kinds of watermarks
894 	 * and thresholds.
895 	 *
896 	 * Locking rules:
897 	 *
898 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
899 	 * It is a seqlock because it has to be read outside of zone->lock,
900 	 * and it is done in the main allocator path.  But, it is written
901 	 * quite infrequently.
902 	 *
903 	 * The span_seq lock is declared along with zone->lock because it is
904 	 * frequently read in proximity to zone->lock.  It's good to
905 	 * give them a chance of being in the same cacheline.
906 	 *
907 	 * Write access to present_pages at runtime should be protected by
908 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
909 	 * present_pages should use get_online_mems() to get a stable value.
910 	 */
911 	atomic_long_t		managed_pages;
912 	unsigned long		spanned_pages;
913 	unsigned long		present_pages;
914 #if defined(CONFIG_MEMORY_HOTPLUG)
915 	unsigned long		present_early_pages;
916 #endif
917 #ifdef CONFIG_CMA
918 	unsigned long		cma_pages;
919 #endif
920 
921 	const char		*name;
922 
923 #ifdef CONFIG_MEMORY_ISOLATION
924 	/*
925 	 * Number of isolated pageblock. It is used to solve incorrect
926 	 * freepage counting problem due to racy retrieving migratetype
927 	 * of pageblock. Protected by zone->lock.
928 	 */
929 	unsigned long		nr_isolate_pageblock;
930 #endif
931 
932 #ifdef CONFIG_MEMORY_HOTPLUG
933 	/* see spanned/present_pages for more description */
934 	seqlock_t		span_seqlock;
935 #endif
936 
937 	int initialized;
938 
939 	/* Write-intensive fields used from the page allocator */
940 	CACHELINE_PADDING(_pad1_);
941 
942 	/* free areas of different sizes */
943 	struct free_area	free_area[NR_PAGE_ORDERS];
944 
945 #ifdef CONFIG_UNACCEPTED_MEMORY
946 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
947 	struct list_head	unaccepted_pages;
948 #endif
949 
950 	/* zone flags, see below */
951 	unsigned long		flags;
952 
953 	/* Primarily protects free_area */
954 	spinlock_t		lock;
955 
956 	/* Write-intensive fields used by compaction and vmstats. */
957 	CACHELINE_PADDING(_pad2_);
958 
959 	/*
960 	 * When free pages are below this point, additional steps are taken
961 	 * when reading the number of free pages to avoid per-cpu counter
962 	 * drift allowing watermarks to be breached
963 	 */
964 	unsigned long percpu_drift_mark;
965 
966 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
967 	/* pfn where compaction free scanner should start */
968 	unsigned long		compact_cached_free_pfn;
969 	/* pfn where compaction migration scanner should start */
970 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
971 	unsigned long		compact_init_migrate_pfn;
972 	unsigned long		compact_init_free_pfn;
973 #endif
974 
975 #ifdef CONFIG_COMPACTION
976 	/*
977 	 * On compaction failure, 1<<compact_defer_shift compactions
978 	 * are skipped before trying again. The number attempted since
979 	 * last failure is tracked with compact_considered.
980 	 * compact_order_failed is the minimum compaction failed order.
981 	 */
982 	unsigned int		compact_considered;
983 	unsigned int		compact_defer_shift;
984 	int			compact_order_failed;
985 #endif
986 
987 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
988 	/* Set to true when the PG_migrate_skip bits should be cleared */
989 	bool			compact_blockskip_flush;
990 #endif
991 
992 	bool			contiguous;
993 
994 	CACHELINE_PADDING(_pad3_);
995 	/* Zone statistics */
996 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
997 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
998 } ____cacheline_internodealigned_in_smp;
999 
1000 enum pgdat_flags {
1001 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1002 					 * many dirty file pages at the tail
1003 					 * of the LRU.
1004 					 */
1005 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1006 					 * many pages under writeback
1007 					 */
1008 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1009 };
1010 
1011 enum zone_flags {
1012 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1013 					 * Cleared when kswapd is woken.
1014 					 */
1015 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1016 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1017 };
1018 
1019 static inline unsigned long wmark_pages(const struct zone *z,
1020 					enum zone_watermarks w)
1021 {
1022 	return z->_watermark[w] + z->watermark_boost;
1023 }
1024 
1025 static inline unsigned long min_wmark_pages(const struct zone *z)
1026 {
1027 	return wmark_pages(z, WMARK_MIN);
1028 }
1029 
1030 static inline unsigned long low_wmark_pages(const struct zone *z)
1031 {
1032 	return wmark_pages(z, WMARK_LOW);
1033 }
1034 
1035 static inline unsigned long high_wmark_pages(const struct zone *z)
1036 {
1037 	return wmark_pages(z, WMARK_HIGH);
1038 }
1039 
1040 static inline unsigned long promo_wmark_pages(const struct zone *z)
1041 {
1042 	return wmark_pages(z, WMARK_PROMO);
1043 }
1044 
1045 static inline unsigned long zone_managed_pages(struct zone *zone)
1046 {
1047 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1048 }
1049 
1050 static inline unsigned long zone_cma_pages(struct zone *zone)
1051 {
1052 #ifdef CONFIG_CMA
1053 	return zone->cma_pages;
1054 #else
1055 	return 0;
1056 #endif
1057 }
1058 
1059 static inline unsigned long zone_end_pfn(const struct zone *zone)
1060 {
1061 	return zone->zone_start_pfn + zone->spanned_pages;
1062 }
1063 
1064 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1065 {
1066 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1067 }
1068 
1069 static inline bool zone_is_initialized(struct zone *zone)
1070 {
1071 	return zone->initialized;
1072 }
1073 
1074 static inline bool zone_is_empty(struct zone *zone)
1075 {
1076 	return zone->spanned_pages == 0;
1077 }
1078 
1079 #ifndef BUILD_VDSO32_64
1080 /*
1081  * The zone field is never updated after free_area_init_core()
1082  * sets it, so none of the operations on it need to be atomic.
1083  */
1084 
1085 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1086 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1087 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1088 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1089 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1090 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1091 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1092 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1093 
1094 /*
1095  * Define the bit shifts to access each section.  For non-existent
1096  * sections we define the shift as 0; that plus a 0 mask ensures
1097  * the compiler will optimise away reference to them.
1098  */
1099 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1100 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1101 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1102 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1103 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1104 
1105 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1106 #ifdef NODE_NOT_IN_PAGE_FLAGS
1107 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1108 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1109 						SECTIONS_PGOFF : ZONES_PGOFF)
1110 #else
1111 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1112 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1113 						NODES_PGOFF : ZONES_PGOFF)
1114 #endif
1115 
1116 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1117 
1118 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1119 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1120 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1121 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1122 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1123 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1124 
1125 static inline enum zone_type page_zonenum(const struct page *page)
1126 {
1127 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1128 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1129 }
1130 
1131 static inline enum zone_type folio_zonenum(const struct folio *folio)
1132 {
1133 	return page_zonenum(&folio->page);
1134 }
1135 
1136 #ifdef CONFIG_ZONE_DEVICE
1137 static inline bool is_zone_device_page(const struct page *page)
1138 {
1139 	return page_zonenum(page) == ZONE_DEVICE;
1140 }
1141 
1142 /*
1143  * Consecutive zone device pages should not be merged into the same sgl
1144  * or bvec segment with other types of pages or if they belong to different
1145  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1146  * without scanning the entire segment. This helper returns true either if
1147  * both pages are not zone device pages or both pages are zone device pages
1148  * with the same pgmap.
1149  */
1150 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1151 						     const struct page *b)
1152 {
1153 	if (is_zone_device_page(a) != is_zone_device_page(b))
1154 		return false;
1155 	if (!is_zone_device_page(a))
1156 		return true;
1157 	return a->pgmap == b->pgmap;
1158 }
1159 
1160 extern void memmap_init_zone_device(struct zone *, unsigned long,
1161 				    unsigned long, struct dev_pagemap *);
1162 #else
1163 static inline bool is_zone_device_page(const struct page *page)
1164 {
1165 	return false;
1166 }
1167 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1168 						     const struct page *b)
1169 {
1170 	return true;
1171 }
1172 #endif
1173 
1174 static inline bool folio_is_zone_device(const struct folio *folio)
1175 {
1176 	return is_zone_device_page(&folio->page);
1177 }
1178 
1179 static inline bool is_zone_movable_page(const struct page *page)
1180 {
1181 	return page_zonenum(page) == ZONE_MOVABLE;
1182 }
1183 
1184 static inline bool folio_is_zone_movable(const struct folio *folio)
1185 {
1186 	return folio_zonenum(folio) == ZONE_MOVABLE;
1187 }
1188 #endif
1189 
1190 /*
1191  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1192  * intersection with the given zone
1193  */
1194 static inline bool zone_intersects(struct zone *zone,
1195 		unsigned long start_pfn, unsigned long nr_pages)
1196 {
1197 	if (zone_is_empty(zone))
1198 		return false;
1199 	if (start_pfn >= zone_end_pfn(zone) ||
1200 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1201 		return false;
1202 
1203 	return true;
1204 }
1205 
1206 /*
1207  * The "priority" of VM scanning is how much of the queues we will scan in one
1208  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1209  * queues ("queue_length >> 12") during an aging round.
1210  */
1211 #define DEF_PRIORITY 12
1212 
1213 /* Maximum number of zones on a zonelist */
1214 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1215 
1216 enum {
1217 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1218 #ifdef CONFIG_NUMA
1219 	/*
1220 	 * The NUMA zonelists are doubled because we need zonelists that
1221 	 * restrict the allocations to a single node for __GFP_THISNODE.
1222 	 */
1223 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1224 #endif
1225 	MAX_ZONELISTS
1226 };
1227 
1228 /*
1229  * This struct contains information about a zone in a zonelist. It is stored
1230  * here to avoid dereferences into large structures and lookups of tables
1231  */
1232 struct zoneref {
1233 	struct zone *zone;	/* Pointer to actual zone */
1234 	int zone_idx;		/* zone_idx(zoneref->zone) */
1235 };
1236 
1237 /*
1238  * One allocation request operates on a zonelist. A zonelist
1239  * is a list of zones, the first one is the 'goal' of the
1240  * allocation, the other zones are fallback zones, in decreasing
1241  * priority.
1242  *
1243  * To speed the reading of the zonelist, the zonerefs contain the zone index
1244  * of the entry being read. Helper functions to access information given
1245  * a struct zoneref are
1246  *
1247  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1248  * zonelist_zone_idx()	- Return the index of the zone for an entry
1249  * zonelist_node_idx()	- Return the index of the node for an entry
1250  */
1251 struct zonelist {
1252 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1253 };
1254 
1255 /*
1256  * The array of struct pages for flatmem.
1257  * It must be declared for SPARSEMEM as well because there are configurations
1258  * that rely on that.
1259  */
1260 extern struct page *mem_map;
1261 
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 struct deferred_split {
1264 	spinlock_t split_queue_lock;
1265 	struct list_head split_queue;
1266 	unsigned long split_queue_len;
1267 };
1268 #endif
1269 
1270 #ifdef CONFIG_MEMORY_FAILURE
1271 /*
1272  * Per NUMA node memory failure handling statistics.
1273  */
1274 struct memory_failure_stats {
1275 	/*
1276 	 * Number of raw pages poisoned.
1277 	 * Cases not accounted: memory outside kernel control, offline page,
1278 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1279 	 * error events, and unpoison actions from hwpoison_unpoison.
1280 	 */
1281 	unsigned long total;
1282 	/*
1283 	 * Recovery results of poisoned raw pages handled by memory_failure,
1284 	 * in sync with mf_result.
1285 	 * total = ignored + failed + delayed + recovered.
1286 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1287 	 */
1288 	unsigned long ignored;
1289 	unsigned long failed;
1290 	unsigned long delayed;
1291 	unsigned long recovered;
1292 };
1293 #endif
1294 
1295 /*
1296  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1297  * it's memory layout. On UMA machines there is a single pglist_data which
1298  * describes the whole memory.
1299  *
1300  * Memory statistics and page replacement data structures are maintained on a
1301  * per-zone basis.
1302  */
1303 typedef struct pglist_data {
1304 	/*
1305 	 * node_zones contains just the zones for THIS node. Not all of the
1306 	 * zones may be populated, but it is the full list. It is referenced by
1307 	 * this node's node_zonelists as well as other node's node_zonelists.
1308 	 */
1309 	struct zone node_zones[MAX_NR_ZONES];
1310 
1311 	/*
1312 	 * node_zonelists contains references to all zones in all nodes.
1313 	 * Generally the first zones will be references to this node's
1314 	 * node_zones.
1315 	 */
1316 	struct zonelist node_zonelists[MAX_ZONELISTS];
1317 
1318 	int nr_zones; /* number of populated zones in this node */
1319 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1320 	struct page *node_mem_map;
1321 #ifdef CONFIG_PAGE_EXTENSION
1322 	struct page_ext *node_page_ext;
1323 #endif
1324 #endif
1325 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1326 	/*
1327 	 * Must be held any time you expect node_start_pfn,
1328 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1329 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1330 	 * init.
1331 	 *
1332 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1333 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1334 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1335 	 *
1336 	 * Nests above zone->lock and zone->span_seqlock
1337 	 */
1338 	spinlock_t node_size_lock;
1339 #endif
1340 	unsigned long node_start_pfn;
1341 	unsigned long node_present_pages; /* total number of physical pages */
1342 	unsigned long node_spanned_pages; /* total size of physical page
1343 					     range, including holes */
1344 	int node_id;
1345 	wait_queue_head_t kswapd_wait;
1346 	wait_queue_head_t pfmemalloc_wait;
1347 
1348 	/* workqueues for throttling reclaim for different reasons. */
1349 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1350 
1351 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1352 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1353 					 * when throttling started. */
1354 #ifdef CONFIG_MEMORY_HOTPLUG
1355 	struct mutex kswapd_lock;
1356 #endif
1357 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1358 	int kswapd_order;
1359 	enum zone_type kswapd_highest_zoneidx;
1360 
1361 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1362 
1363 #ifdef CONFIG_COMPACTION
1364 	int kcompactd_max_order;
1365 	enum zone_type kcompactd_highest_zoneidx;
1366 	wait_queue_head_t kcompactd_wait;
1367 	struct task_struct *kcompactd;
1368 	bool proactive_compact_trigger;
1369 #endif
1370 	/*
1371 	 * This is a per-node reserve of pages that are not available
1372 	 * to userspace allocations.
1373 	 */
1374 	unsigned long		totalreserve_pages;
1375 
1376 #ifdef CONFIG_NUMA
1377 	/*
1378 	 * node reclaim becomes active if more unmapped pages exist.
1379 	 */
1380 	unsigned long		min_unmapped_pages;
1381 	unsigned long		min_slab_pages;
1382 #endif /* CONFIG_NUMA */
1383 
1384 	/* Write-intensive fields used by page reclaim */
1385 	CACHELINE_PADDING(_pad1_);
1386 
1387 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1388 	/*
1389 	 * If memory initialisation on large machines is deferred then this
1390 	 * is the first PFN that needs to be initialised.
1391 	 */
1392 	unsigned long first_deferred_pfn;
1393 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1394 
1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 	struct deferred_split deferred_split_queue;
1397 #endif
1398 
1399 #ifdef CONFIG_NUMA_BALANCING
1400 	/* start time in ms of current promote rate limit period */
1401 	unsigned int nbp_rl_start;
1402 	/* number of promote candidate pages at start time of current rate limit period */
1403 	unsigned long nbp_rl_nr_cand;
1404 	/* promote threshold in ms */
1405 	unsigned int nbp_threshold;
1406 	/* start time in ms of current promote threshold adjustment period */
1407 	unsigned int nbp_th_start;
1408 	/*
1409 	 * number of promote candidate pages at start time of current promote
1410 	 * threshold adjustment period
1411 	 */
1412 	unsigned long nbp_th_nr_cand;
1413 #endif
1414 	/* Fields commonly accessed by the page reclaim scanner */
1415 
1416 	/*
1417 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1418 	 *
1419 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1420 	 */
1421 	struct lruvec		__lruvec;
1422 
1423 	unsigned long		flags;
1424 
1425 #ifdef CONFIG_LRU_GEN
1426 	/* kswap mm walk data */
1427 	struct lru_gen_mm_walk mm_walk;
1428 	/* lru_gen_folio list */
1429 	struct lru_gen_memcg memcg_lru;
1430 #endif
1431 
1432 	CACHELINE_PADDING(_pad2_);
1433 
1434 	/* Per-node vmstats */
1435 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1436 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1437 #ifdef CONFIG_NUMA
1438 	struct memory_tier __rcu *memtier;
1439 #endif
1440 #ifdef CONFIG_MEMORY_FAILURE
1441 	struct memory_failure_stats mf_stats;
1442 #endif
1443 } pg_data_t;
1444 
1445 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1446 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1447 
1448 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1449 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1450 
1451 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1452 {
1453 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1454 }
1455 
1456 #include <linux/memory_hotplug.h>
1457 
1458 void build_all_zonelists(pg_data_t *pgdat);
1459 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1460 		   enum zone_type highest_zoneidx);
1461 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1462 			 int highest_zoneidx, unsigned int alloc_flags,
1463 			 long free_pages);
1464 bool zone_watermark_ok(struct zone *z, unsigned int order,
1465 		unsigned long mark, int highest_zoneidx,
1466 		unsigned int alloc_flags);
1467 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1468 		unsigned long mark, int highest_zoneidx);
1469 /*
1470  * Memory initialization context, use to differentiate memory added by
1471  * the platform statically or via memory hotplug interface.
1472  */
1473 enum meminit_context {
1474 	MEMINIT_EARLY,
1475 	MEMINIT_HOTPLUG,
1476 };
1477 
1478 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1479 				     unsigned long size);
1480 
1481 extern void lruvec_init(struct lruvec *lruvec);
1482 
1483 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1484 {
1485 #ifdef CONFIG_MEMCG
1486 	return lruvec->pgdat;
1487 #else
1488 	return container_of(lruvec, struct pglist_data, __lruvec);
1489 #endif
1490 }
1491 
1492 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1493 int local_memory_node(int node_id);
1494 #else
1495 static inline int local_memory_node(int node_id) { return node_id; };
1496 #endif
1497 
1498 /*
1499  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1500  */
1501 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1502 
1503 #ifdef CONFIG_ZONE_DEVICE
1504 static inline bool zone_is_zone_device(struct zone *zone)
1505 {
1506 	return zone_idx(zone) == ZONE_DEVICE;
1507 }
1508 #else
1509 static inline bool zone_is_zone_device(struct zone *zone)
1510 {
1511 	return false;
1512 }
1513 #endif
1514 
1515 /*
1516  * Returns true if a zone has pages managed by the buddy allocator.
1517  * All the reclaim decisions have to use this function rather than
1518  * populated_zone(). If the whole zone is reserved then we can easily
1519  * end up with populated_zone() && !managed_zone().
1520  */
1521 static inline bool managed_zone(struct zone *zone)
1522 {
1523 	return zone_managed_pages(zone);
1524 }
1525 
1526 /* Returns true if a zone has memory */
1527 static inline bool populated_zone(struct zone *zone)
1528 {
1529 	return zone->present_pages;
1530 }
1531 
1532 #ifdef CONFIG_NUMA
1533 static inline int zone_to_nid(struct zone *zone)
1534 {
1535 	return zone->node;
1536 }
1537 
1538 static inline void zone_set_nid(struct zone *zone, int nid)
1539 {
1540 	zone->node = nid;
1541 }
1542 #else
1543 static inline int zone_to_nid(struct zone *zone)
1544 {
1545 	return 0;
1546 }
1547 
1548 static inline void zone_set_nid(struct zone *zone, int nid) {}
1549 #endif
1550 
1551 extern int movable_zone;
1552 
1553 static inline int is_highmem_idx(enum zone_type idx)
1554 {
1555 #ifdef CONFIG_HIGHMEM
1556 	return (idx == ZONE_HIGHMEM ||
1557 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1558 #else
1559 	return 0;
1560 #endif
1561 }
1562 
1563 /**
1564  * is_highmem - helper function to quickly check if a struct zone is a
1565  *              highmem zone or not.  This is an attempt to keep references
1566  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1567  * @zone: pointer to struct zone variable
1568  * Return: 1 for a highmem zone, 0 otherwise
1569  */
1570 static inline int is_highmem(struct zone *zone)
1571 {
1572 	return is_highmem_idx(zone_idx(zone));
1573 }
1574 
1575 #ifdef CONFIG_ZONE_DMA
1576 bool has_managed_dma(void);
1577 #else
1578 static inline bool has_managed_dma(void)
1579 {
1580 	return false;
1581 }
1582 #endif
1583 
1584 
1585 #ifndef CONFIG_NUMA
1586 
1587 extern struct pglist_data contig_page_data;
1588 static inline struct pglist_data *NODE_DATA(int nid)
1589 {
1590 	return &contig_page_data;
1591 }
1592 
1593 #else /* CONFIG_NUMA */
1594 
1595 #include <asm/mmzone.h>
1596 
1597 #endif /* !CONFIG_NUMA */
1598 
1599 extern struct pglist_data *first_online_pgdat(void);
1600 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1601 extern struct zone *next_zone(struct zone *zone);
1602 
1603 /**
1604  * for_each_online_pgdat - helper macro to iterate over all online nodes
1605  * @pgdat: pointer to a pg_data_t variable
1606  */
1607 #define for_each_online_pgdat(pgdat)			\
1608 	for (pgdat = first_online_pgdat();		\
1609 	     pgdat;					\
1610 	     pgdat = next_online_pgdat(pgdat))
1611 /**
1612  * for_each_zone - helper macro to iterate over all memory zones
1613  * @zone: pointer to struct zone variable
1614  *
1615  * The user only needs to declare the zone variable, for_each_zone
1616  * fills it in.
1617  */
1618 #define for_each_zone(zone)			        \
1619 	for (zone = (first_online_pgdat())->node_zones; \
1620 	     zone;					\
1621 	     zone = next_zone(zone))
1622 
1623 #define for_each_populated_zone(zone)		        \
1624 	for (zone = (first_online_pgdat())->node_zones; \
1625 	     zone;					\
1626 	     zone = next_zone(zone))			\
1627 		if (!populated_zone(zone))		\
1628 			; /* do nothing */		\
1629 		else
1630 
1631 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1632 {
1633 	return zoneref->zone;
1634 }
1635 
1636 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1637 {
1638 	return zoneref->zone_idx;
1639 }
1640 
1641 static inline int zonelist_node_idx(struct zoneref *zoneref)
1642 {
1643 	return zone_to_nid(zoneref->zone);
1644 }
1645 
1646 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1647 					enum zone_type highest_zoneidx,
1648 					nodemask_t *nodes);
1649 
1650 /**
1651  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1652  * @z: The cursor used as a starting point for the search
1653  * @highest_zoneidx: The zone index of the highest zone to return
1654  * @nodes: An optional nodemask to filter the zonelist with
1655  *
1656  * This function returns the next zone at or below a given zone index that is
1657  * within the allowed nodemask using a cursor as the starting point for the
1658  * search. The zoneref returned is a cursor that represents the current zone
1659  * being examined. It should be advanced by one before calling
1660  * next_zones_zonelist again.
1661  *
1662  * Return: the next zone at or below highest_zoneidx within the allowed
1663  * nodemask using a cursor within a zonelist as a starting point
1664  */
1665 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1666 					enum zone_type highest_zoneidx,
1667 					nodemask_t *nodes)
1668 {
1669 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1670 		return z;
1671 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1672 }
1673 
1674 /**
1675  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1676  * @zonelist: The zonelist to search for a suitable zone
1677  * @highest_zoneidx: The zone index of the highest zone to return
1678  * @nodes: An optional nodemask to filter the zonelist with
1679  *
1680  * This function returns the first zone at or below a given zone index that is
1681  * within the allowed nodemask. The zoneref returned is a cursor that can be
1682  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1683  * one before calling.
1684  *
1685  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1686  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1687  * update due to cpuset modification.
1688  *
1689  * Return: Zoneref pointer for the first suitable zone found
1690  */
1691 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1692 					enum zone_type highest_zoneidx,
1693 					nodemask_t *nodes)
1694 {
1695 	return next_zones_zonelist(zonelist->_zonerefs,
1696 							highest_zoneidx, nodes);
1697 }
1698 
1699 /**
1700  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1701  * @zone: The current zone in the iterator
1702  * @z: The current pointer within zonelist->_zonerefs being iterated
1703  * @zlist: The zonelist being iterated
1704  * @highidx: The zone index of the highest zone to return
1705  * @nodemask: Nodemask allowed by the allocator
1706  *
1707  * This iterator iterates though all zones at or below a given zone index and
1708  * within a given nodemask
1709  */
1710 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1711 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1712 		zone;							\
1713 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1714 			zone = zonelist_zone(z))
1715 
1716 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1717 	for (zone = zonelist_zone(z);	\
1718 		zone;							\
1719 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1720 			zone = zonelist_zone(z))
1721 
1722 
1723 /**
1724  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1725  * @zone: The current zone in the iterator
1726  * @z: The current pointer within zonelist->zones being iterated
1727  * @zlist: The zonelist being iterated
1728  * @highidx: The zone index of the highest zone to return
1729  *
1730  * This iterator iterates though all zones at or below a given zone index.
1731  */
1732 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1733 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1734 
1735 /* Whether the 'nodes' are all movable nodes */
1736 static inline bool movable_only_nodes(nodemask_t *nodes)
1737 {
1738 	struct zonelist *zonelist;
1739 	struct zoneref *z;
1740 	int nid;
1741 
1742 	if (nodes_empty(*nodes))
1743 		return false;
1744 
1745 	/*
1746 	 * We can chose arbitrary node from the nodemask to get a
1747 	 * zonelist as they are interlinked. We just need to find
1748 	 * at least one zone that can satisfy kernel allocations.
1749 	 */
1750 	nid = first_node(*nodes);
1751 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1752 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1753 	return (!zonelist_zone(z)) ? true : false;
1754 }
1755 
1756 
1757 #ifdef CONFIG_SPARSEMEM
1758 #include <asm/sparsemem.h>
1759 #endif
1760 
1761 #ifdef CONFIG_FLATMEM
1762 #define pfn_to_nid(pfn)		(0)
1763 #endif
1764 
1765 #ifdef CONFIG_SPARSEMEM
1766 
1767 /*
1768  * PA_SECTION_SHIFT		physical address to/from section number
1769  * PFN_SECTION_SHIFT		pfn to/from section number
1770  */
1771 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1772 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1773 
1774 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1775 
1776 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1777 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1778 
1779 #define SECTION_BLOCKFLAGS_BITS \
1780 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1781 
1782 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1783 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1784 #endif
1785 
1786 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1787 {
1788 	return pfn >> PFN_SECTION_SHIFT;
1789 }
1790 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1791 {
1792 	return sec << PFN_SECTION_SHIFT;
1793 }
1794 
1795 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1796 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1797 
1798 #define SUBSECTION_SHIFT 21
1799 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1800 
1801 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1802 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1803 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1804 
1805 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1806 #error Subsection size exceeds section size
1807 #else
1808 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1809 #endif
1810 
1811 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1812 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1813 
1814 struct mem_section_usage {
1815 	struct rcu_head rcu;
1816 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1817 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1818 #endif
1819 	/* See declaration of similar field in struct zone */
1820 	unsigned long pageblock_flags[0];
1821 };
1822 
1823 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1824 
1825 struct page;
1826 struct page_ext;
1827 struct mem_section {
1828 	/*
1829 	 * This is, logically, a pointer to an array of struct
1830 	 * pages.  However, it is stored with some other magic.
1831 	 * (see sparse.c::sparse_init_one_section())
1832 	 *
1833 	 * Additionally during early boot we encode node id of
1834 	 * the location of the section here to guide allocation.
1835 	 * (see sparse.c::memory_present())
1836 	 *
1837 	 * Making it a UL at least makes someone do a cast
1838 	 * before using it wrong.
1839 	 */
1840 	unsigned long section_mem_map;
1841 
1842 	struct mem_section_usage *usage;
1843 #ifdef CONFIG_PAGE_EXTENSION
1844 	/*
1845 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1846 	 * section. (see page_ext.h about this.)
1847 	 */
1848 	struct page_ext *page_ext;
1849 	unsigned long pad;
1850 #endif
1851 	/*
1852 	 * WARNING: mem_section must be a power-of-2 in size for the
1853 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1854 	 */
1855 };
1856 
1857 #ifdef CONFIG_SPARSEMEM_EXTREME
1858 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1859 #else
1860 #define SECTIONS_PER_ROOT	1
1861 #endif
1862 
1863 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1864 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1865 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1866 
1867 #ifdef CONFIG_SPARSEMEM_EXTREME
1868 extern struct mem_section **mem_section;
1869 #else
1870 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1871 #endif
1872 
1873 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1874 {
1875 	return ms->usage->pageblock_flags;
1876 }
1877 
1878 static inline struct mem_section *__nr_to_section(unsigned long nr)
1879 {
1880 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1881 
1882 	if (unlikely(root >= NR_SECTION_ROOTS))
1883 		return NULL;
1884 
1885 #ifdef CONFIG_SPARSEMEM_EXTREME
1886 	if (!mem_section || !mem_section[root])
1887 		return NULL;
1888 #endif
1889 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1890 }
1891 extern size_t mem_section_usage_size(void);
1892 
1893 /*
1894  * We use the lower bits of the mem_map pointer to store
1895  * a little bit of information.  The pointer is calculated
1896  * as mem_map - section_nr_to_pfn(pnum).  The result is
1897  * aligned to the minimum alignment of the two values:
1898  *   1. All mem_map arrays are page-aligned.
1899  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1900  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1901  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1902  *      worst combination is powerpc with 256k pages,
1903  *      which results in PFN_SECTION_SHIFT equal 6.
1904  * To sum it up, at least 6 bits are available on all architectures.
1905  * However, we can exceed 6 bits on some other architectures except
1906  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1907  * with the worst case of 64K pages on arm64) if we make sure the
1908  * exceeded bit is not applicable to powerpc.
1909  */
1910 enum {
1911 	SECTION_MARKED_PRESENT_BIT,
1912 	SECTION_HAS_MEM_MAP_BIT,
1913 	SECTION_IS_ONLINE_BIT,
1914 	SECTION_IS_EARLY_BIT,
1915 #ifdef CONFIG_ZONE_DEVICE
1916 	SECTION_TAINT_ZONE_DEVICE_BIT,
1917 #endif
1918 	SECTION_MAP_LAST_BIT,
1919 };
1920 
1921 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1922 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1923 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1924 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1925 #ifdef CONFIG_ZONE_DEVICE
1926 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1927 #endif
1928 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1929 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1930 
1931 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1932 {
1933 	unsigned long map = section->section_mem_map;
1934 	map &= SECTION_MAP_MASK;
1935 	return (struct page *)map;
1936 }
1937 
1938 static inline int present_section(struct mem_section *section)
1939 {
1940 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1941 }
1942 
1943 static inline int present_section_nr(unsigned long nr)
1944 {
1945 	return present_section(__nr_to_section(nr));
1946 }
1947 
1948 static inline int valid_section(struct mem_section *section)
1949 {
1950 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1951 }
1952 
1953 static inline int early_section(struct mem_section *section)
1954 {
1955 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1956 }
1957 
1958 static inline int valid_section_nr(unsigned long nr)
1959 {
1960 	return valid_section(__nr_to_section(nr));
1961 }
1962 
1963 static inline int online_section(struct mem_section *section)
1964 {
1965 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1966 }
1967 
1968 #ifdef CONFIG_ZONE_DEVICE
1969 static inline int online_device_section(struct mem_section *section)
1970 {
1971 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1972 
1973 	return section && ((section->section_mem_map & flags) == flags);
1974 }
1975 #else
1976 static inline int online_device_section(struct mem_section *section)
1977 {
1978 	return 0;
1979 }
1980 #endif
1981 
1982 static inline int online_section_nr(unsigned long nr)
1983 {
1984 	return online_section(__nr_to_section(nr));
1985 }
1986 
1987 #ifdef CONFIG_MEMORY_HOTPLUG
1988 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1989 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1990 #endif
1991 
1992 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1993 {
1994 	return __nr_to_section(pfn_to_section_nr(pfn));
1995 }
1996 
1997 extern unsigned long __highest_present_section_nr;
1998 
1999 static inline int subsection_map_index(unsigned long pfn)
2000 {
2001 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2002 }
2003 
2004 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2005 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2006 {
2007 	int idx = subsection_map_index(pfn);
2008 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2009 
2010 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2011 }
2012 #else
2013 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2014 {
2015 	return 1;
2016 }
2017 #endif
2018 
2019 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2020 /**
2021  * pfn_valid - check if there is a valid memory map entry for a PFN
2022  * @pfn: the page frame number to check
2023  *
2024  * Check if there is a valid memory map entry aka struct page for the @pfn.
2025  * Note, that availability of the memory map entry does not imply that
2026  * there is actual usable memory at that @pfn. The struct page may
2027  * represent a hole or an unusable page frame.
2028  *
2029  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2030  */
2031 static inline int pfn_valid(unsigned long pfn)
2032 {
2033 	struct mem_section *ms;
2034 	int ret;
2035 
2036 	/*
2037 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2038 	 * pfn. Else it might lead to false positives when
2039 	 * some of the upper bits are set, but the lower bits
2040 	 * match a valid pfn.
2041 	 */
2042 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2043 		return 0;
2044 
2045 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2046 		return 0;
2047 	ms = __pfn_to_section(pfn);
2048 	rcu_read_lock_sched();
2049 	if (!valid_section(ms)) {
2050 		rcu_read_unlock_sched();
2051 		return 0;
2052 	}
2053 	/*
2054 	 * Traditionally early sections always returned pfn_valid() for
2055 	 * the entire section-sized span.
2056 	 */
2057 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2058 	rcu_read_unlock_sched();
2059 
2060 	return ret;
2061 }
2062 #endif
2063 
2064 static inline int pfn_in_present_section(unsigned long pfn)
2065 {
2066 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2067 		return 0;
2068 	return present_section(__pfn_to_section(pfn));
2069 }
2070 
2071 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2072 {
2073 	while (++section_nr <= __highest_present_section_nr) {
2074 		if (present_section_nr(section_nr))
2075 			return section_nr;
2076 	}
2077 
2078 	return -1;
2079 }
2080 
2081 /*
2082  * These are _only_ used during initialisation, therefore they
2083  * can use __initdata ...  They could have names to indicate
2084  * this restriction.
2085  */
2086 #ifdef CONFIG_NUMA
2087 #define pfn_to_nid(pfn)							\
2088 ({									\
2089 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2090 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2091 })
2092 #else
2093 #define pfn_to_nid(pfn)		(0)
2094 #endif
2095 
2096 void sparse_init(void);
2097 #else
2098 #define sparse_init()	do {} while (0)
2099 #define sparse_index_init(_sec, _nid)  do {} while (0)
2100 #define pfn_in_present_section pfn_valid
2101 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2102 #endif /* CONFIG_SPARSEMEM */
2103 
2104 #endif /* !__GENERATING_BOUNDS.H */
2105 #endif /* !__ASSEMBLY__ */
2106 #endif /* _LINUX_MMZONE_H */
2107